
1. Introduction
1

We are addressing biodiversity analysis under the as-

sumption that it is performed in the presence of broad spa-

tial and temporal scales within a natural environment. It

is assumed also that geographic extent, period length, and

time step are matters of choice. We fully recognise that

the problem area has global dimensions, and for this rea-

son we consider it desirable to frame the discourse within

the broader terms of the global biodiversity issue. This is

highlighted in Appendix A.

What is “biodiversity”? Writing in S. A. Levin’s En-

cyclopaedia of Biodiversity (2001, p. XXV, and refer-

ences), E. O. Wilson defines biodiversity as “… inherited

variation of all forms of life”. Definition in such terms is

useful to us to set bounds within which the discourse

should remain. We see specific technical utility of empha-

sising attributes such as range, number and type, as the

authors of Microsoft’s Encarta World Dictionary have

done. Involvement of structure and function (Izsák and

Papp 1994), and reference to statistical models with focus

on cause/effect relations within a dynamic multi–scale

environment, further enhances a definition’s technical

utility.
�

We take biodiversity as a convolution of two attrib-

utes (richness, structure) and a class of feedback relations

(cause/effect/cause…):

1) Richness. This implies the numerousness of commu-

nity components. What first comes to mind when men-

tioning community components is “organism type”, most

likely a population of common inheritance, such as a

“species”. Of course, inheritance is one of the many crite-

ria for recognising populations. Particularly important of

the others is linked directly with organismal function.

Changing from inheritance to function, the taxa recog-

nised will likely be other than “species” (see Fekete and

Lacza 1970, Mueller-Dombois and Ellenberg 1974, Or-

lóci 1991a, Pillar and Orlóci 1993, and references

therein).

2) Structure. If we equate richness with the numerousness

of the organism types, it should make sense to think of
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structure as the manner in which organism types are

sorted.

3) Cause and effect. The identity of the causal factors is

diagnosed from their sorting effects. The purpose of bio-

diversity analysis should in fact be, at one level, the iso-

lation of diversity components in three categories: main,

joint, and interaction effects. As a corollary to this, it is

important to recognise that the perception of cause/effect

relations is fraught by scale dependence (Schneider 1994,

Orlóci 2000, O’Neill 2001), which is responsible for con-

text. Therefore, biodiversity analysis is best to be per-

formed over ranges of scale.

A further point along this line of reasoning regards the

inherently convoluted nature of richness and structure.

Because of this, richness and structure can stand as dis-

tinct things only in the abstract. They can materialise only

as a single dynamic duplet inseparable in natural space or

time. We see the analysis of this duplet as a problem in

the additive partitioning of measures defined on them,

such as entropy and information.

What are the objectives of biodiversity analysis in

general? Wilson’s (2000) list on this is reproduced in Ap-

pendix A. Where does the present paper have contacts

with Wilson’s objectives? These are across the categories

where general principles and conceptual tools are empha-

sised. A preview of the present paper’s contents should

help at this point. The main text begins with an account of

data sources, diversity functions, and models for the quan-

titative isolation of biodiversity effects in relation to spe-

cific sorting factors. Numerical examples follow, leading

to considerations of diversity, complexity, and process

stability. Separate sections are devoted to the topic of pre-

diction. Issues and facts about biodiversity, and some

technical details about the methods are collected in sepa-

rate appendices.

2. Data sources, measuring scales, partition model

Biodiversity being a dynamic community property,

time series data are ideal for its analysis. The data sources

include permanent plots, sediment cores, and transects.

The latter is in conjunction of the manoeuvre known as

space-for-time substitution. We present concrete exam-

ples of the first and second, but for more details about the

third we refer readers to Wildi and Schütz (2000).

What ever the nature of the basic observation, biodi-

versity analysis as presented in this paper requires cate-

gorical data in the manner of Kullback (1959). The fre-

quency distribution in Table 1 is an example. This simple

case involves two richness components (species identity,

type identity) and several structural features. The latter

are related to the manner in which the frequencies are dis-

tributed among the 12 groups, and to the state of the dis-

tribution in comparison with some standard arrangement.

Structures of this kind are measurable in any one of sev-

eral ways:

Table 1. Biosphere richness and its systematic structure. Table contents follow Varga (1996) and sources therein. The total

number of species existing today is estimated to range from a few million up to 120 million. The average estimated number

is about 12 million. Only a fraction of these are so far named, and much fewer studied. See web addresses:

http://www.wri.org, www.unep.org and www.iucn.org.
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1) Disorder. Rényi’s (1961) generalised entropy of order

alpha (see Appendix B) is ideal to measure this. It should

be mentioned that disorder is maximal when the fre-

quency distribution is completely flat. Kulback (1959)

uses the term “equidistribution” to characterise such a

case, while others use terms such as “even”, “most dis-

persed”, or “most contiguous”. Interestingly, minimal

disorder (maximal contagion) occurs when all but one of

the cells of the frequency distribution are represented by

a single observation. This case is important to set bounds

about the observed level of diversity.

2) Complexity. There are many ways to define complex-

ity.
�

We find particularly useful for our purposes Kolmo-

gorov’s definition (see Anand and Orlóci 1996, 2000).

This makes the measured level of complexity conditional

on the code length L=∆+H�, or in other words the level

of the difficulty in an object’s description. Since H� is dis-

order related, the ∆ term captures that portion of complex-

ity that is not disorder related. As expected, ∆ is zero when

the distribution is most dispersed, and maximal, when the

distribution is least dispersed. Other measures of com-

plexity may target the shape of objects in other than cod-

ing theoretical term. This is so when a frequency distribu-

tion’s skewness and kurtosis is measured, or a graph’s

fractal dimension is determined in the manner of Mandel-

brot (1967, 1972).

