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Abstract

In the 1970s M. Laczkovich posed the following problem: Let B1(X) denote the set of Baire class
1 functions defined on a Polish space X equipped with the pointwise ordering.

Characterize the order types of the linearly ordered subsets of B1(X).

The main result of the present paper is a complete solution to this problem.

We prove that a linear order is isomorphic to a linearly ordered family of Baire class 1 func-
tions iff it is isomorphic to a subset of the following linear order that we call ([0, 1]<ω1

↘0 , <altlex),

where [0, 1]<ω1
↘0 is the set of strictly decreasing transfinite sequences of reals in [0, 1] with last

element 0, and <altlex, the so called alternating lexicographical ordering, is defined as follows: if
(xα)α≤ξ, (x

′
α)α≤ξ′ ∈ [0, 1]<ω1

↘0 are distinct, and δ is the minimal ordinal where the two sequences
differ then we say that

(xα)α≤ξ <altlex (x′α)α≤ξ′ ⇐⇒ (δ is even and xδ < x′δ) or (δ is odd and xδ > x′δ).

Using this characterization we easily reprove all the known results and answer all the known open
questions of the topic.

1. Introduction

Let F(X) be a class of real valued functions defined on a Polish space X, e.g. C(X), the
set of continuous functions. The natural partial ordering on this space is the pointwise
ordering <p, that is, we say that f <p g if for every x ∈ X we have f(x) ≤ g(x) and there
exists at least one x such that f(x) < g(x). If we would like to understand the structure of
this partially ordered set (poset), the first step is to describe its linearly ordered subsets.

For example, if X = [0, 1] and F(X) = C([0, 1]) then it is a well known result that the
possible order types of the linearly ordered subsets of C([0, 1]) are the real order types
(that is, the order types of the subsets of the reals). Indeed, a real order type is clearly
representable by constant functions, and if L ⊂ C([0, 1]) is a linearly ordered family of

continuous functions then (by continuity) f 7→
∫ 1

0
f is a strictly monotone map of L into

the reals.

The next natural class to look at is the class of Lebesgue measurable functions. However,
it is not hard to check that the assumption of measurability is rather meaningless here.
Indeed, if L is a linearly ordered family of arbitrary real functions and ϕ : R→ R is a map
that maps the Cantor set onto R and is zero outside of the Cantor set then f 7→ f ◦ ϕ is
a strictly monotone map of L into the class of Lebesgue measurable functions.
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Therefore it is more natural to consider the class of Borel measurable functions. However,
P. Komjáth [9] proved that it is already independent of ZFC (the usual axioms of set
theory) whether the class of Borel measurable functions contains a strictly increasing
transfinite sequence of length ω2.

The next step is therefore to look at subclasses of the Borel measurable functions, namely
the Baire hierarchy. A function is of Baire class 1 if it is the pointwise limit of continuous
functions. The set of (real valued) Baire class 1 functions defined on a space X will be
denoted by B1(X). A function is of Baire class 2 if it is the pointwise limit of Baire class
1 functions. Komjáth actually also proved that in his above mentioned result the set of
Borel measurable function can be replaced by the set of Baire class 2 functions. This
explains why the Baire class 1 case seem to be the most interesting one.

Back in the 1970s M. Laczkovich [11] posed the following problem:

Problem 1.1. Characterize the order types of the linearly ordered subsets of (B1(X), <p).

We will use the following notation:

Definition 1.2. Let (P,<P ) and (Q,<Q) be two posets. We say that P is embeddable
into Q, in symbols (P,<P ) ↪→ (Q,<Q) if there exists a map Φ : P → Q such that for
every p, q ∈ P if p <P q then Φ(p) <Q Φ(q). (Note that an embedding may not be 1-to-1
in general. However, an embedding of a linearly ordered set is 1-to-1.) If (L,<L) is a
linear ordering and (L,<L) ↪→ (Q,<Q) then we also say that L is representable in Q.

Whenever the ordering of a poset (P,<P ) is clear from the context we will use the notation
P = (P,<P ). Moreover, when Q is not specified, the term “representable” will refer to
representability in B1(X).

The earliest result that is relevant to Laczkovich’s problem is due to Kuratowski. He
showed that for any Polish space X we have ω1, ω

∗
1 6↪→ B1(X), or in other words, there is

no ω1-long strictly increasing or decreasing sequence of Baire class 1 functions (see [10,
§24. III.2.]).

It seems conceivable at first sight that this is the only obstruction, that is, every linearly
ordered set that does not contain ω1-long strictly increasing or decreasing sequences is
representable in B1(R). First, answering a question of Gerlits and Petruska, this conjecture
was consistently refuted by P. Komjáth [9] who showed that no Suslin line (ccc linearly
ordered set that is not separable) is representable in B1(R). Komjáth’s short and elegant
proof uses the very difficult set-theoretical technique of forcing. Laczkovich [12] asked if
a forcing-free proof exists.

Elekes and Steprāns [5] continued this line of research. On the one hand they proved
that consistently Kuratowski’s result is a characterization for order types of cardinality
< c. On the other hand they strengthened Komjáth’s result by constructing in ZFC a
linearly ordered set L not containing Suslin lines or ω1-long strictly increasing or decreasing
sequences such that L is not representable in B1(X).

Among other results, M. Elekes [2] proved that if X and Y are both uncountable σ-
compact or both non-σ-compact Polish spaces then for a linearly ordered set L we have
L ↪→ B1(X) ⇐⇒ L ↪→ B1(Y ). Then he asked if the same holds if X is an uncountable
σ-compact and Y is a non-σ-compact Polish space. Moreover, he also asked whether the
same linearly ordered sets can be embedded into the set of characteristic functions in
B1(X) as into B1(X). Notice that a characteristic function χA is of Baire class 1 if and
only if A is simultaneously Fσ and Gδ (denoted by A ∈ ∆0

2(X), see the Preliminaries
section below). Moreover, χA <p χB ⇐⇒ A $ B, hence the above question is equivalent

to whether L ↪→ (B1(X), <p) implies L ↪→ (∆
0
2(X),$). He also asked if duplications and
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completions of representable orders are themselves representable, where the duplication
of L is L× {0, 1} ordered lexicographically.

Our main aim in this paper is to solve Problem 1.1 and consequently answer the above
mentioned questions. The solution proceeds by constructing a universal linearly ordered
set for B1(X), that is, a linear order that is representable in B1(X) such that every
representable linearly ordered set is embeddable into it. Of course such a linear order
only provides a useful characterization if it is sufficiently simple combinatorially to work
with. We demonstrate this by providing new, simpler proofs of the known theorems
(including a forcing-free proof of Komjáth’s theorem), and also by answering the above
mentioned open questions.

The universal linear ordering can be defined as follows.

Definition 1.3. Let [0, 1]<ω1

↘0 be the set of strictly decreasing well-ordered transfinite

sequences in [0, 1] with last element zero. Let x̄ = (xα)α≤ξ, x̄
′ = (x′α)α≤ξ′ ∈ [0, 1]<ω1

↘0 be

distinct and let δ be the minimal ordinal such that xδ 6= x′δ. We say that

(xα)α≤ξ <altlex (x′α)α≤ξ′ ⇐⇒ (δ is even and xδ < x′δ) or (δ is odd and xδ > x′δ).

Now we can formulate our main result.

Theorem 1.4. (Main Theorem) Let X be an uncountable Polish space. Then the following
are equivalent for a linear ordering (L,<):

(1) (L,<) ↪→ (B1(X), <p),
(2) (L,<) ↪→ ([0, 1]<ω1

↘0 , <altlex).

In fact, (B1(X), <p) and ([0, 1]<ω1

↘0 , <altlex) are embeddable into each other.

