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The Nucleolus of Directed Acyclic Graph Games

Balázs Sziklai∗† Tamás Solymosi ‡ Tamás Fleiner†

July 18, 2013

Abstract

In this paper we consider a natural generalization of standard tree games where

the underlying structure is a directed acyclic graph. We analyze the properties of

the game and illustrate its relation with other graph based cost games. We show

that although the game is not convex its core is always non-empty. Furthermore we

provide a painting algorithm for large families of directed acyclic graph games that

�nds the nucleolus in polynomial time.

Keywords: Cooperative game theory, Directed acyclic graphs, Nucleolus

JEL-codes: C71

1 Introduction

Standard tree games are one of the most well-studied class of cost allocation games. In

its most basic form, we have a tree, where nodes represents players and there is a cost

function de�ned on the edges. There is a special node the so called root of the tree.

This node can be interpreted as the service provider. The aim of every player is to get

connected to the root. The question is how to allocate the costs that arise from the

construction of the edges. A more general problem is when the underlying structure is

considered to be a directed acyclic graph. In such a network, players can have multiple

routes to the root. Naturally, not all edges will be constructed in the end, but players

that have more than one possible way to reach the root have more bargaining power when

it comes down to sharing the cost.

∗The author thanks the funding of the Hungarian Academy of Sciences under its Momentum Pro-

gramme (LD-004/2010).
†Research was funded by OTKA grant K108383.
‡Research was funded by OTKA grant K101224.
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Consider for example a group of towns that would like to connect themselves to a

water reserve. Clearly not every town has to build a direct pipeline to the source. A

possible solution is to connect the nearest towns with each other and then one of the

towns with the reserve. The towns that are already connected to the water system can

force the rest to pay some of their construction cost, otherwise they can close down the

outgoing water �ow. On the other hand, no town can be forced to pay more than the

cost of directly connecting itself to the water reserve.

Similar problems arise frequently in real world and the corresponding game theoretical

literature is vast. Airport games, irrigation games and minimum cost spanning tree games

(MCST) are all variations of the same cost sharing problem described above [9, 12, 7].

Shortest path games, peer group games and highway games are also similar in their

concept [3, 1, 4]. Each of these games have non-empty core, which makes the nucleolus

an appealing solution for such problems1.

The nucleolus was introduced by Schmeidler in 1969 [16] and quickly became popular

although it has a reputation to be much more complicated than the Shapley-value. Indeed

it is very hard to axiomatize the nucleolus and even harder to compute it for a given

game. However, in the past few decades there has been signi�cant progress in this second

aspect. Kuipers showed that there exists an e�cient algorithm to compute the nucleolus

for convex games [11]. Meanwhile, researchers developed fast algorithms for the nucleolus

of important families of cooperative games like standard tree games, assignment games

and some special classes of minimum cost spanning tree games [14, 18, 7].

Proceeding by its de�nition, it would take exponential time to compute the nucleolus.

In practice, this means it is impossible to calculate it even for moderate amount of players.

While this is also true for the Shapley-value usually it is easier to implement the latter

due to the many existing axiomatization. On the other hand the axiomatization of the

nucleolus provided by Sobolev can rarely be applied [17]. Still there are many known

results that describe the general structure of this solution and these can be utilized in a

wide variety of characteristic function form games. The most comprehensive work is due

to Maschler, Shapley and Peleg [13]. They not only illustrate the geometric properties

of the nucleolus but also give a linear program that computes it. Although this program

has exponentially many inequalities (one for each coalition) it can be solved e�ciently if

one knows which constrains are redundant. Huberman and later Granot, Granot and Zhu

provided methods to identify the coalitions that correspond to non-redundant constrains

[8, 6]. Another useful tool is the Kohlberg-criteria which makes it easy to decide if a given

allocation is the nucleolus or not [10]. Finally Maschler, Potters and Reijnierse developed

a so called painting algorithm that can be applied in many graph related games [14]. In

1Since the nucleolus is always in the core if the core is non-empty.
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this paper, we will employ this latter approach and de�ne a painting algorithm to compute

the nucleolus. However the structure of the proof is di�erent as directed acyclic graph

games - unlike standard tree games - are not convex.

