
Introduction

Intellectual progress can often occur through aban-

donment of questions together with the alternatives they

assume, an abandonment that results from their decreas-

ing vitality and a change of urgent interest – we do not

solve them so much as get over them. To some extent the

arguments concerning continuum theory and community

unit theory have followed this path, with attention in ecol-

ogy now being largely directed elsewhere. Indeed,

Shipley and Keddy (1987) have argued that the contin-

uum and community unit hypotheses are not falsifiable so

that further debate is pointless. This is a pessimistic, not

to say myopic, view of how we build models which may

not be totally appropriate (cf. Fisher 1992). Falsification

looks for what is not, not for what is. In any case, statisti-

cal tests do not so much falsify hypotheses as indicate the

risks we take by accepting or rejecting them.

There is a further consideration. In order to test such

models we need a formal representation and neither the-

ory explicitly determines a single model. Instead they rep-

resent classes of models. For example, if I assume that

some set of axes represents a formal continuum model,

then there is a whole class of models parameterised by the

number of axes and several other parameters may also

need estimation. For the community unit model, one pa-

rameter would be the number of classes, but again further

parameters are possible: crisp versus fuzzy, hierarchical

versus non-hierarchical and so on. In both cases, there are

further alternatives leading to further model classes. Thus,

the task is actually to determine the ‘best’ model class and

within that the ‘best’ model. In fact, both hypotheses are

‘collections of families of classes of …’ of models. No-

tice that the selection of model m[j] within class C[i] is

equivalent to the estimation of a parameter (j) within a

model m[i]. Estimating these required parameters is not
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logically different from simple parameter estimation

within a single model.

Rissanen (1978) proposed Minimum Description

Length (MDL) as a means of quantifying the quality of an

entire model class, based on an average over all models

within a class and hence of discriminating between

classes. He has since (1987, 1996) considerably modified

his original views. In any case, although MDL might

solve our problem, in general we want to identify a spe-

cific model and not just the class. To obtain this latter we

can determine a ‘best’ model for each class separately and

then make the comparison, which is the approach adopted

in Minimum Message Length (MML) studies (Wallace

and Dowe 2000, Dale 2002).

In this latter, which is adopted here, we need to pro-

vide prior probabilities for the model classes although

MML is not strictly Bayesian. So if a user wishes to ex-

press some preconceived preference the prior prob-

abilities can be adjusted, otherwise they can be made

bland enough to avoid establishing any preferences. Wal-

lace and Georgeff (1983) note that any model accepted

using MML is necessarily falsifiable.

In this paper, I examine the MML method by which

the hypotheses might be tested. This requires a more pre-

cise specification of the two models (or rather model

classes) and I have assumed, for simplicity, that the re-

quired model is such that within any cluster the variation

can be described as a multivariate Gaussian or Poisson

distribution with uncorrelated attributes. The number of

clusters can run from 1 upwards. It is not suggested that

such a model is an adequate representation of either the-

ory, but the computation is considerably simplified

thereby. In fact, recognition of deficiencies in this overly

simple model leads to some suggestions of other possible

models which might be more worthy of investigation.

Two families of theories

Before we can attempt to discriminate between the

two models, we need to make a clear definition of what

each of them entails. The available data consist of records

of the performance of species in a set of samples from the

area of interest. The continuum theory requires an estima-

tion of the number of (possibly correlated) axes, the nature

of the response curve and the mathematical nature of the

embedding space. For example, Dale (1994) has consid-

ered using Riemannian space instead of the more usual

Euclidean space and this would necessitate estimating the

curvature, while correspondence analysis employs a chi-

square metric rather than a Euclidean one. Analogously,

community theory will require estimation of the number

of communities and also of any parameters necessary to

characterise them including any within-cluster variation

we choose to permit.

A major difficulty with both theories is that neither

adequately addresses questions of process but rather de-

pend on a single snapshot. If a stand of vegetation is in the

process of changing from one community to another, our

observations will contain elements of both. There is of

course no guarantee that the initial communities will have

the same boundaries as the final ones and blurring may

well occur. Shalizi and Crutchfield (1999) argue that we

should define units which have similar predicted paths

into the future irrespective of their history but a single

snapshot will generally be inadequate for this purpose.

