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1 Introduction

With regard to a general nonlinear optimization problem, it is typical that the first

order condition is only necessary. It becomes sufficient, if the problem is convex in the

usual sense or in a generalized sense. When having a non-convex case a second order

condition is needed, but even this ensures (in general) only the sufficiency of being a

local optimum instead of being a global one. Therefore, it is useful to investigate such

classes of functions, which possess the so-called local-global minimum property. Or,
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in other words, such functions should be characterized whose every local minimizer

is also global. Of course, this type of analysis is not new. A couple of authors have

already dealt with it (see, e.g., [1–7]).

Here, we prove some new results in this field and also extend some earlier ones.

In the second section, we deal with functions, which have lower semicontinuous

lower-level-set function. This leads to a possible characterization of local-global min-

imum property. This fact was first observed by Avriel and Zang (see [6]). In the third

part, we study connected and quasi-connected functions, which are natural general-

izations of convexity and quasi-convexity. These concepts were introduced by Ortega

and Rheinboldt in [5].

In the fourth part, we discuss the directional derivative with respect to a path and

prove a variational inequality. Finally, with the help of an application from the theory

of calculus of variations, we verify how useful these concepts are.

2 Functions with Lower Semicontinuous Lower-Level-Set Function

Here, we use the notations of the book [8]. Let X and Y be metric spaces. A set valued

map F : X ⇒ Y is lower semicontinuous at x ∈ DomF iff for any y ∈ F(x) and for

any sequence of elements xn ∈ DomF converging to x, there exists a sequence of

elements yn ∈ F(xn) converging to y, where DomF := {x ∈ X |F(x) 6= /0}.

Lemma 2.1 Let f : X → R be a function, and let ᾱ ∈ DomL f such that ᾱ > infX f .

Then L f is lower semicontinuous at ᾱ if and only if there exist a strictly monotone

increasing sequence αn tending to ᾱ and a sequence xn tending to x̄, where f (x̄) = ᾱ

and xn ∈ L f (αn).

Proof The sufficiency part is a trivial consequence of the definition. So, let

ᾱ ∈ DomL f be arbitrary such that ᾱ > infX f .
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We can assume without any loss of generality that f (x̄) = ᾱ . Indeed, if f (x̄)< ᾱ

and αn is an arbitrary sequence which tends to ᾱ , then for sufficiently large n we can

choose xn ≡ x̄.

Let now x̄ be such an element of L f (ᾱ) that f (x̄) = ᾱ , and let βn be an arbitrary

sequence tending to ᾱ .

We construct a new sequence x′n from the sequence xn.

x′n :=

 x̄, if βn ≥ ᾱ;

xk, if βn < ᾱ , where αk ≤ βn < αk+1.
(1)

It is easy to see that this new sequence tends to x̄, and x′n ∈ L f (βn) for all n.

Because βn was arbitrarily chosen, L f is lower semicontinuous at ᾱ . ut

The next theorem is a modified version of [7, Theorem 2.3]. The authors got a

similar result when X and Y are subsets of Rn.

Theorem 2.1 Let X , Y be metric spaces, S : X → Y be a homeomorphism, and

let g : Y → R be a function so that Lg is lower semicontinuous. Then the function

f : X → R, f (x) := g(Sx) has a lower semicontinuous lower-level-set function L f .

Moreover, every local minimizer of f is global.

Proof Let ᾱ be an arbitrary element of DomL f . Then it is also an element of DomLg

and vice versa. Choose an x̄ ∈ L f (ᾱ) and a sequence {αn}n∈N ⊂ DomL f tending to

ᾱ . In view of Lemma 2.1, we can assume without any loss of generality that

f (x̄) = ᾱ and αn ↑ ᾱ. (2)

Let us define the following two non-empty sets and a sequence:

Yn := {y ∈ Y |g(y)≤ αn}, Xn := S−1(Yn), rn := inf
x∈Xn

d(x, x̄). (3)
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Choose an arbitrary positive ε . Now, we can construct a sequence {xn}n∈N ⊂ X such

that

d(xn, x̄)< rn +
ε

2n . (4)

Such a sequence exists because of the definition of rn and the positivity of ε

2n . S is a

homeomorphism, so for every n ∈ N there is a yn ∈ Yn such that xn = S−1yn.

