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Abstract: We performed a computer assisted experiment to test the accuracy of different ratio scales in estimating vegetation cover.
Sixteen subjects estimated the cover level of artificial vegetation patterns displayed on the screen for various levels of resolution (from
presence/absence to 100 different states, each measured on the ratio scale). We found that estimation error is minimum when the range
of cover is divided into ten equal parts. Finer resolution gives less precise estimation since subjects tend to divide cover level into ten

or at most twenty intervals in their mind.

Introduction

The minimum requirement for characterising a com-
munity is to identify its constituting species. In addition,
the measurement of density (Smith 1944) or species per-
formance often involves the estimation of cover in vege-
tation science. The cover-abundance scale proposed by
the Ziirich-Montpellier school and its numerous variants
are the most widespread in Central Europe (Becking
1957, Braun-Blanquet 1964). Due to its hybrid nature, the
scale is ordinal and cannot be directly applied to conven-
tional statistical analysis. There are some attempts to de-
velop transformation methods to facilitate their analysis
(Bannister 1966, Noy-Meir 1973, Noy-Meir et al. 1975,
Londo 1976, Jensen 1978, van der Maarel 1979, Avena
1981, Peet et al. 1998). These refined methods use ten,
twenty or even hundred classes for cover estimation, thus
approaching the ratio scale. In addition to the statistical
applicability of a given measurement scale, estimation er-
ror made by the observers is also of some concern in vege-
tation analysis. However, only little experience has been
accumulated on observer errors inherent in field estima-
tions (Sykes et al 1983, Gotfryd and Hansell 1985, Ken-
nedy and Addison 1987, Leps and Hadincova 1992,
Klimes et al 2001). These studies have pointed out that
cover estimates depend not only on the characteristics of
the sample, but also that observers also estimated vegeta-
tion cover in a significantly different manner. An alterna-
tive method approximates the cover level with the prob-

ability that randomly dispersed point quadrats hit a piece
of vegetation rather than bare soil. There is a theoretical
and a practical problem with this method, namely the size
of the “point” can influence the result considerably (Ab-
erdeen 1958, Hatton et al. 1986) and the method is time-
consuming. Whereas special devices are available to help
the scientist to measure cover and abundance in an objec-
tive way (at least in simple agricultural situations) and
computer aided image analysis can make estimation more
objective in some instances (Dietz and Steilein 1996), it
is unlikely that vegetation data will ever (or at least in the
near future) be free of our subjectivity. It is therefore ba-
sically important to reveal the characteristics of the as-
sessment, and to reduce estimation error as much as pos-
sible.

Every cover estimation process starts with the defini-
tion of categories, no matter whether expressed on an or-
dinal or a ratio scale. The estimated values must fall into
one of several categories. Evidently, the accuracy of esti-
mation depends not only on the precision of the estima-
tion process, but also on the size of the categories as well.
If we have many small categories then we have the oppor-
tunity to measure cover more accurately. However, se-
lecting the right category becomes increasingly difficult
if more and narrower categories are used. Our main ques-
tion is whether the balance of these two opposite effects
can create an optimal categorization. In other words, is
there a resolution level with minimum estimation error?
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Figure 1. A simplified vegetation pattern as shown on the
screen. The grey shapes were displayed originally in green,
the background was black.

To answer this question, we simulated artificial vegeta-
tion patterns on computer screen and evaluated the esti-
mation errors made by the subjects of this computer-
simulated experiment.

Computer experiment

A simple artificial pattern was generated and dis-
played on the screen of the computer. Cells were colored
green randomly in a 50 x 50 rectangular grid whereas the
background was set to black (Fig. 1). So the number of
green cells was selected randomly within the interval [1,
2499], thus simulating vegetation cover ranging from
0.04% to 99.96% respectively. Although, as we men-
tioned above, usually 5, 10 or 100 categories are used in
real estimation experiments, to evaluate the relationship
between the category number () and the estimation error
more precisely we chose categories from a wider range,
(ie,n=2,3,4,5,6,7,10,12, 14, 16, 20, and 100). The
categories were of equal size for each value of n even if
this is not necessarily the case in actual situations. We
chose this uniform scaling method as the simplest starting
point for a further, more elaborated research project.
When watching the screen the subjects were informed
about the actual number and size of categories used in that
experiment. The subjects were asked to estimate the total
area covered by the green cells, that is they had to choose
the cover-level category that they thought to be the right
one. Fifty random patterns were presented for every
value of n for each person. We recorded the estimated
category, the actual cover and the estimation time in every
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case. Our 16 subjects were all undergraduate or PhD stu-
dents at E6tvos University.