Using this theorem one can reduce every question concerning the linearly ordered subsets
of B1(X) to a purely combinatorial problem. We were able to answer all of the known
such questions and we reproved easily the known theorems as well. The most important
results are:

• Answering a question of Laczkovich [12], we give a new, forcing free proof of
Komjáth’s theorem. (Theorem 4.2)

• The class of ordered sets representable in B1(X) does not depend on the uncount-
able Polish space X. (Corollary 3.15)

• There exists an embedding (B1(X), <p) ↪→ (∆0
2(X),$), hence a linear ordering

is representable by Baire class 1 functions iff it is representable by Baire class 1
characteristic functions. (Corollary 3.14)

• The duplication of a representable linearly ordered set is representable. More gen-
erally, countable lexicographical products of representable sets are representable.
(Corollary 5.5 and Theorem 5.2)

• There exists a linearly ordered set that is representable in B1(X) but none of its
completions are representable. (Theorem 5.12)

The paper is organized as follows. In Section 3 we first prove that there exists an embed-
ding B1(X) ↪→ [0, 1]<ω1

↘0 , then that [0, 1]<ω1

↘0 ↪→ B1(X). The former result heavily builds
on a theorem of Kechris and Louveau. Unfortunately for us, they only consider the case of
compact Polish spaces, while it is of crucial importance in our proof to use their theorem
for arbitrary Polish spaces. Moreover, their proof seems to contain a slight error. Hence
it was unavoidable to reprove their result, which is the content of Section 6. Section 4
contains the new proofs of the known results, while in Section 5 we answer the above open
questions. Finally, in Section 7 we formulate some new open problems.
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2. Preliminaries

Our terminology will mostly follow [7] and [13].

Let X be a Polish space, that is, a complete, separable and metrizable topological space.
B1(X) denotes the set of the pointwise limits of continuous functions defined on X, this
is called the class of Baire class 1 functions.

USC(X) stands for the set of upper semicontinuous functions, that is, the set of functions
f for which for every r ∈ R the set f−1((−∞, r)) is open in X. It is easy to see that the
infimum of USC functions is also USC.

If F(X) is a class of real valued functions then we will denote by bF(X) and F+(X) the
set of bounded and nonnegative functions in F(X), respectively.

K(X) will stand for the set of the nonempty compact subsets of X endowed with the
Hausdorff metric. It is well known (see [7, Section 4.F]) that if X is Polish then so is
K(X). Moreover, the compactness of X is equivalent to the compactness of K(X).

As usual, we denote the ξth additive and multiplicative Borel classes of a Polish space X by
Σ0
ξ(X) and Π0

ξ(X), respectively. We will also use the notation ∆0
ξ(X) = Σ0

ξ(X)∩Π0
ξ(X).

We call a set A ambiguous, if A ∈ ∆0
2(X). Sometimes the following equivalent definition

is also used for the first Baire class: f ∈ B1(X) ⇐⇒ the preimage of every open set
under f is in Σ0

2(X) (see [7, 24.10]). This easily implies that a characteristic function χA
is of Baire class 1 if and only if A ∈∆0

2(X). The above equivalent definition also implies
that USC functions are of Baire class 1.

For a function f : X → R the subgraph of f is the set sgr(f) = {(x, r) ∈ X×R : r ≤ f(x)}.
Notice that a function is USC if and only if its subgraph is closed.

Let (P,<p) be a poset. Let us introduce the following notation for the set of well-ordered
sequences in P :

σP = {F : α→ P | α is an ordinal, F is strictly increasing}.

We will use the notation σ∗P for the reverse well-ordered sequences, that is,

σ∗P = {F : α→ P | α is an ordinal, F is strictly decreasing}.

Then σ∗[0, 1] is the set of strictly decreasing well-ordered transfinite sequences of reals in
[0, 1].

For a poset P , if p̄ ∈ σ∗P and the domain of p̄ is ξ then we will write p̄ as (pα)α<ξ, where
pα = p̄(α). We will call the ordinal ξ the length of p̄, in symbols l(p̄).

Let H and H ′ be two subsets of the linearly ordered set (L,<L). We will say that H ≤L H ′
or H <L H

′ if for every h ∈ H and h′ ∈ H ′ we have h ≤L h′ or h <L h
′, respectively.

Now if p̄, p̄′ ∈ σ∗P and p̄ 6⊂ p̄′, p̄′ 6⊂ p̄ then there exists a minimal ordinal δ such that
pδ 6= p′δ. This ordinal is denoted by δ(p̄, p̄′).

Le α be a successor ordinal, then α − 1 will stand for its predecessor. Now, since every
ordinal α can be uniquely written in the form α = γ + n where γ is limit and n is finite,
we let (−1)α = (−1)n and refer to the parity of n as the parity of α.

A poset (T,<T ) is called a tree if for every t ∈ T the ordering <T restricted to the set
{s : s <T t} is a well-ordering. We denote by Levα(T ) the αth level of T , that is, the
set {t ∈ T :<T |{s:s<T t} has order type α}. An α-chain C is a subset of a tree such
that <T |C is a well-ordering in type α, whereas an antichain is a set that consists of ≤T -
incomparable elements. A set D ⊂ T is called dense if for every t ∈ T there exists a p ∈ D
such that t ≤T p. A set is called open if if for every p ∈ D we have {t ∈ T : t ≥T p} ⊂ D.
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A tree (T,<T ) of cardinality ℵ1 is called an Aronszajn tree, if for every α < ω1 we have
|Levα(T )| ≤ ℵ0 and T contains no ω1-chains. An Aronszajn tree is called a Suslin tree if
it contains no uncountable antichains.

A Suslin line is a linearly ordered set that is ccc (it contains no uncountable pairwise
disjoint collection of nonempty open intervals) but not separable.

We will call a poset (P,<P ) R-special (Q-special) if there exists an embedding P ↪→ R
(P ↪→ Q).

Every ordinal is identified with the set of its predecessors, in particular, 2 = {0, 1}.

3. The main result

3.1. B1(X) ↪→ ([0, 1]<ω1

↘0 , <altlex). Recall that

[0, 1]<ω1

↘0 = {x̄ ∈ σ∗[0, 1] : min x̄ = 0}

and also that for x̄ = (xα)α≤ξ, x̄
′ = (x′α)α≤ξ′ ∈ [0, 1]<ω1

↘0 distinct and δ = δ(x̄, x̄′) we say
that

(xα)α≤ξ <altlex (x′α)α≤ξ′ ⇐⇒ (δ is even and xδ < x′δ) or (δ is odd and xδ > x′δ).

Theorem 3.1. Let X be a Polish space. Then B1(X) ↪→ [0, 1]<ω1

↘0 .

In order to prove the theorem we have to make some preparation. We will use results
of Kechris and Louveau [8]. They developed a method to decompose a Baire class 1
function into a sum of a transfinite alternating series, which is analogous to the well
known Hausdorff-Kuratowski analysis of ∆0

2 sets.

First we define the generalized sums.

Definition 3.2. ([8]) Suppose that (fβ)β<α is a pointwise decreasing sequence of non-
negative bounded USC functions for an ordinal α < ω1. Let us define the generalized
alternating sum

∑∗
β<α(−1)βfβ by induction on α as follows:

Σ∗β<0(−1)βfβ = 0

and
Σ∗β<α(−1)βfβ = Σ∗β<α−1(−1)βfβ + (−1)α−1fα−1

if α is a successor and

Σ∗β<α(−1)βfβ = sup{Σ∗γ<β(−1)γfγ : β < α, β even}
if α > 0 is a limit.

Every nonnegative bounded Baire class 1 function can be canonically decomposed into
such a sum. For this we need the notion of upper regularization.

Definition 3.3. ([8]) Let f : X → R be a nonnegative bounded function. The upper
regularization of f is defined as

f̂ = inf{g : f ≤p g, g ∈ USC(X)}.

Note that f̂ is USC, since the infimum of USC functions is USC. Also, clearly f̂ = f if f
is USC.

Definition 3.4. ([8]) Let
g0 = f, f0 = ĝ0,

if α is a successor then let
gα = fα−1 − gα−1, fα = ĝα,
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if α > 0 is a limit then let
gα = inf

β<α
β even

gβ and fα = ĝα.