3) Divergence. We use Rényi’s generalised information

of order alpha for this. Two distributions are involved.

One is the observed and the other a standard from which

the divergence is measured.

More details are found on these in Appendix B.

From a pragmatic point of view, the central dilemma

in the statistical analysis of biodiversity is in the model

design based on which the effect of specified causal fac-

tors can be measured statistically. The model at best

should accomplish the task in a perfectly additive manner.

The following examples clarify this point.

3. A case of taxonomic diversity

We analysed the average estimates in Table 1 and pre-

sent the results in Table 2. The analysis of such a case may

strike the reader as a trivial undertaking. The results, nev-

ertheless, bring up some interesting points:

1) Taxonomic systems are never absolute. They come

about and undergo change in the wake of the evolving

view of what should constitute a taxon. We refer back to

comments above, regarding different taxonomic systems.

The taxonomic criterion in Table 1 is common inheri-

tance.

2) Each value in Table 2 is a “point estimate” specific to

diversity of order one. When the order variable is allowed

to range free, a curve is generated. The table below takes

values from the curve in Figure 1:

H� H� H� H�� H��

3.58 1.98 0.80 0.66 0.63

Note the rapid decline initially and then the levelling off

with increasing order.

3) Also note the two bounding lines (maximum, mini-

mum) in Figure 1. The lower one corresponds to the hy-

pothetical most contagious distribution. No point exists

below this line at the given number of cells (12) and dis-

tribution total (12,150,000). The upper bound is straight

Table 2. Results of diversity analysis performed with the “Average” column of Table 1. Symbols: H� – entropy of order

zero, H� - entropy of order one, I� – information (divergence) of order one. Entropy and information functions are discussed

in the main text and in Appendix B. See also Orlóci (1991b, 2000). * The units are bits. Conversion to natural units: nats =

bits / log� e.
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at 3.58 bits, the maximum entropy that could ever be at-

tained at the given number of cells, independently from

the actual distribution total or entropy order.

4) Note the additive relationship of maximum entropy

(3.5849625 bits), disorder based entropy (1.9772667

bits), and information divergence (1.6076958 bits).

Clearly, the divergence measured is the entropy deficit,

the “equivocation entropy” of Abramson (1963), in the

distribution with respect to maximum entropy.

5) Single point diversity is usually taken as entropy of or-

der one (Shannon’s entropy) or order two (a function of

Simpson’s index). Entropy of order one is a necessary

choice when additive partitions are sought. The choice

may follow a different rule where no partitions are in-

tended. For example, one may select a point estimate for

general comparison farther out in the right tail, say at H��,

to enhance the comparability of different cases.

4. A case of tangible structure

The example to be considered involves two idealised

forest stands (Figure 2). The two stands differ in the lay-

ering of the tree canopy. The simplest description of such

a stand structure is in species presence-absence terms:

4-species in one stratum: 4-species in 3 strata:
[1 1 1 1] [1 1 1 1]

[1 1 1 1]

[1 1 1 1]

The corresponding H� quantities are:

Richness (species) = log� 4= 2 bits = log� 4= 2 bits

(strata) = log� 1= 0 bits = log� 3= 1.58 bits

Within strata = log� 4= 2 bits = 3 log� 4 = 6 bits

Total diversity = 4 bits = 9.58 bits

Clearly, succession from a single stratum to three strata

has increased entropy two folds plus 1.58 bits. The 1.58

bits is the unique consequence of the process by which the

stand becomes structurally more complex.

5. A case of regional floristic diversity

The geographic location of this example is

Heilongjiang in China. As one would expect, many vege-

tation zones are involved. Li (1993) describes these in de-

tail. X. S. He’s code (Orlóci and He 1996) waqs used to

sort Li’s 646 species (see Table 3) among functional types

(5), flora elements (3), and climax types (3). Some revi-

sions were implemented by L.O. The basic records have

the format:

1 Abies holophylla 131 4 Acanthopanax sessiliflorus 231

2 Abies nephrolepis 111 …

3 Acanthopanax senticosus 221 646 Zigadenus sibiricus 323

The digits following a species name identify the states of

the sorting criteria. Diversity partitions for the design in

Table 3 are given in Tables 4 and 5. The partition func-

tions are listed in Appendix B. Some of the functions are

graphed over the range of 10 ranks in Figure 3.

An obvious benefit to be drawn from Table 4 is the

quantitative ranking of the sorting criteria. It should be

noted that the conditional terms weigh the criteria accord-

ing to entropy not shared, in other words the inde-

pendently exercised effect of the sorting factors: func-

tional type (1.718) > climax type (0.913) > flora element

(1.185). The difference of the marginal entropy and con-

ditional entropy ranks a criterion according to what it

shares with the other criteria: functional type (0.233)

> climax type (0.230) > flora element (0.198).

Figure 1. Entropy curve of the average column in Table 1.

The curve is marked at H� and H��. Upper (maximum) and

lower bounds (minimum) are shown. The upper bound is at

log� 12. The lower bound approaches zero at about α=0.5.

See the explanations in the text.

Figure 2. Sketches of idealised stands. The complex stand

evolved from the simple by regeneration under the main

canopy. See the explanations in the text.

SIMPLE COMPLEX

220 Orlóci, Anand and Pillar



Table 3. Three-way sorting of 646 species from the Heilongjiang flora in China. The data source is Li (1993, Orlóci and He

1996). The three consecutive tables represent layers in a cubic distribution whose principal dimensions correspond to sorting

criteria. See further specifications in the text and in the caption of Partition-set 1, Appendix C.

