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DEGREE BOUND FOR SEPARATING INVARIANTS OF

ABELIAN GROUPS

M. DOMOKOS

Abstract. It is proved that the universal degree bound for separating poly-
nomial invariants of a finite abelian group (in non-modular characteristic) is
strictly smaller than the universal degree bound for generators of polynomial
invariants, unless the goup is cyclic or is the direct product of r even order
cyclic groups where the number of two-element direct factors is not less than
the integer part of the half of r. A characterization of separating sets of mono-
mials is given in terms of zero-sum sequences over abelian groups.

1. Introduction

Let G be a finite group and F an algebraically closed field. A G-module is a
finite dimensional F-vector space V endowed with an action of G on V via linear
transformations. In other words, the G-module consists of the pair (V, ρ) where ρ
is a group homomorphism G → GL(V ). The coordinate ring O(V ) of V contains
the subalgebra

O(V )G := {f ∈ O(V ) : f(gv) = f(v) ∀v ∈ V, ∀g ∈ G}

of G-invariants. For f ∈ O(V ) and g ∈ G write g · f ∈ O(V ) for the function v 7→
f(g−1v). This way we get an action of G on O(V ) via F-algebra automorphisms,
and O(V )G = {f ∈ O(V ) : g · f = f ∀g ∈ G}. Choosing a basis x1, . . . , xk in
the dual space V ∗ of V , the coordinate ring O(V ) is identified with the polynomial
algebra F[x1, . . . , xk], on which G acts via linear substitutions of the variables.

Following Definition 2.3.8 in [5], we call subset S ⊂ O(V )G a separating set
of invariants if whenever for v, w ∈ V we have f(v) = f(w) for all f ∈ S, then
h(v) = h(w) for all h ∈ O(V )G. Clearly if v and w belong to the same G-orbit in
V , then h(v) = h(w) holds for all h ∈ O(V )G. It is well known that the finiteness
of G implies the converse as well: if v and w have different G-orbits, then there
exists an h ∈ O(V )G with h(v) 6= h(w). So S ⊂ O(V )G is a separating set if and
only if for any v, w ∈ V with Gv 6= Gw there is an f ∈ S such that f(v) 6= f(w).
For a survey on separating sets of invariants see [19].

Since the G-action preserves the standard grading on F[x1, . . . , xk], the alge-
bra O(V )G is generated by homogeneous elements. Write β(G, V ) (respectively
βsep(G, V )) for the minimal positive integer k such that O(V )G contains a generat-
ing set (respectively separating set) consisting of homogeneous elements of degree
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2 M. DOMOKOS

at most k. Moreover, set

β(G) := sup
V

{β(G, V )} and βsep(G) := sup
V

{βsep(G, V )}

where the supremum above is taken over all G-modules V . The number βsep(G)
was introduced and studied in [20], inspired by the number β(G) first appearing
in [26]. Obviously βsep(G, V ) ≤ β(G, V ) and hence βsep(G) ≤ β(G). When the
characteristic of F does not divide the group order |G|, we have β(G) ≤ |G| (see
[23] for char(F) = 0 and [10],[11] for positive non-modular characteristic). One nice
feature of βsep(G) is that the inequality βsep(G) ≤ |G| holds also in the modular
case char(F) | |G| as well, see Corollary 3.9.14 in [5]. In comparison we mention
that when char(F) divides |G| we have β(G) = ∞ by [25]. However, as far as we
know, not much is said in the literature about the following question:

Question 1.1. Is βsep(G) typicallly strictly smaller than β(G) in the non-modular
case char(F) ∤ |G|?

A difficulty in answering Question 1.1 is that the exact value of the Noether
number is known only for a very limited class of groups, see for example [2], [3], [4].
It is shown in [1] that for the non-abelian semidirect product Cp ⋊C3 (where p is a
prime) and char(F) = 0 we have β(Cp⋊C3) = p+2 whereas βsep(Cp⋊C3) = p+1.

In the present paper we shall deal with abelian groups. Our main result Theo-
rem 3.10 implies that for abelian groups the answer to Question 1.1 is yes. More
precisely, Corollary 3.11 asserts that when G is abelian, βsep(G) = β(G) implies
that G is cyclic or G is the direct product of r cyclic groups of even order, where
at least ⌊ r

2⌋ of the cyclic factors has order 2.
A interesting special feature of the case of abelian groups is that the investigation

of separating invariants can be tied up with the theory of zero-sum sequences over
abelian groups. Given a finite abelian group G (written additively) and an ordered
sequence a1, . . . , ak of elements of G (repetition is allowed) set

G(a1, . . . , ak) := {(m1, . . . ,mk) ∈ Zk :
∑

miai = 0 ∈ G}.

This is a subgroup of the free abelian group Zk. It contains the submonoid

B(a1, . . . , ak) := Nk
0 ∩ G(a1, . . . , ak).

Denote by ei the ith standard basis vector in Zk. Clearly ordG(ai)ei ∈ B(a1, . . . , ak),
where ordG(ai) is the order of ai in G. Since for any m ∈ G(a1, . . . , ak) there exist
non-negative integers t1, . . . , tk ∈ N0 with m +

∑
tiordG(ai)ei ∈ B(a1, . . . , ak), it

follows that G(a1, . . . , ak) is the quotient group of the monoid B(a1, . . . , ak). In par-
ticular, the abelian group G(a1, . . . , ak) is generated by its submonoid B(a1, . . . , ak).
In the special case when a1, . . . , ak are distinct and {a1, . . . , ak} = G, we recover
the monoid B(G) of zero-sum sequences over G, a well studied object in arithmetic
combinatorics. In particular, the Davenport constant D(G) is defined as the maxi-

mal length of an atom in the monoid B(G), where for s ∈ B(G) ⊂ N|G|
0 the length

of s is |s| =
∑

g∈G sg. More generally, the study of the monoid B(G0) of zero-sum
sequences over an arbitrary subset G0 of G has an extensive literature, see Propo-
sition 2.5.6 in [15] for the first abstract algebraic properties of the monoid B(G0),
or [24] for recent combinatorial work on D(G0) (for some very special subset G0).
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From now on we assume that G is a finite abelian group and the characteristic
of the base field F does not divide |G|. Then V decomposes as a direct sum

