
1. Introduction

One of the best known examples of optimal foraging

theory is the collection of nectar by bees (Krebs and

Davies 1993, Heinrich 1979). With respect to nectar pro-

duction, there are only two basic types of plants. One type

secretes a certain mass of nectar in a well-defined period

of the day, while the second one produces nectar continu-

ously (Heinrich 1979). In this paper, we will deal only

with plant species that have continuous nectar production.

Let us suppose that flowers of several plant species con-

tain nectar, and different bee species may collect nectar

from the flowers that are in bloom. Different bee species

will have different nectar collecting abilities which de-

pend on their own morphological properties and on those

of the flowers. Optimal foraging theory states that each

bee species uses nectar collection strategies that guarantee

the highest possible benefits, i.e., highest fitness. How-

ever, in the situation under consideration, the nectar mass

collected by each species does not only depend on its own

collecting strategy but also on the other species’ strate-

gies, if the nectar mass is decreased by collection. This is

then a typical game-theoretical conflict where the pay-off

of each individual does not only depend on his own strat-

egy choice but also on the behaviour of other individuals.

Although the usual biological interpretations of game

theoretical conflicts are based on pair-wise interactions, in

foraging theory we suppose that the competition is indi-

rect; namely, we ignore pair-wise conflicts between bees,

since this kind of interaction is rare. In our case, the indi-

vidual is thought of as interacting with the average strate-

gies of the species. In evolutionary game theory, this situ-

ation is known as “playing the field” (Maynard Smith

1982).

In the pollinator interactions, there are four different

time scales during which the system changes. We order

these from fastest to slowest. The first one is the time scale

of foraging by bees, optimising their fitness during the

time period of the order of a day, that is, in a period much

shorter than the reproduction period of bees. In this time

scale, only the foraging strategies may change, while the

density of plants and that of bees remain fixed. The second

time scale is the reproduction scale of bees. These two

time scales are both fast in comparison with the third one,

the time scale of reproduction of plants. This is the eco-

��������� �����	� ����� ���	���
 ����
�������������	�� 
 ������� ����� �������

Optimal behaviour of honey bees based on imitation
at fixed densities

J. Garay
1
, R. Cressman

2
and Z. Varga

3

�
Corresponding author. L. Eötvös University, Ecological Modelling Research Group of the Hungarian

Academy of Sciences and Department of Plant Taxonomy and Ecology, Pázmány Péter sétány 1/C, H-1117

Budapest, Hungary

E-mail: garayj@ludens.elte.hu.
�

Department of Mathematics Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada

E-mail: rcressma@wlu.ca.
�

Institute of Mathematics and Informatics, Szent István University, Páter K. u. 1. H-2103 Gödöllõ, Hungary

E-mail: zvarga@mszi.gau.hu

��������� ���� �����	
 ������ �������
 ��������� �	�����
 ���������� ���
 ���������� �����

�	�
���
 ��� ����� ����� ��� ��� ��� ������ ��������� ������ ���� ��� ����� ������� �� � ������� ���� ��� ������ ����� � �������
��� ��� � ������� �	 ��� ������ ���������
 ���� ��!����"� ��	���� ������� ������	 �� �� ��� ������� �������	 #���
 �� ���
��������	 �� � !�� �� � ����� ������$ ��� �� ��� �!����� ��������� �� ���� ������� %�� ��� ������������ ���� ���� �����
 � �
����� ���� �!��������	 ������	 �� � ������	 � �� �&������ ������� �������	 ��� � ���	 ��������� �	 ��� �������	 ����������
�� ������ ���������� ��� ������ ���������� ������ �������������� ������������� �� ��� �!��!�� ������
 ��������� �	 ��� ���������
�!��������	 ���������� ��� �!���������	 ������ ������� �������	 � ������	 ��	���������	 ������ ��� ������� �� ��� ������������
��������� �	������



logical time scale in which the evolutionary parameters of

the system still remain constant, but the respective densi-

ties of the bees and of the plants may change. The fourth

time scale is the co-evolutionary scale where the parame-

ters of pollination (e.g., the average number of flowers of

a plant, the mass of nectar produced, and the morphology

of flowers and bees) may change.

The main aim of this paper is to build up a game-theo-

retical model for the multi-species foraging problem in

which there are two species of bees that visit two plant

species for nectar. We will study only the fastest time

scale, when only the foraging strategies of bees change.

