
Introduction

Plant assemblages form and change in response to en-

vironmentally induced conditions with subsequent modi-

fications by the presence of the plants themselves. Distur-

bances of the plant communities at various scales

introduce further trajectories of development and redevel-

opment as mosaics of patches, ecotones, corridors, and

gradients of landscape pattern (Forman and Godron 1986,

Forman 1995, McGarigal and Marks 1995, Turner et al.

2001, Wilson and Gallant 2000). Although the level of

understanding has become sophisticated regarding factors

and processes underlying development of vegetative

communities across landscapes, the inherent complexity

continues to present challenges for monitoring changes in

landscapes as they pertain to ecosystem health.

There is general agreement that the best prospects for

analyzing and monitoring broad-scale change in plant

canopies lie in remote sensing from satellites in conjunc-

tion with geographic information systems (Groombridge

1992, Miller 1994). The basis for this consensus is well

illustrated in Figure 1, which is based on September 1991

image data acquired by the Landsat MSS sensor in four

spectral bands and having approximately 60-meter spatial

resolution.

This figure spans three major physiographic settings

in Pennsylvania, with the central focus being on the

strongly folded Ridge and Valley physiographic province

characterized by forested ridges and agricultural valleys.

The upper left (northwestern) corner is occupied by frag-

mented forest landscapes of the Appalachian Plateau de-
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rived from thick sandstone that resists erosion and weath-

ers to infertile soils. The extreme lower right (southeast-

ern) corner shows the more subdued topography and fer-

tile soils of the lower lying and predominantly agricultural

Piedmont Plateau. A large reservoir, named Raystown

Lake, is located near the center. The slanting line in the

lower portion of is an anomalous artifact of the imaging

systems.

There are several technological challenges, however,

that have kept change detection more in the realm of re-

search than of routine monitoring (Coppin and Bauer

1996, Lunetta and Elvidge 1998, Rogan et al. 2003).

Temporal comparatives are the central concerns in this

context. With regard to studying landscape dynamics by

means of remote sensing, there are changes in appearance

due to atmospheric conditions and phenology that are not

informative relative to alteration of ecosystem status.

Clouds and their shadows along with fog and snow con-

stitute major atmospheric sources of interference for

monitoring disruption of ecosystem processes. Saturated

soil, standing water, and sediment from recent heavy pre-

cipitation can substantially alter the spectral reflectance of

many environmental surfaces. Phenology pertains to an-

nual cycles of senescence and growth in vegetation. De-

ciduous forests shed their leaves in the fall, giving rise to

very different appearance between dormant season and

growing season. With taller vegetation and/or topo-

graphic relief, there are also substantial localized changes

in appearance during the day and between months at a

given time of day that are due to shadows and sun angle.

Likewise, temporal comparisons cannot be conducted ef-

fectively without making whatever spatial adjustments

may be needed so that the images and/or maps will over-

lay each other accurately (Dai and Khorram 1998, Gong

et al. 1992).

Changes in vegetative cover have different implica-

tions for ecosystem health depending on the context in

which they occur (Myers et al. 1999, Patil and Myers

1999). Furthermore, some important changes in land

cover entail much more pronounced contrast in spectral

appearance than others. Fields having agricultural crops

change gradually from being bare after tillage to closed

green herbaceous plant cover, and then to senescence

upon maturity and thence to harvest. To this intrinsic dy-

namic of agricultural areas is added change due to crop

rotation, whereby a given field is planted to different

crops in different years. Thus, agricultural areas tend to

exhibit strong spectral changes even when the overall

vegetation regime is not changing. Forests are con-

strained by climate in some ecological settings, but moist
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and mesic environments typically have herbaceous and

shrubby areas being disturbance-induced transitional

stages in succession to tree cover. Deforestation, refores-

tation, and fragmentation by land conversion to agricul-

ture and urban have major implications for ecosystem

health at landscape and regional scales. Even apart from

human influence, however, forest landscapes have a natu-

ral disturbance regime due to wind, wildfire, and biotic

causes such as insect infestations that create patchy open-

ings of varying sizes in the general matrix of forest cover

(Baker 1989). The most insightful environmental moni-

toring is aimed at tracking changes to determine whether

there are changes in the change regime that would indicate

progressive disruption of ecosystem processes with con-

sequent loss of habitat integrity/connectivity and/or ef-

fects of possible global climate change (Patil et al. 2001).

Adding to the difficulties associated with inherent

complexity of landscape change are differences in the

data domains for analytical approaches. Spatially specific

landscape ecological analysis is usually conducted largely

within the framework of geographic information systems

(GIS) that operate primarily on maps having definite leg-

ends and associated attribute tables. In contrast, remotely

sensed multiband image data consist of quantitative mul-

tivariate sensor responses. GIS may provide limited im-

age display facilities as backdrops for vector (line, poly-

gon, and point) maps, but seldom offer much in the way

of multivariate analytical support. The components of

landscape pattern in image data thus tend to remain im-

plicit rather than explicit. Even in conventional remote

sensing analysis systems, there are logistical difficulties in

handling the large volumes of data that come from repeat-

edly acquiring multiband images over time for purposes

of environmental monitoring. These difficulties are com-

pounded by possible copyright restrictions on access to

image data. Finally, the sensor systems themselves

evolve over time with improved technology introducing

another source of temporal incomparability.

Consequently, there has been need for analytical ap-

proaches that promote synergism between multispectral

remote sensing and GIS by bridging the differences in

data frameworks, improving data management, facilitat-

ing explicit extraction of landscape pattern elements, and

promoting temporal comparability over different scales.

Several generations of research in this regard have given

rise to an approach of doubly segmenting images that uses

proxy signal vectors to map components of pattern for

analysis of temporal consistency in a manner that is di-

rectly compatible with GIS informational frameworks. A

duality of map and image information has resulted that is

exemplified in Figure 1, which is a map that conveys im-

age information.

PSI/PHASE pattern-based segmentation

Explanation of our approach begins with considera-

tion of pattern. Pattern extraction, matching, recognition,

presentation and analysis are hallmarks of artificial intel-

ligence, but the term pattern itself remains indefinite. Pat-

tern analysis often has a strong statistical tone with or

without formal distributional models, but may be con-

cerned more with adaptive heuristics for which the out-

comes are essentially data dependent. Therefore, it is nec-

essary to specify how pattern is construed for a particular

context and the methods by which pattern analysis is to be

conducted. Patterns of interest here occur in two related

domains—the (physical) environmental domain over a

particular spatial extent (scene), and the signal domain of

environmental variables. Patterns are to be extracted in

the signal domain as representations of patterns in the en-

vironmental domain.

Conceptualization

A principal pattern construct in the signal domain for

present purposes is an ordered set of signal values for dif-

ferent environmental variables (bands or channels) as a

signal profile or signal vector, with the two terms being

equivalent. The signal profile charts signal value accord-

ing to band number and can be visualized as in Figure 2.

The band values are the components of a signal vector that

can be (conceptually) envisioned as a point in a multidi-

mensional space with one axis for each band. This multi-

dimensional space is variously referred to as signal space,

feature space, or measurement space. We generally use

the term signal space. The length or norm of the signal

vector is one indicator of overall signal strength or inten-

sity. The vector difference between two signal vectors is

a multidimensional expression of their dissimilarity;

length of the difference vector is a scalar measure of dis-

similarity.

A signal profile or vector is associated with each pixel

of the image, and the density of occurrence for such vec-

tors in signal space typically varies in the manner of con-

stellations. A high density constellation is an opportunity

for simplification and parsimony with only modest sacri-

fice of information. The vectors comprising a dense con-

stellation can all be replaced by a single ‘central’ profile

that adequately represents the profiles which it replaces.