Three further points need brief consideration. First,

maximum likelihood estimation does not perform well

with problems where the dimensionality may change. For

example, in clustering the maximum likelihood solution

distinguishes many clusters, only identical samples form-

ing groups. Some other method of estimation is needed

and MML provides such estimates.

Second, there is the question of hierarchy in cluster-

ing, a feature often adopted by community unit support-

ers. Hierarchical clustering is simply one subclass of pos-

sible clustering models, and by comparing different

subclasses we can determine if a hierarchy, or any other

specified structure, is desirable (see Boulton and Wallace

1973). In this study, I shall use only non-hierarchical

clustering and more specifically, the method used is a

fuzzy clustering, because the use of crisp clusters leads to

inconsistency in estimating cluster parameters (Dale

2002).

Third, there are always questions of scale and of inter-

actions between processes operating at different scales,

and neither theory addresses these directly. Hogeweg

(2002) notes that interactions between processes at differ-

ent scales are to be expected in biological systems. Bar-

Yam (2002) considers the problem of characterising the

multi-scale behaviour of non-equilibrium systems so as to

relate descriptions of a system as a function of the scale of

observation. He regards clustering as one way of polaris-

ing scales, by separating macro-scale variation – between

clusters – from micro-scale clustering – within clusters.

However it would be preferable if the scale question were

more directly addressed. I am presently studying some

possibilities using MML approaches.

The continuum theory

The continuum theory assumes that the performance

of plant species is a continuous function of some under-
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lying gradients of (often unspecified) factors. To repre-

sent this, it employs an axis-based model which is selected

to capture the observed correlations between species in

some low-dimensional representation. Stone and Porrill

(1998) indicate that for many methods, such as compo-

nent analysis or projection pursuit (Posse 1995), there is

an implicit assumption that different processes tend to

generate signals that are statistically independent of one

another. Thus, one way of finding these processes is to use

methods that identify independent signal components or

sources. In ecology, this is known as ordination.

A sufficiently complicated axis model will be able to

describe arbitrarily complicated distributions, but such

complex models do not instil confidence in the generality

of their application any more than an O(n-1) polynomial

is regarded as a suitable model for n points in regression.

A theory is to be preferred if it is applicable to a wide

range of, possibly yet unseen, instances. A theory which

is restricted to exactly and only the instances in known

data is not of much use. We have to avoid such overfitting,

which means avoiding overly complex models. This

avoidance of overly complex solutions also applies to the

choice of the class of axis model. A linear solution should

be preferred to a unimodal one if both are more or less

equivalent in goodness of fit and generalisability, since a

linear model requires fewer parameters than a unimodal

one. Generalisability here means the ability to fit future

data. Of course we also want the axes to be simply related

to other information so that we can ascribe some meaning

to the axes. We want interesting axes.

Axis models are not the only means by which we can

capture correlation structure within a dataset, for Bayesian

belief networks can also be inferred (Wallace et al. 1996,

Neil et al. 1999) and provide great generality; an ecologi-

cal example is given in Grace et al. (2000). Wisheu and

Keddy (1992) suggested a model for vegetation similar to

the Rasch model used by Dale and Anderson (1973) in an

hierarchical clustering; mixture models of these have also

been examined by Uebersax and Grove (1993). This

model assumes that the performance of a species in a par-

ticular sample is a function of the species ability, a, and

the sample difficulty, b, but is restricted to qualitative or

frequency data. We can also consider mixtures of factor

models including independent factor analysis (Attias

1999), independent component analysis (Stone and Porrill

1998) and hierarchical versions of these, that combine

clustering with within-cluster axis models. These have

been suggested by several authors including Hanson et al.

(1991) and Edwards and Dowe (1998).