We will show that, in game-theoretic terms, the optimal

foraging strategies provide a two-species ESS. We also

take into account that during the day the foraging strate-

gies may change according to the actual nectar stock. This

change will be modelled in terms of a dynamic system.

Specifically, we apply the replicator dynamics (see e.g.,

Hofbauer and Sigmund 1998) to describe this time vari-

ation in foraging strategies. In our approach, the “replica-

tion” is actually motivated through imitation of the best

foraging strategy (see Weibull 1995 and Section 3 below)

given the current species average strategies rather than

through a reproduction process. The model presented here

does not consider spatial processes.

2. A game model for nectar collecting

with continuous nectar production

2.1. Linear model

Let us consider honey and bumble bees collecting

nectar from two plant populations that are in bloom. For

plant species 1 and 2, respectively, let us denote by n� and

n� the nectar mass continuously produced in a unit of time

by a flower; by m� and m� the number of flowers; and fi-

nally, by N� and N� the number of plants of species 1 and

2, respectively. Thus, plant species 1 and 2 secrete nectar

mass N�n�m� and N�n�m�, respectively in one time unit.

Nectar collection and pollination is a co-evolutionar-

ily determined process. For instance, the morphology of

flowers and bees together determine not only the mass of

the collected nectar but also the pollination of plants (see

e.g., Peleg et al. 1992). On the morphology of plants and

bees also depends the cost of extracting nectar. Let us de-

note by c�� and c�� the cost per unit of time for honey bees

to collect nectar from flowers of species1 and 2, and simi-

larly by c�� and c�� the corresponding costs for bumble

bees. In reality, these costs also depend on the location of

the plants and of the colony of bees, on the densities of

plants and bees, on the morphological properties of flow-

ers and bees, and so on. These dependences are not taken

into account. From our study, it will turn out that the only

role costs play is in the existence of a totally mixed equi-

librium (i.e., when both species of bees visit both plant

species), but they have no effect on the dynamical and sta-

bility properties of the nectar foraging strategies. More-

over, the morphology of plants and bees also determines

the success of nectar collection. Let h�� and h�� be the ef-

ficiency of nectar collection by a honey bee, from the

stock of plant species 1 and 2, respectively, and define h��

and h�� similarly for bumble bees. Moreover, let a�� and

a�� be the rate of successful pollination resulting from a

honey bee and bumble bee, respectively visiting a plant of

species 1, and define a�� and a�� similarly for a plant of

species 2.

In reality, a bee can exhaust the nectar stock of the vis-

ited flowers. The flower needs a time to fill up its nectar

stock. Moreover, a bee, in general, does not go to all flow-

ers of a visited plant. Usually, if a bee finds nectar in the

first or second visited flower then it goes on, visiting fur-

ther (usually not all) flowers of the same plant (Pyke

1979). For simplicity, we do not build all these factors into

the model, and also neglect spatial positions of plants, etc.

Finally, denote by M� and M� the number of honey

and bumble bees, respectively. The strategy of the bees is

the proportion of time they spend visiting the different

plant species during a day. Denote by p� and p� the prob-

ability of a visit by honey bees to a plant of species 1 and

2, respectively, and put p = (p�,p�). Similarly, define q�,

q� and q = (q�,q�) for the bumble bees. We assume that all

bees visit plants (i.e., p� + p� = 1 = q� + q�).

First, let us calculate the pay-offs to bees. Fix the den-

sities of plants and bees. Suppose that the individual

plants in each species are identical, implying that the nec-

tar in each flower in a given plant species has the same

mass. Moreover, the bees reduce the mass of nectar in the

flowers. Using the above notation, the nectar stock of

plants 1 and 2, respectively is

S�(p,q,N,M) = N�n�m�(1-M�p�h��-M�q�h��),

S�(p,q,N,M) = N�n�m�(1-M�p�h��-M�q�h��).

Since the nectar collecting strategies of the bees depend

on the actual nectar stocks, as a result, the nectar stocks

also depend on each other. Of course, both stocks must be

non negative. We can guarantee this by assuming there are

enough plants in both species (e.g., if both bee species

visit only one plant species, assume they cannot exhaust

the nectar stock which then always remains positive). Ob-

serve that the nectar stock depends linearly on the densi-

ties and on the strategy choice of bees.
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Now let us calculate in this situation the nectar pay-off

to an individual honey bee using strategy p, while the av-

erage strategy of honey bees is p and that of bumble bees

is q. Under the assumption that the populations are large

enough, the expected pay-off to this individual is

H�(p,q,N,M) =

p�h��S�(p,q,N,M) + p�h��S�(p,q,N,M) – c��p� – c��p� =

p�h��N�n�m�(1 – M�p�h�� – M�q�h��) +

p�h��N�n�m�(1– M�p�h�� – M�q�h��) – c��p� – c��p� .