V = V1 ⊕ · · · ⊕ Vk

of 1-dimensional G-modules. Accordingly the variables in O(V ) = F[x1, . . . , xk] will
be chosen to be G-eigenvectors, so there exist characters χi ∈ Ĝ = hom(G,F×) such
that g · xi = χi(g)xi for i = 1, . . . , k. For m ∈ Nk

0 write xm = xm1

1 · · ·xmk

k . Each

monomial spans a G-invariant subspace in O(V ), and g · xm = (
∏k

i= χi(g)
mi)xm.

It follows that O(V )G is spanned by G-invariant monomials, namely

(1) O(V )G =
⊕

m∈B(χ1,...,χk)

Fxm.

Note that here we use the notation introduced in the above paragraph for the finite

abelian group Ĝ which is a isomorphic to G. A consequence of (1) is the equality

(2) β(G) = D(G)

which was used in [26], and later in [9] or in [4]. In view of the above connection
between the Noether number β(G) and the Davenport constant D(G) it is natural
to ask for the meaning of βsep(G) in terms of zero-sum sequences. This is the second
motivation of the present paper. In Theorem 2.1 we provide a characterization of
separating sets of monomials and zero-sum sequences over G, yielding a characteri-
zation of βsep(G) purely in terms of zero-sum sequences over G (see Corollary 2.6).
This is done in Section 2, and Corollary 2.6 is used in Section 3 to derive our main
result Theorem 3.10.

We finish the introduction by mentioning some prior works related to separating
invariants of finite diagonal groups. Namely, a separating set of monomials in
O(V )G is constructed in Proposition 5 of [22]. An algorithm to produce invariant
monomials that generate the field of rational invariants is described in [18]. The
focus of present paper is on degree bounds for separating invariants, and therefore it
is sufficient to deal with invariant monomials. A different current research direction
is the study of the minimal cardinality of a separating system, see for example [8].

2. Characterization of separating sets of monomials

Let G be a finite abelian group, and let V = V1 ⊕ · · ·⊕Vk be a k-dimensional G-
module as in Section 1, soO(V ) = F[x1, . . . , xk] with g·xi = χi(g)xi for i = 1, . . . , k.
For m ∈ Nk

0 set supp(m) := {i ∈ {1, . . . , k} : mi 6= 0} ⊂ {1, . . . , k}. Similarly, when
xm is a monomial, we shall use the notation supp(xm) for supp(m). Given a subset
J ⊂ {1, . . . , k} and a set M ⊂ Nk

0 we write MJ := {m ∈M : supp(m) ⊂ J}.
The Helly dimension κ(G) of G was defined in [6] as the minimal positive integer

k such that any set of cosets in G with empty intersection contains a subset of at
most k cosets with empty intersection. It was shown in [7] that κ(G) is one bigger
than the minimal number of generators of the finite abelian group G (the rank of
G).

Theorem 2.1. For a subset M ⊂ B(χ1, . . . , χk) the following are equivalent:

(i) {xm : m ∈M} is a separating subset in O(V )G.
(ii) For all subsets {j1 < · · · < js} = J ⊂ {1, . . . , k}, the abelian group

G(χj1 , . . . , χjs) is generated by MJ .
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(iii) For all subsets {j1 < · · · < js} = J ⊂ {1, . . . , k} with |J | ≤ κ(G), the
abelian group G(χj1 , . . . , χjs) is generated by MJ .

The proof will be split into a couple of statements. Consider the G-module
direct summand VJ :=

⊕
j∈J Vj of V , where J ⊂ {1, . . . , k}. Its coordinate ring

O(VJ ) is an algebra retract of O(V ): it is the subalgebra generated by the variables
{xj : j ∈ J}. For v ∈ V we write vJ for the component of V in the direct summand
VJ of V . The statement and proof of Lemma 2.2 below remain valid when the finite
group G is not assumed to be abelian and the direct summands Vj are not assumed
to be 1-dimensional.

Lemma 2.2. Assume that k ≥ κ(G) and for all J ⊂ {1, . . . , k} with |J | = κ(G)
we are given a separating subset SJ in O(VJ )

G. Then their union S :=
⋃

J SJ is a
separating subset in O(V )G.

Proof. Suppose that for v, w ∈ V we have f(v) = f(w) for all f ∈ S. Then in
particular, for a fixed J ⊂ {1, . . . , k} with |J | = κ(G) we have f(vJ ) = f(wJ )
for all f ∈ SJ . Since SJ is a separating subset in O(VJ )

G, we conclude that
GvJ = GwJ . This holds for all J ⊂ {1, . . . , k} with |J | = κ(G), hence by Lemma
4.1 in [7] we get that Gv = Gw. �

Proposition 2.3. Let M be a subset of B(χ1, . . . , χk) such that for all J = {j1 <
· · · < js} ⊂ {1, . . . , k} the abelian group G(χj1 , · · · , χjs) is generated by MJ . Then
{xm : m ∈M} is a separating set in O(V )G.