Most of the commonly used axis models are additive,

and either linear or logarithmic. Another possibility is due

to Gilbert and Wells (1966), which models the co-occur-

rence frequencies with a multiplicative model. I have

found that this generally fits very well, much better than

additive models, although it is restricted to presence/ab-

sence data.

It is obvious from this discussion that there are in fact

many possible classes of model which might be used to

capture the ecological notion of continuum. Each such

model class may itself have parameters, most notably the

number of axes, thus providing several models. To choose

between them we might rely on a priori ecological argu-

ments regarding the prior probability of particular

choices; our models should not incorporate ecological im-

possibilities if we are aware of such.
�

We might also seek

to provide some measure of model quality which allows

us to determine the optimal model class, and within such

a class the optimal model itself. Such an evaluation might

be expected to involve a prior probability, which when

combined with the fit to the data leads us to a posterior

probability as an evaluation metric.

The community unit theory

The community unit theory proposes that description

of vegetation is best made in terms of several distinct

‘communities’ with largely abrupt boundaries These

boundaries are in the embedding space defined by the de-

scriptors and need not be environmentally determined; in-

deed the existence of the Modifiable Areal Unit Problem

(MAUP; Openshaw 1984, Jelinski and Wu 1996) and of

possible vegetation-generated spatial patterns (Boerlijst

2000, see also Rietkerk et al. 2002) make boundaries dif-

ficult to identify and independent of the environment.

The sampling of extant vegetation often involves se-

lectivity based on the recognition in the field of ‘homoge-

neous areas’. There has been much debate concerning the

definition of homogeneity and how it might be established

other than by subjective visual assessment. Most of the

problems can in fact be resolved by accepting that any

clusters obtained through analysis of observational data

will be fuzzy, that is the actual vegetation samples will
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belong more or less to an abstract community defined by

specific parameter values. We can then say that the com-

munity unit theory is basically an argument that axis-

based descriptions become excessively complex and that

this can be avoided by developing an overall model as a

(piecewise) mixture of simpler ones. Neal (1998) indi-

cates that we can have a countably infinite number of

components in such models but in general we would wish

to keep the number of clusters relatively small.

This leaves us with a problem concerning the nature

of variation within a cluster. To determine how many

clusters provide the optimal fit requires within cluster

variation to be suitably defined. With a few exceptions,

the proponents of community theory have been silent on

the nature of acceptable within-cluster variation, although

in practice they agree that the performance measure for

each attribute (species) should be invariant within a clus-

ter. This is the model I propose to use.

Another possibility is that an axis representation

might be used, possibly with different dimensionalities in

each cluster. But note that relationships within clusters

can be taken to be linear - the clusters themselves provide

a mechanism for dealing with non-linearity. It would also

be possible to have different axis models within each clus-

ter allowing avoidance of the use of axes altogether in

some clusters.

To assess a cluster or ordination model, we resort to

notions of complexity. In general, more clusters require

more parameters and should be regarded as a more com-

plex description. However, things are a little more diffi-

cult if the within-cluster variation is considered, for more

clusters may allow simpler within-cluster models with

fewer parameters; in small enough pieces everything can

be regarded as linear.

In the end, the comparison of these two theories de-

pends on two things. First, there is a choice of some model

of correlation structure within a single cluster, a choice

required by both hypotheses. Second, the investigator

must determine whether to accept a mixture of simple

models instead of a, possibly complex, single model. If

the same model is used of within-cluster variation is used

in both, then this is nothing more than a test for the optimal

number of clusters! A single cluster possibly with many

axes is sufficient for the continuum theory, whereas the

community unit theory argues for several clusters with a

simple within-cluster model for each.

Comparing models and model classes

The problem has now become a question of how we

determine an optimal model class or model? I have pre-

viously (Dale 2002) examined this question in more detail

so only a summary will be given here.

