
1. Introduction

Conservation ecology is aimed at the maintenance of

biologically valuable ecosystems by means of human in-

tervention or treatment. The biological motivation of the

present paper is a practical problem of conservation ecol-

ogy: in order to propose an appropriate intervention, we

have to know the time-dependent state of the system in

consideration. In certain situations, it may be technically

difficult or too expensive to continuously measure all

state variables of the system. The question arises whether

we can single out certain state variables such that, observ-

ing only these in function of time, we can recover the rest

of the state variables, in other words, we can monitor the

whole system. An efficient state monitoring can also fa-

cilitate a “just in time” human intervention.

In this paper, we address this monitoring problem in

the context of a multi-species population system in a

changing environment, applying tools of mathematical

systems theory, such as the concept of observability and

related theorems. In our case, the dynamics of the com-

munity will be described by a nonlinear system of differ-

ential equations with the vector of the densities as state

variable.

We note that another basic concept of mathematical

systems theory is controllability which may also be rele-

vant for conservation ecology. As a result of any abiotic

effect (industrial pollution and climatic changes) the co-

efficients of the dynamical mathematical model of the

population system may change, and these time-dependent

coefficients can be considered as control functions of the

considered system. At the same time, the treatment per-

formed for conservation purposes can also be considered

as control. Then the controllability of the system would

imply, for example, that by an appropriate treatment the

population system can be steered into a desired (equilib-

rium) state. In general terms, mathematical systems the-

ory may be an instrument to set-up a theoretical back-

ground of the design of complex systems in conservation

biology.

As a classical description of a simple population sys-

tem, the first continuous-time deterministic model of a

predator-prey interaction was proposed by Lotka (1925)

and Volterra (1932). This model explained certain quali-

tative features of the behaviour that had been observed

empirically (such as the periodic change of densities with

a certain delay or the decrease and increase in time-mean

density of predator and prey fish populations, respec-

tively, due to harvesting activity.) In Volterra (1932), a

detailed qualitative analysis of a generalized n-species

model was given, specifying two important classes of

models: in analogy with mechanical systems (the so-
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called conservative systems) in case of a disturbance of a

polymorphic equilibrium, the system remains near this

equilibrium. In dissipative systems, after such a distur-

bance the system returns to the equilibrium in the long

run, providing stable coexistence of the considered spe-

cies. For a collection of further classical works on the sub-

ject, we refer the reader to Scudo and Ziegler (1978). For

further references on the Lotka-Volterra model see, e. g.,

Freedman (1980) and Yodzis (1989). From the methodo-

logical point of view, it seems reasonable to start out from

this classical model of population interaction, because

practically any nonlinear dynamic population interaction

system can be approximated by a Lotka-Volterra type

system near the equilibrium.

The application of mathematical systems theory to

population biology is relatively new. An early initiative

was Metz (1977, see also Metz and Diekmann 1989).

Controllability of Lotka-Volterra systems, using constant

controls was considered in Petrosjan and Zakharov

(1997). For a recent application of observers for model

validation concerning a particular class of population

models, see Bernard et al. (1998). In Varga (1989, 1992)

general sufficient conditions for local controllability and

observability of non-linear systems with invariant surface

were proved in terms of mathematical systems theory and

applied to Fisher’s model of natural selection. These gen-

eral sufficient conditions turned out to be appropriate for

the analysis of other frequency dependent evolutionary

models, see, e.g., Scarelli and Varga (2002) and Gámez et

al. (2002). For their applications to reaction kinetics mod-

els, see Farkas (1998ab).

Regarding the approach to the analysis of the Lotka-

Volterra model in terms of systems theory, a control-ob-

servation (input-output) system was considered in Szigeti

et al. (2002). Applying a new system inversion method it

was shown that, based on the observation of the biomass

of certain species, the time-dependent environmental ef-

fects can be recovered.

In the present paper, the problem of state monitoring

is modelled in the following way. Abiotic environmental

effects are described in terms of time-dependent Malthus

parameters and/or interaction coefficients as control func-

tions (input), and the densities of certain indicator species

are observed as output. A linearization method of Lee and

Marcus (1971) recalled in the Appendix will be applied to

find conditions for local observability. The latter means

that based on the above (dynamic) observation, the state

of the population can be recovered, at least near equilib-

rium. The application of this sufficient condition is illus-

trated by three-species examples such as a one-predator

two-prey system and a simple food chain.