Table 4. Typical diversity partitions for the sorting model adapted in Table 3. Partitions accord with the equations in Parti-

tion-set 1. See complete set in Table 5 and Partition-set 2. The percentages in the table are relative to total diversity. Since

the marginal quantities carry shared effects, percentages are not shown.
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6. Diversity, stability, complexity

Conventional wisdom holds it being true (H�) that

community stability is highest during periods of high di-

versity (e.g. Poore 1955). On gestalt, the graphs of Figure

4 do suggest the existence of rather close relationships, for

entropy (H) and structural complexity (C) with velocity

(V), a surrogate for stability.
�

We tested the idea by prob-

ing the distribution of the correlation coefficient, com-

puted within randomly placed windows of random

lengths on the graphs, for positive and negative tenden-

cies. The result is a frequency distribution of 10000 inter-

graph correlation values
�
:

HxV CxV HxC
Positive correlation % 3.7 63.3 28.4

Negative correlation % 91.2 19.6 39.3
Zero % 5.1 17.1 32.3

Negative correlations dominate the relationships of disor-

der based entropy with velocity, but the relationship of

structural complexity and Velocity is overwhelmingly

positive. Interestingly, the dominance of positive and

negative correlations is strongly localised:

Table 5. Numerical values of diversity partitions, corresponding to the design in Table 3 and functions listed in Partition-set

2. Taking order in the range from 0 to 5 in unit steps is an arbitrary choice. A broader range is covered in very small steps in

Figure 3. All values are given in bits. Combinations of terms are additive in the manner of the Venn diagram (Figure 11). *

* A note to the inquisitive reader: the effect of computer rounding errors in the arithmetic requires the proof of additivity to

be developed in terms of symbolic algebra, according to the logic in the Venn diagram, rather than on a purely numerical

basis.
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Years before present HxV CxV HxC
1–5000 -0.98 0.22 -0.23

5000–16500 -0.17 0.36 0.04

16500–40000 -0.38 –0.04 0.23

40000–44500 -0.99 0.36 -0.31
1–445000 -0.31 0.09 -0.00

But these are results from one locality. The pattern of cor-

relations observed may not hold for other cases. In spe-

cific periods, disturbance may counteract the ungoing

process. Figure 5 presents a case in point. The observa-

tions began in 1963 after a period of severe grazing and

finally burning (see Lippe et al. 1985). Rapid composi-

tional change characterises the initial period of recovery

when the process traces out a linear trajectory path (see

Figure 6A). Soon after, by around 1969, occlusion devel-

ops in the form of sever reduction of bare ground (see Ta-

ble 6), the process decelerates, and in turn, it enters into a

period of chaotic, directionless change. It is interesting to

see in this case the evolution of entropy and complexity

as can be seen in terms of the correlation values. The over-

all distribution of the positive and negative correlations is

as follows:

HxV CxV HxC

Positive correlation % 78.2 90.8 77.8

Negative correlation % 18.6 6.6 14.3
Zero % 3.2 2.6 7.9

The correlations with velocity change with the changing

phase in the process:

Years into the process HxV CxV HxC

1964-69 0.18 0.59 0.51
1970-81 0.34 0.36 0.06

1964-81 0.53 0.63 0.67

During the rapidly moving linear phase, both disorder

based entropy and structural complexity are dropping

with process velocity. But occlusion opens a chaotic

phase which disrupts relationships, and makes entropy

and structural complexity oscillate in a more complex

manner.

An interesting corollary to the Lagoa das Patas exam-

ple is that velocity tends to decrease during global cool-

ing, and it tends to increase during global warming. True,

this is a single example. But from other cases under study

it seems the same climatic effect on velocity holds glob-

ally true.

Figure 3. Graphs of selected entropy partitions for func-

tional type and flora element based on quantities identified

in Table 5. Labels “Flora”, “Function”, and “Joint” refer to

sorting type. “Shared” identifies information. Note the defi-

nition of the coherence coefficient ρ = √(1-d
�
), where d =

[H(A,B) - H(A;B)] / H(A,B). The d quantity is known as

Rajski’s metric. “S” is abbreviation for “Specific”. See text

above and also in Orlóci (1991b, 2000) for details, regard-

ing terms and algorithmic references.

Figure 4. Long-term evolution of Rényi’s generalised en-

tropy of order one, Anand’s structural complexity (Anand

and Orlóci 1996), and process velocity (Orlóci 2000) as re-

flected in the records of the Lagoa das Patas paleopollen

spectrum of P. E. Oliveira. Top graph shows changes in the

atmospheric concentration of the isotope O
��

, which is in-

versely proportional to global average temperature. Graphs

are scaled for presentation. While scaling retains the rela-

tive graph amplitudes within a case, only graph shape is

comparable between cases.
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7. Prediction

We can bring the technical difficulties of diversity

prediction into focus by considering high-order polyno-

mials, sinusoid functions, Markov chain, and a general

analogue model. All of these assume something more or

less about the type of process that leads into the future.

Typically, the process constants are determined in post-

diction and extrapolation is the basis of prediction.

Figure 5. Evolution of compositional diversity (entropy of order one, E) and structural complexity (C, Anand and Orlóci

1996) in relation to process velocity (compositional change in unit time, V on same scale as E) in Atlantic Heathland site.

See the explanations in the text and the data in Table 6. Significant events: 1964 – emergence from period of heavy grazing

and fire, 1968 – severe reduction of bare ground; 1976-1977 – draught.