Now if there exists a minimal ξ such that fξ ≡ fξ+1 then let Φ(f) = (fα)α≤ξ.

Note that we need some results of Kechris and Louveau for arbitrary Polish spaces, how-
ever in [8] the authors proved the theorems only in the compact Polish case, although
the proofs still work for the general case as well. Unfortunately, in our proof the non-
σ-compact statement plays a significant role, hence we must check the validity of their
results on such spaces. The results used are summarized in Proposition 3.5 and the proof
can be found in Section 6. Notice that the original proof seems to contain a small error,
but it can be corrected with the same ideas.

Proposition 3.5. ([8]) Let X be a Polish space and f ∈ bB+
1 (X). Then Φ(f) is defined,

Φ(f) ∈ σ∗bUSC+ and we have

(1) f =
∑∗
β<α(−1)βfβ + (−1)αgα for every α ≤ ξ,

(2) fξ ≡ 0,
(3) f =

∑∗
α<ξ(−1)αfα.

Proof. See Section 6. �

Proposition 3.6. Let X be a Polish space and f0, f1 ∈ bB+
1 (X). Suppose that f0 <p

f1 and let Φ(f0) = (f0
α)α≤ξ0 and Φ(f1) = (f1

α)α≤ξ1 . Then Φ(f0) 6= Φ(f1) and if δ =
δ(Φ(f0),Φ(f1)) then f0

δ <p f
1
δ if δ is even and f0

δ >p f
1
δ if δ is odd.

Proof. First notice that if f0 6= f1 then by (3) of Proposition 3.5 we have that Φ(f0) 6=
Φ(f1).

Let (g0
β)β≤ξ0 and (g1

β)β≤ξ1 be the appropriate sequences (used in Definition 3.4 with

ĝiβ = f iβ).

We show by induction on β that for every even ordinal β ≤ δ we have g0
β ≤p g1

β and for

every odd ordinal β ≤ δ we have g0
β ≥p g1

β .

For β = 0 by definition g0
0 = f0 and g1

0 = f1, so g0
0 ≤p g1

0 .

Suppose that we are done for every γ < β.

• for limit β we have that
g0
β = inf

γ<β
γ even

g0
γ

so by the inductive hypothesis obviously g0
β ≤p g1

β .

• if β is an odd ordinal, since β − 1 < δ we have f0
β−1 = f1

β−1 so

g0
β = f0

β−1 − g0
β−1 ≥p f0

β−1 − g1
β−1 = f1

β−1 − g1
β−1 = g1

β

by β − 1 being even and using the inductive hypothesis.
• if β is an even successor, the calculation is similar, using that g0

β−1 ≥p g1
β−1 we

obtain

g0
β = f0

β−1 − g0
β−1 ≤p f0

β−1 − g1
β−1 = f1

β−1 − g1
β−1 = g1

β .

Consequently, the induction shows that g0
δ ≤p g1

δ if δ is even and g0
δ ≥p g1

δ if δ is odd.

Therefore, since ĝiδ = f iδ we have that f0
δ ≤p f1

δ if δ is even and f0
δ ≥p f1

δ if δ is odd. But
by the definition of δ it is clear that f0

δ 6= f1
δ , hence f0

δ <p f
1
δ if δ is even and f0

δ >p f
1
δ if

δ is odd. This finishes the proof of Proposition 3.6. �
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Now to finish the proof of Theorem 3.1 we need the following folklore lemma.

Lemma 3.7. There exists an order preserving embedding Ψ0 : USC+(X) ↪→ [0, 1] where
the image of the function f ≡ 0 is 0. In particular, there is no uncountable strictly
monotone transfinite sequence in USC+(X).

Proof. Fix a countable basis {Bn : n ∈ ω} of X × [0,∞). Assign to each f ∈ USC+ the
real

rf = 1−
∑

Bn∩sgr(f)=∅

2−n−1.

If f <p g then sgr(f) $ sgr(g) so, as the subgraph of an USC function is a closed set,
there exists an n ∈ ω such that Bn is an open neighborhood of a point in sgr(g) \ sgr(f).
Thus, {n : Bn ∩ sgr(f) = ∅} % {n : Bn ∩ sgr(g) = ∅}. Consequently, rf < rg. �

Proof of Theorem 3.1. Let Ψ : σ∗USC+(X)→ σ∗[0, 1] be the map that applies the above
Ψ0 to every coordinate of the sequences in σ∗USC+(X). Thus, Ψ is order preserving
coordinate-wise.

Clearly, h(x) = 1
π arctan(x) + 1 is an order preserving homeomorphism from R to (0, 1)

and for f ∈ B1(X) let H(f) = h ◦ f . Composing the functions in B1(X) with h we still
have Baire class 1 functions and this does not effect the pointwise ordering. Thus, H is
an order preserving map from B1(X) into bB+

1 (X).

Let Θ = Ψ ◦ Φ ◦H. Notice that as H : B1(X) → bB+
1 (X), Φ : bB+

1 (X) → σ∗bUSC+(X)
and Ψ : σ∗USC(X)→ σ∗[0, 1], the map Θ is well defined.

Now, by Lemma 3.7 we have that Ψ0 maps the constant zero function to zero and by (2)
of Proposition 3.5 we have that for every function f its Φ image ends with the constant
zero function. Thus, the Θ image of every function f ends with zero. Therefore, Θ maps
into [0, 1]<ω1

↘0 .

If f0 <p f1 are Baire class 1 functions then clearly H(f0) <p H(f1) hence by Proposition
3.6 we have that if δ = δ(Φ(H(f0)),Φ(H(f1))), then Φ(H(f0))(δ) <p Φ(H(f1))(δ) if δ is
even and Φ(H(f0))(δ) >p Φ(H(f1))(δ) if δ is odd. Since Ψ is order preserving coordinate-
wise, we obtain that Θ is an order preserving embedding of B1(X) into ([0, 1]<ω1

↘0 , <altlex),
which finishes the proof of the theorem. �

3.2. ([0, 1]<ω1

↘0 , <altlex) ↪→ B1(X).

Theorem 3.8. The linearly ordered set ([0, 1]<ω1

↘0 , <altlex) can be represented by ∆0
2 sub-

sets of K([0, 1]2) ordered by inclusion.

Proof. First we define a map Ψ : [0, 1]<ω1

↘0 → K([0, 1]2), basically assigning to each se-

quence its closure (as a subset of the interval). However, such a map cannot distinguish
between continuous sequences and sequences omitting a limit point. To remedy this we
place a line segment on each limit point contained in the sequence.

Let x̄ ∈ [0, 1]<ω1

↘0 , with x̄ = (xα)α≤ξ. Now let

Ψ(x̄) = {(xα, 0) : α ≤ ξ}∪⋃
{{xα} × [0, xα − xα+1] : if 0 < α < ξ and xα = inf{xβ : β < α}}.

Lemma 3.9. Ψ(x̄) is a compact set for every x̄ ∈ [0, 1]<ω1

↘0 .
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Proof. Clearly, it is enough to show that if (pn, qn)→ (p, q) is a convergent sequence such
that for every n we have

(3.1) (pn, qn) ∈⋃
{{xα} × [0, xα − xα+1] : if 0 < α < ξ and xα = inf{xβ : β < α}}

then (p, q) ∈ Ψ(x̄).

Obviously, pn = xαn for some ordinals αn. First, if the sequence xαn is eventually
constant, then there exists an α such that p = xα and except for finitely many n’s by
(3.1) we have qn ∈ [0, xα − xα+1]. So (p, q) ∈ {xα} × [0, xα − xα+1] ⊂ Ψ(x̄).

Now if the sequence (xαn)n∈ω is not eventually constant, since the sequence (xα)α≤ξ is
strictly decreasing and well-ordered then (passing to a subsequence of (xαn)n∈ω if neces-
sary) we can suppose that (xαn)n∈ω is a strictly decreasing sequence.