Using (2), we have that Xn ⊂ Xn+1. From this, we get that {rn}n∈N is monotone

decreasing. On account of (3), it is also non-negative, so it has a non-negative limit r.

If it is positive, then for all x ∈ ∪n∈NXn,

d(x, x̄)≥ r > 0. (5)

On the other hand, ∪n∈NXn = ∪n∈NS−1(Yn), so there exists a sequence

{yn}n∈N ⊂ Yn, which tends to ȳ := S(x̄), since Lg is lower semicontinuous. Because

of the continuity of S,

Xn 3 xn := S−1(yn)→ S−1(ȳ) := x̄,

which contradicts (5). This means that r = 0. Using (4), the distance d(xn, x̄) tends to

zero as n tends to infinity. It follows that L f is lower semicontinuous at ᾱ , but ᾱ was

arbitrarily chosen, so L f is lower semicontinuous.

The last part follows from [4, Proposition 5.1]. ut

It is well known that convex functions (in this case X must be such a space that

this concept becomes meaningful) have convex lower level sets, hence they have

connected lower level sets. Consequently, the corresponding lower level set function

of a convex function is lower semicontinuous. This is the reason why every local

minimizer of a convex function is global. The same trail of thoughts works similarly

with quasi convex functions. The next corollary uses this and the previous theorem.
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Corollary 2.1 Let X , Y be normed spaces, let S : X → Y be a homeomorphism, and

let g : Y → R be a convex function. Then Lg◦S is lower semicontinuous, that is, every

local minimizer of g◦S is global.

If g is strictly convex, then g◦S has at most one global minimizer.

Proof We prove that g ◦ S has connected lower level sets. Let α be an arbitrary ele-

ment of DomLg = Lg◦S. Define the following set:

Yα := {y ∈ Y |g(y)≤ α}. (6)

Since this set is convex, it is connected also. Let the preimage of Yα under S be Xα .

A continuous mapping preserves connectedness, so Xα = S−1(Yα) is connected.

Assume that g is strictly convex. Then we have two distinct cases.

In the first one is, DomLg◦S is not bounded from below. In this case, there is no

minimizer at all.

In the second one, DomLg◦S is bounded from below. Denote by ᾱ ∈ R the in-

fimum. If there is no y ∈ Y such that g(y) = ᾱ , then there is no minimizer again,

because S is a homeomorphism.

At last, assume that there exist x1,x2 ∈ X such that g(Sx1) = g(Sx2) = ᾱ . As g is

strictly convex, it has at most one global minimizer so, Sx1 = Sx2. Since S is one-to-

one, we have x1 = x2. ut

Examples 2.1 – Let us consider the so called Rosenbrock function (see [9]).

f : R2 → R2, f (x,y) := 100(y− x2)2 +(1− x)2. This is a popular test function

in nonlinear optimization. As is well-known, it is not convex. Define the follow-

ing map S : R2 → R2, S(x,y) := (10(y− x2),1− x). A straightforward calcu-

lation shows that S is a homeomorphism. On the other hand, f = g ◦ S, where

g : R2→ R2, g(x,y) := x2 + y2 is a convex function. We can apply now the pre-

vious corollary or Theorem 2.1. This entails that the Rosenbrock function has
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a lower semicontinuous lower-level-set function. Therefore, its every local mini-

mizer is also global.

– If f : Rn→ Rn, f (x1, . . . ,xn) := (x2− x2
1)

2 + · · ·+(xn− x2
n−1)

2 +(1− x1)
2, then

an n dimensional version of the previous example can be derived in a very similar

way.