Proof. Take v, w ∈ V such that xm(v) = xm(w) for all m ∈ M . The assumption
says in particular that M{j} generates G(χj) for j = 1, . . . , d. Since G(χj) is the
subgroup of Z generated by ord

Ĝ
(χi), it follows that some positive power of xj

belongs to {xm : m ∈ M}. Thus xj(v) = 0 if and only if xj(w) = 0, so supp(v) =
supp(w) =: J . Take an arbitrary G-invariant monomial xn. If supp(n) * J ,
then xn(v) = 0 = xn(w). Otherwise supp(n) ⊆ J = {j1 < · · · < js}. Since
MJ generates G(χj1 , . . . , χjs), there exist u1, . . . , uk, t1, . . . , tl ∈ MJ such that n =
u1 + · · · + uk − t1 − · · · − tl ∈ Zs, implying xnxt1 . . . xtl = xu1 . . . xuk . By our
assumption on v, w we have ui(v) = ui(w) for i = 1, . . . , k and ti(v) = ti(w) 6= 0
for i = 1, . . . , l. It follows that

xn(v) =
xu1(v) . . . xuk(v)

xt1(v) . . . xtl(v)
=
xu1(w) . . . xuk(w)

xt1(w) . . . xtl(w)
= xn(w).

Thus we proved that xn(v) = xn(w) holds for an arbitrary G-invariant monomial
xn, implying in turn that h(v) = h(w) for any h ∈ O(V )G. �

Proposition 2.4. Let M be a subset of B(χ1, . . . , χk) such that {xm : m ∈ M} is
a separating set in O(V )G. Then the abelian group G(χ1, . . . , χk) is generated by
M .

Proof. Since ei ∈ V can be separated from 0 by xm for some m ∈ M , a posi-
tive power xni

i belongs to {xm : m ∈ M} for each i = 1, . . . , d. Obviously it is
sufficient to prove the statement when G acts faithfully on V , so G ⊂ GL(V )

and hence Ĝ = 〈χ1, . . . , χk〉. On the other hand 〈χ1, . . . , χk〉 ∼= Zk/G(χ1, . . . , χk),

as G(χ1, . . . , χk) was defined as the kernel of the natural surjection Zk → Ĝ with
ei 7→ χi. Denote by H the abelian group Zk/ZM . This group is finite, as niei ∈M ,

hence it is isomorphic to its character group Ĥ . Therefore we may choose generators
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ψ1, . . . , ψk ∈ Ĥ such that the natural surjection Zk → Ĥ , ei 7→ ψi (i = 1, . . . , d)
has kernel MZ. For h ∈ H let ρ(h) ∈ GL(V ) be the linear transformation given

by ρ(h)ξi = ψi(h
−1)ξi where ξi spans the summand Vi in V =

⊕k

i=1 Vi. Then

ρ : H → GL(V ) is an injective group homomorphism. Note that for any q ∈ Nk
0 we

have xq(ρ(h)(ξ1 + · · ·+ ξk)) =
∏k

i=1 ψi(h
−1)qi . By the choice of ψi, for any m ∈M

and any h ∈ H and we have
∏k

i=1 ψi(h
−1)mi = 1. Therefore we have

xm(ρ(h)(ξ1 + · · ·+ ξk)) = 1

for all m ∈ M and h ∈ H . On the other hand xm(ξ1 + · · · + ξk) = 1 as well.
Since {xm : m ∈ M} is a separating set in O(V )G, we conclude that the H-orbit
of ξ1 + · · · + ξk is contained in the G-orbit of ξ1 + · · · + ξk. Thus for each h ∈ H
there exists a g ∈ G such that ρ(h)(ξ1 + · · · + ξk) = g(ξ1 + · · · + ξk), implying in
turn that ρ(h)ξi = gξi for each basis vector ξi ∈ V , and hence ρ(h) = g. So we
have H ∼= ρ(H) ⊂ G ⊂ GL(V ). Therefore ψi = χi ◦ ρ for i = 1, . . . , k, and it

follows that the natural surjection Zk → Ĥ , ei 7→ ψi factors through the natural

surjection Zk → Ĝ, ei 7→ χi, so ZM ⊃ G(χ1, . . . , χk). Now as M was a subset
of B(χ1, . . . , χk) ⊂ G(χ1, . . . , χk), the reverse inclusion ZM ⊂ G(χ1, . . . , χk) also
holds, forcing the equality ZM = G(χ1, . . . , χk). �

Lemma 2.5. If {xm : m ∈ M} is a separating set in O(V )G, then for all sub-
sets J ⊂ {1, . . . , k} the monomials {xm : m ∈ MJ} constitute a separating set in
O(VJ )

G.

Proof. We claim that if S is a separating set inO(V )G, then its restriction {f |VJ
: f ∈

S} to VJ is a separating set in O(VJ )
G. Indeed, suppose h(v) 6= h(w) for some

v, w ∈ VJ and h ∈ O(VJ )
G. Since the algebra O(VJ )

G is contained in O(V )G,
it follows that there exists an f ∈ S with f(v) 6= f(w), so f |VJ

separates v and
w. This proves the claim. Now observe that if m does not belong to MJ , then
the monomial xm vanishes identically on VJ . Consequently the restriction to VJ of
{xm : m ∈M} is contained in {xm : m ∈MJ}∪{0}, and our statement follows. �

Proof of Theorem 2.1. (i)⇒(ii): Suppose that {xm : m ∈ M} is a separating set
in O(V )G, and take a subset J = {j1 < · · · < js} ⊂ {1, . . . , k}. By Lemma 2.5
{xm : m ∈MJ} is a separating set in O(VJ )

G. Applying Proposition 2.4 for VJ and
MJ we conclude that the abelian group G(χj1 , . . . , χjs) is generated by MJ .

(ii)⇒ (iii): Trivial.
(iii)⇒(i): Suppose that (iii) holds. Then for any subset J = {j1 < · · · <

js} ⊂ {1, . . . , k} with s = |J | ≤ κ(G), the set MJ generates the abelian group
G(χj1 , . . . , χjs), hence by Proposition 2.3 {xm : m ∈ MJ} is a separating set in
O(VJ )

G. If d ≤ κ(G), then we may take J = {1, . . . , k} and we are done. Otherwise
the union of the {xm : m ∈ MJ} as J ranges over the subsets of {1, . . . , k} of size
κ(G) is a separating set in O(V )G by Lemma 2.2. �

Corollary 2.6. The number βsep(G) is the minimal positive integer d such that for
any positive integer s ≤ κ(G) and any finite sequence a1, . . . , as of distinct elements
of G the abelian group G(a1, . . . , as) is generated by {m ∈ B(a1, . . . , as) : |m| ≤ d}.