Using the fact that (xαn)n∈ω is a strictly decreasing subset of (xα)α≤ξ we obtain that
xαn − xαn+1 ≤ xαn − p. Hence from (3.1) we obtain

0 ≤ qn ≤ xαn − xαn+1 ≤ xαn − p→ 0

so qn = 0. Therefore,

(p, q) = ( lim
n→∞

xαn , 0) ∈ {(xα, 0) : α ≤ ξ} ⊂ Ψ(x̄).

�

Now we define a decreasing sequence of subsets of K([0, 1]2) for each x̄ = (xα)α≤ξ and
α ≤ ξ as follows:

(3.2) Hx̄α = {Ψ(z̄) : z̄|α = x̄|α, zα ≤ xα}.
We will use the following notations for an even ordinal α ≤ ξ:

(3.3) Kx̄α = Hx̄α(= {Ψ(z̄) : z̄|α = x̄|α, zα ≤ xα}),
and if α+ 1 ≤ ξ then

(3.4) Lx̄α = Hx̄α+1(= {Ψ(z̄) : z̄|α+1 = x̄|α+1, zα+1 ≤ xα+1}).
Finally, if α = ξ then let Lx̄α = ∅. So Kx̄α and Lx̄α is defined for every even α ≤ ξ.

Notice that the sequence (Hx̄α)α≤ξ is a decreasing sequence of closed sets.

To each x̄ = (xα)α≤ξ let us assign

Ax̄ =
⋃

α≤ξ,α even

(Kx̄α \ Lx̄α).

By [7, 22.27], since Ax̄ is a transfinite difference of a decreasing sequence of closed sets,
we have Ax̄ ∈∆0

2(K([0, 1]2)).

To overcome some technical difficulties we prove the following lemma.

Lemma 3.10. Let z̄ ∈ [0, 1]<ω1

↘0 and β be an ordinal such that β + 1 ≤ l(z̄).

(1) If K ∈ Hz̄β+1, β is a limit ordinal, inf{zγ : γ < β} = zβ and l(z̄) > β + 1 then

(zβ , zβ − zβ+1) ∈ K.

(2) If K ∈ Hz̄β and β is a successor then (zβ−1, 0) ∈ K.

(3) If K ∈ Hz̄β, β is a limit ordinal and inf{zγ : γ < β} > zβ OR β is a successor then

K ∩ ((zβ , inf{zγ : γ < β})× [0, 1]) = ∅
(notice that if β is a successor then inf{zγ : γ < β} = zβ−1).
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Proof. For (2) and (1) just notice that by equation (3.2) whenever Ψ(w̄) ∈ Hz̄β (Hz̄β+1,

respectively) then Ψ(w̄) contains the point (zβ−1, 0) (the point (zβ , zβ − zβ+1)). Conse-
quently, every compact set which is in the closure of Hz̄β (or Hz̄β+1) contains the point

(zβ−1, 0) (the point (zβ , zβ − zβ+1)).

(3) can be proved similarly: by the definition of Hz̄β for every w̄ such that Ψ(w̄) ∈ Hz̄β we
have

Ψ(w̄) ∩ ((zβ , inf{zγ : γ < β})× [0, 1]) = ∅.

Now since the set U = (zβ , inf{zγ : γ < β}) × [0, 1] is relatively open in [0, 1]2, the set
{K ∈ K([0, 1]2) : K ∩U = ∅} is closed. Hence Hz̄β ⊂ {K ∈ K([0, 1]2) : K ∩U = ∅} implies

that every K ∈ Hz̄β is disjoint from U . So we proved the lemma. �

In order to show that x̄ 7→ Ax̄ is an embedding it is enough to prove the following claim.

Main Claim. If x̄ <altlex ȳ then Ax̄ $ Aȳ.

To verify this we have to distinguish two cases.

Case 1. δ = δ(x̄, ȳ) is even. Then xδ < yδ and δ + 1 < l(ȳ). We will show the following
lemma.

Lemma 3.11. Kx̄δ $ Kȳδ \ L
ȳ
δ .

Proof of Lemma 3.11. From xδ < yδ we have

{Ψ(z̄) : z̄|δ = x̄|δ, zδ ≤ xδ} ⊂ {Ψ(z̄) : z̄|δ = x̄|δ, zδ ≤ yδ}

so Kx̄δ ⊂ K
ȳ
δ .

First, we prove that

(3.5) Kx̄δ ⊂ K
ȳ
δ \ L

ȳ
δ .

Here we have to separate two subcases.

Subcase 1. δ is a limit ordinal and yδ = inf{yα : α < δ}.
On the one hand, using (1) of Lemma 3.10 (with z̄ = ȳ and β = δ) we obtain that for

every K ∈ Lȳδ (= Hȳδ+1) we have (yδ, yδ − yδ+1) ∈ K.

On the other hand, from (3) of Lemma 3.10 (with z̄ = x̄ and β = δ) we have that for

every K ∈ Kx̄δ (= Hx̄δ ) we have K ∩ ((xδ, inf{xα : α < δ}) × [0, 1]) = ∅. In particular, as

yδ ∈ (xδ, inf{xα : α < δ}), we have (yδ, yδ − yδ+1) 6∈ K. So we obtain Kx̄δ ∩ L
ȳ
δ = ∅, hence

by Kx̄δ ⊂ K
ȳ
δ we have Kx̄δ ⊂ K

ȳ
δ \ L

ȳ
δ .

Subcase 2. δ is a limit and yδ < inf{yδ′ : δ′ < δ} or δ is a successor.

Using (2) of Lemma 3.10 (with z̄ = ȳ and β = δ+1) we obtain that every K ∈ Lȳδ (= Hȳδ+1)
contains the point (yδ, 0). From (3) of Lemma 3.10 (with z̄ = x̄, β = δ) we have that

for every K ∈ Kx̄δ (= Hx̄δ ) the set K ∩ ((xδ, inf{xα : α < δ}) × [0, 1]) is empty. But

yδ ∈ (xδ, inf{xα : α < δ}) so Kx̄δ ∩ L
ȳ
δ = ∅. This finishes the proof of equation (3.5).

Second, in order to prove Kx̄δ 6= K
ȳ
δ \ L

ȳ
δ let w̄ be such that w̄|δ = x̄|δ, xδ, yδ+1 < wδ < yδ

and wδ+1 = 0. Clearly, Ψ(w̄) ∈ Kȳδ .

By (3) of Lemma 3.10 (used for z̄ = x̄ and β = δ) we have that Ψ(w̄) ∈ Kx̄δ (= Hx̄δ )
would imply Ψ(w̄) ∩ ((xδ, inf{xα : α < δ})× [0, 1]) = ∅, but (wδ, 0) ∈ (xδ, yδ)× [0, 1] and
inf{xα : α < δ} = inf{yα : α < δ} ≥ yδ which is a contradiction. Hence Ψ(w̄) 6∈ Kx̄δ .
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Now we prove Ψ(w̄) 6∈ Lȳδ . Suppose the contrary, then using (3) of Lemma 3.10 (with z̄ = ȳ

and β = δ+1) one can obtain that for every K ∈ Lȳδ (= Hȳδ+1) the set K∩((yδ+1, yδ)×[0, 1])

is empty. But clearly (wδ, 0) ∈ Ψ(w̄)∩ ((yδ+1, yδ)× [0, 1]), a contradiction. So Ψ(w̄) 6∈ Lȳδ .

Thus, it follows that Ψ(w̄) ∈ (Kȳδ \ L
ȳ
δ ) \ Kx̄δ . From this and from equation (3.5) we can

conclude Lemma 3.11. �

Now we prove the Main Claim in Case 1. If δ′ is even and δ′ < δ, the definitions (3.3)
and (3.4) of Kȳδ′ and Lȳδ′ depend only on (xα)α≤δ′+1 so

(3.6) Kx̄δ′ = Kȳδ′
and

(3.7) Lx̄δ′ = Lȳδ′ .