Likewise, the nectar pay-off to an individual bumble bee

using strategy q is

H�(p,q,N,M) =

q�h��S�(p,q,N,M) + q�h��S�(p,q,N,M) – c��q� – c��q� =

q�h��N�n�m�(1 – M�p�h�� – M�q�h��) +

q�h��N�n�m�(1– M�p�h�� – M�q�h��) – c��q� – c��q� .

Remark 1. Let us observe that h�� could also be regarded

as strategies, but in this paper we suppose that h�� are fixed.

That is, they cannot be changed either by bees, or the

plants. This is a reasonable assumption if we do not con-

sider the effect of long-term co-evolution, only the short-

term ecological optimisation is studied.

Remark 2. In spite of the fact that we do not consider the

change in plant densities in this paper, our model also

gives the pay-offs to plants due to interactions with bees.

Specifically, let k� and k� be the costs of nectar production

for a plant of species 1 and 2, respectively. Then the cor-

responding pay-offs are

Φ�(p,q,N,M) = a��M�p� + a��M�q� – k�N�n�m�,

Φ�(p,q,N,M) = a��M�p� + a��M�q� – k�N�n�m��

Of course, to model changes to plant densities, we also

need other fitness factors of a plant that do not depend on

the pollination process (e.g., density dependent competi-

tion between plants).

2.2. Foraging game

In this section, we introduce a game that describes the

above conflicts between bees. For this purpose, we intro-

duced the following pay-off matrices:

If the honey bees use average strategy p and bumble bees

use q, the average pay-off of an individual honey bee is

given in matrix form by

V(p,q,N,M)=pA(N,M)p+pB(N,M)q

Similarly,

W(p,q,N,M)=qC(N,M)p+qB(N,M)q

is the average pay-off to a bumble bee.

It is well-known, and also intuitively clear, that in the

totally mixed equilibrium, the pay-offs of bees coming

from different plant species must be equal, but the pay-

offs for different bee species can be different. Indeed, if

for a particular bee one of the plant species gives more

nectar mass than the other one, this bee will increase its

own frequency of visiting the better performing species.

Thus, the totally mixed equilibrium satisfies the following

equations.

h��N�n�m�(1-M�p�h��-M�q�h��)-c��=

h��N�n�m�(1-M�p�h��-M�q�h��)-c�� ,

h��N�n�m�(1-M�p�h��-M�q�h��)-c��=

h��N�n�m�(1-M�p�h��-M�q�h��)-c�� ,

p�+p�=1 , and

q�+q�=1 .

In the following, we will suppose that the parameters and

the densities are such that there exists a unique totally

mixed equilibrium. The biological conditions behind this

assumption are that the nectar mass must be greater than

the cost of nectar collection, and the number of bees is

much less than the number of the flowers.

Notice that, using these four equations that need to be

satisfied for a totally mixed equilibrium point, only the

pay-offs guaranteed by different plants are equal for each

bee species, but the nectar stock may be different in dif-

ferent plant species. To see this more clearly, the first two

equations can be rewritten as follows.

h��S�(p*,q*,N,M)-c��=h��S�(p*,q*N,M)-c��,

C N,Mb g:=
−

−
F
HG

I
KJ

N n m M h h

N n m M h h

1 1 1 1 11 21

2 2 2 1 12 22

0

0

D N,Mb g c h
c h

:=
− − −

− − −

F
HG

I
KJ

N n m h M h c N n m h c

N n m h c N n m h M h c

1 1 1 21 2 21 12 1 1 1 21 12

2 2 2 22 22 2 2 2 22 2 22 22

1

1

A N,M( ):
( )

( )
=

− − −
− − −

F
HG

I
KJ

N n m h M h c N n m h c

N n m h c N n m h M h c

1 1 1 11 1 11 11 1 1 1 11 11

2 2 2 12 12 2 2 2 12 1 12 12

1

1

B N,M( ):=
−

−
F
HG

I
KJ

N n m M h h

N n m M h h

1 1 1 2 11 21

2 2 2 2 12 22

0

0
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h��S�(p*,q*,N,M)-c��=h��S�(p*,q*N,M)-c�� .