Proof. For a finite abelian group H denote by δ(H) (respectively δ0(H)) the mini-
mal positive integer d such that for any s ≤ κ(H) and any sequence a1, . . . , as of not
necessarily distinct (respectively distinct) elements of H the group G(a1, . . . , as) is
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generated by the m ∈ B(a1, . . . , as) with |m| ≤ d. Obviously δ0(H) ≤ D(H) ≤ |H |.
We claim that δ(H) = δ0(H). Indeed, the inequality δ0(H) ≤ δ(H) holds by
definition of δ and δ0. To see the reverse inequality take an arbitrary sequence
a1, . . . , as ∈ H , s ≤ κ(H). By induction on s we show that G(a1, . . . , as) is gener-
ated by {m ∈ B(a1, . . . , as) : |m| ≤ δ0(H)}. If a1, . . . , as are distinct, then we are
done by definition of δ0. Otherwise suppose a1 = a2. Clearly δ0(H) ≥ ordH(a1) =
q, and n := (1, q − 1, 0, . . . , 0) ∈ B(a1, . . . , as) satisfies |n| ≤ δ0(H). Moreover,
given any m ∈ G(a1, . . . , as), replace m by m̃ := m − m1n. Then m̃ belongs to
G(a2, . . . , as) (viewed as the subset of G(a1, . . . , as) consisting of the elements whose
first coordinate is zero). By the induction hypothesis m̃ belongs to the group gener-
ated by {m ∈ B(a2, . . . , as) : |m| ≤ δ0(H)}, implying in turn that m belongs to the
group generated by {m ∈ B(a1, . . . , as) : |m| ≤ δ0(H)}. This shows δ(H) = δ0(H).

Now take a G-module V with the notation of the beginning of Section 2. For any

subset {i1 < · · · < is} ⊂ {1, . . . , k} with s ≤ κ(Ĝ) the abelian group G(χi1 , . . . , χis)

is generated by the elements m ∈ B(χi1 , . . . , χis) with |m| ≤ δ(Ĝ). It follows by

Theorem 2.1 that {xm : m ∈ B(χ1, . . . , χk), |m| ≤ δ(Ĝ)} is a separating set in

O(V )G. Thus βsep(G, V ) ≤ δ(Ĝ). Since V was an arbitrary G-module, we deduce

the inequality βsep(G) ≤ δ(Ĝ). Note finally that the isomorphism G ∼= Ĝ implies

δ(G) = δ(Ĝ). Combining with the first paragraph we obtain βsep(G) ≤ δ0(G).
To show the reverse inequality βsep(G) ≥ δ0(G), take a sequence χ1, . . . , χk of

characters of G such that k ≤ κ(Ĝ) and the abelian group G(χ1, . . . , χk) is not gen-

erated by {m ∈ B(χ1, . . . , χk) : |m| < δ0(Ĝ)}. Such a sequence χ1, . . . , χk exists by

definition of δ0(Ĝ). It follows by Theorem 2.1 that {xm : m ∈ B(χ1, . . . , χk), |m| <
δ0(G)} is not a separating set in F[x1, . . . , xk]G = O(V )G, where the G-module V is
determined by g ·xi = χi(g)xi for i = 1, . . . , k. Taking into account (1) we conclude
βsep(G, V ) ≥ δ0(G), implying in turn βsep(G) ≥ δ0(G). �

3. Degree bounds

We fix the following notation for the whole Section. Decompose our (additively
written) abelian group G as a direct product of cyclic groups

G = Cn1
⊕ · · · ⊕ Cnr

where nr | nr−1 | · · · | n1 and nr > 1, so in particular n1 is the exponent of G and
r is the rank (the minimal number of generators) of G, hence the Helly dimension
of G is κ(G) = r + 1. Set

d
∗(G) =

r∑

i=1

(ni − 1).

It is well known that

(3) d
∗(G) + 1 ≤ D(G)

where D(G) is the Davenport constant of G (cf. Section 1). Classical results in
arithmetic combinatorics assert that we have equality in (3) if G is a p-group or G
has rank two. On the other hand there are some infinite sequences of finite abelian
groups for which the inequality in (3) is known to be strict. Beyond that it is not
well understood when equality holds in (3). We refer to the surveys [14] and [13] for
the above results and for references on zero-sum sequences in finite abelian groups.

We shall need the following technical and elementary lemma.
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Lemma 3.1. Let (n1, . . . , nr), (m1, . . . ,mr) ∈ Nr be r-tuples of positive integers
such that the following divisibility conditions hold for them:

mi | ni for i = 1, . . . , r, ni+1 | mi for i = 1, . . . , r − 1.

Then the following inequality holds:

(4)

r∑

i=1

(ni − 1) ≥

r∑

i=1

(mi − 1) +

r∏

i=1

ni

mi

− 1.

Moreover, equality holds in (4) if and only if there exists a j ∈ {1, 2, . . . , r} such
that m1 = n1,,. . . ,mj = nj, mj+1 = nj+2, mj+2 = nj+3, ... (where we mean that
nr+1 = 1).