The structure of the paper is as follows. In the second section we introduce the game

theoretical framework used in the paper. In the third section we formally de�ne directed

acyclic graph games. In the forth we brie�y demonstrate the di�erences and similarities

of airport, standard tree and minimum cost spanning tree games and directed acyclic

graph games. In the �fth and sixth section we propose a network canonization process

and describe its implications. Finally in the seventh and eighth section we present the

painting algorithm and prove the it results in the nucleolus of the de�ned game.

2 Game theoretical framework

A cooperative cost game is an ordered pair (N, c) consisting of the player set N =

{1, 2, . . . , n} and a characteristic cost function c : 2N → R with c(∅) = 0. The value

c(S) represent how much cost coalition S must bear if they choose to act separately from

the rest of the players. Let us denote a speci�c cost game by Γ. A cost game is said to

be convex if its characteristic function is submodular i.e if.

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ), ∀ S, T ⊆ N.

A solution for a cost allocation game is a vector x ∈ RN . For convenience, we introduce

the following notation x(S) =
∑

i∈S xi for any S ⊆ N , and instead of x({i}) we write

simply x(i). A solution is called e�cient if x(N) = c(N) and individually rational if

x(i) ≤ c(i) for all i ∈ N . The imputation set of the game X(Γ) contains e�cient and

individually rational solutions, formally

X(Γ) = {x ∈ Rn | x(N) = c(N), x(i) ≤ c(i) for all i ∈ N}.

Given an allocation x ∈ RN , we de�ne the excess of a coalition S as

exc(S, x) := c(S)− x(S).

The core of the cost allocation game C(Γ) is a set-valued solution where all the excesses

are non-negative.

C(Γ) = {x ∈ RN | x(N) = c(N), x(S) ≤ c(S) for all S ⊆ N}.

Let θ(x) ∈ R2N be the excess vector that contains the 2n excess values in a non-

decreasing order. We say that a vector x ∈ Rm lexicographically precedes y ∈ Rm (denoted
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by x �L y) if either x = y or there exists a number 1 ≤ j < m such that xi = yi if i ≤ j

and xj+1 < yj+1.

De�nition 1. The nucleolus is the vector of allocations of a game Γ that lexicographically

maximizes θ(x) over a set X0 ⊆ RN . In other words,

N (Γ, X0) = {x ∈ X0 | θ(y) �L θ(x) for all y ∈ X0}

It is well known that if X0 = X(Γ), then the nucleolus of a game is a single-valued

solution and it is in the core if the core is non-empty. Throughout the paper we assume

X0 to be the set of imputations and write N (Γ) instead of N (Γ, X(Γ)).

Proceeding by its de�nition it would take exponential time to compute the nucleolus

of a cooperative game, since we would have to compare the 2N dimensional excess vec-

tors with each other. In order to make this task manageable we identify the redundant

coalitions which do not play any role in this process.

De�nition 2. Let ΓF = (N,F , c) be a cooperative game with coalition formation restric-

tions, where F ⊆ 2N consists of all permissible coalitions. Then F is called a characteriza-

tion set for the nucleolus of the game Γ = (N, c) with respect to X(Γ), if N (ΓF) = N (Γ).

Granot,Granot and Zhu constructed a sequential LP process whose input is a charac-

terization set and the values of the cost function for coalitions contained therein, and the

output is the nucleolus of the game [6]. They showed that if the size of the characteriza-

tion set is polynomially bounded in the total number of players, then the nucleolus of the

game can be computed in strongly polynomial time.

A collection of coalitions B ⊆ 2N is said to be balanced if there exists positive weights

λS, S ∈ B such that
∑

S∈B λSeS = eN , where eS denotes the indicator vector of coalition

S. Applying the Kholberg/Sobolev criterion [10] to the games with coalition formation

restrictions yields the following theorem.

Theorem 3. Let F be a characterization set and x be an imputation of the game Γ with

C(Γ) 6= ∅. Then x = N (Γ) if and only if for all y ∈ R the collection {S ∈ F | exc(S, x) ≤
y} is balanced or empty.

For proof see [15]. Although the number of possible coalitions in an n-player game is

exponential, only a fraction of them is needed to characterize the nucleolus.

De�nition 4 (Essential coalitions). Let S be a coalition, such that it can be written as a

disjoint union of S1 and S2 i.e. S = S1

.
∪ S2. If for such a decomposition it is true that

cΓ(S) ≥ cΓ(S1) + cΓ(S2) then S is not an essential coalition.
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Huberman showed that if the core of the game is non-empty then the essential coali-

tions form a characterization set for the nucleolus [8]. This observation helps us to elim-

inate large inessential coalitions but not the small ones. By de�nition, the singleton

coalitions will always be essential in every game. Applying Huberman's de�nition in the

dual game we can sort out the small but inessential coalitions.