The central profile is both a prototype (in the sense that it

is representative for its constellation) and a proxy (in that

it replaces actual signal vectors for members of the con-

stellation). A proxy profile may or may not have the same
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ordered set of signal values as some actual pixel of the

constellation. Such a proxy signal profile is an important

pattern construct in the double segmentation scheme.

One measure of the information cost of the proxy substi-

tution is the sum of squared lengths of the difference vec-

tors between the actual pixel vectors and the proxy vector

taken over all pixels in the constellation. Such a substitu-

tion collapses the constellation to a point and gives all of

those pixels the same appearance in an image of the scene

extent.

At this juncture, some notation regarding different

kinds of pattern elements is in order. A P1 pattern ele-

ment is an actual signal profile at a particular position in

both signal coordinate space and pixel row/column image

extent. A P2 pattern element is a proxy profile occupying

a particular vector position in signal space and defined

with respect to a set of actual signal vectors but not having

reference to any particular pixel position(s) in row/col-

umn image extent. A P3 pattern element is a proxy profile

substituted in a particular pixel position in row/column

image extent. A P4 pattern element is a connected com-

ponent of P3 elements in an image extent as a proxy pro-

file pixel patch consisting of adjacent (by contact) proxy

profile pixels and allowing a singleton pixel as a degener-

ate patch. A P5 pattern element, also called an image seg-

ment, is the union of all P4 elements having the same

proxy profile. A P6 pattern element is a P5 pattern ele-

ment and all of the adjacent (by pixel contact) P4 elements

for other proxy profiles along with other adjacent pixels

(if any) that have not been subject to proxy substitution.

The conversion of an image consisting of P1 pattern ele-

ments into an image consisting of P5 pattern elements is

a proxy (pattern) process.

PSI is a proxy process of Progressively Segmenting

Images that results in a primary an image extent for which

the extracted patterns can provide an approximate image

representation as a map of pixel positions for numbered

proxy profiles with a supplemental table of signal values

for the respective proxy profiles. To achieve double seg-

mentation, a reverse process then ensues of aggregative

clustering whereby the finer primary segments are

grouped into coarser secondary segments with each sec-

ondary segment having a second-order proxy profile

(proxy for proxy). The coarser level segments are impor-

tant for pattern matching purposes across a temporal se-

quence of images as well as for pseudo-color display. Be-

cause of the role that secondary segments have in

pseudo-color display, they are called PHASE segments as

an acronym for Palette Homogeneity Among Segmenta-

tion Elements.

The inspiration for this research on proxy processes

came from early work of Kelly and White (1993) on ap-

proximating compression of images by clustering in con-

junction with their Spectrum software system for interac-

tive mapping from image data. The potential efficacy of

proxy processes will depend upon the degree of redun-

dancy of signals received from various positions on the

landscape, which is a function of landscape structure.

Therefore, highly patterned (patchy) landscapes are more

amenable to such representation than ones having spatial

variation in the nature of smooth gradients. If a landscape

as the environmental domain has a mosaic character of re-

curring kinds of patches (sensu landscape ecology), then

environmental signal data collected in patches of a given

kind should be considerably more alike than those col-

lected in different kinds of patches. This should hold true

regardless of how many signal variables (bands or chan-

nels) are measured, as long as the signal variables are di-

rectly or indirectly related to the nature of the patch. If the

different kinds of patches have substantially distinctive

expressions, then a well-chosen typical value for each

kind of patch should represent any particular instance of

that kind of patch reasonably well. If most instances of a

kind of patch are suitably well represented by the typical,

Figure 2. +���
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then substituting typical for individual values should re-

tain the general character of structural pattern in the land-

scape. This is the intuitive basis or ‘landscape logic’ be-

hind a proxy process, where a set of typical values for

signal variables comprises a proxy profile. Kinds of

patches are purposely left indefinite in this intuitive state-

ment. To the degree that there are fewer proxy patterns

than kinds of landscape patches, there are two levels of

distortion. One is the distortion discussed earlier that

comes from homogenizing a patch. The second results

from failure to distinguish between different kinds of

patches. The second level of distortion is not incurred by

a ‘smart’ strategy in which there are more proxy profiles

than there are kinds of patches, because the ‘extra’ proxies

will simply provide a finer subdivision of those patches

kinds having greater internal heterogeneity.

Although the general logic of image representation by

proxy process is intuitively straightforward, strategies for

arriving at them are not so apparent. A first question is

how many P2 proxy patterns to use. Without prior knowl-

edge of the number of different kinds of patches in the

landscape encompassed by the scene extent, there is no

theoretical answer to this question. There is, however, a

first practical answer in the context of image analysis and

GIS. The number of segments that can be encoded in one

byte of computer memory is 256. Many of the viewers in

GIS software packages as well as those for remote sensing

are also geared to 256 colors. This is also a computation-

ally manageable number of states for pattern matching be-

tween different dates of imagery without incurring un-

wieldy combinatorial proliferation. One of the 256 states

available in a byte is needed to indicate missing data, and

it may be desirable to have a few states reserved for spe-

cial uses such as highlighting. Therefore, we have chosen

to use 250 P2 proxy profiles as a basis for first approxi-

mation. Notwithstanding the advantages associated with

250 proxy profiles, this would allow no flexibility with

regard to potential fidelity of representation for complex

landscapes. Flexibility can be obtained by providing for

a much larger number of proxy profiles, and then conduct-

ing a secondary aggregation operation to the level of 250.

The next question is how to obtain the P2 proxy pro-

files that serve as surrogates for the multitude of actual P1

pixel profiles. Theoretically based image segmentation

usually focuses on some selected mathematical criterion

of variation in the image, and then seeks to optimize the

representation with respect to that criterion (Li and Gray

2000). From environmental and GIS perspectives, how-

ever, multiple criteria of a practical nature need to be con-

sidered. Approaches that are responsive to multiple crite-

ria is often more a matter of strategizing than of optimiz-

ing.

P2 proxy profiles can be thought of bins of pixels and

consideration must be given to reasons for preferring bal-

ance or imbalance in distribution of pixels among the bins.

A simple and intuitively appealing strategy is to distribute

the pixels equally among the bins. When applied on a

band-by-band basis for image rendering, this strategy is

often called ‘histogram equalization’. Despite this, there

are often good reasons for having some imbalance among

the proxy profiles. To facilitate visual recognition of

landscape pattern in image displays, it is important to give

some emphasis to the unusual so that distinctive ‘land-

mark’ features are not unduly subdued even though they

may constitute minor components of the landscape extent

in the areal sense. Roads, riparian zones, right-of-way

corridors, small water bodies, and localized clearings are

often defining components of landscape spatial pattern

both visually and ecologically. Proxy profiles repre-

senting relatively rare but distinctive landscape features

will correspond to bins with comparatively small pixel

frequencies.