Now, from Lemma 3.11 we have Ax̄ ⊂ Aȳ, since for every K ∈ Ax̄ we have either
K ∈ Kx̄δ′ \ Lx̄δ′ = Kȳδ′ \ L

ȳ
δ′ for some δ′ < δ or K ∈ Kx̄δ .

Moreover, we claim that using Lemma 3.11 one can prove that Ax̄ $ Aȳ. From the defini-
tion of Ax̄, from the fact that the sequence (Hx̄α)α≤ξ = (Kx̄0 ,Lx̄0 ,Kx̄1 ,Lx̄1 , . . . ) is decreasing
and from equations (3.6) and (3.7) follows that

(Kx̄δ )c ∩ Ax̄ =
⋃

δ′<δ, δ′ even

Kx̄δ′ \ Lx̄δ′ =
⋃

δ′<δ, δ′ even

Kȳδ′ \ L
ȳ
δ′ = (Kȳδ )c ∩ Aȳ

So Ax̄ ⊂ (Kȳδ )c ∪ Kx̄δ . Hence, if K ∈ (Kȳδ \ L
ȳ
δ ) \ Kx̄δ then

K ∈ Kȳδ \ L
ȳ
δ ⊂ A

ȳ

and

K 6∈ (Kȳδ )c ∪ Kx̄δ ⊃ Ax̄

so indeed, we obtain that the containment is strict, hence we are done with Case 1.

Case 2. δ = δ(x̄, ȳ) is odd.
Then xδ > yδ and δ + 1 < l(x̄). Notice that as the length of x̄ is larger than δ + 1, the
sets Kx̄δ+1 and Lx̄δ+1 are defined.

Now for every even δ′ ≤ δ − 1 the definition of Kx̄δ′ and Kȳδ′ depend only on (xα)α≤δ′ =
(yα)α≤δ′ . Thus for every even δ′ ≤ δ − 1

(3.8) Kx̄δ′ = Kȳδ′
and also for every even δ′ < δ − 1

(3.9) Lx̄δ′ = Lȳδ′ .

We will show the following:

Lemma 3.12. (1) Kx̄δ−1 \ Lx̄δ−1 ⊂ K
ȳ
δ−1 \ L

ȳ
δ−1

(2) Kx̄δ+1 ⊂ K
ȳ
δ−1 \ L

ȳ
δ−1.

Proof of Lemma 3.12. It is easy to prove (1): from equation (3.8) we get Kx̄δ−1 = Kȳδ−1.

Moreover, Lx̄δ−1 ⊃ L
ȳ
δ−1, since

Lx̄δ−1 = {Ψ(z̄) : z̄|δ = x̄|δ, zδ ≤ xδ} ⊃ {Ψ(z̄) : z̄|δ = ȳ|δ, zδ ≤ yδ} = Lȳδ−1

holds by xδ > yδ.

Now we show (2). First, Kx̄δ+1 ⊂ Kx̄δ−1 = Kȳδ−1, using that the sequence (Kx̄α)α≤δ+1 is
decreasing.
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So it is suffices to show that Kx̄δ+1 ∩ L
ȳ
δ−1 = ∅. Using (3) of Lemma 3.10 (with z̄ = ȳ and

β = δ) we obtain that for every K ∈ Lȳδ−1(= Hȳδ ), we have K ∩ ((yδ, yδ−1)× [0, 1]) = ∅.

However, by (2) of Lemma 3.10 (used with z̄ = x̄ and β = δ + 1) if K ∈ Kx̄δ+1(= Hx̄δ+1)

then (xδ, 0) ∈ K. Therefore, xδ ∈ (yδ, yδ−1) implies that the intersection Kx̄δ+1 ∩ L
ȳ
δ−1

must be empty. So we are done with the lemma. �

Now we prove the Main Claim in Case 2. By definition of Ax̄ and by the fact that the
sequence (Hx̄α)α≤ξ = (Kx̄0 ,Lx̄0 ,Kx̄1 ,Lx̄1 , . . . ) is decreasing we have that if K ∈ Ax̄ then either

K ∈ Kx̄δ′ \ Lx̄δ′ = Kȳδ′ \ L
ȳ
δ′ for some even δ′ < δ − 1 or K ∈ Kx̄δ−1 \ Lx̄δ−1 or K ∈ Kx̄δ+1.

Hence using equations (3.8) and (3.9) and Lemma 3.12 we obtain

(3.10) Ax̄ ⊂ Aȳ.

In order to show that Ax̄ 6= Aȳ it is enough to find a w̄ such that

(3.11) Ψ(w̄) ∈ Kȳδ−1 \ L
ȳ
δ−1 ⊂ A

ȳ

and

(3.12) Ψ(w̄) 6∈ Kx̄δ+1 ∪ (Lx̄δ−1)c ⊃ Ax̄.

Take w̄|δ = ȳ|δ and wδ such that xδ+1, yδ < wδ < xδ and wδ+1 = 0.

Now, in order to see (3.11) clearly Ψ(w̄) ∈ Kȳδ−1. On the other hand if K ∈ Lȳδ−1(= Hȳδ )
by (3) of Lemma 3.10 (with z̄ = ȳ and β = δ) we have K ∩ ((yδ, yδ−1) × [0, 1]) = ∅.
But yδ < wδ < xδ < xδ−1 = yδ−1, so (wδ, 0) ∈ Ψ(w̄) ∩ ((yδ, yδ−1) × [0, 1]). Therefore,
Ψ(w̄) 6∈ Lȳδ−1.

In order to prove (3.12) it is obvious that Ψ(w̄) ∈ Lx̄δ−1. Now using again (3) of Lemma

3.10 (with z̄ = x̄ and β = δ + 1) we obtain that whenever K ∈ Kx̄δ+1(= Hx̄δ+1) then
K∩((xδ+1, xδ)×[0, 1]) = ∅. However, wδ ∈ (xδ+1, xδ) hence (wδ, 0) ∈ Ψ(w̄)∩((xδ+1, xδ)×
[0, 1]), so Ψ(w̄) 6∈ Kx̄δ+1.

So we can conclude that Ax̄ 6= Aȳ. Thus, using equation (3.10) we can finish the proof of
the Main Claim in Case 2 and hence we obtain Theorem 3.8 as well. �

3.3. The main theorem.

Theorem 3.13. (Main Theorem) Let X be an uncountable Polish space. Then the fol-
lowing are equivalent for a linear ordering (L,<):

(1) (L,<) ↪→ (B1(X), <p)
(2) (L,<) ↪→ ([0, 1]<ω1

↘0 , <altlex)

(3) (L,<) ↪→ (∆0
2(X),$)

In fact, ([0, 1]<ω1

↘0 , <altlex), (∆0
2(X),$) and (B1(X), <p) are embeddable into each other.

Proof. (B1(X), <p) ↪→ ([0, 1]<ω1

↘0 , <altlex) : Theorem 3.1.

([0, 1]<ω1

↘0 , <altlex) ↪→ (∆0
2(X),$) : we proved in Theorem 3.8 that ([0, 1]<ω1

↘0 , <altlex) ↪→
(∆0

2(K([0, 1]2)),$). Now, [2, Theorem 1.2] states that the class of linear orderings repre-
sentable in ∆0

2 coincide for all uncountable σ-compact Polish spaces. Hence, if C is the
Cantor space, then ([0, 1]<ω1

↘0 , <altlex) ↪→ (∆0
2(C),$). If X is an uncountable Polish space

then there exists a continuous injection h : C → X. Now, since h(C) is a closed set in X
we have that A 7→ h(A) is an inclusion-preserving embedding (∆0

2(C),$) ↪→ (∆0
2(X),$).

Consequently, ([0, 1]<ω1

↘0 , <altlex) ↪→ (∆0
2(X),$).
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(∆0
2(X),$) ↪→ (B1(X), <p) : if A is a ∆0

2 set then χA is a Baire class 1 function and
A 7→ χA is an order preserving (∆0

2(X),$) ↪→ (B1(X), <p) map. �

We immediately obtain the answers to Questions 5.2 and 5.3 from [5].