De�nition 5 (Dually essential coalitions). For a given coalition S let S1 and S2 to be

such coalitions, that S1 ∩ S2 = S and S1 ∪ S2 = N . If for such a decomposition it is true

that c(S) ≥ c(S1) + c(S2)− c(N) then S is not a dually essential coalition.

In case of DAG-games, the set of dually essential coalitions will prove to be more

e�ective tool to determine the nucleolus.

Theorem 6. If C(Γ) 6= ∅, then the dually essential coalitions form a characterization set

for N (Γ).

A formal proof of Theorem 6 can be obtained by copying the arguments of [8], but it

also follows from [2] (see Theorem 1/iv).

3 De�nition of the game

A directed acyclic graph network D is given by the following:

• G(V,E) is a directed acyclic graph, with a special node - the so called root of G,

denoted by r - such that from each other node of G there leads at least one directed

path to the root. G is considered to be a simple graph, i.e. it has no loops or parallel

edges.

• There is a cost function a(e) : E → R+ ∪ {0}, that assigns a non-negative real

number to each edge. This value is regarded as the construction cost of the edge.

• There is a player set N and a correspondence between N and the node set of G.

If player i is assigned to node p we say player i resides at p. The residents of a

subgraph T denoted by N(T ).

For a subgraph T , V (T ) denotes the node set of T . Similarly E(T ) denotes its edge

set, while Ep is used for the set of edges that goes out from node p. We call nodes

that have one outgoing edge as passages while nodes that have more outgoing edges are

junctions.

For a subgraph T we de�ne its construction cost C(T ) as the total cost of the edges

in T i.e. C(T ) =
∑

e∈E(T ) a(e). A path whose end point is the root is called a rooted

path. A connected subgraph of G that is a union of rooted paths is called a trunk. For
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each coalition S let TS denote the set of subgraphs that have maximum number of edges

among the cheapest trunks that connects all players of S to the root. Furthermore we

say that subgraph T corresponds to the node set B if T ∈ TN(B). Throughout the paper

we will identify trunks with node sets in this sense.

The characteristic function of the cost allocation game that is associated toD is de�ned

as follows.

cD(S)
def
= C(T ) T ∈ TS. (1)

The de�nition is motivated by the fact that by leaving the grand coalition the players

of S need not to pay more than cD(S) to get connected to the root. As any member in TS

has the same construction cost cD(S) is well-de�ned. However any DAG-network can be

transformed in such way TN contains a single element while cD(N) remains unchanged.

As we will see the canonization of a DAG-network will play an important part in the

proof. Let us denote by ΓD the cost game that is induced by cD i.e. ΓD = (N, cD). For

convenience sake we write simply Γ instead of ΓD from now on.

4 Comparison of graph related cost games

There are many similar graph related cost games. Airport games, standard tree games,

DAG-networks, and MCST games have the same setup, namely they are based on a rooted

graph, where players - who are located on the nodes - would like to share the construction

cost of the edges. Table 1 summarizes the di�erences of these games, while Figure 1 shows

how they are related with each other.

Graph Edges Players/node Convexity

Airport Games chain (un)directed 0− n convex

Standrad Tree Games tree (un)directed 0− n convex

DAG-games connected DAG directed 0− n not convex

MCST Games connected undirected 1 not convex

Table 1: Comparison of graph related cost games

In case of airport games and standard tree games the edges can be considered both

directed or undirected. For both of these games the nucleolus can be computed very fast,

in O(n · log n) time [14]. On the other hand to compute the nucleolus of a MCST game

in general is NP-hard [5]. As we will see in case of large families of DAG-networks the

nucleolus can be computed in O(n3) time.
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Figure 1: Venn-diagram of graph related cost games

5 Canonization process

We say that D is in canonical form if the following properties are ful�lled.

P1 Each junction has an outgoing zero cost edge,

P2 There resides a player in each passage.

P3 Each edge is used at least by one coalition.

To transform a DAG-network into a form where P1 property is ful�lled we have

to perform the following procedure for each node p ∈ V such that |Ep| ≥ 2 and

mine∈Ep a(e) = αp > 0.