3 Quasi-Connected and Connected Functions

Let X be a topological space, and let D⊂ X be a nonempty set. A function f : D→R

is called quasi-connected (connected) on D, iff for all x̄,x ∈ D there exists a con-

tinuous function (a path joining x̄ and x) γ : [0,1]→ D such that γ and f fulfill the

following conditions:

(i) γ(t) ∈ D for all t ∈ [0,1];

(ii) γ(0) = x̄ and γ(1) = x;

(iii) f (γ(t))≤max{ f (x̄), f (x)}
(

f (γ(t))≤ (1− t) f (x̄)+ t f (x)
)

for all t ∈ [0,1].

Remarks 3.1 – In the definition of γ the order of the points x̄,x is very important.

A more correct notation would be γx̄,x, but this is too troublesome. Therefore, we

will use the simpler one when there is no ambiguity.

– It is quite straightforward that every connected function is also quasi-connected.

– The above concepts are a generalization of quasi-convexity (convexity), just take

γ(t) = (1− t)x̄+ tx, which has a very important role in optimization theory (see,

e.g., [10] and the references therein).

The function is called strictly quasi-connected (strictly connected) on D iff, when-

ever x̄ 6= x, γ may be chosen so that a strict inequality holds in (iii).

All the previously mentioned concepts were introduced in [5] when X = Rn.

These are preserved if we compose our quasi-connected (strictly quasi-connected,

connected, strictly connected) function with a homeomorphism.
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Theorem 3.1 Let X , Y be metric spaces or topological spaces, let S : X → Y be a

homeomorphism, and let f : Y → R be a quasi-connected (strictly quasi-connected,

connected, strictly connected) function. Then f ◦ S is also quasi-connected (strictly

quasi-connected, connected, strictly connected).

Proof Let x̄,x be arbitrary elements of X , and let Sx̄ =: ȳ,Sx =: y ∈ Y . Then there

exists a path γ : [0,1] → Y such that (i), (ii) and (iii) are fulfilled. Let us define

a new path γ̃ : [0,1] → X , γ̃ := S−1 ◦ γ . Clearly, this new function is continuous,

γ̃(0) = S−1(γ(0)) = S−1ȳ = x̄, and γ̃(1) = S−1(γ(1)) = S−1y = x. Moreover,

f (S(γ̃(t))) = f (γ(t))≤max{ f (ȳ), f (y)}=max{ f (Sx̄), f (Sx)}. These show that f ◦S

is quasi-connected.

The remaining part of the proof runs in a very similar way, so we omit it. ut

It is a well known fact that every lower level set of a convex or a quasi-convex function

is a convex set, which is connected. The next corollary is a simple, but important

consequence of the previous theorem.

Corollary 3.1 Let X , Y be locally convex topological vector spaces, let S : X → Y

be a homeomorphism, and let f : Y → R be a quasi-convex (convex) function. Then

f ◦S is quasi-connected (connected).

Proof Let γ(t) = (1− t)x0 + tx1 in the previous proof. ut

In [1] the authors proved that connectedness (strict connectedness, strict quasi-

connectedness) of a function implies that every local minimizer of this function is also

global. However, it was proved only in the case when X = Rn. If X is a topological

space, then the proof runs in a pretty similar way.

Theorem 3.2 Let X be a topological space, D⊂ X, and let f : D→R be a function.

If f is connected(strictly connected, strictly quasi-connected) on D, then every local

minimizer of f is also global.
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Examples 3.1 – Let X be a reflexive Banach space, let S : X∗→ X be a continuous

(with respect to the norm topology both in X and in X∗), strongly monotone op-

erator, and let g : X → R be a convex function. Strong monotonicity implies that

S is a bijection. The continuity of S−1 follows from the reflexivity of the space and

from the continuity of S. According to Theorem 3.1, f is connected. On the other

hand, Theorem 3.2 entails that every local solution of the hereunder optimization

problem is global.

min
x∗∈X∗

f (x∗) := g(Sx∗).

– Let us minimize the following objective function subject to an ODE.

min‖x‖2
L2(0,1) :=

∫ 1

0
x2(t)dt

s.t. − x′′(t)+h(x(t)) = u(t), t ∈]0,1[ (7)

x(0) = x(1) = 0,

where the nonlinear term h : R→R is a bounded, continuous, monotone function

and u ∈ L2(0,1) are given.