2. A general model of state monitoring of

Lotka-Volterra systems

We start out from the classical n-species Lotka-

Volterra system with Malthus parameters ε� and commu-

nity matrix Γ=[γ��]�×�. For the dynamics of density x� of

the i-th species we have

or, with ε:= (ε�, ε�, …,ε�),

(1)

where Diagx stands for the diagonal matrix formed from

vector x. Let us suppose now that the system parameters

may change in the function of time, as a result of abiotic

effects such as pollution, any other human intervention or

changing environment. For example, in a nearly natural

lake the immission of juvenile and/or harvesting of ma-

ture individuals of a fish population will appear in the

model as a change in the Malthus parameter (see, e. g.,

Nagy et al. 2002). It is also known that a variable toxic

effect can result in time-dependent interaction parameters

in Lotka-Volterra models (see Gragnani 2002). This

time-dependence will be described by an additive term in

the Malthus parameters and in the interaction coefficients,

respectively: ε� +v�(t) and γ��+w��(t). For a technically con-

venient, structured model we assume first that certain (not

necessarily all) Malthus parameters are affected. Define a

matrix P:=[ p��]�×� such that

Then, the corresponding changed vector of Malthus pa-

rameters is ε+Pv, where v is an n-dimensional control

vector.

Similarly, for the structured description of the human

or environmental effect on the interaction coefficients, for

each i,j∈ 1,n, define an n×n matrix R�� with all items equal

to zero except that with indices ij, which is 1, if γ�� is af-

fected and zero otherwise. In terms of the mapping

the effect on the community matrix can be described in

the form

Γ + Ψ(w).
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Now, with the identification

considering u = (v,w) as control variable, our control sys-

tem takes the form

,

or

(2)

Since we wish to consider the monitoring of a population

system near equilibrium, let us suppose that Γ is invertible

and x*:= Γ��ε > 0. Then x* is an equilibrium state of co-

existence where all species are present.

Now we consider two observation systems.

2.1 Observation of certain indicator species

Let us give now the pattern of monitoring. Suppose that

for technical or economical reason we wish to observe

only the densities of certain species. If the observation of

this set of species turns out to be sufficient to recover the

densities of the rest of the species, or in other words, the

system is observable then in the given context these ob-

served species can be considered as indicators for the

whole population system, which is a methodological an-

swer to the monitoring problem. For a convenient de-

scription of the situation when the densities of certain spe-

cies are observed, fix m∈ 1,n and consider the indices of

the observed species

1 ≤ j� < j� <…< j� ≤ n.

Define the observation matrix

C=[e��|e��| … |e��]
�
.

Then the components of the vector Cx are the observed

densities. For technical reason, instead of the observation

of the actual densities, we shall consider its deviation

from its equilibrium value:

g : ℜ �→ ℜ �
, g(x):=C(x-x*). (3)

2.2 Observation of certain species without distinction

Assume now that we lump together species j�, j�, …,

j�, observing their ‘total density’. Define the row matrix

D = [d�]��� with

Then the observed quantity is the deviation of the ‘total

density’ from its equilibrium value:

h : ℜ � → ℜ , h(x):=D(x-x*). (4)

3. Linearization of the control-observation system

In the following sections we shall present illustrative

examples of monitoring systems in order to see whether

we can uniquely recover the state of the whole population

system, observing only certain indicator species. A key

concept is local observability. Intuitively, a control- ob-

servation system (in particular, system (2), together with

observation (3) or (4)) is said to be locally controllable

near a given equilibrium, if to different solutions of the

system there correspond different observations, at least in

the neighbourhood of the equilibrium, provided the con-

trols (environmental effects or human intervention) are

small enough. A formal definition of local controllability

is given in the Appendix.

For the application of the general Theorem of the Ap-

pendix we shall need the linearization of the considered

control system dynamics (2) completed with observation

equations (3) and (4), respectively. For the linearization

of the dynamics we have to calculate only the Jacobian of

the right-hand side of system (2) at the equilibrium, cor-

responding to the zero control. The linearization of obser-

vations (3) and (4) is obvious. The application of the

above mentioned Theorem will provide local observabil-

ity, no matter what the applied small controls are.

3.1 Linearization of the dynamics

For the right-hand side of dynamics (2) put

.

Fix i,k∈ 1,n. Then for all x∈ℜ �

�
, for the corresponding

partial derivative functions we have

Since x* is an equilibrium, at x* for both i≠k and i=k we

obtain

Hence the Jacobian of f with respect to the vector variable

x at (x*,0) is

A:= –Diagx* Γ (5)
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,
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3.2 Linearization of the observation

In both cases 2.1 and 2.2, the observation is actually

an affine (that is, linear plus a constant) function of the

state, so we have

g‘(x*) = C,

h‘(x*) = D.