Observe that there is no reason to expect that the nectar

stocks of the plant species are equal at equilibrium.

2.3 Evolutionary stability of the equilibrium

In evolutionary game theory, stability of the equilib-

rium is a central notion. From the ecological point of

view, it is also an important problem as to whether the

equilibrium is stable or not. The main question to answer

is what can happen if a small part of the population

changes from the equilibrium strategy. One possibility is

that the changers get higher pay-offs implying that the

equilibrium will not be maintained. Another one is that the

changers have less fitness and the equilibrium is re-estab-

lished. In the latter case, there is an evolutionary stable

equilibrium. It is not so clear what happens if changers in

one bee species get a higher pay-off and those in the other

a lower. To answer this question, we will say an equilib-

rium is evolutionarily stable if it satisfies the two-species

ESS concept of Cressman (1996).

As mentioned in the Introduction, we only consider

the short-time scale problem in which the densities do not

change, only the strategies of the bees as they maximise

their own fitness. That is, we fix all parameters, except the

strategies of bees. We will say a totally mixed (p*,q*) is

a two-species ESS (see Cressman, 1996) if at least one of

the following two inequalities holds

p*A(N,M)p*+p*B(N,M)p*>pA(N,M)p*+pB(N,M)p*,

or

q*C(N,M)p*+q*D(N,M)q*>qC(N,M)p*+qD(N,M)q*.

for all other (p,q). The intuitive meaning of this definition

is that the changer will be worse off than the resident in at

least one species.

Based on Appendix A1, an easy calculation shows

that, if there exists a totally mixed equilibrium and h��h��

≠ h��h��, this equilibrium is automatically evolutionarily

stable. We discuss the biological relevance of this in-

equality in the final section. First, the following section

shows that this equilibrium is stable from dynamic point

of view, as well.

3. Optimal nectar collecting dynamics based on

imitation at fixed densities

The foraging strategies of bees is not constant, it

changes depending on the actual nectar sources. It is well-

known that honey bees give information to each other by

“dancing” (Von Frisch 1967). This appears to be a form

of information exchange that encourages others to imitate

the foraging behaviour of the dancer. The intensity and the

length of dance of honey bees are proportional to the nec-

tar stock. If we suppose that this dependence is linear, the

imitation dynamic for the average strategy of a colony of

honey bees and bumble bees, respectively, can be mod-

elled by the well-known replicator dynamics

(1)

where V� and W� are the average pay-offs to honey bee and

bumble bee individuals, respectively, using the i-th pure

strategy. Observe that, according to this dynamics, the fre-

quency of the i-th pure strategy (collecting nectar only

from one plant species) will increase, if it gives higher

pay-off than the average.

With all densities fixed in our case, the dynamics (1)

has the following concrete form

(2)

where e� denotes the i-th canonical basic vector. Obvi-

ously, the totally mixed equilibrium of the game is also a

rest point of the dynamics (2). Using the linearization

method (see Appendix A2), this unique interior equilib-

rium is locally asymptotically stable if h��h�� ≠ h��h���

Since this condition is exactly the same as that of the two-

species ESS, we conclude optimal foraging behaviour is

equivalent to an evolutionarily stable strategy.

4. Conclusion

In general, if more than one species compete for more

than one resource, their foraging strategies have effects on

each other if the resource can be exhausted. This kind of

conflict can be modelled in game theoretical terms. In this

paper, we introduced a game model for the nectar collec-

tion/pollination problem. We consider the simplest case,

when the pay-offs of bees linearly depend on the average

strategies of bees. In this case, the well-known matrix

game model can be used. Under this linearity assumption,

we proved that if a unique totally mixed equilibrium strat-

egy exists, then it is evolutionarily stable if there are mor-

p p V V

q q W W

i i i

i i i

•

•
= −

= −

p,q,N,M p,q,N,M

p,q,N,M p,q,N,M

b g b g
b g b g

p p

p p

q q

q q

•

•

•

•

= − −

= − −

= − −

= − −

1 1 1

2 2 2

1 1 1

2 2 2

e p A N,M p B N,M q

e p A N,M p B N,M q

e q C N,M p D N,M q

e q C N,M p D N,M q

c h b g b g

c h b g b g

c h b g b g

c h b g b g
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phological differences between the different species of

bees and/or plants. Such morphological differences imply

that the nectar collecting efficiency is different for honey

bees as compared to bumble bees and so h��h�� ≠ h��h���

We emphasize that the stability of the short-time foraging

equilibrium depends only on morphological charac-

teristics determined by the long-term co-evolutionary

process.