We could certainly obtain a very simple model which

fitted our observations badly and equally we could obtain

a very complex model which fitted our data exactly. Nei-

ther of these seems attractive. The usual procedure, which

I follow here, is to invoke Occam’s (or Aristotle’s) razor

(Young et al. 1999, Gamberger and Lavra 1997, Domin-

gos 1999; but see Webb 1996, for arguments against) and

seek the simplest model with adequate fit when the pa-

rameters of the model are estimated with optimal preci-

sion; too low a precision will impact on the quality of fit,

too high will increase the complexity. Simplicity is com-

monly associated with generalisability and Wallace

(1996), in discussing the relationship between prediction

and induction, concludes that the MML principle “mini-

mises the degree to which future data will surprise us”.

When introducing Occam’s razor, though, we must be

aware that, in reality, there are no grounds for believing

that the simplest course of events did really happen. Any

model we select may be erroneous. It may not even be

possible to determine the ‘true’ model, as in the case in

factor analysis where only some of an infinite number of

alternatives can be chosen. Such possible model error is a

major contributor to uncertainty.

Here I employ the minimal message length principle

(MML) to assess both complexity and fit and thus quan-

tify the quality of any model. It is sufficient to note that an

event of probability p will have a message length of

–log(p) so that the shortest message length is associated

with the largest (posterior) probability. The test of the two

hypotheses then becomes a matter of determining if the

message length for a model using a single cluster is

smaller than that for models with any other number of

clusters, for some model of within-cluster variation. The

difference in message lengths is related to the odds in fa-

vour of the model with shorter message length; for differ-

ence d we calculate the odds as e
��

: 1.

For clustering, Boulton and Wallace (1970) described

and implemented a procedure for estimating the optimal

number of clusters for a limited set of models of within

-cluster variation; Dirichlet, Poisson, Gaussian and Von

Mises distributions, all with uncorrelated attributes, are

included. The a priori distribution of the number of clus-

ters ranges from 1 to some appropriately large number. If

we obtain evidence of more than one cluster, we would

accept that a community unit hypothesis has merit. If there

is but a single cluster, then the chosen axis-based model

is clearly sufficient.
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For ordination, Wallace (1995) provided an MML

procedure for estimating the number of factors, the factor

loadings and the factor scores simultaneously and consis-

tently in linear factor analysis. We do not necessarily need

different procedures for all alternative axis models. For

example, Legendre and Gallagher (1999) showed that it is

possible to preprocess the data and change the underlying

implied metric for the embedding space, while Ihm and

Groenewoud (1975) used a logarithmic transform to ap-

proximate unimodal response curves.

It would be possible to fit a multi-axis model to the

one-cluster case and compare this to a mixture model with

a simpler within-cluster axis model, perhaps even one

which assumes that there is no correlation, and hence no

axes, within clusters. It seems to me to be fairer to allow

all clusters to use the same within-cluster model class, and

allow the analysis to determine the number of axes within

each cluster, including none. To use an arbitrarily com-

plex model in fitting a continuum theory but to limit the

cluster model would not, I suggest, be a fair test. In any case,

the mechanism for comparison is the same – we would ac-

cept that model which has the shortest message length.

Finally, there is a question of finding the optimal so-

lution. The search space is very large, and heuristic meth-

ods are employed, and it is necessary to use multiple ran-

dom starts to avoid local minima. On the positive side, it

is sometimes possible to prove that a procedure for induc-

tion converges to the optimal solution in the limit of very

large amounts of data. More precisely (Barron and

Conover 1991), if the data come from a finitely complex

model within the family considered then, with probability

one, it will be discovered for sufficiently large sample

size; the rate of convergence is not predicted. MML in

principle will discover the optimal solution given suffi-

cient data, as when estimating fractal dimensionality, may

necessitate several thousands of samples (Ramsey and

Yuan 1990).

Analyses and data

For the example analyses presented here, I have

adopted an overly simplistic model, which assumes that

there is no within-cluster correlation of attributes. The dis-

tribution within a cluster is regarded as random variation

obtained by sampling from a Gaussian distribution. From

this, it is obvious that I do not regard this paper as provid-

ing a proper test of the two competing hypotheses, only as

an example of the manner in which such a test might be

performed. If there exists within-cluster correlation, the

results will favour clustering. I shall later examine two

more realistic models of within cluster variation, which I

am presently investigating.