Table 6. The de Smidt data set from Atlantic Heathland (52
�
N, 6

�
E). Table contents after Lippe et al. (1985). Data elements

are point-cover estimates. Symbols: BG - bare ground; EN - Empetrum nigrum; CV - Calluna vulgaris; ET - Erica tetralix;

MC - Molinia caerula; RA - Rumex acetosella; JS - Juncus squarrosus; CP - Carex pilulifera; OS - other species.

Figure 6. Eigenprojections of the process trajectory (Graph

A) and fitted Markov chain (Graph B) in Atlantic Heath-

land. Graph A recovers 98% of the original distance con-

figuration. See the explanations in the text, and data in

Table 6.
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Model 1: high-order polynomial, sinusoid curve

Figure 7 is our example. It displays curves fitted to the

entropy graph in Figure 5. The irregular curve is a Fourier

polynomial of order 16. At this order, the fit is extremely

precise. But is it the type on which a prediction should be

based? Not really. The problem with polynomials is that

they cannot be used reliably outside the data range. To see

this, it is sufficient to consider the case of the same type

of polynomial fitted to the same entropy graph shortened

just by one time step. The predicted entropy for 1980 be-

comes 2.14 bits. This is a point far exceeding the 1980

level in the original curve (1.34 bits), and far above the

observed value (1.55 bits).

The sinusoid curve is the second residual obtained in

the third step of the decomposition of the entropy graph.

The decomposition is such that the sum of all stepwise

sinusoid curves recreates exactly the observed entropy

graph.
�

The decomposition statistics (up to the 5th resid-

ual) are as follows:

Residual # 0 1 2 3 4 5
Wave frequency: 1 2 3 4 5 1

Wave amplitude: .19 .15 .13 .08 .04 .04

% of total entropy accounted for 45 24 18 6 2 2

Cumulative %: 45 69 87 93 95 97

The numbers indicate rapid decline in wave amplitude

and in the amount of entropy in the residuals. Choice of

the 2nd residual serves a purely cosmetic purpose, namely

the assurance to have a reasonable number of entropy

waves covered. In any case, the sinusoid curve is too regu-

lar and as such it should not be expected to be a reliable

descriptor of the natural diversity process.

Model 2: Markov chain

The logic is completely different. Stated in abbrevi-

ated terms, the predicted diversity at the m
��

step into the

future is the diversity in the community whose composi-

tion is specified by M�, the m
��

term in the Markov chain

M�= X� P, M�= M� P, M�= M� P, … .
�

In this, X� is the

quantitative description of the initial state (perhaps the

last paleopollen relevé on record), and P is the transition

probability matrix determined from the previous pa-

leopollen relevés.
�

An element p�� of P is the proportion

of cases in which a taxon h is expected to be replaced by

taxon i in the next step of the process as consequence of

pure chance. The example below uses the Atlantic Heath-

land data set (Table 6) and the method of Orlóci et al.

(1993) to determine the transition probabilities. The

Eigenmapping of the fitted Markov chain is given as Fig-

ure 6B.

Starting with X����=[7.3 68.2 21.5 1.2 .5 1 1 .1 .2] as

the null state (Table 6), the Markov community state one

step into the future is M���� = X���� P = [ 6.890 67.71

21.535 1.827 0.535 1.108 0.855 0.129 0.405]. The pre-

dicted Markov community state 10 steps into the future is

M����= M���� P = [5.815 65.493 21.958 4.1160 0.646

Figure 7. Fourier polynomial of order 16 and the sinusoid

curve fitted to the entropy graph of Figure 5. See the expla-

nations in the text.
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on the period length. It is to be noted also that while the idea of “best fit” is operational with sinusoid curves, it is absolutely not so with
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8 Regarding the determination of transition probabilities from survey type data, the reader is referred to a method devised by Orlóci,

Anand, and He (1983). Waggoner and Stephens (1970), Horn (1981), Usher (1981), Lippe et al. (1985), van Hulst (1992), Wagner and

Wildi (1997), Balzter (2000), Horváth and Csontos (1992), and Wootton (2001) present thoughts and describe examples relating to

ecological applications of the Markov chain. Feller (1957) is the premier reference on Markov chain theory for the statistically-minded

ecologist.



1.426 0.510 0.164 0.868]. The corresponding predictions

are:

H������ H������ H������

1.4049 bits 1.4451 bits 1.555 bits

How good is the prediction? This is entirely dependent on

the transition probabilities resistance to random and di-

rected change. In other words, process stability is impor-

tant, in the sense that proportionalities are retained. But

both environmental and compositional changes are

chance driven. Because of this, at least in good part, pre-

dictions based on the stationary Markov chain are un-

likely to satisfy high expectations.

Model 3: analogues

A prediction could go like this:

1) Determine probabilistic linkages between environ-

mental types and community types in the region under ob-

servation.

2) Use as a prediction the diversity in the existing com-

munity type with strongest linkage to the environmental

type most likely to materialise in the same site at a future

point in time.

A prediction of community composition on such a ba-

sis is called “analogue prediction”. Plant geographers and

ecologists use analogue prediction regularly, albeit not al-

ways in a formal manner. We refer to Orlóci (1978), Box

(1981), Aszalós and Horváth (1998), and Küchler (1974,

1990) for typical examples.

It is clear from the logic that analogue predictions in-

volve the assumption that biological laws (adaptation,

plasticity, etc.) interplay with chance effects and the result

is determinism, weak or strong, never vanished. Thus,

prediction is a game with stochastics (Orlóci 2001a), and

as such, the tenets of statistical prediction and scale con-

straints apply.