Remark 1. Observe that, although matrix A does not de-

pend explicitly on the Malthus parameters, the equilib-

rium densities actually do.

4. One-predator/two-prey system

Let us consider a three-species system where species

1 and 3 are predated by species 2, and there is no interac-

tion between species 1 and 3. Then the community matrix

is of the form

where

γ��, γ�� > 0 ; γ��, γ�� < 0. (6)

Remark 2. Notice that the existence of intra-specific com-

petition in all species, together with conditions (6) imply

that

det Γ = γ�� ( γ�� γ�� – γ��γ��) – γ��γ�� γ�� > 0.

Therefore, there exists an equilibrium in mathematical

sense. However, for a biological equilibrium its positive-

ness or non-negativeness depends on the Malthus parame-

ters, too. (Recall that γ�� , γ��, γ�� > 0, det Γ ≠ 0 are neces-

sary conditions for the dissipativeness of the considered

Lotka-Volterra system, see Volterra 1931.)

4.1 Observation of a prey species

Suppose first that the density of one of the preys, say,

species 3 is observed:

C:=[0 0 1].

Then, easy calculation shows that

det [C | CA | CA
�

]
�
= ,

implying local observability near the equilibrium x* for

an arbitrary choice of intra-specific interaction parame-

ters γ�� , γ��, γ�� and any interspecific interaction coeffi-

cients satisfying conditions (6). Thus, if this system is not

far from the equilibrium, it is enough to observe the den-

sity of one prey over a time interval, and the densities of

the other two species can be uniquely recovered.

4.2 Observation of the predator

Let us assume now that the density of the predator is

observed:

C:=[0 1 0].

We easily obtain that

∆:= det [C | CA | CA
�
]
�

=

=

For the local observability it is enough to guarantee that

∆≠0. This inequality determines a set in the parameter

space with the following biological interpretation. By the

equations

and γ��x�* can be considered as loss in relative rate of in-

crease due to the intra-specific competition in the respec-

tive prey populations at the equilibrium state. Thus, if

these quantities are different for the two prey populations

then ∆≠0 and local observability near the equilibrium is

guaranteed. Therefore, near equilibrium the whole popu-

lation system can be monitored by observing only the

predator species.

4.3 Undistinguished observation of preys

Suppose that we observe the two prey populations

without distinction. This is a particular case of the model

in section 2.2. Now j�=1, j�=3,

D:=[1 0 1]

and a little tedious calculation provides

∆:= det [D | DA | DA
�
]
�

= – {(γ��x�
	

– γ��x�
	
)

(γ��γ��x�
	�

+ γ��γ��x�
	
x�
	

+ γ��γ��x�
	
x�
	
+ γ��γ32x�

	
)

+ (γ��x�
	

+ γ��x�
	
) [ γ��

�
x�
	�

– γ��
�
x�
	�

+x�
	
( γ��– γ��)

(γ��x�
	

+ γ��x�
	
)]}

Suppose now that, contrary to the hypothesis of the pre-

vious section, at the equilibrium state the loss in relative

rate of increase due to the intra-specific competition is the

same for both prey populations: γ��x�
	

= γ��x�
	
. In particu-

γ γ
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γ γ
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lar this is the case when there is no intra-specific compe-

tition in either of the prey populations. Then, we have

∆ = – (γ��x�� + γ��x��)� x�
�
(γ�� – γ��).

Assume in addition that for the predator the increase in

relative growth rate due to its predation on species 1 and

3 is different (γ�� ≠ γ��). Then, the observation of both

prey species lumped together results in local observability

near the equilibrium. Thus, whenever small change in the

environment and the human intervention is “soft enough”,

the whole system state can be monitored observing only

the prey populations without distinction.

Remark 3. The basic conditions for local observability in

sections 4.2 and 4.3 are complementary: γ��x�
	≠ γ��x�

	

and γ��x�
	
= γ��x�

	
respectively. This means that, near the

equilibrium, for the monitoring of the whole population

system in case a) the observation of the density of the

predator population is reasonable. In case b) the undistin-

guished observation of the two prey populations is

enough, provided that for the predator the “net conversion

rates” γ�� and γ�� are different.

5. Food chain

Let us consider now a simple food chain of three spe-

cies. Species 1 is a plant consumed by the herbivorous

species 2 that is in turn predated by the carnivorous spe-

cies 3. Then, the community matrix has the same structure

as in the one-predator/two-prey system except for the sign

conditions of (6), which are substituted by conditions cor-

responding to the chain structure:

γ��, γ�� > 0; γ��, γ�� > 0; . (7)

5.1 Observation of the plant population

With C:=[1 0 0] we easily get

det [C | CA | CA
�
]
�

= – x�
	�

x�
	γ��

�γ�� < 0,

implying again local observability without any further

condition.

