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ABSTRACT: In this paper we present a method capable of 
perceiving high dynamic range scene. The special feature of the method 
is that it changes the integration time of the imager on the pixel level. 
Using CNN-UM we can calculate the integration time for the pixels, and 
hence low dynamic range integration type CMOS sensors will be able to 
perceive high dynamic range scenes. The method yields high contrast 
without introducing non-existing edges. 

1. Introduction 

Equally illuminated scenes have 2-3 log orders (8-10 bits) dynamics only, while unequally 
illuminated scenes might easily bear with 5 decades (17 bits) of dynamics. Perception of these 
high dynamic range scenes is an easy job for our eyes, however it is a great challenge for 
traditional image sensors. If we want to capture these high dynamic range scenes, an obvious 
idea is the selection of a logarithmic imager. Though it can cover the high dynamic range, but 
as an exchange, the image will be noisy and low contrast. 

To obtain better quality images we may use less noisy integrating type sensors [8], but these 
can cover only 8-10 bits of dynamic range. In order to overcome this problem, images of 
different exposure parameters can be combined or very expensive large dynamic range linear 
cameras applied [8]. In [12,13] the time interval during which the sensor integrates until a 
certain level is measured. With this method the dynamic range is represented in the temporal 
domain. These results need a post-processing step after which the large dynamic range image 
can be visualized. 

We propose a dynamic, local tuning of the sensor elements, so that the large intra-scene 
illumination differences can be reduced by spatially variant exposure parameters. We perceive 
the high dynamic range, and retrieve a human perceivable image representing the uniformly 
illuminated scene. This approach is very similar to the operation method of our retina. 

In this paper we present an integration time adjustment algorithm for a locally controllable 
photo-sensor matrix. The research of the underlying hardware is done in some research 
laboratories (e.g. IMSE-CNM Seville Spain, MTA-SzTAKI, Budapest, Hungary, [1-3]). We 
improved our previous work [14] with some extensions of the method. 



2. Integration time Adjustment Algorithm and Extensions of the 
Method 

Our integration time adjustment method is based on inter-frame processing. It is an iterative 
method, where the iteration is done through the captured frames. Similarly to our retina the 
adaptation is a dynamic process it eliminates the spatial-temporal low-pass component ([4-6]) 
and thus reduces the high dynamic range. The detailed description can be found in the 
following subsections. 

The presented pictures are results of simulations. The local varying integration time pictures 
are an interpolation between a picture series of different integration time (see [14] for details). 

2.1 Dynamic Adjustment 
In this subsection, we present the inter-frame dynamic adjustment of the integration time. In 

Fig. 1 we can see a general flowchart. As a first step, we define an initial integration time map 
T0. Then, we repeat the followings in each iterative step: 

At the n-th iteration we capture an image with the integration time map Tn and get the result 
image Vn. Then, we perform diffusion operation on both Vn and Tn. Based on the diffused 
images we compute the integration time map Tn+1 for the next snapshot. This is the adaptation 
phase where we change the variable parameter Tn in order to adapt to the scene. 

 

 

Figure. 1. Flowchart of the integration times dynamic adjustment. The DC component can be 
computed based on the integration time values, and it is added to the resulting 
image. 

In [14] we showed some computation of the integration time map. The basic feature of 
these methods is, that they all alter the integration map Tn so that the local average of Vn 
(spatial low-pass component) becomes the half of the maximal response (Vmax/2). Hence at 
adapted state the low-pass component will be eliminated and there will not be saturated areas. 
The computation of the spatial low-pass component is feasible on CNN-UM architecture with 
diffusion operator [9], and the further operation multiplication, addition of two images (see 
[14]) as well. On Fig. 2. and 3. we can see the adjustment results. 



In this paper in the followings we present some improvements of the dynamic adjustment. 

2.2 Restoring DC level 
The methods presented so far enhance the high-pass component of the images: edges, local 

differences. We eliminate the effect of the differences in the local average by driving all the 
averages to the half of the maximum response (Vmax/2). This is very advantageous in some 
applications, but other observers may be interested in a reduced DC component, which does 
not saturate the image. 