For each analysis, the results obtained include the

message length for a 1-cluster (i.e., the continuum) solu-

tion, an estimate of the optimal number of clusters, their

sizes, and means and standard deviations for all species

in all clusters, as well as a (fuzzy) assignment of all sam-

ples to all clusters.

I have used 5 sets of data to investigate the choice be-

tween 1-cluster and multi-cluster solutions. These are:

1. Successional data from transects in transitional

boreal forest near Sudbury, Ontario, Canada, with

vegetation affected by pollution. The data consist of

1200 samples recorded in two consecutive years.

The samples are arranged in transects of 100 quad-

rats, each transect running down a south-facing

slope. There are 2 transects in each of 6 plots with

the latter arranged along a pollution intensity gradi-

ent. In all, 119 understorey species were recorded us-

ing a 0-7 cover-abundance code. For further details,

see Tucker and Anand (2002) or Desrochers and

Anand (2003).

2. Calcareous grassland data from Slovakia (Dale et

al. 2001) from a short transect aligned along a puta-

tive moisture gradient and containing 22 plots and

46 species. Again, a cover-abundance scale was

used. This quantity of data is too small for secure in-

duction where several thousands of samples are to be

preferred. With these data I experimented with vari-

ous transformations suggested by Legendre and Gal-

lagher (1999) which manipulate the underlying

metric so that, in addition to Euclidean, I used chord,

chi-square and Hellinger distances. I also examined a

solution involving Poisson variation within clusters

rather than Gaussian (see also Dale 2001). The Pois-

son model requires specification of a single parame-

ter rather than the two needed for Gaussian, and

hence, is simpler.

3. Mallee data from Victoria, Australia, from 256

plots arranged in a stratified random sample. Percent

cover values were estimated for 62 species and

forms. With these data I analysed presence/absence

and abundance data, and also examined a reduced

species set (using only the 32 commonest species).

For further details, see Goodall (1953). (See Dale

2001, for application of Poisson distribution to the

mallee data)

4. Salt marsh data from Queensland, Australia, with

30 plots recorded quarterly for 14 years giving a to-

tal of 1680 plots. Two species were present and for

��	
�	�� �� ���	�
� ���



each density and a vitality measure were recorded.

For further details, see Dale and Dale (2002),

Dale et al. (2002a, b) and Li et al. (2002).

5. Erjnæs and Bruun (2000, see also Bruun and Er-

jnæs 2000) provide data for 620 samples from 180
localities in Danish grasslands. In total, 387 spe-
cies were recorded using a frequency measure.
The samples were stratified to cover several im-
portant gradients.

For the Sudbury data, I used over 1000 random starts

in order to get some grasp of the variation between analy-

ses of the same data. and to be reasonably certain that a

global optimum had been reached. For the remainder only

a few random starts were used, so it is possible that still

better solutions could be found.

Note that both the boreal forest and salt marsh datasets

involve sampling through time as well as space, so that

there may be temporal dependency between the observa-

tions. For the boreal forest data, the calcareous grassland

data and the Danish grassland data spatial dependency

may also be present since the sampling is what Gillison

and Brewer (1985) term gradsects. In the present analyses

such possible dependencies have been ignored although in

principle they can be accommodated in the MML procedure.

For all the datasets, we are ignoring problems with

scale and the possibility that descriptions other than spe-

cies performance might be more effective. Hájek and

Havránek (1977) note that using a relevant description is

critical in obtaining a comprehensible solution.

Results

The general results are presented in Table 1 except for

the special case of the calcareous grassland data which are

presented in Table 2. These tables both show the number

of samples, the message length for a one-cluster solution,

the optimal number of clusters, the message length for the

optimal cluster solution, and the reduction in message

length as a percentage of the 1-class length.

Throughout the n-class mixture solutions are pre-

ferred to the 1-class solutions. It is apparent also that even

the best cluster results do not always capture much struc-

ture. The calcareous grassland data set is the worst, while

in the mallee data the presence/absence result is consider-

ably worse than the quantitative solutions. Brokaw and

Busing (2000) have previously indicated the importance

of chance variation in forest dynamics, and it seems that

this can be extended to other vegetation types. As might

be expected, the larger datasets tend to produce more clus-

ters.