Making the above concession to uncommon but

prominent components of landscape pattern may entail

having some more expansive portions of the image extent

be visually identical due to having the same P2 elements

of pattern. The nature of common landscape components

will depend upon the landscape itself. In forested land-

scapes, the forests are the common components. In arid

landscapes, exposed mineral materials tend to be the com-

mon components. In watery landscapes, water surfaces

constitute the common components. Although this is not

always the case, the common components are frequently

also relatively homogenous in nature. The subtle vari-

ations in forest canopy are typically less prominent than

the differences that distinguish other non-forest elements

from each other. Likewise, water surfaces typically have

a relatively homogeneous appearance in relation to terres-

trial components of the landscape. It is important to re-

member that pixels represented by the same proxy profile

become indistinguishable from each other. Therefore,

landscape pattern is expressed in the interspersion and

juxtaposition of different profiles. Having large, contigu-

ous areas of an image occupied by the same proxy profile

will give the effect of viewing from a distance whereby

broad-scale landscape structure is perceived. Then, how-

ever, there is little to be gained by attempting to ‘zoom in’

on a sector of the landscape in search of finer detail. It

thus becomes important to avoid having a large propor-

tion of the pixels represented by any particular one of the

proxy profiles. This will guard against large areas that are
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devoid of detail, and will ensure some capability for ex-

ploring the landscape at multiple scales. A central issue

of strategy, therefore, is deciding the degree to which dis-

parate pixel frequencies for proxy profiles will be permit-

ted.

A strategic question that arises from the foregoing

considerations is how to gauge the degree of distinctive-

ness of a landscape component. Distinctiveness involves

unusualness in two senses. One sense is rareness of oc-

currence in space. The other sense is degree of being dis-

similar to other signal profiles. The latter aspect is the es-

sence of contrast in a visual sense. While there is visual

interplay between these two senses of unusualness, it is

nevertheless possible to separate the decisions relative to

strategy in these regards.

Consider first the degrees of dissimilarity among pairs

of pixels without regard to frequency of occurrence,

which depends on a collective expression of band-by-

band differences in intensity values. Although a variety

of dissimilarity measures have been proposed in the clus-

tering literature (Everitt et al. 2001, Gordon 1999), we

have employed squared Euclidean distance between sig-

nal vectors. Sometimes it is desirable to place special em-

phasis on particular bands. This can be accomplished by

differentially weighting the squared band differences. The

expression for contrast between signal profiles thus be-

comes

Here a and b indicate the signal profiles being compared,

i is the band number, X is an intensity value for a signal

band, p is the number of bands, and w� is a weight for band

i with w�=1 as default. It would, of course, be possible to

take the square root to obtain D, but this would substan-

tially increase the computational effort with no apparent

advantage.

In comparing an actual pixel profile a with its proxy

profile b, D
�
�� becomes a measure of the pixel-level sig-

nal distortion that results when the proxy replaces the ac-

tual profile. An optimization approach to segmentation

might seek a set of k proxy profiles that minimizes the sum

of such distortions over all pixels in the image, where k is

specified by the user. In fact, the various k-means algo-

rithms (Hartigan 1975, Hartigan and Wong 1979, Hastie

et al. 2001) and, to some extent, the ISODATA algorithm

(Ball and Hall 1965, 1967) all seek to do exactly this.

However, these algorithms usually converge to “local” in-

stead of global minima and, in consequence, are very sen-

sitive to the initialization choices. Also, for massive data

sets such as imagery with tens to hundreds of millions of

pixels, the computational burden becomes prohibitive

even for contemporary computers. A route to practicality

lies in pursuing a strategy of successively improving ap-

proximations, as opposed to attempting optimization.

Such a strategy is a heuristic. Heuristics are frequently

employed in the context of artificial intelligence. Heuris-

tics are typically chosen for robustness, speed, and general

quality of performance. Robustness lies in absence of

pathological cases where the strategy works poorly or not

at all. General quality of performance lies in producing

approximations that are useful. It may be necessary to

evaluate performance of heuristics empirically. The heu-

ristic developed by us for proxy representation of images

(as P5 pattern segments) proceeds through a series of

stages. Each stage entails at least one pass through all of

the pixels in the image file. A pass through all of the pix-

els is called a scan.

Initialization stage

The goal of the initialization stage is to obtain a set of

250 proxy profiles (P2 pattern elements) that are well-dis-

persed throughout the populated portions of signal space.

This stage begins by taking the first 250 non-duplicate

pixel profiles in the image data file as provisional proxies.

The closest (Euclidean distance) pair among the provi-

sional profiles is then determined. Let the profiles of the

closest pair be denoted by P� and P�. The profiles for the

remaining pixels in the file are then examined one-by-one

as possible candidates P� to replace one of P� or P�. If

replacing P� or P� by P� would increase the distance of the

closest pair, then the replacement is made, pairwise prox-

imities are recomputed, and the new closest pair P� and P�

is updated. In a replacement, the choice between P� and

P� is made according to the smaller of the distances from

P�. The 250 proxy profiles thus obtained after a single

scan of the image data file are also actual pixel profiles

and will be referred to as seeds.

After the seeds are determined, the image file is

scanned a second time and each pixel is assigned to the

closest seed (ties are broken arbitrarily). These assign-

ments partition the image into 250 subsets called seg-

ments. The segments are in one-to-one correspondence

with the seeds and each segment is nonempty (since the

seeds themselves are actual pixel profiles). This second

scan of the image file also determines the longest and the

shortest pixel profile within each segment—information

that is needed for the next stage of the algorithm.

We note that the image analysis literature often re-

quires that segments be spatially connected sets of pixels,

in either the 4-neighbor or 8-neighbor sense (see Jain et
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al. 1999, p. 297, for example). In our use of the term, a

segment does not have to be spatially connected.

Splitting stage

In the PSI approach, the approximation of an image

by proxy signal profiles for segments is improved by pro-

gressively splitting selected segments into two sub-seg-

ments that may, in turn, be further split. Thus, segments

proliferate as the splitting stage proceeds. The method of

splitting is a polar process. Let the shortest (lowest inten-

sity) signal vector in a segment be P� and the longest

(highest intensity) one be P�. When a segment is split,

those pixels having a profile closer (Euclidean distance)

to P� will comprise one sub-segment, and those closer to

P� will comprise the other sub-segment. Ties can be bro-

ken arbitrarily. A P� vector for the first sub-segment and

a P� vector for the second sub-segment are each deter-

mined in the process of segregation. A proxy profile for

each sub-segment is computed as the average of its P� and

P� vectors.

In order to answer the question of which segments

should be split, a splitability index is calculated for each

of the current segments. The splitability index is given by

Sp = N�������× D
�

(P� , P�),

where N������� is the size (number of pixels) of the seg-

ment and P� and P� are its polar vectors. Segments with

larger index values are better candidates for splitting.

Thus, the index prefers to split segments that are either

exceptionally large in size or that exhibit large within-seg-

ment contrast. A segment can be split if its index value

exceeds a threshold which is set equal to 1/16 of the cur-

rent mean segment size.

Actual splitting occurs in a sequence of scans of the

image data file. Prior to each scan, the threshold is calcu-

lated according to the current number of segments and

each of the current segments is marked for splitting if its

index value exceeds the threshold (however, due to mem-

ory allocation for internal data structures, a limit of 300

splits per scan is currently imposed). A segment can be

split at most once during a splitting scan. The number of

splitting scans is set by the user. The default setting of 9

scans typically results in 2000–2500 final primary PSI

segments.

Aggregation stage

There is nothing in the splitting heuristic to prevent

formation of small segments by asymmetric polar parti-

tion. Consequently, the splitting stage can result in sev-

eral thousand segments of which many have relatively

few pixels. A multiplicity of small segments is advanta-

geous for accuracy of image approximation, but becomes

intractable for pattern matching in change detection and is

not accommodated by GIS viewers operating in pseudo-

color (thematic) mode. Therefore, the final stage aggre-

gates the primary PSI segments into 250 secondary

PHASE segments. Since it is segments rather than pixels

that are being aggregated, a scan through the pixel data is

not required to do the aggregation. However, a final scan

is required to map the pixels into their appropriate PHASE

segments.