8. Concluding remarks

The paper outlines a view of biodiversity analysis that

is wide in scope and analytically complex. The breadth of

the topics notwithstanding, the paper has not been in-

tended to be monographic. We do not supply a detailed

review and evaluation of the broader literature. Those ob-

jectives have been pre-empted many times over, since R.

K. Peet’s comprehensive paper (1974) and E. C. Pielou’s

book (1975), most recently by the authors of the Encyclo-

paedia of Biodiversity. It is true, as one of our critiques

observed, that some terms frequent in ecological parlance

(such as alpha, beta, and gamma diversity) are left out.

Our reason for that is straightforward: formulations that

we described apply to diversity, period — with whatever

local qualifications.

It should be clear from what has been presented that

there is much more to the analytical problem than the cal-

culation of some index, say entropy of order one or two.

It is, however, important to note that in our case the analy-

sis starts with some well-taught out proposition that fixes

the identity of the sorting factors and allow meaningful

diversity partitions. It should also be noted that we expect

the same data set, when probed for diversity structures at

different scales, to yield different results. This is not an

aberration.

After identification of the sorting factors and mean-

ingful diversity partitions, the analysis becomes a simple

three-step procedure at each time point in each site:

1) Total diversity is computed, followed by additive par-

titions specific to the sorting factors and their interactions.

2) A given factor’s importance is measured by how much

of the total diversity can be loaded onto it. To avoid ob-

taining spurious interpretations, tests are performed to

verify statistical significance.

3) The analyses at the time points are linked into an ana-

lytical chain to create an image of the process trajectory

across sites.

The results suggest interesting facts about diversity,

stability, and complexity:

1) The importance of the sorting factors is measurable.

But the importance measured is comparable only between

models that use similar scales.

2) Overall, diversity partitions lend themselves readily to

interpretation in ecological terms. There are, of course,

exceptions. Yet, it remains a meritorious undertaking to

compute a complete set of partitions. The computational

time is not a problem under automation, and the results

give precision to the description of the community’s di-

versity state. This enhances the reliability of comparisons

made with other cases somewhere else at the same time

or in the same place at other points in time.

3) Diversity, complexity, and stability are linked in our

scheme:

a) Total complexity cannot exceed maximum disorder

based diversity (ln s). When disorder-based diversity (en-

tropy) is maximal, structural complexity is zero.

b) It appears reasonable to propose that in the wake of a

major disturbance, the velocity of composition change in-
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creases in the community, but disorder-based entropy and

structural complexity may or may not do the same.

c) It is intuitive that if something is changing rapidly, it is

less stable than if it changed slowly under similar condi-

tions. By this criterion, increased velocity of composi-

tional change implies decreased community stability. The

correlation criterion suggests that under the same condi-

tions, disorder based entropy and structural complexity

behave as opposites. It must be understood that we are not

referring to absolute threshold behaviour, only to tenden-

cies, and as the examples indicated, the tendencies may

change in different phases of the process.

4) Regarding the techniques of diversity prediction, it is

quite fair to say that prediction by analogues is preferred

under a broad range of conditions over the other tech-

niques that we examined.
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APPPENDICES

by L. Orlóci

A. Biodiversity issues, global warming prospects

I believe biodiversity is a unifying concept in ecology,

and the biodiversity problem is defining the global eco-

logical agenda. I mention in support of this, the dual role

that biodiversity is known to play, simultaneously a cause

and an effect, in the functioning of the global ecosystem,

and the sensitive dependence of the functioning of the

global ecosystem on biodiversity, and biodiversity on dis-

turbance.
�

The magnitude of the biodiversity problem can

be gauged based on the following facts:

1) The entire genetic, functional, association, and interac-

tion domain of the biota is involved.

2) Species extinctions are very high (Wilson 1992, p. 280;

Ehrlich and Ehrlich 1981). Based on Wilson’s calcula-

tions, the annual species extinction rate is in the range of

one thousand to 10 thousand species per one million. This

is to be compared to the historical background extinction

rate estimated to be one species per million. This is base

on fossil records and the implications of the MacArthur-

Wilson species-area equation.

3) The number of species named by science is probably

only a small portion of the total number in most organis-

mal groups (see Table 1). The number actually studied in

detail for biological, economic, medicinal, or ecological

significance, is probably much smaller.

Thomas Berry (1990) narrates the general issues in-

volved and suggests radical solutions. The Encyclopaedia

of Biodiversity (Levin 2001) takes stock of the accumu-

lated knowledge. Based on the forgoing, a broad array of

objectives is expected to be addressed by biodiversity

studies. Wilson’s (2001, p. XXV) list covers the field:

1) Carrying the systematics and biogeography of the

world fauna and flora toward completion.

2) Mapping the hot spots where conservation will save

most biodiversity.

3) Orienting studies to save threatened species.

4) Advancing ecosystem studies and biogeography to cre-

ate the needed principles of community assembly and

maintenance.

5) Acquiring the knowledge of resource use, economics,

and polity to advance conservation programs based on

sustainability.

6) Enriching the ethic of global conservation.

The multilingual reader will find many interesting de-

tails on different aspects elsewhere, but none probably

more elaborating on the design aspects than the Hungar-
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ian Natural Sciences Museum’s ”Handbooks of the Na-

tional Biodiversity Monitoring System”.
�	

Environmental deterioration is expected to reach new

heights within decades should global warming occur at

the rate predicted by IPCC
��

. I quote from their report:

“The globally averaged surface temperature is projected

to increase by 1.4 to 5.8
�
C over the period 1990 to 2100.”