Results

Sixteen persons estimated 50 different cover patterns
for each value of n, yielding a total of 800 cover-level es-
timates for each category number. To calculate mean es-
timation error, the intervals of the categories were substi-
tuted by their centroids (that is, if the subject chose the 3rd
interval on the 10-level scale, then he/she estimated 25%
coverage). Mean estimation error is defined as the aver-
age of the absolute value of the differences between the
actual cover and the centroid of the estimated category,
that is the average of | x-[100(0-0.5)/n] |, where x is the
actual cover value, n is the category number and a de-
notes the category chosen.

Figure 2a depicts these errors in the function of cate-
gory number. Mean estimation error decreases sharply
from 2 to 10 categories, and increases moderately after-
wards. As we emphasized in the Introduction, estimation
error arises from two different sources: from the error pro-
portional to the width of the category (“partition error’)
and from the error caused by the incorrectly estimated
coverage interval (“mis-estimation error”). Since cover
values were distributed evenly in this experiment, we can
calculate the mean partition error easily as 100/4n %.
Thus, after an experiment containing M estimates with L
(L £ M) correct ones, the mean partition error is simply
100L / (4 Mn) (for details, see Appendix). Figure 2b plots
the correct interval estimates L out of 800 estimates ob-
tained for each value of n. Interestingly, L decreases line-
arly with the logarithm of n for 2 < n < 20. L is out of this
strict trend for » = 1 (the trivial case when merely a pres-
ence/absence decision has to be made) and for n» = 100.
Knowing L for every category number, we can compute
the partition and mis-estimation errors easily (Fig. 2c).
While partition error dominates estimation error for n =2
and 3, its role in estimation error is negligible if there are
20 or 100 categories (Fig. 2c).

According to the Kruskal-Wallis test, the average es-
timation errors differ significantly for category numbers
(p <.0001). We used this non-parametric test since the
Kolmogorov-Smirnov test indicated non-normality of the
data. Figure 2a suggests that mean estimation error is
minimal at » = 10. Thus, we compare the average estima-
tion error at n = 10 with the others, using Mann-Whitney
test. The average estimation error at 10 categories differs
significantly from every other case except n =12, 14, 16
(Zar 1999).
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Interestingly, there is a special reason why persons
could not estimate cover more precisely when hundred in-
tervals were available. As Fig. 3 demonstrates, the last
digit in the estimated cover was most frequently 0 and 5
in this case, while in reality the digits are evenly distrib-
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Figure 2. Estimation error in the function of category
number z expressed on a log-linear scale for better visuali-
sation. Each mean value is calculated from 800 cover val-
ues estimated by the 16 subjects. a) Mean estimation error.
b) The number of correct interval estimates. The function a
- b In(n) (a = 842 b = 226) is fitted between n = 2 and 20
(Marquart-Levenberg algorithm used by “gnuplot” pack-
age). ¢) The average partition (x) and mis-estimation (*) er-
ror at different values of n.
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uted, except that zero has a lower expectation, since zero
and 100% coverage were excluded from the simulation. It
means that persons tend to divide the cover into ten, or at
most, twenty intervals in their mind, even if they have the
opportunity to give more precise estimates.

Independently of category width, subjects make the
greatest error when cover is estimated to lie between 25
and 75%, while this error is considerably smaller if cover
is close to 0 or 100%. Similarly, estimation time is shorter
at the extreme values, indicating that estimation is the
least challenging task in these cases. Interestingly, sub-
jects on average overestimate cover independently of
category number, n (Fig 4).