Firstly, we rephrase this problem. For this, we need the weak formulation of the

above boundary value problem.

We denote with V = H1
0 (0,1) the Hilbert space of such L2(0,1) functions, whose

first weak derivative is also in L2(0,1), and fulfill the previously given boundary

condition. This makes sense in this case, because the space is one dimensional,

so all the elements of V are continuous.

A function x ∈ V is called a weak solution of the above boundary value problem

iff ∫ 1

0
x′ϕ ′+

∫ 1

0
h(x)ϕ =

∫ 1

0
uϕ for all ϕ ∈V.
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Let us define the operator A : V →V ∗ and the functional F : V →R in the follow-

ing way.

〈Ax,v〉 :=
∫ 1

0
x′v′+

∫ 1

0
h(x)v, v ∈V,

F(v) :=
∫ 1

0
uv, v ∈V.

The operator A is continuous and strongly monotone, moreover, F ∈ V ∗ (for the

details see [11]). This means that we have the same conclusion as in the previous

example.

4 Directional Differentiation with respect to a Path

Let X be a real normed space, D ⊂ X , and let f : D→ R be a function. Assume

that x̄,x ∈ D are given and γ : [0,1]→ D is a path joining them. That is to say, γ is

continuous, γ(t)∈D, t ∈ [0,1], and γ(0) = x̄, γ(1) = x. We say that f is directionally

differentiable with respect to γ at x̄ iff the following limit exists.

lim
t↓0

f (γ(t))− f (x̄)
t

=: f ′(x̄,γ). (8)

Proposition 4.1 Assume that f is Fréchet differentiable at x̄, and directionally differ-

entiable with respect to a path γ , which is differentiable at 0, i.e., the limit

γ ′(0) := limt↓0
γ(t)−γ(x̄)

t exists. Then

f ′(x̄,γ) = f ′(x̄)γ ′(0). (9)

Proof It is an easy consequence of the chain rule for Fréchet differentiability. ut

A function f is called regularly quasi-connected (regularly connected) iff for every

x̄,x ∈ X , γ can be chosen such a way that it is differentiable at 0.
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Proposition 4.2 If f : D→R is connected and differentiable with respect to the cor-

responding path, then

f ′(x̄,γ)≤ f (x)− f (x̄) for all x̄,x ∈ D.

If f is Fréchet differentiable and regularly connected, then

f ′(x̄)γ ′(0)≤ f (x)− f (x̄) for all x̄,x ∈ D.

Proof Connectivity implies that

f (γ(t))≤ (1− t) f (x̄)+ t f (x),

that is,
f (γ(t))− f (x̄)

t
≤ f (x)− f (x̄), t ∈]0,1].

Taking the limit t ↓ 0, we get the first part.

The second one follows from the first part and the previous proposition. ut

The next theorem gives a necessary condition for the local optimality in the form

of a variational inequality. This condition also becomes sufficient whenever the func-

tion is connected.

Theorem 4.1 Assume that f has a local minimum at x̄. If x 6= x̄ is such a point that

there exists a path γ joining x̄ with x, and f is directionally differentiable with respect

to γ , then

f ′(x̄,γ)≥ 0. (10)

If for all x 6= x̄ there is a corresponding γ such that (10) is fulfilled, and f is

connected, then x̄ is a global minimizer of f .

Remarks 4.1 – In the second part of the theorem the assumption implies the direc-

tional differentiability of f with respect to the corresponding path.
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– It is very important to note that f must be directionally differentiable with respect

to the same paths, which ensure its connectivity.

Proof Let x̄ be a local minimizer of f and γ such a path, which is mentioned in the

first part of the theorem. Using the continuity of γ , there exists t̄ ∈]0,1[ such that

f (γ(t))≥ f (x̄)

for all t ∈ [0, t̄]. Clearly, t̄ depends on x here. From this we get

f (γ(t))− f (x̄)
t

≥ 0

for all t ∈]0, t̄]. Taking the limit t ↓ 0 of the right-hand side, we have the first part of

the theorem.