Corollary 3.14. There exists an embedding B1(X) ↪→∆0
2(X), hence a linear ordering is

representable by Baire class 1 functions iff it is representable by Baire class 1 characteristic
functions.

The equivalence of (1) and (2), implies that the embeddability of a linearly ordered set
into the set of Baire class 1 functions does not depend on the underlying Polish space
(provided of course that the Polish space is uncountable). This result answers Question
1.5 from [2] affirmatively.

Corollary 3.15. If X and Y are uncountable Polish spaces and L ↪→ B1(X) then L ↪→
B1(Y ).

From now on we will simply use the notation B1(X) = B1.

4. New proofs of known theorems

In this section we would like to demonstrate the strength and applicability of our char-
acterization by providing new, simpler proofs of the theorems of Kuratowski, Komjáth,
Elekes and Steprāns. In case of Komjáth’s result our proof does not use the technique of
forcing, which is an answer to a question of Laczkovich [12].

We would like to remark here that the above authors mainly investigated B1(R) and
B1(ωω), but as we saw in Corollary 3.15 the statements do not depend on the underlying
Polish space, so we will state them slightly more generally.

4.1. Kuratowski’s theorem.

Theorem 4.1. (Kuratowski, [10, §24. III.2.]) ω1 and ω∗1 are not representable in B1.

Proof. By the Main Theorem it is enough to prove that ω1 6↪→ [0, 1]<ω1

↘0 and ω∗1 6↪→ [0, 1]<ω1

↘0 .
We will prove the former statement, the proof of the latter is the same.

Suppose that (fα)α<ω1
is a strictly increasing sequence in [0, 1]<ω1

↘0 . Now we define a

sequence {sα : α < ω1} ⊂ σ∗[0, 1] that is strictly increasing with respect to containment.
Notice that this will yield a contradiction, since ∪α<ω1sα would be an ω1-long strictly
decreasing sequence of reals.

We define the sequence sα by induction on α with the following properties:

(4.1) l(sα) = α and {γ : sα ⊂ fγ} contains an end segment of ω1.

First, s0 = ∅ clearly works. Now suppose that we are done for every β < α.

If α is a limit let sα = ∪β<αsβ . Then

{γ : sα ⊂ fγ} =
⋂
β<α

{γ : sβ ⊂ fγ}

so the set {γ : sα ⊂ fγ} is the intersection of countably many sets that contain end
segments, hence it contains an end segment. Therefore, (4.1) holds.

Let α be a successor. Let S = {γ : sα−1 ⊂ fγ}. If γ, γ′ ∈ S with γ < γ′ then clearly
fγ <altlex fγ′ . By sα−1 ⊂ fγ , sα−1 ⊂ fγ′ and l(sα−1) = α− 1 we obtain that δ(fγ , fγ′) ≥
α−1. So either fγ(α−1) = fγ′(α−1) or fγ(α−1) < fγ′(α−1) if α−1 is even and fγ(α−
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1) > fγ′(α − 1) if α − 1 is odd. Therefore, fγ(α − 1) ≤ fγ′(α − 1) if α − 1 is even and
fγ(α − 1) ≥ fγ′(α − 1) if α − 1 is odd. Consequently, the map γ 7→ fγ(α − 1) is order
preserving from S to the unit interval if α− 1 is even and order reversing if α− 1 is odd.
But S contains an end segment by induction, and [0, 1] contains no subset of type ω1 or
ω∗1 , hence this map attains a constant value, say r on an end segment. Thus, sα = sα−1

_r
satisfies (4.1). �

4.2. Komjáth’s theorem. Komjáth [9] has shown using forcing that a Suslin line is
not representable in B1(R). Laczkovich [12] asked if a forcing-free proof exists. Now we
provide such a proof.

Theorem 4.2. (Komjáth, [9]) A Suslin line is not representable in B1.

Notation. Let (T,<T ) be a tree. We denote by T |succ the set {t ∈ T : t ∈
Levα(T ), α is a successor} ordered by the restriction of <T . Notice that T |succ is also
a tree, but it is not a subtree of T . If t ∈ σ∗[0, 1] we will use the notation It for the set
{x̄ ∈ [0, 1]<ω1

↘0 : t ⊂ x̄}.

Lemma 4.3. Suppose that S ⊂ [0, 1]<ω1

↘0 is a nowhere separable Suslin line. Then

σ∗[0, 1]|succ contains a Suslin tree.

Proof. Let

(4.2) T = {t ∈ σ∗[0, 1] : |S ∩ It| ≥ 2}.

We claim that (T,$) is a Suslin tree.

First, T is clearly a subtree of (σ∗[0, 1],$) and σ∗[0, 1] does not contain uncountable
chains hence this is true for T as well.

Second, let A ⊂ T be an antichain. Notice that for every pair of incomparable nodes
t, t′ ∈ T the sets It and It′ are disjoint intervals of ([0, 1]<ω1

↘0 , <altlex), hence It ∩ S and

It′ ∩ S are also disjoint intervals in S. By (4.2) these intervals are non-degenerate. Since
A ⊂ T is an antichain the set {It ∩S : t ∈ A} is a collection of pairwise disjoint nonempty
intervals in S. Using that S is nowhere separable for every t we can select a Jt ⊂ It such
that S∩Jt is a nonempty open interval. By definition S is ccc so the set {Jt∩S : t ∈ A} is
countable. Hence A is countable, showing that T does not contain uncountable antichains.

Third, it is left to show that T is uncountable. Suppose the contrary. Notice first that
for every t ∈ T the set {r ∈ [0, 1] : S ∩ It_r 6= ∅} is countable, otherwise, choosing
points p̄r ∈ S ∩ It_r the map r 7→ p̄r would give an uncountable real subtype of S, which
is impossible (see [13, Proposition 3.5]). Hence, as T is also countable, we can select a
countable subset D of S with the following property: for every t ∈ T and r ∈ [0, 1] such
that S ∩ It_r 6= ∅ there exists a point p̄ ∈ D such that p̄ ∈ It_r.
We claim that D is dense in S which will contradict the non-separability of S. In order
to see this let J ⊂ S be a nonempty open interval. By passing to a subinterval of J
(using that S is nowhere separable) we can assume that J is of the form [x̄, ȳ] ∩ S with
x̄ 6= ȳ. Let z̄ ∈ (x̄, ȳ)∩S (such a z̄ exists by the fact that S is nowhere separable). Clearly
x̄ <altlex z̄ <altlex ȳ. Let δx̄ = δ(x̄, z̄) and δȳ = δ(ȳ, z̄). Then l(z̄) ≥ max{δx̄, δȳ}+ 1 and

(4.3) x̄(δx̄) < z̄(δx̄) ⇐⇒ δx̄ even and z̄(δȳ) < ȳ(δȳ) ⇐⇒ δȳ even.

Suppose that δx̄ ≥ δȳ, the proof of the other case is the same. If t = x̄∩ z̄, then {x̄, z̄} ⊂ It,
so by (4.2) we have t ∈ T . Clearly,

z̄ ∈ S ∩ Iz̄|δx̄+1
= S ∩ It_z̄(δx̄)
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hence, by the definition of D we obtain that there exists a p̄ ∈ D ∩ It_z̄(δx̄). We have

p̄|δx̄+1 = z̄|δx̄+1 so from δx̄ ≥ δȳ we get

δ(x̄, p̄) = δx̄ and δ(ȳ, p̄) = δȳ,

moreover
p̄(δx̄) = z̄(δx̄) and p̄(δȳ) = z̄(δȳ).

Therefore, using (4.3) we obtain that x̄ <altlex p̄ <altlex ȳ, so p̄ ∈ D ∩ (x̄, ȳ) ⊂ D ∩ J . So
D is a countable dense subset of S, a contradiction.

This yields that T is uncountable, hence it is indeed a Suslin tree.