Similarly to the field experiments (Smith 1944, Sykes
et al. 1983, Gotfryd and Hansell 1985), observers do not
form a homogenous group in this computer experiment.
According to the Kruskal-Wallis test, the subjetcts’ aver-
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Figure 3. The frequency distribution of the last digit when
subjects estimated cover in percent accuracy (n = 100).
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Figure 4. Average overestimation in the function of n.
Here the averages are calculated from the differences be-
tween the estimated and actual cover levels.
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age estimation error differs significantly for every cate-
gory number. (The conditions for the ANOVA test were
not fulfilled, so we used a nonparametric test.)

Discussion

The most important practical conclusion is that esti-
mating cover in 10 categories is the most precise method
provided that the categories are of identical width. How-
ever, since estimation errors are the greatest at medium
cover levels, and they are much smaller at low and high
levels (as suspected by Sykes et al. 1983), a more accurate
estimation can be attained if cover is divided into unequal
intervals. That is, at both extremes narrower intervals are
needed, and at medium sizes fewer and wider intervals
should be defined to achieve smaller estimation error.
(This is not a surprising result, but at least to our knowl-
edge this is the first case tested.) Even 1% precision could
be optimal at extreme cover levels. This view is supported
by the fact that 11 out of 33 correct interval estimates oc-
curred below 10% and above 90% cover level when sub-
jects estimated cover in percent precision (n = 100). At n
= 100, estimates were more frequently correct than ex-
pected from the general trend (Fig 2b).

Plants are complex three-dimensional objects, fre-
quently having fractal-like geometry (Sugihara and May
1990). These characteristics were not taken into account
in the present experiments despite their possibly signifi-
cant effects on the optimal estimation strategy. For exam-
ple, Sykes et al. (1983) pointed out that cover estimation
is more accurate for broad-leaved species than for fine-
leaved ones. Similarly, vegetation typically exhibits non-
random patterns, i.e., aggregated, segregated and distinct
patches appear in most real situations (Milne 1992,
Haslett 1994). Further, it is highly probable, that cover
level of aggregated patches can be estimated more pre-
cisely than the cover level of many segregated patches.
The even distribution of cover is the other simplifying as-
sumption. We have shown that estimation error depends
on the cover level (see Fig 4a,b) and the results could
therefore be different at other types of cover level distri-
butions.

As mentioned above, subjects overestimated cover on
average in the present computer experiment. Our prelimi-
nary studies reveal that this effect mainly depends on the
color difference of background (now black) and estimated
objects (now green). If background was changed to white,
then subjects underestimated on the average the cover
level. Similar observation was made by Sykes et al.
(1983) in a field experiment. On the basis of these results
it is likely that cover estimates depend on the color of soil
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and vegetation. Future experiments are necessary to ex-
amine this problem thoroughly.
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Appendix

Vegetation cover is divided into » equal intervals, 1/n
wide each. Let us consider all the cases when the actual
cover level is in the (k/n, (k+1)/n) interval (0 < k < n). Be-
cause cover level is distributed evenly between the 0 and
100% cover level, cover is distributed evenly in every
sub-interval as well. So the expected value of the correct
estimates in this interval is simply k/n + 1/(2n) = (2k+1) /
(2n). The average Manhattan distance of the possible val-
ues from the expectation in the k-th interval is the sum of
all possible distances divided by the integration interval:

2K ax=-L.
4n

(k+1)/n
n

kin 2n

Consequently the estimation causes on average error of
1/4n if the possible cover values are distributed evenly,
or 100/4n if this is measured in percentages.
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It can be shown in a similar manner that if estimation
is incorrect then the average estimation error is simply the
absolute difference of the correct interval (i.e., the inter-
val where the actual cover is) from the estimated one. So
if we measure it in percent, then it is 100Ak/n , where Ak
is the absolute difference of the correct interval from the
estimated one.

Let us assume that there are M estimates out of which
L are correct and the remaining M-L are incorrect. Then,
the mean error of the estimation series is

1(L1 M-L Nk . 1 (1 M-L
s e B S |
M i=l4n j=1 n Mn 4 j=1 J

where Ak is the absolute difference of the correct interval
from the estimated one at the j-th incorrect measure. So
the partition error of the estimation is L/(4Mn), while the
mis-estimation error is

(Naturally, if the error is measured in percentages, then
we have to multiply these values with 100.)