For the second part, let f be connected such that (10) is fulfilled for all x 6= x̄; then

from the definition of connectivity, we get for an arbitrary x

f (γ(t))− f (x̄)
t

≤ f (x)− f (x̄)

for every t ∈]0,1]. Taking the limit t ↓ 0 of the right-hand side and using (10), we

come to the following conclusion

0≤ f ′(x̄,γ)≤ f (x)− f (x̄).

Since x was arbitrary, the proof is ready. ut

It is worthwhile to mention that the connectedness of f is not completely used in the

second part of the proof.

Examples 4.1 – Let us consider the following function f : R→ R, f (x) =
√
|x|.

Then f is not directionally differentiable at zero in the usual sense. Moreover, it
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is not directionally differentiable at zero in the sense of Clarke either. Indeed,

f ◦(x̄;h) = limsup
x→0, t↓0

f (x+ th)− f (x)
t

= limsup
x→0, t↓0

√
|x+ th|−

√
|x|

t
= ∞,

where f ◦(x̄;h) denotes the Clarke directional derivative at x̄ = 0 in the direction

h 6= 0 (for more information about the Clarke derivative see, e.g., [12]).

Let x ∈ R \ {0}, and define the corresponding path in the following way,

γx(t) := xt2. Then γx is continuous, γx(0) = 0 and γx(1) = x. So, this path joins

0 and x. Furthermore, f is directionally differentiable with respect to γx for all

x ∈ R\{0}. Indeed,

lim
t↓0

f (γx(t))− f (0)
x

= lim
t↓0

√
|xt2|−

√
0

t
=
√
|x| ≥ 0.

The function f is also quasi connected with respect to γx̄,x(t) = t2x+(1− t)2x̄.

Using Theorem 4.1 we have that 0 is a global minimizer of f .

– Let us consider the following Rosenbrock-type function f : R2 → R,

f (x,y) := (y− x2)2 +(1− x)2, and define the family

γ(x̄,ȳ),(x,y)(t) := ((1− t)x̄+ tx,(1− t)2ȳ+2(1− t)txx̄+ t2y).

Then f is convex with respect to this family on R2 and f ′(x̄,γ(1,1),(x,y)) = 0. This

means that we can apply Theorem 4.1. Therefore, (1,1) is a global minimizer of

f .

5 An Application

Let Φ : [a,b]×R×R→ R be a given continuous function. Consider the following

problem.

inf
x∈Xad

JΦ(x) :=
∫ b

a
Φ(s,x(s),x′(s))ds, (11)
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where C1([a,b]) denotes the class of all continuously differentiable functions on

[a,b], and the set Xad = {x ∈C1([a,b]) | x(a) = x(b) = 0} is called admissible set, or

the set of admissible functions.

This is the simplest problem from calculus of variations. The most important

first order necessary condition (under appropriate smoothness condition on Φ) is the

Euler-Lagrange equation

D2Φ− ∂

∂ t

(
D3Φ

)
= 0, (12)

where Di denotes the derivative with respect to the ith variable. If x̄ is a solution of

(11), then it is also a solution of (12). The reverse is not true in general, but if, e.g.,

Φ is convex with respect to its last two variables, then every solution of (12) also

becomes a solution of (11) (see, e.g., [13] or [14]).

We give a generalization of this result. For this, we need the following assump-

tion.

(A) Let Φ be regularly connected with respect to its last two variables in such a way

that, for every x ∈ Xad , the derivative at 0 of the corresponding one-parameter

family of paths γs : [0,1]→ Xad , s ∈ [a,b] has the form γ ′s(0) = (α(s)− x(s),

α ′(s)− x′(s)), where α ∈ Xad . In other words, the derivative of the path at zero

can be represented as a difference of two admissible functions and their deriva-

tives.