Finally, notice that T is a subtree of σ∗[0, 1] so T |succ ⊂ σ∗[0, 1]|succ. Let T ′ = T |succ.
Clearly, T ′ is a subset of T and by definition the ordering of T ′ is the restriction of the
ordering of T , so T ′ does not contain uncountable chains or antichains. In order to see
that T ′ is uncountable first notice that the lengths of the elements in T are unbounded
in ω1, therefore the lengths of the elements on the successor levels are also unbounded.
Hence T ′ is uncountable so T ′ is also a Suslin tree, which completes the proof of the
lemma. �

For the sake of completeness we will prove the following classical facts about Suslin trees.

Lemma 4.4. If D is a dense open subset of the Suslin tree T then T \D is countable.

Proof. Let A be a maximal antichain in D. Clearly, A is countable. Let α be such that
α > sup{l(s) : s ∈ A}. Now, if β ≥ α arbitrary and t ∈ Levβ(T ) then by the density of D
there exists an s0 ∈ D such that t ≤T s0. From the facts that A is maximal and β ≥ α
we obtain that for some s1 ∈ A we have s1 ≤T s0 and hence s1 ≤T t. But then, as D is
open and A ⊂ D we obtain that t ∈ D. This finishes the proof of the lemma. �

Lemma 4.5. A Suslin tree is not R-special.

Proof. Suppose the contrary. Let T be a Suslin tree and f : T → R be an order preserving
map. We can suppose that f(T ) is a subset of [0, 1].

Let n ∈ ω and

Dn = {t ∈ T : (∀s ≥T t)(f(s) ≤ f(t) +
1

n+ 1
)}.

Clearly, Dn is open. We will show that it is also dense in T . In order to see this let t0 ∈ T
be arbitrary. Then either t0 ∈ Dn or there exists an t1 ≥T t0 such that f(t1) > f(t0)+ 1

n+1 .
Repeating this argument for t1 we obtain either that t1 ∈ Dn or a t2 ≥T t1 such that
f(t2) > f(t1) + 1

n+1 > f(t0) + 2
n+1 , etc. f(T ) ⊂ [0, 1] implies that this procedure stops

after at most n + 2 steps, hence we obtain an s ≥T t0 such that s ∈ Dn. Therefore,
the sets Dn are dense open subsets of T . By Lemma 4.4 the complement of ∩n∈ωDn is
countable, hence there exists s <T t such that s, t ∈ ∩n∈ωDn . But then clearly f(t) = f(s),
a contradiction. �

Now we are ready to prove the main result of this subsection.

Proof of Theorem 4.2. Suppose the contrary and let S ′ be a subset of B1 order isomorphic
to a Suslin line. By the Main Theorem there exists an embedding Φ0 : S ′ ↪→ [0, 1]<ω1

↘0 . For

p, q ∈ S ′ let p ∼ q if the interval [p, q] is separable. Then ∼ is an equivalence relation and
S = S ′/ ∼ is a nowhere separable Suslin line (for the details see [13, Section 3.]). For every
∼ equivalence class [·] fix a representative p ∈ S ′. It is easy to see that every equivalence
class is an interval, so the map Φ([p]) = Φ0(p) is an order preserving embedding of S into
[0, 1]<ω1

↘0 .
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Now we can use Lemma 4.3 for Φ(S). This yields that there exists a Suslin tree T ⊂
σ∗[0, 1]|succ. Assign to each t ∈ T the last element of t, namely, let f(t) = t(l(t)− 1).

Let s, t ∈ T such that s <T t. Then, as s 6= t, the sequences s and t are strictly decreasing
and (using that s <T t ⇐⇒ s $ t) t is an end extension of s we obtain that f(t) < f(s).
Therefore, the map 1 − f is a strictly monotone map from the Suslin tree T to R. This
contradicts Lemma 4.5. �

4.3. Linearly ordered sets of cardinality < c and Martin’s Axiom. In this subsec-
tion we reprove the results of Elekes and Steprāns from [5]. To formulate the statements,
we need some preparation.

Suppose that (L,<L) is a linearly ordered set. A partition tree TL of L is defined as
follows: the elements of TL are certain nonempty open intervals of L ordered by reverse
inclusion. TL is constructed by induction. Let Lev0(TL) = {L}.
Suppose that for an ordinal α we have defined Levβ(TL) for all β < α. If α is a successor,
for every I ∈ Levα−1(TL) fix nonempty intervals I0 and I1 such that I0 ∪ I1 = I and
I0 ∩ I1 = ∅ if such I0, I1 exist. Let

Levα(TL) =
⋃
{I0, I1 : I ∈ Levα−1(TL)}.

Now if α is a limit ordinal let

Levα(TL) = {
⋂
β<α

Iβ : Iβ ∈ Levβ(TL),∩β<αIβ 6= ∅}.

Somewhat ambiguously if t ∈ TL we will denote the corresponding interval of L by Nt.

We first verify the next proposition, which is interesting in its own right.

Proposition 4.6. Let L be a linear ordering such that TL, a partition tree of L, is R-
special. Then L ↪→ B1.

Proof. Without loss of generality we can suppose that we have a strictly decreasing map
Φ : TL → (0, 1).

Lemma 4.7. There exists a map Ψ0 : TL → σ∗[0, 1] with the following properties for
every t, s ∈ TL:

(1) if s ≤TL t then Ψ0(s) ⊂ Ψ0(t),
(2) if Ns <L Nt then Ψ0(s) <altlex Ψ0(t),
(3) inf Ψ0(t) ≥ Φ(t).

Proof. We define Ψ0 inductively on the levels of TL. Suppose that we are done for every
β < α.

If α is a limit ordinal and t ∈ Levα(TL), let

(4.4) Ψ0(t) =
⋃

t′<TL t

Ψ0(t′).

Now let α be a successor ordinal. First notice that for every t ∈ Levα(TL) by the fact
that Φ is strictly decreasing and the inductive hypothesis for t|α we have

(4.5) Φ(t) < Φ(t|α) ≤ inf Ψ0(t|α).

Let
A = {t ∈ Levα(TL) : (∃s ∈ Levα(TL))(s 6= t ∧ t|α = s|α)}.

Now, if t 6∈ A then using (4.5) there exists an r ∈ [0, 1] such that

(4.6) Φ(t) < r < inf Ψ0(t|α).
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So let

(4.7) Ψ0(t) = Ψ0(t|α) _ r.

Notice that if t ∈ A then there exists exactly one s 6= t such that s ∈ Levα(TL) and
t|α = s|α. Hence A is the union of pairs {s, t} such that s, t ∈ Levα(TL) and t 6= s and
t|α = s|α. We will define Ψ0(s) and Ψ0(t) simultaneously for such pairs. Since s and t
are incomparable, the intervals Ns and Nt are disjoint, so either Ns <L Nt or Ns >L Nt.
Using (4.5) and s|α = t|α we obtain

Φ(t),Φ(s) < Φ(t|α) ≤ inf Ψ0(t|α).

From this it follows that we can choose r, q ∈ (0, 1) such that

(4.8) Φ(t),Φ(s) < r, q < inf Ψ0(t|α)

and

(4.9) Ns <L Nt ⇐⇒ Ψ0(t|α) _ q <altlex Ψ0(t|α) _ r,

so let

(4.10) Ψ0(t) = Ψ0(t|α) _ r and Ψ0(s) = Ψ0(t|α) _ q = Ψ0(s|α) _ q.

Thus, we have defined Ψ0 on Levα(TL) (first on the complement of A then on A as well).
We claim that Ψ0 satisfies properties (1)-(3).

We check (1). Let s <TL t and t ∈ Levα(TL). If α is a limit ordinal then by (4.4) clearly
Ψ0(s) ⊂ Ψ0(t). If α is a successor then s ≤TL t|α, hence from the inductive hypothesis
and from equations (4.6) and (4.10) we obtain (1).