1. Introduce a new node p′ with the same edge set as p but reduce the cost of the

edges by αp.

2. Erase all the edges that goes out from p.

3. Finally introduce a new edge from p to p′ with cost αp.

This is an equivalent transformation in the sense that the construction cost of TS

unchanged for any coalition S.

If p is a passage where no player resides and p has only one ingoing edge then it can

be omitted from the network. The ingoing and outgoing edge of p can be replaced by

a single edge with an aggregated construction cost. Needless to say that this procedure

does not change the costs of the TS trunks either. If a passage has more ingoing edge then

this transformation can not be applied. Therefore the P2 property pose a restriction on

the DAG-networks that can be canonized. According to P2 there has to live at least one

player in each node that has one outgoing edge and two or more ingoing edges. In the

following we will assume that the network satis�es this property.

Finally edges not used in any of the TS subgraphs can be deleted, since they do not

a�ect the characteristic function. Figure 2 shows an example of the canonization process.

As we mentioned before the canonization of a DAG-network does not change the char-

acteristic function of the corresponding cost game. Although canonization also ensures
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Figure 2: A DAG-network with player set N = {1, 2, 3, 4} before and after canonization

(the numbers in braces indicate the players that reside in the particular node).

that TN contains only a single element, this cannot be said in general about other trunks.

In the following we will assume that TS contains only a single trunk for any coalition

S. This can always be arranged by perturbing the positive edge costs. For convenience

we will refer to TS as this unique trunk that has maximum number of edges among the

cheapest trunks that connects all members of S to the root.

6 Some consequences of canonization and further no-

tations

For each node p the cheapest edges in Ep are called TN -edges. The name comes from the

fact that (if P2 holds) an edge is a TN -edge if and only if it is an element of E(TN). If

e, e′ ∈ Ep, e is a TN -edge and a(e′) > a(e), then e′ is called a shortcut. If there exists a

shortcut between p and q it is always cheaper than any alternative path between the two

due to P3. If e, e′ ∈ Ep are TN -edges then the construction cost of both e and e′ is zero

(this is a consequence of P1).

The subgraph associated to the grand coalition (TN) holds special importance. First

this is the graph that will be constructed in the end. All the other edges are only good

for improving the bargaining positions of certain players. Note that TN is not necessarily

a tree as it may contain some additional zero-edges. Secondly TN induces a partial order

≺ on the nodes. We say that q is a descendant of p if p can be reached from q by using

only TN -edges, we denote this by p ≺ q. In such cases we also say that p is an ancestor of

q. Node p is a direct ancestor of q if p ≺ q and there is a TN -edge between them. Nodes

that have no descendants are called leafs. The node set that contains p together with its

descendants is called a branch and denoted by Bp. A Bq branch is called a subbranch of

8



Bp if q ∈ Bp.

Sometimes we are interested only in some of the descendants of p therefore we cut

o� some of the subbranches of Bp. Since there can be more than one 'trimmed' branch

originating from a given node we will denote a speci�c branch by BQ
p

def
= Bp \ ∪q∈QBq

meaning we consider the node set that contains p and the descendants of p but not Q and

the descendants of Q. We say that BQ
p is a proper branch if deleting BQ

p along with the

in and outgoing edges from G the root can be still reached from any node on a directed

path.

Let us illustrate the above introduced notations with some examples. Consider again

the canonized DAG-network Dc depicted in Figure 2. The only shortcut in Dc is the

one that connects node f with node d. All the other edges are TN -edges. The branch Bd

contains only one node, d since d 6≺ f (i.e. d is a leaf). Furthermore it is a proper branch as

removing d together with the in- and outgoing edges the graph remains connected. Finally

the trunk that corresponds to the node set Br \Bf
c is T{1,3,4} and cDc({1, 3, 4}) = 11.

Figure 3 shows an example when the submodularity of the characteristic function is

not satis�ed.

Figure 3: The supermodularity of the characteristic function

Let S = {1, 3} and T = {2, 3}, then

3 + 2 = c(S) + c(T ) < c(S ∪ T ) + c(S ∩ T ) = 4 + 2,

hence we conclude that DAG-games are indeed not convex.

Finally let p be a direct descendant of the root. Then a trunk that corresponds to

{r}∪Bp is called a base branch. Note that the excess of the coalition formed by residents of

any base branch is zero for any core allocation. This is not necessarily true after removing

some of the subbranches of a base branch. The next lemma describes the structure of the

trimmed base branches that preserve this property.