The clustering of PSI primary segments is done ac-

cording to a novel hierarchical agglomerative scheme in

which the basic elements are PSI segments and not pixels.

To emphasize this, we use the term “grouping” to describe

the procedure and the phrase “groups of segments” to re-

fer to the clusters of segments that are formed along the

way. The distance between basic elements (PSI seg-

ments) is the squared Euclidean distance between their

proxy profiles (recall that each of the latter is the average

of the segment’s polar vectors P� and P�). This is ex-

tended to a distance between two groups of segments by

single linkage, i.e.,

,

where A and B are the groups being compared, s ranges

over the segments in A, and t ranges over the segments in

B. The size of each segment is the number of pixels that

it contains; the size of a group of segments is the sum of

the sizes of its member segments (not the number of seg-

ments that it contains). The strategy is to eliminate seg-

ments (and subsequently groups) whose size is below a

certain threshold. The threshold is set equal to

Average size of final PHASE

segments,

where N����	 is the total number of pixels in the image. The

general idea is that it becomes problematic even to locate

segments smaller than 1/4000
�


of a scene in an image dis-

play. Segments whose size is below threshold are marked

for grouping. Marked segments are divided into two

classes: the first class contains segments that were

formed in the initialization stage and did not undergo

splitting in the splitting stage; the second class contains

the remaining marked segments. Segments in the first

class are processed before those in the second class.

Within each class, processing is in order of increasing
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length of proxy vectors (i.e., “darker” segments are proc-

essed earlier). When a marked segment is processed, it is

grouped with the closest segment or group of segments

using the single linkage distance described above. The

grouping is done without regard to the size of this closest

segment/group. If the size of the resulting group is still

below threshold, it is grouped with its closest seg-

ment/group. Grouping continues up a hierarchy in this

way until the threshold size is reached, at which point

processing proceeds to the next marked segment that has

not already been incorporated into a group. Processing is

subject to two constraints. First, the number of segments

in a group may not exceed 255 so that the within-group

segments can be enumerated with a single byte of storage.

Second, all processing halts as soon as the target of 250

groups (PHASE segments) is achieved even if this leaves

some segments/groups with below-threshold sizes. If the

target of 250 groups has not been reached after processing

all marked segments, then the splitting tree from the split-

ting stage is collapsed inward toward the main branches

until the target is achieved.

Each of the final 250 groups is assigned a proxy pro-

file equal to the arithmetic average of the proxy profiles

of its member PSI segments. These 250 proxy profiles of

PHASE segments are then ordered according to vector

length (brightness or intensity) so that the shortest (dark-

est) is numbered 1 and the longest (brightest) is numbered

250.

Dual mapping and tabulation of segments

Each primary PSI segment has a two-part number.

The first part is the secondary PHASE cluster/segment to

which it belongs, and this part is recorded as a byte binary

value for the corresponding pixel positions.

Illustrative snippets of Landsat MSS image data

Two snippets of Landsat MSS data located near the

middle of in central Pennsylvania are used for illustrative

purposes. These are matched subimages of 1000 rows

and 700 columns of pixels. They were obtained from the

U. S. Geological Survey (USGS) under the North Ameri-

can Landscape Characterization (NALC) program

(Lunetta et al. 1998). This program has assembled

matched sets of three MSS images taken approximately

10 years apart for studying change in North American

landscapes (Sohl and Dwyer 1998). One of these was im-

aged on September 6, 1972 and the other on September 7,

1991. Figure 3 shows the output of the segmentation

process for 1972 and Figure 4 shows the output for 1991.

Note particularly that the Raystown Lake reservoir was

under construction at the time of the 1972 image. The

four bands of the Landsat MSS sensor used are 0.5 to 0.6

micrometers (green), 0.6 to 0.7 micrometers (red), 0.7 to

0.8 micrometers (infrared 1), and 0.8 to 1.1 micrometers

(infrared 2).

Contrast, combination and color

Remote sensing image analysis conventionally keeps

all bands available for direct selection in viewing, and any

modifications that cannot be done dynamically in com-

puter memory are accomplished by generating additional

image bands. The PSI/PHASE approach is very different

since the only mapping is of segments by identification

numbers, while relying on attribute tables to convey char-

acteristics of the segments. The basic tables produced by

segmentation contain typical values by band for each seg-

ment, but these are not structured in a way that is directly

accessible to GIS viewers.

Conventional viewers operate in two major modes.

One way can be considered as image mode and the other

as thematic map mode, although different viewers use dif-

ferent terminology for these two modes. In image mode,

the values in a pixel file are interpreted directly as inten-

sities. These intensities are translated in a proportional

manner into illumination of a viewing screen, with low

values giving low illumination and high values giving

high illumination. What is considered low and high with

respect to values is determined according to the conven-

tions adopted in programming. In thematic map mode,

the numbers in a pixel file are interpreted as identifiers for

map categories and an auxiliary file is used to look up the

manner in which the category should be depicted on the

viewing screen. In a remote sensing context, thematic

map mode is sometimes referred to pseudo-color mode.

The term pseudo-color is not to be confused with false

color that simply means a scene does not appear as it

would to the naked eye.

A proxy representation as produced directly by seg-

mentation is limited with respect to viewing capabilities.

The secondary PHASE segments can be viewed directly

in image mode or in thematic map mode. In either case,

the nature of the rendition is the same. Each of the seg-

ments is assigned a graytone brightness level, increasing

in regular brightness steps according to PHASE segment

number. In effect, the PHASE segment or cluster number

is treated directly as an intensity value. This is the manner

of depiction in Figure 3 and Figure 4.

Contrast control by signal stretching and saturation

Depending on the particular combination of computer

hardware and software, a viewer might offer 16, 64, 256,
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or more levels of illumination for the viewing screen. The

issues of stretching and saturation arise for portraying the

respective bands of PSI/PHASE representations through

their central values. These issues are addressed through a

software module that prepares an auxiliary table specify-

ing the relative (stretched) brightness for each band in

each segment. To retain independence of viewers at this

stage, the relative values range from zero to one.

Combining bands into synthetic signals as

environmental indicators

A common investigative method for remote sensing is

to formulate various combinations of bands as environ-

mental indicators or ‘indices’. The same can be done

even more readily at the PHASE segment level in terms

of entries for attribute tables. For example, the so-called

NDVI (Normalized Difference Vegetation Index) is given

by the formula

NDVI = (Infrared – Red) / (Infrared + Red).

This ratio tends to be high (bright) for vegetated areas and

dark for areas lacking vegetation, with broadleaf foliage

expressing somewhat more strongly than needle-leafed

foliage. The reason for this is strong absorption of red

light by chlorophyll in plants for photosynthesis, and

strong reflection of near infrared by healthy green plants.

Broadleaf trees have greater infrared reflectivity than nee-

dle-leaf trees.

Another example is a combination of total brightness,

infrared subtotal brightness, and NDVI in a formulation

that is intended to lend some emphasis to forest comprised

of needle-leaf trees. This ‘conifer’ index is a novel con-

ception in the current work. It is computed as

Total brightness + 0.5 × NDVI × (1–IR)
�
,

with truncation to a maximum value of 1.0.