1. Sudbury transitional boreal forest data

Using 1000 random starts, we obtain 2 competing so-

lutions one with 29, the other with 30 clusters. The differ-

ence in message length is about 1.5, which is non-signifi-

cant, and both are well separated as outliers from other

results with the same number of clusters. The ambiguity

in the result was unexpected and illustrates that large

amounts of data may be necessary to identify optimal par-

titions. The two solutions generally agree on allocating

species-poor samples to particular clusters but species-

rich samples are assorted somewhat differently. However,

since I am only interested in the 1-cluster / n-cluster com-

parison, here I show only the solution with the shortest

message length. In either case, the solution favours mix-

tures of clusters, and hence, the community unit theory.

2. Calcareous grassland

Here we have several analyses, each with a different

underlying metric and also the Poisson-Gaussian com-

parison. It is clear that the mixture solution is again pre-

Table 1� ��� ����
���	� �����
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ferred, but the optimal solution was obtained using Pois-

son within-cluster variation. Dale (2001) found the

Gaussian preferable to Poisson for the mallee data, and

this might be due to the difference between ordered cate-

gory codes and real estimates of % cover, although it is

possible that the distribution is a property of the vegeta-

tion. It is also interesting that the chi-square metric, which

underlies correspondence analysis, is far from optimal as

a mixture solution nor does it provide the best 1-cluster

(ordination) solution. It would be interesting if this poor

performance was found in other datasets.

3. Mallee

All three analyses choose the mixture solution. It is

clear that the presence/absence data, which uses a

Dirichlet distribution not a Gaussian, provides a much

simplified solution with only 3 clusters. However, the

clusters in the other analyses tend to be nested within the

presence classes. Removing rare species does decrease

the message length, but does not appear to change the

number of clusters much, in fact, producing one more than

the full data! The result may be suboptimal, and a wider

search is needed to check this.

4. Salt marsh

The best result here involves a mixture of 11 clusters.

However, these do not necessarily represent environmen-

tally distinguishable communities. Some at least appear to

be variations in time generated by vegetation processes of

growth and replacement largely independent of environ-

mental changes. Dale et al. (2002a), using an analysis

which incorporated temporal dependency between sam-

ples, also found 11 clusters, most of which were similar to

the clusters found here.

5. Danish grassland

Here the results identified 27 classes which is close to

the 25 identified by Bruun and Erjnæs (2000) using Indi-
cator Species Analysis and a permutation test. The MML

solution estimates the required number of clusters di-
rectly. No detailed interpretation will be presented here,
but the clusters appear to be highly correlated with the lo-
cations sampled, although some did occur  at  several
places. If this is substantiated, it means that local condi-
tions dominate and any communities would tend to be
site-specific rather than universal abstractions.

Discussion

It is clear that in all the analyses using the within-clus-

ter model chosen, a mixture model is always preferred.

This is not a proof that the community unit model is to be

preferred and the continuum model rejected. The within-

cluster model is clearly oversimplified, and biased against

continuum theory. As noted earlier, the existence of cor-

relation between attributes within classes would lead to

the identification of several classes. The results do show

how a test of the competing hypotheses can be performed

if more acceptable within-cluster models are provided.

We need therefore to examine what alternatives are, or

may soon be, available. Two possibilities will be pre-

sented here, for which the computational problems are be-

coming tractable.

Before examining the possibilities, it is also pertinent

to note that we might question whether a single model of

either kind is attainable. We may desire a single causative

model, but in the light of Pagie and Hogeweg’s (1999)

work, this may be a forbidden fruit. Multiple causation is

common enough in biology.