The IPCC range is equivalent to global average climate

warming at 1.3 to 5.3 Celsius degrees on a 100-year ba-

sis.
��

What could be the effect of such level of warming?

A good estimate is based on historic evidence, particu-

larly from the knowledge of what has taken place during

8 millennia ending with the Hypsothermal about 6 thou-

sand years ago. It was by that time that the global vegeta-

tion had attained its modern composition and geographic

pattern. It is significant that the IPCC rates are 22 to 93

times greater than the average historic rate for the period

mentioned. It is also significant that the actual local tem-

perature is likely to increase at a rate higher than the

global average, depending on geographic location. Or-

lóci’s (1994) numbers on this are reproduced in Table 7.

Clearly, steep amplification should be expected across

latitudes. For example, on longitude 85


W, roughly the

track of the Delcourt and Delcourt (1987) transect, tem-

perature increase can be 5 times the global average at lati-

tude 58


, 4 times at latitude 48



, 3 times at latitude 43



,

and 2 times at latitude 36


. I can make some interesting

points about the climatic effect on the vegetation in historic

terms based on Figure 8. This figure pictures the temporal

dynamics of Lucy Braun’s Eastern Deciduous Forest (Braun

1950; area D in Figure 9) from its inception 14 thousand

years ago. It is clear that climate warming at a less than 0.1



rate per 100 years is sufficient to force the rise of a major

vegetation formation and its expansion over many de-

grees of latitude at an average velocity of about 0.15



lati-

tudes per 100 years. Obviously, the 0.15



rate is one that

Table 7. Local thermal flux rates after Orlóci (1994). Rates are based on premises different from the large physico-mathe-

matical circulation models, and can be applied with very little cost to the user. Find the technique described in the 1994 pa-

per’s pre–publication manuscript downloadable from http://mywebpage.netscape.com/lorloci/koa at link “Warming" or

http://ecoqua.ecologia.ufrgs.br/ at link “Archives” then link “Ipe” then “Warming”. Life zone boundary shifts are based on

the data of Delcourt and Delcourt (1987) for sites along roughly longitude 85
�

W in North America. The Mauna Kea vegeta-

tion records follow Krajina (1963). Data in rows 3, 4 are from Walter et al. (1975), except in the last two cells which are

from Krajina (1963). Note: thermal flux rates are specific to sites and not transferable to others. Abbreviations: AMP – an-

nual mean precipitation; AMT – annual mean temperature; TFR – local thermal flux rate; TR - local temperature rise;

EAMT - expected annual mean temperature under the Manabe et al. (1990) scenario, i.e., 3.6
�
C global warming on a 100

year basis (2.5
�
C temperature rise in 70 years).

* Not a climatic limit. ** Extrapolation according to TFR = -2.57538 + 0.12749X where X is the decimal equivalent of lo-

cality’s N latitude. Coefficient of determination is 0.97. Mauna Kea site not included in the calculations.
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10 The Handbook is being published in 10 volumes under the general editorship of F. Horváth, Z. Korsós, E. Kovács Láng and I. Matskási,

with participation of a multidisciplinary team of 17 subject editors and scores of authors. The reader is directed for a call to arms, as it

were, that laid foundations of the Handbook, to Fekete (1994).

11 Intergovernmental Panel on Climate Change. 2001. Third Assessment Report. – Climate Change. http://www.ipcc.ch.

12 Why to use the range, why not a single value? Simply, the choice would be very arbitrary. This is because the different values are all

valid predictions in the context of the model scenario that generates them. Uncertainties are involved, as can be expected, owing to the

chaotic nature of the state variables, which Lorenz (1963) revealed to be such in his modelling experiment with the weather. Chaoticity

carries through into modelling the climate. Another particularly unavoidable problem is the necessarily speculative manner in which

some model components are treated. The handling of cloud properties, their interaction with the radiation fields, and the ways the

models handle internal feedback are the cases that Mason (1990, IPCC 2001, pp. 49, 66, 67) found particularly troublesome when the

reliability of a model prediction is assessed.



species populations could cope with, and at which the

vegetation formation could retain spatial and temporal

contiguity.
��

But, could the same species and formation

cope with climate warming at the IPCC rates? My guess

is that warming at even the most conservative IPCC rate

would very likely deteriorate the forest environment suf-

ficiently within the normal life span of common forest

trees to cause stand-level dieback over the entire region.
��

B. Measuring scales

Rényi’s logarithmic expressions

Rényi (1961) generalization of entropy (Hα) and in-

formation (Iα) in order terms has the basic form of

and

Symbols p� and q� are elements in two s-valued distribu-

tions, P and Q. These are identically ordered and have

identical totals,

The terms are defined according to

and .

Hα and Iα describe curves as a function of α. The curves

are descending (if not a straight line) for Hα and ascending

for Iα. Both are discontinuous at α=1, but otherwise con-

tinuous over the range from α = 0 and up. To determine

the value of entropy or information of order one, α may

be set to a value close to one, say 0.9999…or the alterna-

tive expressions would have to be used,

and

What is the significance of α in these expressions?

Alpha is a scale variable, and as such, it defines an

infinite number of possible point measures for en-
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Figure 9. Vegetation map of Eastern North America. Leg-

end: T – Tundra, B – Taiga/ Boreal Forest, M – Cool Mixed

Conifer-Deciduous Forest, G – Grassland, D –Cool Tem-

perate Deciduous Forest, E – Warm Mixed Evergreen For-

est, S – Subtropical Forest. After the Rand McNally Atlas

(1988) modified.