Remark 5.1 The previous assumption requires that the set {(x,x′)|x ∈ Xad} is con-

nected with respect to the corresponding γs.

Theorem 5.1 Assume that Φ is continuously differentiable and fulfills assumption

(A). Then every local minimizer of (11) is global.

Proof Let us define the following function Φs(x,x′) := Φ(s,x(s)x′(s)) for every

s ∈ [a,b]. Using the assumptions of the theorem and Proposition 4.1, we have

〈∇Φs(x̄, x̄′),γ ′s(0)〉= Φ
′
s((x̄, x̄

′),γs)≤Φs(x,x′)−Φ(x̄, x̄′) (13)
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for all s ∈ [a,b]. On account of the assumption (A), there exists an α ∈ Xad such

that γ ′s(0) = (α(s)− x̄(s),α ′(s)− x̄′(s)). Using this and (13)- after integrating both

sides of the inequality on the interval [a,b] and applying the theorem of integration

by parts- we get

∫ b

a

(
D2Φ(s, x̄(s), x̄′(s))− ∂

∂ s

(
D3Φ(s, x̄(s), x̄′(s))

))(
α(s)− x̄(s)

)
ds+[

D3Φ(s, x̄(s), x̄′(s))
(
α(s)− x̄(s)

)]b
a ≤∫ b

a
Φ(s,x(s),x′(s))ds−

∫ b

a
Φ(s, x̄(s), x̄′(s))ds = JΦ(x)− JΦ(x̄).

The left-hand side of the inequality is equal to zero if x̄ is a local minimizer. Indeed,

the integral on the left-hand side is equal to zero by virtue of (12). The second term

is equal to zero, because α, x̄ ∈ Xad . The function x ∈ Xad was arbitrarily chosen, so

0≤ JΦ(x)− JΦ(x̄)

for every x ∈ Xad , that is, x̄ is a global minimizer. ut

Example 5.1 (The simplest case of the Almansi-Wirtinger-Friedrichs-Poincaré

inequality family)

The Wirtinger inequality states that

∫ 1

0
x2ds≤ 1

π2

∫ 1

0
x′2ds (14)

for all x ∈ Xad = {x ∈C1([0,1]) | x(0) = x(1) = 0}, and the constant 1
π2 can not be

improved (see [15] or [14]). Probably the first developer was Almansi in 1906 (see

[16]), but in the literature it is called Wirtinger inequality, or Friedrichs-Poincaré

inequality, because it is a special case of Friedrichs inequality, and closely related

to Poincaré inequality. These last two are very important tools in the Sobolev space

theory and also in the theory of PDE (see, e.g., [17] or [18]). In [15] inequality (14)

was proved with the help of Plancherel identity and Hilbert space theory. On the



Local-Global Minimum Property in Unconstrained Minimization Problems 15

other hand, in [14] the proof is an application and also an illustration of the use of

the so called Fields theories. We give here a new proof of this theorem with the aid of

Theorem 5.1.

Following the line of [14], we have to prove that Φλ (s,x,x′) =
x′2−λ 2x2

2 fulfills the

assumptions of Theorem 5.1, where λ is a non-negative parameter. This function is

not convex with respect to its last two variables, so the classical result, which states

that in this case, every local minimizer is also a global one, cannot be applied.

In the light of the previous paragraph, let us consider the following one-parameter

family of problems:

inf
x∈Xad

JΦλ
(x) =

∫ 1

0

x′2−λ 2x2

2
ds. (15)

If λ > π , then the infimum is −∞ (see [14]), so we can assume that 0 ≤ λ ≤ π . The

Euler-Lagrange equation is

x′′+λ
2x = 0.

Obviously, x̄ ≡ 0 is a solution of this equation. Actually this is the only solution if

0≤ λ < π and x(s) = csinπs, c ∈ R if λ = π . In all these cases the infimum of (15)

is 0 (see [14]).