Quantitative color

Generation of these brightness tables sets the stage for

enabling manifold views of the segmented landscape in-

formation at the PHASE level of organization, but a par-

ticular rendering must be chosen via a module that does

the mixing of colors in a virtual palette for painting a pic-
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ture on a computer display in thematic mode. With the

PSI/PHASE approach, there are many possibilities for de-

veloping renderings that are not conventional. For exam-

ple, shifting the infrared band to green light instead of red

light will usually induce green tones for vegetation with

various effects on other kinds of environmental features.

The cost of color printing prevents illustration here, but

reference can be made to Myers (2003) at the www.envi-

ronment.psu.edu/publictions/2003_6/2003_6_web.pdf

URL.

Restoration and residuals

A relevant question is how well proxy (P3) profiles

represent pixels, and whether some parts of an image are

better represented than others. This is one of the relatively

few questions that must be addressed while the original

dataset is still available. The second part of this question

calls for a map as an answer. Another question that has

not been addressed is how to access the finer detail that

resides in the PSI primary segments as opposed to the

PHASE secondary segments.

Distortion, distance, and relative residuals

Substituting a proxy profile for the original signal pro-

file of a pixel must lead to some distortion in subsequent

representations of that pixel. Since the aggregate effect

over the entire scene is to reduce the variability of signals,

the dominant distortion will be homogenizing or ‘smear-

ing’ by reduction of detail. For any given pair of pixel

positions, however, the differences between their (P3)

proxy profiles as compared to the differences between

their original (P1) pixel profiles could be either increased

or decreased.

A software module is provided that creates a map file

of distortions as Euclidean distance between the actual

signal vector for the pixel and the proxy signal vector that

replaces it. These distortion distances are mapped in

classes, with the classes being adjustable by the user. A

color table is also provided so that a map of class numbers

can be portrayed in the manner of an image. Figure 5 is a

residual image for the September 1991 Landsat MSS sam-

ple image of central Pennsylvania with darker tones indi-

cating larger discrepancies.

The spatial pattern in the residual image is of particu-

lar interest. An ‘ideal’ pattern would be one of uniform

gray appearance, indicating that the errors of approxima-

tion were equal over the image area. The next most favor-

able pattern would be a random appearance indicating that

the errors of approximation constitute ‘white’ noise rela-

tive to environmental features and locations. Typically,

however, there is some nonrandom spatial patterning of

the residuals. Then it becomes necessary to refer to the

image itself to determine what kinds of environmental

features have the least fidelity in their representation. In

the case of Figure 5, the fringe areas of clouds are promi-

nent with regard to residuals. Since clouds are typically

nuisance features in the image anyhow, this is not a matter

of concern. The stronger discrepancies are due to the

spectral and spatial complexity of cloud fringes.

Restricted restoration

The indirect approach of tabular look-ups used with

the byte-size PHASE segmentation does not extend read-

ily to the thousands of primary PSI segments. The most

expedient way of accessing this finer level of detail has

proven to be selective (re)generation of approximations to

the original band values for viewing and analysis in the

conventional manner of remote sensing image processing

technology (Gibson and Power 2000, Richards and Jia

1999).

A software module provides for generating approxi-

mate reproductions of selected bands for specified ranges
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of row and column numbers. This is accomplished by

placing the proxy pattern for the corresponding PSI pri-

mary segment in each pixel. The result is a ‘smoothed’ or

‘filtered’ version of the multiband data having somewhat

less variability than the original, due to removal of the in-

tra-segment variability. This will usually have some

beneficial effect of making the data less ‘noisy’. It is pos-

sible, however, that it will also remove some of the infor-

mation that could help to make subtle distinctions be-

tween different kinds of environmental features

There are several options for stretching of the image

data as it is being restored. The data can be stretched on

the high end, stretched on both ends, or not stretched at

all. None of these stretches, however, involve any satura-

tion. The differences in these modes of stretching will be

dependent on the nature of the particular data. There will

be a pronounced difference in the output for bands that

have a very narrow range of values, but little difference

for bands having a large range.

If conventional remote sensing software is not avail-

able, it is still possible to access the finer level of detail

locally in a multi-scale manner. This is accomplished by

restoring a multiband dataset for the local area of interest,

and then doing a PHASE segmentation on the restored

data with a reduced number of cycles.

Categorical classification

One of the important roles for imaging is as a medium

for mapping. Such mapping is usually done in thematic

mode whereby focus is on designating different portions

of landscapes as belonging to one or another of a mutually

exclusive set of categories or classes with respect to envi-

ronmental features. The PSI/PHASE approach has twice

been used for mapping generalized land cover for the en-

tire state of Pennsylvania. Land cover mapping is integral

to the detection and analysis of landscape change.

It must be acknowledged at the outset that the ideal of

100 percent correct classification is virtually never

achieved. The classification enterprise thus becomes one

of balancing errors of omission and of commission.

Omission error is when an occurrence goes unrecognized.

Commission error is when an occurrence of one kind is

wrongly designated as being of another kind. Accuracy

can also be reported differently from either map user ver-

sus map producer perspectives. The user perspective as-

sesses accuracy as the areal proportion of class occur-

rences shown on a map that are in fact correct. The

producer perspective assesses accuracy as the areal pro-

portion of occurrences for a class on the landscape that are

shown correctly on the map. A map could be 100% ac-

curate for a particular class in the producer sense by cor-

rectly mapping all occurrences of that class, but still be

inaccurate in the user sense by incorrectly mapping other

types as belonging to that class (Congalton and Green

1999).

Computers excel at distinguishing among spectral ex-

pressions when comparing pixels, but human vision still

holds an advantage for detecting differences in spatial pat-

terns involving collections of pixels. The latter advantage

does not extend, however, to objective description of the

differences in spatial pattern that are perceived. There-

fore, it is desirable to form a partnership between human

analyst and computer in which each can contribute in its

area of strength. Since most methods of computer-based

pattern recognition also rely on some initial human desig-

nations to serve as ‘training sets’, it is appropriate to focus

first on the human interpretive aspect.

Interpretive identification

There has been a sort of continuing tension between

two modes of working with image information. The

mode that is usually called photo-interpretation has a

longer tradition of mapping and relies primarily on the ca-

pabilities of trained human vision to recognize environ-

mental features on the basis of image clues such as size,

shape, tone, texture, shadow, pattern, and location/asso-

ciation. The other mode relies less on human visual inter-

pretation and more on ground reference information (or

so-called ground truth) as a point of departure for quanti-

tatively comparative computer vision in which pixel in-

formation is matched to the statistical properties of known

samples.

Human photo-interpretation originally used paper

prints and film transparencies whereby the analyst would

delineate features of interest on clear overlay material

with a fine-line marker. A more technologically sophisti-

cated version uses a computer display of a scanned image

document or a multiband image file instead of the hard-

copy document, and a mouse-controlled cursor instead of

a marker. This kind of interactive feature-delineation re-

quires fairly sophisticated display software like that found

in commercial remote sensing and GIS packages.

Pseudo-color maps of PHASE secondary segments are

advantageous in this regard. There is less computational

overhead of data to be processed as the interactive work

takes place, which makes the procedure more rapid.

Some software systems that lack full image handling ca-

pability can handle the simpler pseudo-color form. Even

if full image handling capability is available, the pseudo-

color form can have prepackaged color so that skill in ren-

dering images is not required of the mapping analyst.
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Pseudo-color maps of PHASE secondary segments

enable another mode of interactive mapping that is not

available with actual multiband image data files. This

also requires sophisticated map-display software such as

ESRI’s ArcView© GIS. This scenario entails overlaying

things in a viewer. A PHASE segment map rendered in

pseudo-color to mimic an image is brought into the viewer

as a base layer. A second copy of the PHASE image-map

is then placed on top of the first, and made entirely trans-

parent so the user sees the base layer. A cursor query fa-

cility is used to determine what PHASE segment number

resides at a location of interest. The legend for the tem-

porarily ‘transparent’ PHASE map in the top layer is then

modified to give this segment a distinctive color that ap-

pears superimposed on the pseudo-color layer below.