Lemma 7. Let B = {r} ∪ BQ
p be a proper base branch, such that for every q ∈ Q there

leads a zero edge from q to V \BQ
p . Then exc(N(B), x) = exc(N \N(B), x) = 0 for any

x ∈ C(ΓD).

9



Proof. As any player in N \N(B) can reach the root using only TN edges the total cost

can be partitioned.

c(N) = c(N(B)) + c(N \N(B))

c(N)− x(N) = c(N(B))− x(N(B)) + c(N \N(B))− x(N \N(B))

0 = exc(N(B), x) + exc(N \N(B), x)

As the excesses are non-negative for any core allocation it follows that exc(N(B), x) =

exc(N \N(B), x) = 0.

7 The painting algorithm (PAINT )

Now we introduce a polynomial time algorithm that computes the nucleolus. The proce-

dure resembles to Maschler, Potters and Reijniers [14], but the general idea comes from

[13], where the lexicographic center of a game is reached by 'pushing hyperplanes' with

unit speed.

The following de�nitions will be useful. The closest common ancestor of a node set U

is the unique node p ∈ V for which is true that p � u for any u ∈ U and there is no other

q ∈ V such that q � u for any u ∈ U and either p ≺ q or p and q are not ordered. The

closest common ancestor of node set U is denoted by cca(U). Furthermore we denote by

Z(p) the node set that can be reached from node p with zero cost (therefore p ∈ Z(p)

as well).

The painting algorithm consist of cycles. Only those players are participating in the

current cycle who can not reach the root with a zero cost path. Each cycle begins with

the canonization of the network. Then we repeat the following steps.

1. One player in each passage travels to its parent node.

2. Players currently located in p start to paint all the edges that goes out from Z(p).

3. If a junction p has more than one zero-edge the players located at the junction do

not paint the TN -edges of their ancestors instead they start to paint the edges of

cca(Z(p)). They will paint however all the shortcuts that originate from any path

that connects p to cca(Z(p)).

4. Non-zero edges whose end point is a node p for which it is true that r = cca(Z(p))

are painted by +1 player, called the shadow player.

5. Players paint with unit speed i.e. when k players are painting an edge, they paint

k unit of road upon one unit of time.
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6. Stop when an edge is fully painted i.e. its cost becomes zero. Players return to their

residence.

At time ti the i
th cycle �nishes. We distribute ti − ti−1 payo� among the players that

participated in the painting of this phase (where t0 = 0). The algorithm stops when the

cost of all the edges are zero. Let us denote the ith cycle by Pi. Furthermore let z be the

allocation that is produced by the algorithm.

Let us illustrate the algorithm with an example. Consider the canonized DAG-network

D depicted in Figure 4. The player-set consist of four players residing in nodes a,b, c and

e. The cheapest way to connect all the players to the root is to build the edges e1, e3, e4, e5

and e7, therefore cD(N) = 13. The only shortcuts are e2 and e6. As we will see these

edges signi�cantly shorten the time player 3 and 4 spends with painting.

Figure 4: The painting algorithm.

At time t = 0 player 4 travels forward to the ancestor node of its residence and starts

to paint the edges outgoing from Z(d) i.e. e3 and e6. Similarly player 3 paints all the

edges that goes out from Z(c) thus e1 and e4. Player 2 travels forward to node a and

paints e1. Finally player 1 travels to the root and does nothing. However as r = cca(r)
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the edges e1 and e2 are painted by shadow players. As a result at time t = 1 the cost of e3

and e6 is reduced by one unit while the cost of e1 and e2 changes to 6 and 3 respectively.

Since e6 becomes a zero-edge the �rst cycle �nishes and the players return to their home.

At time t = 1 player 4 travels again forth to node d. As d became a junction with

more than one outgoing zero-edge, player 4 starts the painting from the closest common

ancestor of Z(d) that is node a. Player 4 will also paint the shortcuts originating from

any path between d and a. Thus beyond e1 he will paint e2 as well. The other players

paint the same edges as in the �rst cycle. As a result e2 is painted by three players while

e1 is painted by four.