Proof. When r = 1, (4) becomes n1 − 1 ≥ (m1 − 1) + n1

m1

− 1, which is equivalent

to the obvious (m1 − 1)( n1

m1

− 1) ≥ 0. Assume from now on that r > 1. If n1 = m1,

then we may omit them and deal with the sequences (n2, . . . , nr) and (m2, . . . ,mr),
since the inequality (4) for these shorter sequences is obviously equivalent to the
corresponding inequality for the original sequences. So from now on we assume
that n1 > m1, that is, m1 is a proper divisor of n1.

The conditions imply that
∏r

i=1
ni

mi
divides n1, and

∏r
i=1

ni

mi
= n1 if and only if

mr = 1, nr = mr−1, . . . , n2 = m1. Assume first that these equalities hold. Then
we have

r∑

i=1

(ni − 1) =

r∏

i=1

ni

mi

− 1 +

r∑

i=2

(ni − 1) =

r∏

i=1

ni

mi

− 1 +

r−1∑

i=1

(mi − 1)

and taking into account that mr = 1, we see that (4) holds with equality in this
case. Suppose finally that

∏r

i=1
ni

mi
is a proper divisor of n1. Let p be a minimal

prime divisor of n1. Then
∏r

i=1
ni

mi
≤ n1

p
and m1 ≤ n1

p
. Consequently we have

n1 − 1 =
n1

p
· p− 1 ≥

n1

p
+
n1

p
− 1 ≥

r∏

i=1

ni

mi

+m1 − 1 >

r∏

i=1

ni

mi

− 1 + (m1 − 1).

Since for i = 2, . . . r we have ni − 1 ≥ mi − 1, we conclude (4). �

Lemma 4.1 in [17] (see also Exercise 1.6 in [16]) asserts that d
∗(G) ≥ d

∗(H) +
d
∗(G/H) for any subgroup H of G. In Lemma 3.2 we provide a detailed proof of

the special case when G/H is cyclic, yielding also a characterization of the case
when equality holds.

Lemma 3.2. Let H be a proper subgroup of G such that the factor group G/H
is cyclic. Then d

∗(G) ≥ d
∗(H) + [G : H ] − 1, with equality only if rank(H) =

rank(G)− 1, and H ∼=
⊕

i∈{1,...,r}\{j} Cni
for some j ∈ {1, . . . , r}.

Proof. Take a finite abelian p-group A. It is isomorphic to Cpλ1 ⊕ · · ·⊕Cpλ
k
where

λ1 ≥ · · · ≥ λk > 0. We call the partition λ = (λ1, . . . , λk) the type of A. Any
subgroup B of A has type µ = (µ1, . . . , µk), µ1 ≥ · · · ≥ µk ≥ 0, where µi ≤ λi for
i = 1, . . . , k. Moreover, A has a subgroup B of type µ such that the factor group
A/B is cyclic (necessarily of order pd, where d :=

∑
(λi − µi)) if and only if the

Littlewood-Richardson coefficient cλ
µ,(d) is non-zero (see for example II.4.3 in [21]),

and by Pieri’s rules (see for example I.5.16 in [21] ) this happens if and only if the
additional inequalities µ1 ≥ λ2, µ2 ≥ λ3,, . . . , µr−1 ≥ λr hold as well.
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Note that both G andH are the direct products of their unique Sylow subgroups.
Therefore it follows from the above paragraph that the subgroup H is isomorphic
to H ∼= Cm1

⊕· · ·⊕Cmr
where 1 ≤ mr | mr−1 | · · · | m1, and mi | ni for i = 1, . . . , r.

Moreover, since G/H is cyclic, for any prime p the factor of the Sylow p-subgroup
of G modulo the Sylow p-subgroup of H is cyclic, so again by the above paragraph
the conditions ni+1 | mi for i = 1, . . . , r − 1 hold as well. This means that the
assumptions of Lemma 3.1 hold for the r-tuples (n1, . . . , nr), (m1, . . . ,mr). Thus
by Lemma 3.1 the inequality (4) holds, which is the same as the desired inequality
in our statement. �

Given the finite abelian groups G,H,K, there exists a subgroup G1 of G such
that G1

∼= H and G/G1
∼= K if and only if there exists a subgroup G2 of G with

G2
∼= K and G/G2

∼= H . Therefore Lemma 3.2 has its dual form as well:

Lemma 3.3. Let K be a nontrivial cyclic subgroup of G. Then d
∗(G) ≥ d

∗(G/K)+
|K|−1, with equality only if rank(G/K) = rank(G)−1, and for some j ∈ {1, . . . , r}
we have G/K ∼=

⊕
i∈{1,...,r}\{j} Cni

.

Corollary 3.4. Let a1, . . . , ak be a sequence of elements generating G, and for
i = 1, . . . , k denote by di the order of ai modulo the subgroup 〈a1, . . . , ai−1〉 (so

d1 . . . dk = |G|). Then d
∗(G) ≥

∑k

i=1(di − 1), with equality only if the multi-
set {n1, . . . , nr} coincides with the multiset {di1 , . . . , dir} obtained by omitting all
occurrances of 1 in the sequence d1, . . . , dk.