The user can thus examine the spatial pattern for that seg-

ment and its relation to other segments. This combination

of information is often sufficient to assign the segment to

one of the legend categories for which mapping is under-

way. The top layer can be turned on and off so that the

developing thematic map can be seen in relation to the

mimicked image in the underlying PHASE base layer.

Identification of clouds is an important step in change de-

tection, and lends itself to this interactive/interpretive ap-

proach.

Algorithmic assignment of pixels

The conventional ‘supervised’ scenario for computer-

assisted mapping from multiband data has a skilled image

analyst acquire so-called ‘ground truth’ information from

maps, documents, and/or field work. Instances of each

mapping category are then located in an image display;

these comprise a ‘training set’ from which statistical char-

acterizations of the signal patterns for the various catego-

ries are identified. These characterizations serve as ‘sig-

natures’ for quantitative pattern matching to assign

category designations to the other pixels in the image.

The rules for assigning pixels to categories can range from

very simple to very sophisticated (James 1985, Tso and

Mather 2001).

At the most simple pole is a set of thresholds or cutoffs

specifying the lowest and highest values to be allowed for

the class in each band. This simple method is often given

the imposing name of parallelepiped, which is basically

just a virtual ‘box’ in the multi-dimensional signal space

where bands serve as axes. Methods for choosing the

thresholds on the bands from training data can range from

heavily statistical to empirically judgmental and can in-

volve statistical measures and theoretical distributions or

visual perusal of histograms.

A step up in sophistication is to compute the Euclid-

ean distance of each candidate pixel from the central

value(s) for the training set(s) of the categories, and assign

the category for which this distance is a minimum. Set-

ting a specific threshold distance for each class gives rise

to virtual ‘bubbles’ instead of boxes. Several variations

on the distance idea are equivalent to rotating and rescal-

ing the spectral axes relative to the original bands so that

the ratio of between-category to within-category variation

is increased before computing distances in the trans-

formed ‘space’. The so-called ‘maximum likelihood’

version typically supposes that the variation within each

category conforms to an idealized multivariate ‘normal’

distribution. Even this maximum likelihood strategy can

be expressed in terms of generalized distances involving

spectral transformations.

Even empiricism is not necessarily simple. Neural

network approaches drawn from the field of artificial in-

telligence are computationally sophisticated but essen-

tially empirical. While it is not the purpose here to under-

take an exhaustive coverage of classification algorithms,

it is important to note that the more sophisticated ways

tend to place greater reliance on larger and presumably

more representative selections of training sets. Also, the

analyst often has only limited capability to override the

automated assignments.

These conventional classification approaches become

available at the PSI primary segment level by generating

‘smoothed’ approximations to the original bands. In so

doing, one should not lose sight of the fact that ‘smooth-

ing’ works to reduce the within-category variation among

pixels since all pixels in any given primary segment will

be identical. Likewise, the entire pixel population of a

primary segment will necessarily be assigned to the same

class. The focus here, however, is on a strategy that is

geared to the level of PHASE secondary segments and

places a premium on having the analyst retain final con-

trol of category assignments while having the computer

make recommendations to guide these assignments.

Comparative classification of scene segments

PHASE secondary segments constitute clusters of PSI

primary segments. The nature of the segmentation proc-

ess allows some clusters to have many primary segments

while others have only a few or even just one primary seg-

ment. Furthermore, the primary segments themselves

typically have widely varying numbers of pixels.

PSI/PHASE tables show the pixel count and the number

of PSI primary segments for each PHASE secondary seg-

ment. In preparing to undertake categorical classification

at the PHASE level, it is advisable to make note of these
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size differences and exercise caution in classifying larger

segments since these will encompass substantial sections

of the image area.

An initial step in categorizing segments is to summa-

rize within-segment complexity of the PHASE segments.

One of the PSI software modules computes tables of sta-

tistics pertaining to variability between and within

PHASE secondary segments. The statistics that are most

relevant for classification are the minimum and the maxi-

mum of the standard deviations of signal (band) compo-

nents for each segment as well as the segment centroids.

Centroids are used instead of segment proxy vectors be-

cause standard deviations measure variability about mean

values. Calculation of these statistics does require access

to the original multiband image data but, once these tables

are computed, the PSI/PHASE formulation becomes

largely self-contained and normal usage no longer de-

pends on possession of the original multiband dataset.

The PHASE classification scenario is supervised inas-

much as the analyst initiates the process by using a viewer

that has an image query capability to determine the ID

numbers of PHASE segments occupying locations for

which the correct thematic category is known from ancil-

lary information such as maps or other ‘ground truth’.

These PHASE segments become prototypes or ‘training

data’ for classifying other PHASE segments into appro-

priate categories.

The PHASE classification system is highly interac-

tive. The user supplies the system with training informa-

tion regarding the current classification status of the

(PHASE) segments. This is indicated schematically in

where a checkmark (4) means that the segment is defi-

nitely a member of the indicated class. The ultimate goal

is to have exactly one checkmark in each row of the table.

Final classification decisions are the prerogative of the

user—the computer can make suggestions but is not per-

mitted to enter checkmarks into the table. A novel feature

of the system is that the user can guide the computer away

from inappropriate suggestions by entering a reject mark

(8) to indicate that a given segment is not of a particular

type.

With the training information as input, the classifica-

tion module attempts to fill in blank cells in the table with

either PROBABLE or POSSIBLE designations; the algo-

rithm for doing this is explained below. A PROBABLE

designation is strongly suggestive of class membership, to

the degree that PROBABLE memberships are used by the

program in searching for additional suggestive designa-

tions. A POSSIBLE designation is tentative to the degree

that POSSIBLE memberships are not used by the program

in searching for additional suggestive designations. The

algorithm is constrained so that at most one of the DEFI-

NITE, PROBABLE or POSSIBLE designations can ap-

pear in a given row. A row can be missing all three of

these designations (row 4 in is an example) if the current

training data are insufficiently informative regarding the

corresponding segment. After viewing and mapping the

suggested memberships, the user can edit the DEFINITE

and REJECT declarations and make another run with al-

teration of parameters if appropriate.

Figure 6 shows the result of applying the process to

classify water surfaces in the September 1991 Landsat

MSS sample image. Some omission error is evident in the

illustrative case of since narrow rivers have not been in-

cluded in the water surfaces category. This is a compro-

mise made in order to avoid commission error that would

give cloud shadows the appearance of water surfaces.
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Details of the PHASE suggestive classification

algorithm

In addition to training information, the user provides

the system with two (nonnegative) numerical parameters,

α and β. Smaller values for these parameters reduce the

program’s willingness to assign PROBABLE and POSSI-

BLE designations, respectively. When the program re-

turns, it provides information on alteration of parameters

that might increase the number of suggested member-

ships.

Decisions regarding PROBABLE and POSSIBLE

designations are made on the basis of (unsquared) Euclid-

ean distance between segment centroids relative to

within-segment standard deviations. For a given segment

s and a given band i, let σ�� be the standard deviation of

the band-i values for data points (pixels) in segment s.

Also, with p as the number of bands, let

Finally, let d(s,t) be the unsquared Euclidean distance be-

tween the centroids of segments s and t.