At time t = 2 the players �nish to paint e2. Player 3 can reach the root with a

zero-cost path therefore he does not participate in the painting process anymore. The

closest common ancestor of Z(d) changes from a to r therefore player 4 travels forward

to the root and e7 is painted by a shadow player. At time t = 3 the cost of both e1 and e7

becomes zero. The only player who is participating in the remaining phase of the painting

process is player 2. At t = 5 each player is connected to the root with a zero-cost path

and the algorithm stops. The �nal allocation obtained this way is x = (3, 5, 2, 3). It is

easy to check (e.g. with the Kohlberg-criteria) that this is indeed the nucleolus of the cost

allocation game corresponding to ΓD.

It is also easy to see that the running time of PAINT is polynomial. Let |V | = m

and |E| = l. Then the number of operations needed to canonize the network or to run

a cycle of PAINT is a linear function of m. In every cycle at least one edge becomes

a zero-edge. Therefore PAINT stops in O(m · l) time. Which - considering that G is a

directed acyclic graph - equals to O(m3).

8 Calculating the nucleolus

In our �rst lemma we show that the core of a DAG-network game is never empty.

Lemma 8. C(ΓD) 6= ∅ for any DAG-network D.

Proof. Let N(p) be a set that collects the residents of node p. De�ne an allocation x

such that for each player i ∈ N let x(i) = a(ep)

|N(p)| where i ∈ N(p) and ep is one of the

outgoing TN edges of p. It is easy to see that x is a core allocation. Let V ? ⊆ V denote

the set of nodes where at least one player resides in G.

x(N) =
∑
i∈N

x(i) =
∑
p∈V ?

|N(p)| · a(ep)

|N(p)|
=

∑
p∈V ?

a(ep)

Therefore x covers the construction cost of one of the cheapest outgoing edges for

each node where at least one player resides. Nodes where no player resides can only be
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junctions, which have an outgoing zero edge. It follows that x(N) = cD(N). On the other

x(S) ≤
∑

p∈V (TS) a(ep) ≤ C(TS) = cD(S) for any S ⊆ N .

Note that Lemma 8 holds regardless property P2 is satis�ed in a given network or

not.

Now we can identify the dually essential coalitions in case of DAG-network games. A

coalition S is said to be saturated if i ∈ S whenever c(S) = c(S ∪ {i}). The closure of S
is a saturated coalition S̄ for which S ⊆ S̄, TS = TS̄. Note that S̄ is unique due to the

uniqueness of TS̄, and S = S̄ ⇐⇒ S̄ = N(V (TS)). Granot, Granot and Zhu showed that

saturated coalitions form a characterizing set for the nucleolus.

Lemma 9. In a DAG-network game dually essential coalitions are either saturated or

consist of n− 1 players.

Proof. Let S be a coalition with at most n−2 players such that S 6= S̄. Then there exists

i ∈ N \ S such that cD(S) = cD(S ∪ {i}). Let S1 := S ∪ {i} and S2 := N \ {i}. Then

S1 ∪ S2 = N and S1 ∩ S2 = S therefore we can use De�nition 5 since

cD(S) ≥ cD(S1) + cD(S2)− cD(N)

cD(S) ≥ cD(S) + cD(N \ {i})− cD(N)

cD(N) ≥ cD(N \ {i})

i.e. the cost criterion of dual essentiality applies as well.

Saturated coalitions incorporate every player of the trunk on which they reside. This

leads us to the following observation.

Observation 10. Every trunk that corresponds to a saturated coalition S ⊂ N can be

obtained by deleting some proper subbranches from G. Formally

V (TS) = Br \ ∪k
i=1B

Qi
pi
.

Furthermore the origins of the deleted branches have non-zero TN -edges i.e. Epi = {epi}
and a(epi) > 0 for i = 1, 2, . . . , k.

The �rst part of the observation - that each saturated trunk can be obtained by cutting

some proper branches o� from G - is trivial. The second part that these branches connect

to the trunk by a non-negative TN -edge follows from the de�nition of TS. Let us remind

the reader that TS is the subgraph that hasmaximum number of edges among the cheapest

trunks that connect S to the root. Therefore any node p that connects to the trunk by

a zero-edge by de�nition is included in TS even if no player of S resides at p.

13



Figure 5: Any saturated trunk can be obtained by deleting some subbranches.

The following extension of the cost function will be useful. We de�ne τ(Q,S) as the

cost of the edges in TS that goes out from node set Q i.e.

τ(Q,S)
def
=

∑
e∈(∪q∈QEq)∩E(TS)

a(e).