Proof. Apply induction for k. The case k = 1 is obvious, since then G is cyclic
of order d1, so r = 1, n1 = d1, and d

∗(G) = d1 − 1 = n1 − 1. Assume next that
k > 1, and set H := 〈a1, . . . , ak−1〉. If H = G, then dk = 1, d∗(G) = d

∗(H), and
the statement follows by the induction hypothesis applied to H . If H is a proper
subgroup of G, then dk > 1. By Lemma 3.2 we have d

∗(G) ≥ d
∗(H) + dk − 1,

with equality only if H ∼=
⊕

i∈{1,...,r}\{j} Cni
for some j ∈ {1, . . . , r}, implying also

nj = dk. Now we may conclude by applying the induction hypothesis for H and
the sequence a1, . . . , ak−1. �

We shall use the following terminology. Given an ordered sequence a1, . . . , ak ∈
G of elements generating G, any b ∈ G can be uniquely written as

(5) b =

k∑

i=1

liai, 0 ≤ li ≤ di − 1 for i = 1, . . . , k

where di denotes the smallest positive integer d such that dai belongs to the sub-
group 〈a1, . . . , ai−1〉. Indeed, consider the chain

{0} ⊂ 〈a1〉 ⊂ 〈a1, a2〉 ⊂ · · · ⊂ 〈a1, . . . , ak〉 = G

of subgroups. It has cyclic factors of order d1, . . . , dk. The factor G/〈a1, . . . , ak−1〉
is generated by the coset of ak, hence b+ 〈a1, . . . , ak−1〉 = l(ak+ 〈a1, . . . , ak−1〉) for
a unique 0 ≤ l ≤ dk − 1. Now continue in the same way with the element b− lak in
the group 〈a1, . . . , ak−1〉. We shall refer to (5) as the normal form of b with respect

to a1, . . . , ak, and we call
∑k

i=1(di − 1− li) the deficit of b.

Lemma 3.5. Let a1, . . . , ak be an arbitrary sequence of elements in G, and denote
by dk the order of ak modulo the subgroup 〈a1, . . . , ak−1〉. Then there exists an
m = (m1, . . . ,mk) ∈ B(a1, . . . , ak) such that mk = dk and |m| = m1 + · · ·+mk ≤
d
∗(G) + 1.
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Proof. The group 〈a1, . . . , ak−1〉 contains dkak. Set m := (l1, . . . , lk−1, dk) where

−dkak =
∑k−1

i=1 liai is the normal form of −dkak with respect to a1, . . . , ak−1. Then

m belongs to B(a1, . . . , ak), and |m| ≤
∑k−1

i=1 (di − 1) + dk ≤ d
∗(G) + 1, where the

last inequality holds by Corollary 3.4. �

Lemma 3.6. Suppose that a1, . . . , ak are distinct non-zero elements in G, and
denote by di the order of ai modulo 〈a1, . . . , ai−1〉 for i = 1, . . . , k. If there is no
m ∈ B(a1, . . . , ak) such that |m| ≤ d

∗(G) and mk = dk, then either k = 1 and
G = 〈a1〉, or G = 〈a1, . . . , ak−1〉, the multiset {d1, . . . , dk−1} coincides with the
multiset {n1, . . . , nr} (so in particular k − 1 = r is the rank of G), and the deficit
of −ak with respect to a1, . . . , ak−1 is zero.

Proof. Suppose that k > 1 and for the m constructed in the proof of Lemma 3.5
we have |m| = d

∗(G) + 1, so

(6) − dkak =
k−1∑

i=1

(di − 1)ai

and d
∗(G) =

∑k

j=1(dj − 1). Assume first that for some i ∈ {1, . . . , k − 1} we have

di = 1. Then ai ∈ 〈a1, . . . , ai−1〉, so we may write

(7) ai = l1a1 + · · ·+ li−1ai−1

in its normal form with respect to a1, . . . , ai−1. Equations (6) and (7) imply

−dkak =
i−1∑

j=1

(dj − 1− lj) + ai +
k−1∑

q=i+1

(dq − 1)aq.

Settingm′ := (d1−1−l1, . . . , di−1−1−li−1, 1, di+1−1, . . . , dk−1−1, dk) we get that
m′ ∈ B(a1, . . . .ak). Moreover, as a1, . . . , ai are distinct, we have that l1+· · ·+li−1 ≥

2, hence |m′| =
∑k

i=1(di − 1) + 2 − (l1 + · · · + li−1) ≤
∑k

j=1(dj − 1) = d
∗(G). So

we found an m′ ∈ B(a1, . . . , ak) with m
′
k = dk and |m′| ≤ d

∗(G).
It remains to deal with the case when d1, . . . , dk−1 are all greater than 1. Suppose

first that H := 〈a1, . . . , ak−1〉 ( G. If dk = 1, then 〈a1, . . . , ak〉 = H ( G, and by
Lemma 3.5 there exists an m ∈ B(a1, . . . , ak) with mk = dk and |m| ≤ d

∗(H) +
1 ≤ d

∗(G). If di > 1 for all i = 1, . . . , k, by Corollary 3.4 the equality d
∗(G) =∑k

j=1(dj − 1) implies that the multiset {d1, . . . , dk} coincides with {n1, . . . , nr}. In

particular, k = r is the rank of G. However, since d1 is the order of a1, equation (6)
implies that a1 is contained in 〈a2, . . . , ak〉. Thus G can be generated by k − 1 =
r − 1 elements. This is a contradiction, so this case does not occur. Finally, if

〈a1, . . . , ak−1〉 = G, then dk = 1, and (6) becomes −ak =
∑k−1

i=1 (di − 1)ai, so the

deficit of −ak is zero. Moreover, the equality d
∗(G) =

∑k

j=1(dj−1) =
∑k−1

j=1 (dj−1)

implies by Corollary 3.4 that the multisets {d1, . . . , dk−1} and {n1, . . . , nr} coincide,
finishing the proof. �

Lemma 3.7. Let a1, . . . ., ak be a sequence of elements of a non-cyclic group G,
and denote by gi the order of ai modulo the subgroup 〈a1, . . . , ai−1, ai+1, . . . , ak〉.
Assume that the following hold:

(a) There does not exist an m = (m1, . . . ,mk) ∈ B(a1, . . . , ak) with |m| ≤
d
∗(G) such that mi = gi for some i ∈ {1, . . . , k}.
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(b) There does not exist a pair m′,m′′ ∈ B(a1, . . . , ak) with |m′| ≤ d
∗(G),

|m′′| ≤ d
∗(G), such that m′

i = 2 and m′′
i = 3 for some i ∈ {1, . . . , k}.