For a given class c, the program examines all pairs of

segments (s,t) where s is currently unassigned for c and

where t is designated as either DEFINITE or PROBABLE

for c. This means that row s in the table does not currently

contain any of the DEFINITE or PROBABLE or POSSI-

BLE designations, cell (s,c) is empty, and cell (t,c) has

either a DEFINITE or PROBABLE designation. Among

such pairs, the one with the smallest between-centroid dis-

tance d(s,t) is selected. This determines a triple (c,s,t).

There is one such triple for each class c and they are ex-

amined in order of increasing d(s,t) values. If

,

the program proceeds to the next triple. Otherwise, cell

(s,c) in the table receives a PROBABLE designation and

the set of triples is recomputed. This continues until no

more PROBABLE designations can be made. The pro-

gram then makes POSSIBLE designations in the same

manner except that parameter β replaces parameter α in

the above decision rule.

The algorithm has a multiple-linkage variation in

which the decision rule for PROBABLE designations

uses maximum standard deviations instead of minimum

and the candidate segment s must be within threshold dis-

tance of at least two current class members.

Mixed mapping methods

Many multiband mapping methods draw definite dis-

tinctions between ‘supervised’ and ‘unsupervised’ ap-

proaches (Gonzalez and Woods 1992, Pratt 1991). The

basics of the supervised scenario have been set forth in the

foregoing discussion whereby ‘training sets’ selected on

the basis of ‘ground truth’ serve to determine ‘signatures’

against which pixel patterns are matched by computa-

tional comparison. The unsupervised scenario delays the

appeal to ground truth until the later stages of the mapping

process. In fact, it is not even necessary to have particular

categories in mind at the beginning. Instead, a computa-

tional similarity (or dissimilarity) analysis is performed as

a so-called ‘clustering’ operation that segregates the pix-

els into several groups with the members of any given

group having substantial similarity of signal patterns. A

sample of each cluster group is then investigated via an-

cillary information to determine its composition, and ap-

propriate labels are thereby attached. Thus, the supervised

approach starts with a predetermined legend and some

specific knowledge of samples, whereas the unsupervised

approach acquires specific information as needed and de-

velops the legend in the course of the investigation.
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The PSI/PHASE approach incorporates aspects of

both the unsupervised and the supervised paradigms. The

pattern-based segmentation with dual levels of detail has

the nature of both divisive and agglomerative clustering

concepts in statistics. However, the numbers of segments

are far more numerous at both levels of detail than is typi-

cal of clustering for unsupervised analysis. The coarser

level of segmentation with PHASE clusters is akin to what

is sometimes called ‘hyperclustering’ in the context of im-

age analysis, but finer level aggregations of PSI primary

segments are much more numerous than hyperclustering

would entail. Furthermore, hyperclustering groups pixels

whereas PHASEs are clusters of segments. The multi-

plicity of segments invites application of supervised ideas

at these levels, with the proviso that distributional as-

sumptions would need to be modified in order to become

formally statistical.

Detecting differences in serial scenes

The foregoing facilities of the PSI/PHASE approach

support the primary purpose of detecting differences in

successive scenes. Classification capability is needed for

designating clouds in order to suppress their appearance

of change. More sophisticated classification strategies

can help to reduce the influence of agricultural land on

apparent change. One such strategy is to conduct a nar-

rowly conceived classification of agricultural land in a re-

cent image, and then conduct a broadly conceived classi-

fication of forests and related naturalistic cover in an

earlier image. It is important not to mask changes in areas

that may have been disturbed from a naturalistic condition

during the interval between the images. Therefore, the re-

cent agricultural mapping becomes a preliminary mask

for refinement by dropping any of the agricultural area

that may have been of a naturalistic character at the time

of the earlier image. Change indications are then sup-

pressed in the remainder of the agricultural area by using

it as a mask.

Multiple mappings

A seemingly straightforward solution to detecting dif-

ferences would be consecutive compilation of categorical

maps for conducting computerized comparison. This ap-

proach avoids potential phenological problems with shift-

ing spectral signatures, since the classification of a cate-

gory is conducted with a separate set of spectral signatures

or segments in each scene. It also accommodates interim

improvements in sensor systems and differing spectral

signal segregation in band breakpoints. Consistent cate-

gories and mapping methods are essential, however, in or-

der to avoid confounding comparative computations of

change.

Consistency of categorical coding in consecutive

compilations is problematic in practice because people

and particulars of purpose and procedures progress over

time. A different perspective produces differences in

definitions of categories or even different types of catego-

ries that serve to confuse comparisons over time. Al-

though there have been efforts to standardize land cover

categories (Anderson et al. 1976), these have not led to the

level of consensus needed for long-term monitoring. A

further complication with comparative analysis of change

in cover mappings is that classification errors from the in-

dividual maps combine as apparent change that com-

pounds error in the result (Lunetta and Elvidge 1998).

Therefore, the seemingly straightforward comparison of

companion mappings has somewhat limited utility suited

to situations where the mappings are done identically and

mapping errors are minimal.

Compositing companion images

The general alternatives to comparing cover maps are

to compare or composite spectral characteristics of com-

panion images acquired at different times (Mas 1999, Ro-

gan, Franklin and Roberts 2003, Singh 1989). The com-

positing approach is fundamentally different from the

comparison approach. A temporal composite intermixes

information on stability of land cover with information on

changes, whereas temporal comparison segregates infor-

mation on change from information on stability of cover

types.

A temporal composite of two or more dates is ob-

tained by ‘stacking’ image datasets from different times

together so that each pixel has all of the bands from the

different dates as elements of a single (extended) signal

vector having higher dimensionality as if the images were

all acquired by a single sensor. For pixel locations where

the cover has not changed between dates, the bands

should combine as an extended signature. However, each

categorical change combination should express in a par-

ticular manner that differs from each of the static catego-

ries. Since it becomes very problematic to obtain training

sets for all possible combinations of cover changes for

purposes of supervised analysis, an unsupervised ap-

proach becomes more practical. The multiplicity of com-

bined bands also complicates both data management and

analysis. This provides incentive for data reduction with-

out sacrificing major elements of pattern information.

PSI/PHASE pattern-based segmentation can serve a

purpose similar to principal components in analysis of
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temporal composites. The stacked bands are subjected to

segmentation in the usual manner of a multiband image.

Changes will tend to be isolated in certain of the PHASE

secondary segmentation patterns, but not necessarily as

especially light ones or especially dark ones. Therefore,

the initial graytone image formulation will tend not to be

very revealing relative to changes, and it becomes neces-

sary to work with various color renderings in order to

make the changes evident. Figure 7 shows a PSI/PHASE

conversion of the composited 1972 and 1991 Landsat

MSS subscenes of central Pennsylvania. Careful perusal

will show tonal distinctions that are drawn from both of

the individual scenes, but these distinctions have subtle

graytones instead of highlights. An exception to the sub-

tlety is the appearance of cloud effects from both scenes

in the upper left corner. Color is required in order to bring

out the other change aspects that have been captured.

Direct difference detection

Although colorized multi-date composites can pro-

vide additional landscape details, they have the disadvan-

tage of not definitely distinguishing change from stability.

This ambiguity makes it necessary to investigate each

color signature empirically to determine whether it is in-

dicative of change. Lack of definite records on changes

in the localities under investigation can make determina-

tion of change signatures difficult. Direct spectrally com-

parative indicators of change are thus of interest for use

either with multi-date composites or separately (Howarth

and Wickware 1981).