Assume that 0 ≤ λ < π and p ∈ Xad is an arbitrarily fixed polynomial different

from zero. This means that the degree of p is at least two, that is, its derivative p′ is

not zero on ]0,ε[ with a suitable positive ε . Now, we define a ”good” path to p. For

this, let K := sup]0,ε]
p2

p′2 , where K < ∞. We get this from the fact that the degree of p

is higher than the degree of p′. For the same reason, ε can be chosen in such a way

that π2 ≤ 1
K . Let us define now the path

γs(t) := (β (t)p(s),β (t)p′(s)), where β (t) =


√

t, if t ∈ [ε,1];

1√
ε
t, if t ∈ [0,ε[.



16 Pál Burai

At first, we have to prove that

Φs(γs(t))≤ (1− t)Φs(0,0)+ tΦs(p, p′) for all (s, t) ∈ [0,1]2, (16)

where 0 denotes here the constant zero function, which is a polynomial element of

Xad . This inequality is equivalent to the following one.

λ
2(t−β

2(t))p2(s)≤ (t−β
2(t))p′2(s) for all (s, t) ∈ [0,1]2. (17)

If λ = 0, or t ∈ [ε,1]∪{0}, then the above-mentioned inequality is trivially true. As

p ∈ Xad , it is also true when s = 0. Taking into account of these and the assumption

that p′ 6= 0 on ]0,ε[, we have to prove that

λ
2 p2(s)

p′2(s)
≤

t− 1
ε
t2

t− 1
ε
t2

= 1.

However, λ < π, π2 ≤ 1
K , where K := sup]0,ε]

p2

p′2 , that is, the left-hand side of the

previous inequality is less than or equal to 1, so (16) is fulfilled.

We check now whether γ ′s(0) has the required form.

γs(t)− γs(0)
t

=
1√
ε
(p(s), p′(s)), t ∈]0,ε[, s ∈ [0,1].

This means that γ ′s(0) =
1√
ε
(p(s), p′(s)), which implies the suitable form of γ ′s(0) with

α(s) = 1√
ε

p(s).

All in all, we have that

∫ 1

0

p′2−λ 2 p2

2
ds = JΦλ

(p)≥ JΦλ
(0) = 0
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for all polynomial elements of Xad and for all 0≤ λ < π . Taking the limit λ → π , we

can derive from this that

∫ 1

0
p2ds≤ 1

π2

∫ 1

0
p′ds (18)

for all polynomial elements of Xad .

Let x ∈ Xad be an arbitrary function now, then let us define pn := Bn(x), where Bn

denotes the nth Bernstein operator

Bn(x(s)) :=
n

∑
k=0

x
(

k
n

)
Bk,n(s), where Bk,n(s) :=

n

∑
k=0

(
n
k

)
xk(1− x)n−k.

Evidently, pn is a polynomial and p(0) = p(1) = 0, hence pn ∈ Xad . On the other

hand, using the continuous differentiability of x and the theorem of Lorentz (see [19]

or [20]), (pn, p′n) tends to (x,x′) uniformly on [0,1]. Because of the these, we can take

the limit in (18), and we have

∫ 1

0
x2ds≤ 1

π2

∫ 1

0
x′ds

for all x ∈ Xad .

6 Conclusions

Some possible characterizations of the local-gobal minimum property of functions

were presented in the second and in the third sections. Roughly speaking, these results

say that the objective function has the local-global minimum property, if either its

lower -level-set function is nice, or it is convex in some generalized sense. Both these

properties are preserved under an appropriate modification (homeomorphism) of the

domain (Theorems 2.1 and 3.1).

If a function is convex in some generalized sense, then the the corresponding first

order necessary condition becomes sufficient (Theorem 4.1). For this, we need a new
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directional derivative, which fits better to the introduced generalized convexity. This

is included in the fourth section.

The use of the new variational inequality (Theorem 4.1) is confirmed by Theorem

5.1 and by the example in the fifth section.

All in all, the goal of this work is to show, how we can avoid cumbersome second

order conditions, with the help of generalized convexity. Some possible ways for this

were presented, and supported by examples from both finite and infinite dimensional

optimization problems.
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