Theorem 11. The dually essential coalitions of the cost game ΓD are the coalitions with

n − 1 player and saturated coalitions whose trunks correspond to node sets of the form

Br \BU
q where BU

q is a proper branch with Eq = {eq} and a(eq) > 0.

Proof. We have already seen by Lemma 9 that only saturated coalitions are dually essen-

tial. By Observation 10 we know that saturated coalitions can be generated by removing

subbranches from Br. The one thing we have to prove is that coalitions that correspond

to trunks that have more missing subbranches are dually inessential. Let S be such a

coalition for which V (TS) = Br \ ∪k
i=1B

Qi
pi

where k ≥ 2. As D is in canonical form there

resides at least one player in each of the subbranches. Furthermore we choose a repre-

sentation of TS where the node set Qk in the branch BQk
pk

is either empty or a subset

of V (TS). This can always be arranged since if there is a node Qk 3 u 6∈ V (TS) then

u ∈ BQi
pi

for some i. Now cut o� u and the ancestors of u from BQi
pi

and attach them to

BQk
pk
. Repeat this process till every element in Qk is in V (TS) or Qk becomes empty.

For convenience sake let us introduce the following notation B1 = ∪k−1
i=1B

Qi
pi

and B2 =

BQk
pk
. Then let S1 = N \ N(B1) and S2 = N \ N(B2). In this way S1 ∪ S2 = N and

S1 ∩ S2 = S. To prove that cD(S) ≥ cD(S1) + cD(S2) − cD(N) holds as well it is enough

to show that the following two inequalities are true.

cD(S1) ≤ cD(S) + τ(B2, N)− τ(Qk, S) (2)

cD(S2) ≤ cD(N)− τ(B2, N) + τ(Qk, S) (3)

Note that it takes at most τ(B2, N) to connect the players residing at B2 to TS. As

BQk
pk

is a proper branch it follows that the nodes in Qk are junctions. Since the nodes in
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Qk are direct ancestors of some nodes in B2 they are connected with zero-edges. Therefore

we can save at least τ(Qk, S) amount of cost by connecting Qk through the branch B2

and not through the edges in ∪q∈Qk
Eq ∩ E(TS). It is possible that aside from Qk there

are other nodes that can reach the root in a cheaper way using the edges of B2, but no

nodes of V (TS) is forced to take a more expensive path. Summarizing the above �ndings

we gather that

cD(S1) ≤ cD(S) + τ(B2, N)− τ(Qk, S)

We can estimate cD(S2) by keeping track how the cost changes as we swift from TN

to TS2 . As N(B2) are not in S2 we can delete B2 and subtract τ(B2, N) amount of cost

from cD(N). Deleting B2 from TN only the direct descendants of B2 get disconnected.

Therefore the only nodes that are not connected to the root are Qk and their descendants.

The cost of reconnecting Qk is at most τ(Qk, S). The reason for this is that building the

exact same edges that we deleted in case of S1 are su�cient. Take any node in Qk. As

we builded ∪q∈Qk
Eq ∩ E(TS) it has an outgoing edge. Lets say it points to a node u0. If

no player resides at u0 then it is a junction by property P2 hence it has an outgoing zero

edge that points to a node u1. As there are �nite number of nodes in D eventually we will

reach a node ut where a player (j ∈ N) resides. In TN every player is connected to the

root, hence j must be connected as well unless ut ∈ Qk. The graph is acyclic therefore

ut 6= u0. Again as we builded ∪q∈Qk
Eq ∩ E(TS) there has to be an outgoing edge from

ut. Since there are �nite number of nodes in Qk eventually we will reach a node where a

player from N \N(B2) \N(Qk) resides, that is already connected to the root. Altogether

we can estimate the cost of S2 by

cD(S2) ≤ cD(N)− τ(B2, N) + τ(Qk, S).

Now adding (2) and (3) together, then subtracting cD(N) from both sides yield us the

desired result.