Then 2 = ns+1 = · · · = nr where r = 2s or r = 2s− 1.

Proof. No element in {a1, . . . , ak} is zero, since ai = 0 implies gi = 1, and ei ∈
B(a1, . . . , ak) where ei is the ith standard basis vector in Zk, hence (a) implies
d
∗(G) < 1, a contradiction. The elements a1, . . . , ak are distinct. Indeed, assume

to the contrary that say a1 = a2. Then denoting by d the order of a1, we have that
g1 = 1 and m = (1, d−1, 0, . . . , 0) ∈ B(a1, . . . , ak), hence by (a) we have d∗(G) < d,
a contradiction (recall that G is not cyclic).

Thus a1, . . . , ak are distinct non-zero elements of G, and Lemma 3.6 applies for
them with an arbitrary ordering of the elements in the sequence. In particular, by
condition (a) and Lemma 3.6 the rank of G is k− 1, and any k− 1 of the elements
a1, . . . , ak generate G. Furthermore, after an arbitrary renumbering of the elements
in the set {a1, . . . , ak}, the deficit of −ak with respect to a1, . . . , ak−1 is 0, and the
multiset {d1, . . . , dk−1} coincides with {n1, . . . , nr}, where di stands for the order
of ai modulo 〈a1, . . . , ai−1〉.

We claim that for any i ∈ {1, . . . , k} with 2ai 6= 0 there exists a j 6= i such that
2ai = 2aj. Indeed, suppose for example that 2ak 6= 0. Recall that the deficit of
−ak with respect to a1, . . . , ak−1 is zero, so

(8) − ak =
k−1∑

i=1

(di − 1)ai.

Since −ak 6= −2ak, the deficit of −2ak is different from the deficit of −ak, so the
deficit of −2ak is non-zero. Also ak is different from each of a1, . . . , ak−1, implying
that the deficit of −2ak is not 1. Consequently, the deficit of −2ak is at least 2,
hence m′ := (l1, . . . , lk−1, 2) where −2ak = l1a1+ · · ·+ lk−1ak−1 is the normal form
of −2ak satisfies m′

k = 2 and |m′| = 2 + l1 + · · · + lk−1 ≤ d
∗(G). It follows by

assumption (b) that the deficit of −3ak is at most 2. It can not be 0, the deficit
of −ak, since 2ak 6= 0, and it can not be 1, otherwise 2ak coincides with one of
a1, . . . , ak−1, say 2ak = a2, and therefore G = 〈a2, a3, . . . , ak〉 = 〈a3, . . . , ak〉 is
generated by k − 2 = r − 1 elements, a contradiction. Thus the deficit of −3ak is

2. There are two possible cases: −3ak = (d1 − 2)a1 + (d2 − 2)a2 +
∑k−1

i=3 (di − 1)ai

or −3a3 = (d1 − 3)a1 + (d2 − 1)a2 +
∑k−1

i=3 (di − 1)ai (with a suitable ordering of
a1, . . . , ak−1). Comparing this with (8) in the first case we deduce 2ak = a1 + a2,
hence −a1 = −2ak + a2. The latter equality shows that the deficit of −a1 with
respect to ak, a2, a3, . . . , ak−1 can not be zero, a contradiction. Thus this case does

not occur. The only remaining possibility is that −3ak = (d1−3)a1+
∑k−1

i=2 (di−1)ai
(with a suitable ordering of a1, . . . , ak−1). Comparing this with (8) we conclude
2ak = 2a1. So the claim is proved.

It follows from the above claim that the set {2a1, . . . , 2ak} contains at most k
2

non-zero elements, hence the rank of the group 〈2a1, . . . , 2ak〉 = {2a : a ∈ G} is at
most r+1

2 . On the other hand the rank of {2a : a ∈ G} equals |{i ∈ {1, . . . , r} : ni >

2}|. Consequently we have |{j ∈ {1, . . . , r} : nj = 2}| ≥ r−1
2 . �

Proposition 3.8. Suppose that G = Cn1
⊕· · ·⊕Cns

⊕C2⊕· · ·⊕C2 where r = 2s−1
or r = 2s, so 2 = ns+1 = · · · = nr, and 2 | ns | ns−1 | · · · | n1. Denote by
e1, . . . , es, f1, . . . , fr−s the generators of the direct factors of G, thus the order of ei
is ni for i = 1, . . . , s, and the order of fj is 2 for j = 1, . . . , r − s. Set a1 = e1,
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a2i = ei + fi and a2i+1 = fi + ei+1 for i = 1, . . . , s− 1, and a2s = es if r = 2s− 1
whereas a2s = es+fs, a2s+1 = fs if r = 2s. Then the abelian group G(a1, . . . , ar+1)
is not generated by {m ∈ B(a1, . . . , ar+1) : |m| ≤ d

∗(G)}.

Proof. The element a1 is contained in the group 〈a2, . . . , ar+1〉, whence there exists
an element u ∈ B(a1, . . . , ar+1) with u1 = 1. On the other hand we shall show
that for any m ∈ B(a1, . . . , ar+1) with |m| ≤ d

∗(G) we have that m1 is even,
and consequently u is not contained in the subgroup of G(a1, . . . , ar+1) generated
by {m ∈ B(a1, . . . , ar+1) : |m| ≤ d

∗(G)}. Indeed, take m = (m1, . . . ,mr+1) ∈
B(a1, . . . , ar+1) with m1 odd and |m| minimal possible. Consider the case when
r = 2s − 1, and so d

∗(G) = n1 + · · · + ns − 1. The order of a2i−1 and a2i is ni,
hence 0 ≤ m2i,m2i−1 ≤ ni − 1 hold for i = 1, . . . , s. We have

0 =

2s∑

i=1

miai =

s∑

i=1

(m2i−1 +m2i)ei +

s−1∑

i=1

(m2i +m2i+1)fi.