Static solution

The clusters developed by the analysis used here have

only random variation, Gaussian for the most part. This is

hardly acceptable for continua where several gradients

may be expected. Even a single axis of variation would be

preferable. For the mixture alternative, variation within

clusters can also be allowed, although it would be desir-

able that the existence and number of any axes of variation
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within clusters should be determined from the data rather

than imposed. A method which goes some way towards

meeting these requirements is that of Wallace and Free-

man (1992) which permits a single linear factor, and an

extension to multiple axes per cluster is theoretically pos-

sible (Wallace 1995). However, the practical use of mul-

tiple factor solutions has yet to be investigated especially

with large numbers of variables. Hanson et al. (1991), in

their AUTOCLAS program, do permit multivariate

within-cluster axis models, as does independent factor

analysis (Attias 1999). However, there seem to be a limit

to 7 or less dimensions if sensible solutions are to be

found, similar to those found with intrinsic dimensionality

calculations (Trunk 1976). In any case high dimensional

solutions would require very large amounts of data.
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With multiple factors, it would be desirable to rotate

the solutions within clusters to permit easier interpreta-

tion. Kiers’ (1994) SIMPLIMAX appears to be a promis-

ing possibility for this, leading directly to an oblique sim-

ple structure solution. It would also be possible to look for

axes common to subsets of clusters, which might reflect

some hierarchical or other cross-cluster structure.

Dynamic solution

All of these models suffer from a major disadvantage;

they are all static. It should be obvious that any structure

based on a snapshot of vegetation at a particular time will

be useful for prediction only if any pattern is generated by

a first order process, that is by a memory-less system.

Lippe et al. (1985) concluded that at Dwingelose Heide

this assumption was unacceptable, but did not investigate

higher order or non-Markov possibilities. In contrast, Or-

lóci et al. (1993) found the first order Markov model ade-

quate, although Anand and Orlóci (1997) found adding

noise to perturb the Markov process provided better mod-

elling of transient responses.
�

The assumption that the fu-

ture course of a system is solely dependent on the present

state itself requires testing. The methods used to distin-

guish between community and continuum models can be

extended to discriminating between more general models

where appropriate observational data are available; for ex-

ample Dale et al. (2002a) found a first order process suf-

ficient to describe temporal processes in their salt-marsh

vegetation.

Dale et al. (2002b; see also Li et al. 2002) have exam-

ined the use of dynamic models within clusters. In their

example, a single cluster solution proved adequate, al-

though a 2-cluster solution was obtained when only a sub-

set of the data were used and this corresponded reasonable

well with the concepts of ‘high’ and ‘low’ marsh commu-

nities. They fitted hidden Markov models (Fig. 1a) using

all the variables, but more appealing options are available.

For example, it might be useful to introduce environ-

mental variables to act as drivers for the hidden Markov

processes, so-called input-output models (Fig. 1b). But to

better model the continuum approach, we might proceed

as follows.

Assume that we build a hidden Markov model for

each species separately. These models can be linked (Fig.

1c) or coupled (Fig. 1d) so that one species modifies the

responses of other species, at some later time. In principle,

we can ask if the addition of coupling, which is an added

complexity, is adequately rewarded by improvements in

fit, and also whether there is evidence for different de-

grees of coupling in different clusters. The continuum the-

ory argues for independence of species so the existence of

coupling would be evidence against it. Existence of clus-

ters with differing coupling coefficients would strengthen

evidence for the community theory. The difficulty here is

computational, for fitting coupled Markov processes is

heavily data dependent and computationally demanding

(e.g., Davis et al. 2002). The results obtained often depend

on the effectiveness of the training method. A first attempt

(Dale and Davis, unpublished) using coupled HMMs with

the salt marsh data suggested that coupling was not bene-

ficial. We are presently investigating this further as well

as the possibility that non-Markovian processes might be

preferable. Still more complex models allowing for proc-

esses operating at several different time scales can also be

considered, but the computational problems are then still

more acute.

Choosing between the continuum and community unit

theory is not, then, a question of a priori predilection. In-

stead, if the models are specified sufficiently, it is possible

to test formally and identify the preferable model for any

particular dataset. Whether such a decision is worth the

sampling effort required is another matter.
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