Figure 8. Migration dynamics of the Eastern Deciduous

Forest in North America under global climate warming dur-

ing an 8000-year period of the Late Quaternary. Curves de-

lineate the North/South extent of the formation at given

points in time. Projected migration rate accords with 3.6
�
C

x 0.15
�

Lat/0.0625
�
. Projected warming follows Manabe at

al. (1990) with rate expressed on a 100-year basis. See Ta-

ble 7 and the text for explanations. The graph is based on

Delcourt and Delcourt (1987, Figure 1.4, page 20) with

changes.
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13 It is interesting to add that global warming and cooling cycles during the Late Quaternary had measurable effect on the vegetation of the

tropics. Figure 4 portrays a case from the Amazonas of Brazil. It is obvious that over the entire 42,000-year period, diversity,

complexity, and velocity respond sensitively to cycles of climate warming and cooling, without the temperature amplifying effects of

latitude.

14 The reader should consult Muller-Dombois (1992 and references therein) on the dieback phenomenon.



tropy and information. Three of these had special sig-

nificance for ecologists. Entropy of order zero is the

upper limit. Entropy of order one is the Shannon en-

tropy, and information of order one is one half of

Kulback’s (1959) minimum discrimination informa-

tion statistic. Entropy of order two is a log Simpson

index. Alpha is useful in other respects, such as in the

detection of the region on the curve at which the di-

versity or information value becomes “stable”. This is

an advantage when comparisons are made between

cases.

Hα is endowed with some interesting properties. It has

maximum value equal to ln s, corresponding to maximum

disorder in the distribution, i.e., p� = p� = ...= p� = 1/s. The

degree to which an equidistribution is approached in P is

measured by E = H / ln s, called the “evenness” or “flat-

ness” of P. Hα has minimum value when P is most conta-

gious, i.e., when s-1 of the elements are equal to 1/T and

the remaining single element is equal to (T-s+1)/T.

Iα is a measure of the information divergence of P

from distribution Q as a standard. Iα has minimum value

at zero when P and Q have element-by-element identity,

and maximum value when both P and Q are most conta-

gious with the (T-s+1)/T quantity placed in offset posi-

tions. Kullback (1959) discusses regularity conditions,

under which 2I� is distributed as a Chi-squared variate

with s-1 degrees of freedom. This property has been used

to facilitate statistical tests of hypotheses about the rela-

tionship of P and Q. As ecological practice has it now,

randomisation experiments provide a flexible alternative

to finding probabilities for the test. I make reference in

this regard to Edgington (1987) for underlying theory, to

Pillar and Orlóci (1996) and McArdle and Anderson

(2001) for contrasting ecological applications, and Orlóci

(2001a) for consideration of an important dichotomy in

applications of randomisation testing with theoretical

consequences.

Entropy and information of order one (H�, I�) can be

partitioned into perfectly additive components. I take ad-

vantage of this property in finding diversity partitions

specific to factor effects. The models involved are very

much the same in logic as in the analysis of variance and

covariance.

Anand’s structural complexity

The complexity measure ∆ in L=∆+H� is of particular

interest. Since ∆ is a complement of disorder based en-

tropy H�, it has to do with order, which is structure. The

main text and Anand and Orlóci (1996, their Figure 1)

should be consulted on specific details.

Simpson’s index (Simpson 1949)

This index is probability-based in the manner of

, such that .

The symbols have similar definitions as before. As given,

the index SI expresses the probability of finding a compo-

sitional duplicate of the community under the assumption

that chance rules community composition. When Simp-

son’s function is expressed in the manner of H = -ln SI,

Rényi’s entropy of order 2 is implied. SI has minimum

value at given s when an equal probability law reigns, i.e.,

p�= p�= ...= p� = 1/s. Considering that H reaches its maxi-

mum at the most dispersed state of the distribution, one is

justified to regard SI as a measure of some compliment of

disorder. Energy-focussed ecologists, like Fosberg

(1965), have been tempted to use the term “negentropy”

in characterisations of SI. Negentropy is a term borrowed

from thermodynamics (see Prigogine 1968) where it re-

fers to the available energy in a system. “Negentropy” is

mirrored by “entropy”, the energy that has been spent.

Consistent with the above, SI has maximum value when

“negentropy” is maximal, i.e., when P is most contagious.

The limits are reversed when the Simpson index is in-

verted in the manner of SD = 1/SI, which is a measure of

diversity directly related to disorder. The maximum value

of SD is s. The corresponding evenness quantity is SDE =

SD / s. As a possible point of interest to some ecologists,

I computed values for Simpson’s index for the following

distributions:

Observed P= [13/16, 1/16, 2/16]

Most dispersed P	= [1/3, 1/3, 1/3]

Least dispersed P
= [14/16 1/16 1/16]

P	 and P
 define P‘s hypothetical upper and lower

bounds. The numerical results are presented in Table 8. I

leave the interpretation to the interested reader.

The metric connection

A typical example in the use of the Euclidean metric

for diversity measurement is the McIntosh diversity index

(McIntosh 1967). The Simpson index is this kind when

given as SI, which happens to be a squared Euclidean dis-

tance. Another information theoretical metric, Rajski’s

(1961), is not Euclidean (Orlóci 1978). Additive parti-

tioning can be performed directly on Euclidean metrics in

the manner of an analysis of variance, or such as in the

method of sums of squares partitioning used in Edwards

and Cavalli-Sforza (1965, Pillar and Orlóci 1996, Legen-

dre and Anderson 1999, and McArdle and Anderson

2001). The numbers may not add up in the case of non-

SI pi
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=
=
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i
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Euclidean metrics. On these, I refer for complementary

materials presented by others (Peet 1974, Pielou 1975,

Patil and Taillie 1979, Rao 1982, Juhász-Nagy and Po-

dani 1983, Magurran 1988, Orlóci 1978,1991a, Tóth-

mérész 1997,1998a,b, and Levin 2001).