This DC component can be computed from the integration time, because the integration 
time is adjusted according to it. We normalize the reduced DC component to [-Vmax/2, Vmax/2]; 
and multiply it with a parameter: cDC.. More details can be read in [14]. Fig. 2. shows pure 
dynamic adjustment result and result where the DC component was added. 

 a.)  b.) 

Figure 2. Result images after the 8th adjustment.. (a) without DC component, (b) DC 
component added. cDC=0.5 

2.3 Dynamic Results 
We have applied our methods to dynamic image sequence. In this case, the input scene -

captured in each iteration step- changes in time. We investigated how the method adapts to 
spatial and temporal luminance changes.  

The complete image flow can be viewed in [11]. Having a change in the illumination the 
algorithm needs an adaptation time, to calculate the new integration time map. Before having 
adapted to the new conditions we get dark values where we diminished the illumination and 
vice versa. Thus the integration time can be viewed as a state variable of the system, similar to 
the adaptation state of the retinal cones ([4]). This means, that we have a temporal high-pass 
filtering effect as well. This is similar to the retinal processing, where the spatial-temporal 
low-pass component is suppressed and the high-pass components enhanced (see section II). 

2.4 Introducing anisotropy 
Though our algorithm was able to adapt to the changed conditions, some parts of the 

computation may be improved, in order to obtain nicer results. The basic idea of our 
adjustment method is, that we alter the integration time so, that the spatial low-pass 
component of the intensity becomes Vmax/2. This is advantageous, because we eliminate the 



effect of the intra-scene illumination differences (Fig. 2.a.). On the other hand the illumination 
changes at some region crisply (e.g. edge of the book). Along the edge of the book the local 
average is smaller because of the neighboring dark areas, thus the integration time is set 
higher, and we get a white strip (see Fig.2 a.). This is the “halo” effect [7]. 

To solve this problem in [7] an anisotropic diffusion- like method (low-pass component 
computing) is introduced. In [7] the author simulates a resistive grid, where the resistance 
between points i and j increases with the contrast between them. Hence, for computing the 
low pass component along the brighter side of the edges, only the brighter areas are taken into 
account, the effect of dark areas is stopped by the large resistances (and vice versa). 

In our simulations we computed contrast from the integration time, which represents the 
local average. A great difference in the integration time means that there are neighboring 
regions of different brightness, and the diffusion should be weaker. The resistance between 
two points i and j was computed as followings: 
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where canis is a scaling factor of the anisotropy 

On Fig.3 we can see the effect of using anisotropic diffusion. We can use the difference of 
the integration time as a constraint for the diffusion. On the other hand the method still needs 
parameter tuning and a consideration of the computation, since division is difficult to 
implement on the future chip. 

 a.)  b.) 

Figure 3. a.) shows adjustment result using low pass filtering after the 5th iteration. b.) 
shows  results simulating anisotropic resistive grid. It is observable that along the 
edges of bright areas the white stripes are disappeared. 

2.5 Post-processing 
The method so far assumes, that we alter the integration time unrestrictedly until it fits to 

the local average. In some cases we do not want to (or we cannot) increase the integration 
time anymore. In case of night scenes, the counter - which specifies the integration time - may 
reach its maximal value and we cannot raise it anymore. Having a moving scene the increase 
of integration time may evoke strong motion blur effect. In this cases it is worth not to 
increase the integration time, but post-process (enhance) the captured image [10,12]. 



 a.)  b.) 

Figure 4.  a.) shows image captured with the highest integration time. b.) shows the result 
after adaptation. One can clearly see how b.) is enhanced by the post-processing. 
Tmax was global for all pixels, so far did not take into account location dependent 
motion blur. 

In our algorithm we propose the followings: Compute the integration time T unrestrictedly 
as in the previous sections (Fig.1.), but this will be only a logical value. We specify a 
maximal capturing integration time Tmax, which is depending on the maximal possible time, 
and the motion of the scene. At the pixels where T>Tmax we capture an image with Tmax and 
multiply the result image with maxTT . If this post-processing gain is high enough (local 
average of the result image became Vmax/2) T should not be enhanced more. Thus the 
computation of the new integration time map is based on this post-processed image. Some 
results can be seen on Fig.4 

3. Conclusions 
In this paper we presented our work on a local-adjustment algorithm for the future locally 

adjustable sensor chip. This retina inspired algorithm enhances the spatial-temporal high-pass 
component of the high dynamic range scene. Beside that it suppresses the low-pass 
component thus reduces the dynamic range of the scene. We have also presented some 
experimental results showing the perception of static and time variant scenes. As other high 
dynamic range sensing systems our method is capable of perceiving high dynamic range 
scenes. Using our method, each kind of photodetectors dynamic range can be extended. 