From the coefficient of e1 above we deduce that m1 + m2 = n1, hence m2 is
odd. From the coefficient of f1 above we infer that m3 is odd as well. From the
coefficient of e2 above we deduce that m3 + m4 = n2, and consequently m4 is
odd. Continuing in the same way and looking at step-by-step the coefficient of
f2, e3, f3, e4, . . . , fs−1, es we arrive at the conclusion that m2i−1 +m2i = ni for all
i = 1, . . . , s, whence |m| =

∑s
i=1(m2i−1+m2i) =

∑s
i=1 ni > (

∑s
i=1 ni)−1 = d

∗(G).
The case when r = 2s is similar. �

Proposition 3.9. Let a1, . . . , ak be a sequence of elements of G.

(i) The abelian group G(a1, . . . , ak) is generated by {m ∈ B(a1, . . . , ak) : |m| ≤
d
∗(G) + 1}.

(ii) If r > 1 and ns+1 6= 2 where r = 2s or r = 2s − 1, then G(a1, . . . , ak) is
generated by {m ∈ B(a1, . . . , ak) : |m| ≤ d

∗(G)}.

Proof. (i) Take an arbitrary u ∈ G(a1, . . . , ak). Since ukak = −
∑k−1

i=1 uiai belongs
〈a1, . . . , ak−1〉, there exists an integer l1 such that uk = l1dk, where dk is the order
ak modulo 〈a1, . . . , ak−1〉. By Lemma 3.5 there exists an m(1) ∈ B(a1, . . . , ak) with

m
(1)
k = dk and |m(1)| ≤ d

∗(G) + 1. Set u′ := u − l1m
(1). Then u′k = 0, so u′

belongs to G(a1, . . . , ak−1) identified with the subset {m ∈ G(a1, . . . , ak) : mk =
0} in G(a1, . . . , ak). Repeat the same step for u′ to obtain l2 ∈ Z and m(2) ∈
B(a1, . . . , ak−1) such that |m(2)| ≤ d

∗(G) + 1 and u′ − l2m
(2) ∈ G(a1, . . . , ak−2).

Continue in the same way, eventually we get that

u =

k∑

i=1

lim
(i) where m(i) ∈ B(a1, . . . , ai), |m(i)| ≤ d

∗(G) + 1 for i ∈ {1, . . . , k}.

(ii) We slightly adjust the poof of (i). By our assumption on G, it follows
from Lemma 3.7 that after a possible reordering of the elements a1, . . . , ak and
denoting by gk the order of ak modulo 〈a1, . . . , ak−1〉 at least one of the following
two possibilities holds:

(a) there is an m ∈ B(a1, . . . , ak) with |m| ≤ d
∗(G) and mk = gk;

(b) there are m′,m′′ ∈ B(a1, . . . , ak) with |m′|, |m′′| ≤ d
∗(G) and m′

k = 2,
m′′

k = 3.

Now take an arbitrary u ∈ G(a1, . . . , ak). We have uk = lgk for some l ∈ Z.
Set u′ := u − lm if (a) holds and u′ := u − l(m′′ − m′) if (b) holds (note that
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in this case necessaily gk = 1). Then u′ belongs to G(a1, . . . , ak−1). Continue
in the same way with the sequence a1, . . . , ak−1 and u′ ∈ G(a1, . . . , ak−1). In k
steps we get a presentation of u as an integral linear combination of elements from
{m ∈ B(a1, . . . , ak) : |m| ≤ d

∗(G)}. �

Theorem 3.10. For any finite abelian group G we have the inequality

βsep(G) ≤ d
∗(G) + 1

with equality holding if and only if G is cyclic or 2 = ns+1 = · · · = nr where
r = 2s− 1 or r = 2s.

Proof. Proposition 3.9 (i) and Corollary 2.6 imply the inequality βsep(G) ≤ d
∗(G)+

1. Furthermore, if G is not cyclic and ns+1 6= 2 where r = 2s or r = 2s − 1,
then by Proposition 3.9 (ii) and Corollary 2.6 we even get the stronger inequality
βsep(G) ≤ d

∗(G).
For a cyclic group G any faithful 1-dimensional G-module V gives βsep(G, V ) =

|G| = d
∗(G) + 1. Suppose finally that 2 = ns+1 = · · · = nr where r = 2s − 1

or r = 2s. By Proposition 3.8 and Corollary 2.6 we conclude βsep(G) > d
∗(G).

Summarizing, for these groups G we have the equality βsep(G) = d
∗(G) + 1. �

Corollary 3.11. We have the strict inequality

βsep(G) < β(G)

for any non-cyclic finite abelian group G with ns+1 6= 2, where r = 2s−1 or r = 2s.

Proof. Theorem 3.10 for a non-cyclic G satisfying ns+1 6= 2 together with (3) and
(2) yields the inequalities

βsep(G) ≤ d
∗(G) < d

∗(G) + 1 ≤ D(G) = β(G).

�

Remark 3.12. Since for a finite abelian group G with ns+1 = · · · = nr = 2 we have
βsep(G) = d

∗(G)+1 by Theorem 3.10, therefore for such a group we have βsep(G) <
β(G) if and only if we have the strict inequality d

∗(G) + 1 < D(G). A complete
description of the groups G with ns+1 = · · · = nr = 2 and D(G) > d

∗(G) + 1 is not
known. On the other hand there are infinitely many known examples of groups G
where ns+1 = · · · = nr = 2 both with equality d

∗(G) + 1 = D(G) and with strict
inequality d

∗(G) + 1 < D(G), see for example Corollary 2 in [12] or Corollary 4.2.3
in [13].
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