Theorem 12. PAINT calculates the nucleolus of the game i.e. z = N (ΓD)

Proof. Players who can reach the root with zero cost in D are dummy players. Their

contribution to any coalition is zero. The nucleolus allocates zero cost to dummy players,

but so does our algorithm. Therefore without loss of generality we can assume that in our

starting network no player resides in a node where the root can be reached with zero cost

(this is not necessarily true after P1). The proof proceeds by induction. Lets assume that

the algorithm works for canonized graphs with m nodes and at most k number of non-zero

edges (a canonized graph with m vertices can have at most m(m−1)
2

edges). Indeed if every

edge of an m-node graph is a zero-edge then z coincides with the nucleolus. Let D̄ denote
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the DAG-network that is generated after P1. For convenience sake let us write simply Γ

instead of ΓD and Γ̄ instead of ΓD̄ from now on. In D̄ the number of non-zero edges is

strictly less as in D hence our assumption holds. Therefore z = N (Γ̄) + t1 where t1 is the

|N | dimensional vector whose coordinates are t1. We need to show that z is the nucleolus

of the game.

Let Ē be the set of dually essential coalitions in Γ̄. The next observation basically

states that during the painting some dually essential coalitions become inessential, but

this change does not occur in the opposite way. If a coalition is dually inessential it stays

so even if some of the non-zero edges in the graph are replaced with zero-edges.

Observation 13. Ē ⊆ E

This observation immediately follows from the structure of the dually essential coali-

tions and from the description of our algorithm.

As Ē is a characterization set of the nucleolus in Γ̄ by de�nition N (Γ̄Ē) = N (Γ̄).

Using Observation 13 we can also conclude that N (Γ̄Ē) = N (Γ̄E). By Theorem 3 the set

{S ∈ E|excΓ̄(S, x) ≤ y} is balanced or empty for any y ∈ R.
Let S0 denote the set of coalitions whose excess is zero for any core allocation, formally

S0
def
= {S ⊆ N | c(S) = x(S) for any x ∈ C(Γ)}.

Lemma 14. During P1 TS is painted by |S| players for each S ∈ E ∩ S0 and by |S| + 1

players for each S ∈ E \ S0, thus

cD(S) = cD̄(S) + |S|t1 for any S ∈ E ∩ S0

cD(S) = cD̄(S) + (|S|+ 1)t1 for any S ∈ E \ S0

Proof. Let S ⊆ N be an arbitrary coalition. It follows from the description of the al-

gorithm that each player of S paints exactly one edge in TS. The only exceptions are

those players that travelled forward to the root in the �rst step of the algorithm. In those

cases a shadow player paints an edge of TS instead each of them. A trunk can be painted

however by more player than the number of its inhabitants if outside players contribute.

By Lemma 7 and Observation 10 for any S ∈ E ∩ S0 the trunk TS corresponds either

to a base branch {r}∪BQ
p or to its complement V \BQ

p , where for every q ∈ Q there leads

a zero edge from q to V \ BQ
p . The closest common ancestor of any q ∈ Q is therefore

the root. Hence in the �rst case players that reside in q or one of its ancestor nodes will

not help to paint any TN edges of {r} ∪ BQ
p . In the second case V \ BQ

p incorporates

every descendant of its own nodes except for the root, but no player resides at the root.

It follows that TS is painted by |S| players for each S ∈ E ∩ S0.

In case of S ∈ E \ S0 the trunk TS corresponds to a branch Br \BQ
p . By property P2

there resides at least one player in p. One player of N(p) travels forward to its ancestor
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at the �rst step of the algorithm. All the other players of N(BQ
p ) paint only edges that

goes out from BQ
p i.e. no edges of TS. It follows that TS is painted by |S|+ 1 players for

each S ∈ E \ S0.

It can be shown in a similar manner that the trunk of any n − 1 player coalition is

painted by n− 1 or n player depending on whether the coalition is a member S0 or not.

As a direct consequence of Lemma 14 for any S ∈ E \ S0

cD(S)− z(S) = cD̄(S) + (|S|+ 1)t1 − z(S)

excΓ(S, z) = excΓ̄(S,N (Γ̄)) + (|S|+ 1)t1 − |S|t1
excΓ(S, z) = excΓ̄(S,N (Γ̄)) + t1

excΓ(S, z) = excΓ̄(S,N (Γ̄E)) + t1

That means the non-zero excesses in ΓE with respect to z di�er only by a constant

from the excesses of Γ̄E with respect to N (Γ̄E). By the same argument the coalitions

whose excess are zero for any core allocation is the same in ΓE and Γ̄E . By Theorem 3 it

follows that z is the nucleolus of ΓE . But E is a characterization set for the nucleolus in

Γ therefore

z = N (ΓE) = N (Γ)
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