5.2 Observation of the predator

Now we have C:=[0 0 1] and

det [C | CA | CA
�
]
�
= – x�

	
x�
	γ��γ��> 0,

implying local observability again without any further re-

quirements on the interaction parameters.

Remark 4. Let us emphasize that in the above cases of ob-

servation of the food chain the presence or absence of in-

tra-specific competition turned out to be indifferent.

6. Discussion

For the dynamic monitoring of the state of a popula-

tion system, a control-observation model of mathematical

systems theory has been suggested, where the inputs (con-

trol functions) are the time-dependent coefficients of a

Lotka-Volterra model undergoing environmental effects

or direct human intervention. A sufficient condition for

local observability of non-linear systems can guarantee

that observing only certain indicator species, the densities

of the rest of the species can be, in principle, uniquely re-

covered, at least near equilibrium. The local character of

this observability result is not very restrictive, if the un-

derlying Lotka-Volterra system is either conservative or

dissipative, since in such cases the system has the ten-

dency to be near the equilibrium state of coexistence.

In the illustrative three-species examples, by checking

ranks of matrices calculated from the parameters of

the reference system, the following results have been

obtained.

If we observe the density of a prey in a one-predator

two-prey system, or the density of the plant in a plant-her-

bivorous-predator food chain, then local observability is

obtained without any further conditions either on the

Malthus parameters or on the coefficients of the intra-spe-

cific competition.

For the state monitoring of a one-predator/two-prey

system near the equilibrium the following sufficient con-

ditions for local observability have been proved: If the

loss in relative rate of increase due to the intra-specific

competition within the two prey populations is different

in the equilibrium state then the observation of the preda-

tor is sufficient. If the above loss in the relative rate of

increase is the same for both prey populations but the

predator converts the two preys at different rates, then for

state monitoring it is enough to observe the prey popula-

tions lumped together.

If we observe both prey populations lumped together,

then to guarantee local observability we need that for the

predator the increase in relative growth rate due to preda-

tion on the single prey species is different.

According to the concept of local observability, a gen-

eral conclusion is that for small environmental effects ob-

servability does not depend on the presence of these ef-

fects. This result makes our approach applicable to

population systems in slightly changing environments

and with”soft”human treatment as well. For an effective

application of the proposed methodology of mathematical

systems theory, a further development of efficient nu-

merical methods will be necessary.
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Appendix

Here, in technical terms we recall the concept of local

observability near equilibrium of a non-linear system and

a sufficient condition to guarantee this property. With cer-

tain technical simplifications, our treatment is based on

Lee and Markus (1971).

Given positive integers m, n, r, suppose that the func-

tions

f : ℜ +
" × ℜ � → ℜ "

, g: ℜ " → ℜ �

are continuously differentiable and for some x
	 ∈ ℜ �

we

have ƒ(x
	
,0) = 0 and g(x

	
) = 0. Then the differential equa-

tion

(A1)

is considered as a control system with a time-dependent,

piece-wise continuous control parameter (control func-

tion) u, x* is an equilibrium of the (‘uncontrolled’ or ‘zero

input’) reference system. Given a positive T, there exists

a neighbourhood of x* such that any solution of (A1)

starting from this neighbourhood is defined on the inter-

val [0, T]. Together with dynamics (A1), consider that

y(t) := g(x(t)) (t ∈ [0, T]) (A2)

is the observed function.

Definition. The control-observation system (A1)-(A2) is

called locally observable near the equilibrium x* over the

interval [0, T], if there exists ε>0, such that for any control

function u with |u(t)|<ε (t∈ ([0, T]) and any two different

solutions x and x of system (A1) with |x(t) - x*| < ε and

|x(t) - x*| < ε (t ∈ ([0, T]), the observed functions

g(x(t)) and g(x(t)) (t ∈ ([0, T]) are different.

For the formulation of a sufficient condition for local

observability consider the linearization of the control-ob-

servation system (A1)-(A2), consisting in the calculation

of the Jacobians

A:=D� f(x*,0) and C:=g‘(x*).

We have the following

Theorem. Suppose that

rank[C|CA|CA
�
|
�

|CA
���

]
�
=n.

Then, the control-observation system (A1)-(A2) is locally

observable near the equilibrium x*.

Throughout the main body of the paper, for the sake

of simplicity, the term ‘local observability near the equi-

librium’ is always used without reference to the fixed time

interval [0, T].

x x,u
.

( )= f
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