Fractal dimension

This is a descriptor of “shape” complexity. I applied

fractal dimension to describe complexity in the trajectory

of the entropy process. An entropy trajectory is two-di-

mensional in the ordinary sense. But its dimension in

Mandelbrot’s (1967, 1972) can be a fractal. The “fractal

dimension”, symbol D, is related to the power law, linking

graph length L(r) with scale unit r, in the manner of L(r)

~ r
���

. The exponent 1-D is negative if L(r) increases as r

decreases, which is the case if the shape is not smooth. By

contrast, for smooth shape, D tends to 1 as r is tending to

zero. Taking logarithms, log L(r)=(1-D) log r, and per-

forming linear regression analysis, D is approximated by

the regression coefficient, symbol b, in the manner of

D=1-b. D has value in the range from 1 (smooth curve) to

2 (total randomness such as in the Brownian trajectory of

a molecule). The reader is referred to Mandelbrot (1967,

1972, also Schroeder 1991) for details on theory, and to

Palmer (1988, 1992), Kenkel and Walker (1993), Scheur-

ing (1993), and Walker and Kenkel (1998) for details on

ecological applications. The D value of the Lagoa das

Patas entropy graph (Figure 4) is around 1.4, suggesting

a rather simple process shape. The following example il-

lustrates the arithmetic:

1) Step through the diversity graph at different calliper

settings and record the following:

������ ������� � � �	 �� �� �� �	 ��

��� ��

������ 
� ����� ��� �� �� �� � � � �

����
������ ������ ��� ��� ��	 �	� ��	�� ��	 ��

���� ��

��� � ���� � ��� ��� � ��� � ��� ���


�  !�" ���� ��� ��� ��� ��� ��� ��� ��� ���

��
��# ��� ������ �� �������$ ��� ����� ���� ��� ������ 
� %��&� ���

������ %��� �������$�

2) Perform linear regression analysis on log L(r) as a func-

tion of log r to obtain an equation as in Figure 10.

3) Calculate fractal dimension in the manner of D=1-b =

1.42.

C. Partition-sets

Partition-set 1. Functional forms of entropy of order one.

Symbols are defined to correspond to the design in Table

3. The equations in the partition set correspond to seg-

ments, or sums of segments, in a Venn diagram (Figure

11). The following conventions apply: i - functional type,

j - flora element, k - climax type: a, b, c – number of states

in sorting criteria i, j, k; f��. – an element in the three di-

mensional distribution, corresponding to Table 3; f���, f���,

f�� - principle marginal totals; f���, f��, f�� pair-wise joint

marginal totals. Examples from Table 5: a=5, b=3, c=3,

f���=0, f���=6, f���=20, f���=646.

Table 8. Values of the Simpson index computed for distribution [13/16, 1/16, 2/16]. See earlier sections for the explanation

of symbols.

Figure 10. Regression line fitted to log L(r), the length of

the entropy graph for Lagoa das Patas (Figure 4) at step size

r, as a function of log r. The regression coefficient b (slope

of line) is -0.42.
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Figure 11. Venn diagram of three-way sorting. Circles represent sorting criteria. The area of circles or circle segments corre-

sponds to diversity terms in the partition sets of Appendix B. Conditional main effects (specifics) H(A|B,C), H(B|A,C),

H(C|A,B), I(A;B|C), conditional interactions I(A;B|C), I(A;C|B), I(B;C|A), and the mutual portion of total diversity I(ABC)

are shown. Other terms in Partition-set 2 represent specific sums of area segments in the Venn diagram. On this basis, addi-

tive sequences can be identified among the terms in Table 5.

Specific entropy and information quantities have special designations in P. Juhász-Nagy’s scheme (see Juhász-Nagy and Po-

dani 1983, Podani, Czárán and Bartha 1993, Tóthmérész 1997, 1998a,b and references therein). Some examples:

a) Local distinctiveness (LD). This is proportional to the sum of areas A, B, C, but entropy of order one has to be expressed

in the manner of Brillouin’s total information (Brillouin 1962) for the numbers to add up. Using my symbols and the case in

Figure 2, LD=f	(H(A)+H(B)+H(C)).

b) Local valence. This is a Brillouin type multiple of entropy of order one, defined for a marginal distribution when the ba-

sic data set contains presence/absence scores.

c) Florula diversity (FD). The term “florula” identifies a subset of species of the sample. When species are taken in pairs,

albeit they may be taken in higher numbers, calculus permitting, in a set of s species, the maximum number of florulas is

s!/[2(s-2)!]. The frequency of the distinct combinations in the sample of relevés is the basis on which FD is defined as a Bril-

louin type multiple of entropy of order one.

d) Mosaic or b diversity. The idea appears to be shared with Whittaker (1960). It was introduced to handle diversity on the

level of mosaics or patches. Tóthmérész (1998) reviews the concept and also the different measuring functions. At least one

of these, Routledge’s (1977), is defined in entropy terms and is suitable for additive partitions.
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Partition-set 2. Generalised entropy and information

functions for which quantities are shown in Table 5. Sym-

bols are consistent with their definition in the caption of

Partition-set 1.
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