Acknowledgement 
This research was founded by the Grant of the National Science Fund of Hungary (OTKA), 

the multidisciplinary doctoral school at the Faculty of Information Technology of the 
Pázmány P. Catholic University and the Office of Naval Research (ONR) Grant No. N0001-
4021-0884 and the European Community (Grant No. IST-2001-38097 LOCUST). 

References 
[1] T. Roska, ”Computer-Sensors: Spatial-Temporal Computers for Analog Array Signals, 

Dynamically Integrated with Sensors”, Journal of VLSI Signal Processing, Vol.23, 
pp.221-237, 1999 

[2] T. Roska and Á. Zarándy: ”Proactive Adaptive Cellular Sensory-Computer Architecture 
via extending the CNN Universal Machine”, to be published on the ECCTD ‘03 



European Conference on Circuit Theory and Design, 1 - 4 September 2003, Kraków, 
Poland 

[3] G. Linan: “ACE16K: an Advanced Focal-Plane Analog Programmable Array Processor”, 
ESSCIRC 2001 Presentations 27th European Solid-State Circuits Conference, Villach, 
Austria, 18-20 September 2001 

[4] R. A. Norman and F. S. Werblin: “Control of Retinal Sensitivity: I. Light and Dark 
Adaptation of Vertebrate Rods and Cones”, The Journal of General Physiology, Vol.63, 
pp.37-61, 197 

[5] F. S. Werblin: “Control of Retinal Sensitivity: II. Lateral Interactions at the Outer 
Plexiform Layer”, The Journal of General Physiology, Vol.63, pp.62-87, 1974 

[6] Carver A. Mead and M. A. Mahowald: ”A silicon model of early visual processing”, 
Neural Networks, Vol. 1, Issue 1, pp. 91-97 (1988) 

[7] V. Brajovic: ”A model for reflectance perception in vision”, Bioengineered and 
Bioinspired Systems, Proceedings of SPIE, Vol. 5119 (2003) 

[8] A. El Gamal: “High Dynamic Range Image Sensors”, Tutorial at International Solid-
State Circuits Conference, February 2002, Available: http://www-
isl.stanford.edu/~abbas/group/papers_and_pub/isscc02_tutorial.pdf 

[9] T. Roska, L. Kék, L. Nemes, Á. Zarándy and P. Szolgay (ed), “CNN Software Library 
(Templates and Algorithms), Version 7.3”, Analogical and Neural Computing 
Laboratory, Computer and Automation Research Institute, Hungarian Academy of 
Sciences (MTA SzTAKI), DNS-CADET-15, Budapest, 1999 

[10] D. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640x512 CMOS image sensor with 
ultra-wide dynamic range floating-point pixel-level ADC”, IEEE. J. Solid-State Circuits, 
vol. 34., no. 12, pp 1821-1834, Dec. 1999. 

[11] Image flows of the dynamic adjustment are available at the following site: 
http://digitus.itk.ppke.hu/~wagner/dynres.html 

[12] T. Hamamoto and K. Aizawa: “A Computational Image Sensor with Adaptive Pixel-
Based Integration Time”, IEEE Journal of Solid State Circuits, Vol. 36. no. 4 April. 2001 

[13] E. Culurciello, R. Etienne-Cummings, and K. Boahen: “A Biomorphic Digital Image 
Sensor”, IEEE Journal of Solid-StateCircuits, Vol. 38., No. 2. February 2003 

[14] R. Wagner, Á. Zarándy and T. Roska: “Adaptive Perception with Locally-Adaptable 
Sensor Array”, IEEE Transactions on Circuits and Systems I. CNN Special Issue (accepted). 

http://www-isl.stanford.edu/~abbas/group/papers_and_pub/isscc02_tutorial.pdf
http://www-isl.stanford.edu/~abbas/group/papers_and_pub/isscc02_tutorial.pdf
http://digitus.itk.ppke.hu/~wagner/