If images having the same set of spectral bands are

available on successive dates, then an obvious possibility

is to look at differences between the respective pairs of

bands (Bruzzone and Prieto 2000). Particular kinds of

differences will be most evident in certain bands, so that

it may not be sufficient to examine the difference between

just one band pairing. Therefore, it becomes desirable to

incorporate differences for multiple band pairs into a sin-

gle indicator of change. Euclidean distance between pixel

patterns on different dates is a natural extension of differ-

encing from one band to several bands. This follows from

the fact that difference and Euclidean distance are numeri-

cally identical when there is only one band. In remote

sensing jargon, the Euclidean distance between pixel pat-

terns on two dates has usually been called ‘length of

change vector’ as the basic indicator in change vector

analysis (Chen et al. 2003, Johnson and Kasischke 1998,

Lambin and Strahler 1994a, 1994b, Michalek et al. 1993).

Considering their very localized nature and the possi-

bility of mixed-pixel effects, there is generally not much

interest at the landscape level in single-pixel changes.

With regard to changes of a patchy nature, subtle vari-

ations among pixels in a patch constitute noise in what

should be interpreted as a patch of change. Therefore, ho-

mogenizing of patches can serve to give a more crisp ap-

pearance to change indicator images. This is exactly the

smoothing effect that is introduced by PSI/PHASE seg-

mentation. Thus, the PSI/PHASE version of change vec-

tor length is to calculate the Euclidean distance between

the proxy profiles at the PHASE secondary level of seg-

mentation for different dates of imagery. Atmospheric

anomalies such as clouds and their shadows are sources of

false change (Hall et al. 1991, Song et al. 2001). There-

fore, provision is made for designating lists of PHASE

segments that are not to be considered as being change.

The classification methods considered previously can be

used to determine which PHASE segments should be ig-

nored in this fashion.

Figure 8 is an image of PHASE change vectors for the

Pennsylvania Landsat MSS sample scenes with darker

tones indicating stronger change. It can be seen from that

a major feature of change is the large sinuous Raystown

Lake reservoir in the lower portion of the area. Construc-

tion for this impoundment was underway at the time of the

Figure 7. 3���
��� ������� �� ��+4�/$�0 �����
���

��� �����	������� �����
�� �� ����
�� ��� 
��
��


���� ��,� ��� ���� �� ������ ���
�������&

�,- ���
 � ��&



1972 image, and the area was under water in 1991. The

concentrations of agricultural fields in the valleys also ap-

pear as areas of change in signal pattern.

Spatial pattern matching

The conventional change vector and the foregoing

PHASE equivalent are both constrained to usage when the

same signals have been obtained on all occasions of data

acquisition. Neither multiple mappings nor temporal

composites are constrained in this manner, which appears

to give them a broader scope of application. The

PSI/PHASE segmentation process, however, entails a du-

ality of spectral and spatial information that can be ex-

ploited to lift the constraint in an innovative manner. The

essence of the innovation lies in analysis of shifts in (P5)

segment structure over time. The key to the method is in-

ter-date matching for segment counterparts. This coun-

terpart approach focuses on consistency and inconsis-

tency of spatial organization for image segments between

dates, thus avoiding the presumption that sensing has been

conducted in like manner.

One of the segment maps for a pair of dates is chosen

as the base of comparison. For purposes of explication,

let this be from date A. The other (linkage) segment map

is then from date B. The matching is to be done at the

level of PHASE secondary segments. Each (P5) PHASE

segment in A occupies a particular set of pixel positions.

These same positions in B are scanned to determine which

of the B segments occurs most frequently there. This mo-

dal segment (in B) becomes a B-counterpart for the par-

ticular segment of A, as indicated in Figure 9. Every pixel

in B thus has two signal profiles associated with it. One

of these is the proxy profile for the date B segment to

which it belongs. The other profile comes from looking

in date A to see what segment occupies that position, and

then taking its counterpart proxy profile in B. Euclidean

distance between the two profiles is then computed as a
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change vector length. Note that both of these profiles are

from date B signal information. Since it is the spatial or-

ganization of segmentation that drives the matching, sig-

nal information from date A plays only an indirect role. If

the spatial organization of segments is the same for both

dates, then the two signal profiles will be the same. If the

spatial organization of segments is consistent but not iden-

tical, then the two signal profiles will differ relatively lit-

tle. Consistency may mean that some areas of coarser and

finer subdivision have been exchanged between dates. If

a pixel was associated with different regions having con-

trasting signal characteristics, however, then the two pat-

terns will also differ considerably. In effect, a pixel is

judged as being consistent or not by the company that it

keeps in its segments on the two dates.

Figure 10 shows change vector mapping from this in-

direct counterpart strategy for comparison with Figure 8

that was produced by the direct strategy. For this pur-

pose, the earlier image was designated as the base and the

later one as the linkage. With this methodology, it is pos-

sible to do either forward comparisons in time or back-

ward comparisons in time. A backward comparison

would involve the later image as base and the earlier as

linkage. Forward and backward comparisons will not

necessarily yield exactly the same results.

Distinguishing kinds of change by combining indicators

Length of change vector is readily interpreted as an

image, but does not discriminate between differences in

spectral direction of change. Information on directions of

change is embodied in a multi-layer dataset of scaled band

differences. One possible scaling in this regard is that of

direction cosines for the change vector, which simply

amounts to dividing each band component by the length

of the change vector (Chen et al. 2003). From an image

display perspective, however, a more convenient scaling

is one that centers and stretches the differences for each

band to fit a byte range of 0 to 255 as shown in Figure 11

for the band 3 difference component. The real question is

how to handle these or other multiple layers of informa-

tion in combination so that distinctions in types of changes

can be made and seen as images. The PSI/PHASE seg-
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mentation approach also provides an answer to this ques-

tion. PSI/PHASE segmentation can be conducted on

multi-layered change indicator data in like manner as for

original multiband data. For band difference data this will

combine information on direction of changes into a single

image-map. A graytone map of segmented band differ-

ences for the Landsat MSS snippets is shown in Figure 12.

However, a graytone display is not nearly as revealing as

color in these circumstances. An interesting choice of

colors is to treat length of change vector as red, the total

of infrared band changes as green, and the total of visible

band changes as blue (Myers 2003).

In working with a segmentation of multiple change in-

dicators it is also prudent to obtain the residual map as de-

scribed earlier in order to determine whether there are lo-

cations of strong change that have been dampened in the

approximation. Figure 13 shows the residuals corre-

sponding to Figure 12. In this case the larger (darker) re-

siduals are associated primarily with clouds and with the

Raystown Lake reservoir, both of which are strongly ex-

pressed in the segmentation itself.

Tracking three or more times

With conventional approaches to change detection

there is considerable difficulty in tracking across three or

more dates for purposes of determining persistence of

changes in extended landscape monitoring. Another ad-

vantage of the PSI/PHASE approach is that the concept of

segmenting multiple indicators extends quite naturally to

analysis of change for three or more dates. The simplest

version of this is working with a stack of change vector

images for successive date pairs or successive change

vectors from a base date. Color renditions of PHASE sec-

ondary segments will show different patterns of temporal

persistence in different colors. Myers (2003) demon-

strates this for the area of a large forest fire in northeastern

China in terms of comparisons with a base date (see

www.environment.psu.edu/publications/2003_6/2003

_6_web.pdf ).

In summary, the PSI/PHASE dual segmentation of

images provides multiple benefits of data reduction, com-

patibility with GIS systems, data smoothing, analytical

pattern matching, landscape pattern extraction and greater

freedom in distribution of spatial information. It is espe-

cially versatile with respect to applications in monitoring

landscape change.
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