Moreover, we also show that the same condition also

guarantees that the totally mixed equilibrium strategy-pair

is locally asymptotically stable for the imitation based

replicator dynamics. The mixed equilibrium strategies, in

principle, can be realized in two ways. One is that indi-

viduals play the corresponding mixed strategies. More

often, however, mixed strategies are realized as distribu-

tions of pure strategies used at the same time by individu-

als of the population (Heinrich 1979).
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Appendix

A1. For the convenience of the reader, we give an equivalent reformulation of a totally mixed two-species ESS (Cress-

man 1992). (p*,q*) is a two-species ESS if for all other (p,q) the following five conditions are satisfied:

(i) p*A(N,M)p*+p*B(N,M)q* ≥ pA(N,M)p*+pB(N,M)q*

(ii) q*C(N,M)p*+q*D(N,m)q* ≥ qC(N,M)p*+qC(N,M)q*

(iii) (p-p*)A(N,M)(p-p*) < 0

(iv) (q-q*)D(N,M)(q-q*) < 0

(v) Either ((p-p*)B(N,M) (q-q*) < 0 and (q-q*)C(N,M) (p-p*) < 0

or

[( p-p*)A(N,M)(p-p*) ] [( q-q*)D(N,M) (q-q*)] > [ (p-p*)B(N,M)(q-q*) ] [ ( q-q*)D(N,M) (q-q*)]

A2. Since p� = 1 - p� and q� = 1 - q�, the dynamics (2) becomes the two-dimensional system

p p
p

p

p

p

q

q

q q
p

p

p

p

q

q

T T

T T

1 1
1

1

1

1

1

1

1 1
1

1

1

1
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1
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1
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•
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−
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−
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−
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b g b g

b g b g
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This takes the following concrete form

.

There are several equilibria where p� = 0 or p� = 1, q� = 0 or q� = 1, but we are only interested in a totally mixed

equilibrium (p*,q*). This can be found by setting the two expressions in the square brackets above to zero and solving

the resultant linear equations for p� and q�. We assume there is a unique solution with 0<p�<1 and 0<q�<1.When this

solution is substituted into the Jacobian at (p*,q*), we find

The real parts of both eigenvalues of this Jacobian are negative if

trJ(p*,q*) < 0 and Det J (p*q*) > 0.

Obviously, the trace of Jacobian is always negative. Moreover, an easy calculation shows that

Det J(p*,q*) = M�N�n�m�M�N�n�m� (h��h�� – h��h��)
�

> 0.

Under the natural assumption that densities M�, N�, n�, m�, M� , N� , n� , m� are positive, the required inequalities for

asymptotic stability are always satisfied if h��h�� ≠ h��h��.

p p p h h M N n m h M N n m h N n m c h N n m c

M h N n m h N n m p M h h N n m h h N n m q

•
= − + + − − +

− + − +
1 1 1 12 22 2 2 2 2 12

2
1 2 2 2 11 1 1 1 11 12 2 2 2 12

1 11
2

1 1 1 12
2

2 2 2 1 2 11 21 1 1 1 12 22 2 2 2 1

1c h
e j c h

q q q h h M N n m h M N n m h N n m c h N n m c

M h h N n m h h N n m p M h N n m h N n m q

•
= − + + − − +

− + − +
1 1 1 12 22 1 2 2 2 22

2
2 2 2 2 21 1 1 1 21 22 2 2 2 22

1 11 21 1 1 1 12 22 2 2 2 1 2 21
2

1 1 1 22
2

2 2 2 1

1c h
e j e j

J p ,q
∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
=

− + − − + −

− + − − + −

F

H
G
G

I

K
J
Je j

e je j e je j

e je j e je j

M h N n m h N n m p p M h h N n m h h N n m p p

M h h N n m h h N n m q q M h N n m h N n m q q

1 11
2

1 1 1 12
2

2 2 2 1 1 2 11 21 1 1 1 12 22 2 2 2 1 1

1 11 21 1 1 1 12 22 2 2 2 1 1 2 21
2

1 1 1 22
2

2 2 2 1 1

1 1

1 1
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