In order to prove (2) let s and t be given with Ns <L Nt. If s|α = t|α then s, t ∈ Levα(TL)
and α is a a successor. Then by equations (4.9) and (4.10) clearly (2) holds. If s|α 6= t|α
then there exists an ordinal β < α, s′ ⊂ s and t′ ⊂ t such that s′, t′ ∈ Levβ(TL) and
Ns′ < Nt′ . Hence from the inductive hypothesis Ψ0(s′) <altlex Ψ0(t′) so from property
(1) we have Ψ0(s) <altlex Ψ0(t).

Finally, in order to see (3) if α is a limit just notice that Φ(t) ≤ Φ(t′) whenever t′ ≤TL t
so by the inductive hypothesis we have

Φ(t) ≤ inf
t′<TL t

Φ(t′) ≤ inf
t′<TL t

(inf Ψ0(t′)) = inf Ψ0(t).

If α is a successor then for t 6∈ A by (4.6) and (4.7), while for t ∈ A by (4.8) and (4.10)
we get (3).

Thus the induction works, so we have proved that such a Ψ0 exists. �

Now we define the embedding L ↪→ [0, 1]<ω1

↘0 . For x ∈ L let

Ψ(x) = (
⋃

t∈TL, x∈Nt

Ψ0(t)) _ 0.

By the definition of a partition tree, if for s and t we have x ∈ Nt ∩ Ns then s and t
are ≤TL-comparable. Hence by property (1) of Ψ0 for every x ∈ L we have Ψ0(x) ∈
σ∗[0, 1]. Moreover, by ran(Φ) ⊂ (0, 1) and by property (3) we have that concatenating⋃
t∈TL, x∈Nt Ψ0(t) with zero will give an element in [0, 1]<ω1

↘0 .

We claim that the map Ψ is order preserving between (L,<L) and ([0, 1]<ω1

↘0 , <altlex).
Let x, y ∈ L with x <L y. Then there exist s, t ∈ TL such that x ∈ Ns and y ∈ Nt
and Ns <L Nt. Then by property (2) of Ψ0 we have Ψ0(s) <altlex Ψ0(t). Therefore,
Ψ0(s) ⊂ Ψ(x) and Ψ0(t) ⊂ Ψ(y) implies Ψ(x) <altlex Ψ(y). �

Theorem 4.8. (MA) If L is a linearly ordered set of cardinality < c then L is representable
in B1 iff L does not contain ω1 or ω∗1 .
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Proof. Let TL be a partition tree of L. We claim that TL does not contain uncountable
chains. Suppose the contrary, let {tα : α < ω1} ⊂ TL be a chain. Then Ntα (denoted by
Nα later on) is a strictly decreasing sequence of intervals in L. Therefore, for every α there
exists an xα ∈ Nα \Nα+1 such that either Nα+1 <L {xα} or Nα+1 >L {xα}. Without loss
of generality we can suppose that the set R = {α : (∃xα ∈ Nα \Nα+1)(Nα+1 <L {xα})}
is uncountable. But then the sequence (xα)α∈R is strictly decreasing in L and R is
unbounded in ω1 so (xα)α∈R is order isomorphic to ω∗1 .

Notice that as every level of TL contains pairwise disjoint nonempty intervals of L, from
|L| < c it follows that the cardinality of every level is strictly less than c. Moreover, since
TL does not contain uncountable chains, using that under Martin’s Axiom c is a regular
cardinal we obtain that |TL| < c.

Now it is easy to prove the theorem using a result of Baumgartner, Malitz and Reinhardt
(see [1]) which states that assuming Martin’s Axiom every tree with cardinality < c
that does not contain ω1-chains is Q-special. We have seen that TL does not contain
uncountable chains and |TL| < c, hence it is Q-special (in particular R-special), so by
Proposition 4.6 we have L ↪→ [0, 1]<ω1

↘0 . By the Main Theorem this implies L ↪→ B1. �

5. New results

5.1. Countable products and gluing. In this section we will answer Questions 2.2, 2.5
and 3.10 from [2]. Concerning the last question we would like to point out that in fact it
has been already solved in [5].

Elekes [2] investigated several operations on collections of linearly ordered sets, and asked
whether the closure of a simple collection of orderings under these operations coincide
with the linearly ordered subsets of B1. We will first prove that the set of linearly ordered
subsets of B1 is closed under the application of these operations.

Definition 5.1. Let L be a linearly ordered set and for every p ∈ L fix a linearly ordered
set Lp. Then the set {(p, q) : p ∈ L, q ∈ Lp} ordered lexicographically (that is, (p, q) <g
(p′, q′) if and only if p <L p

′ or p = p′ and q <Lp q
′) is called the gluing of the Lp’s along

L.

Theorem 5.2. (1) Let {Lβ : β < α} be a countable collection of linearly ordered sets
that are representable in B1. Then the set

∏
β<α Lβ ordered lexicographically is also

representable.
(2) Suppose that L and every (Lp)p∈L is representable in B1. Then the gluing of Lp’s

along L is also representable in B1.

Notation. Throughout this section if x̄ = (xα)α≤ξ is a transfinite sequence of reals and
a, b ∈ R we will abbreviate the sequence (axα + b)α≤ξ by ax̄+ b.

First we need a technical lemma.

Lemma 5.3. Suppose that L is a linearly ordered set and there exists an embedding
Ψ : L ↪→ [0, 1]<ω1

↘0 . Then there exists an embedding Ψ′ : L ↪→ [0, 1]<ω1

↘0 such that for every

p ∈ L the length l(Ψ′(p)) is an even ordinal.

Proof. It is easy to see that

Ψ′(p) =

{
( 1

2Ψ(p) + 1
2 ) _ 0 if l(Ψ(p)) is odd

( 1
2Ψ(p) + 1

2 ) _ 1
4
_ 0 if l(Ψ(p)) is even

is also order preserving and takes every point p ∈ L to a sequence with even length. �
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Proof of Theorem 5.2. First we prove (1). The representability of Lβ for every β < α by
the Main Theorem imply that there exist embeddings Ψβ : Lβ ↪→ [0, 1]<ω1

↘0 . Using Lemma

5.3 we can suppose that for every β < α and p ∈ Lβ the length of Ψβ(p) is even.

Fix now a sequence (yβ)β≤α ∈ σ∗[ 1
2 , 1]. For p̄ = (pβ)β<α ∈

∏
β<α Lβ let

Ψ(p̄) = (_β<α(
yβ − yβ+1

2
Ψβ(pβ) + yβ+1)) _ 0,

where _β<α denotes concatenation of the sequences in type α.

We claim that Ψ is an embedding of (
∏
β<α Lβ , <lex) into ([0, 1]<ω1

↘0 , <altlex). It is easy

to see that for every p̄ ∈
∏
β<α Lβ we have Ψ(p̄) ∈ [0, 1]<ω1

↘0 .

Now we prove that Ψ is order preserving. Let p̄ <lex q̄ with p̄ = (pβ)β<α, q̄ = (qβ)β<α
and let δ = δ(p̄, q̄), then pδ <Lδ qδ. It is easy to see that

δ(Ψ(p̄),Ψ(q̄)) =
∑
β<δ

l(Ψβ(pβ)) + δ(Ψδ(pδ),Ψδ(qδ)).

In particular, since every length in the previous equation is even we get that the
δ(Ψ(p̄),Ψ(q̄)) and δ(Ψδ(pδ),Ψδ(qδ)) are of the same parity. Using this, pδ <Lδ qδ and
the fact that Ψδ is order preserving, we obtain that Ψ(p̄) <altlex Ψ(q̄), which finishes the
proof of (1).

(2) can be proved similarly. Fix an order preserving embedding Ψ0 : L ↪→ [0, 1]<ω1

↘0

such that for every p ∈ L we have that l(Ψ(p)) is even. For every p ∈ L let us also fix
embeddings Ψp : Lp ↪→ [0, 1]<ω1

↘0 . Then

Ψ(p, q) = (
1

2
(Ψ0(p)) +

1

2
) _ (

1

8
(Ψp(q)) +

1

4
) _ 0

works. �

Definition 5.4. Let L be a linearly ordered set. The set L× 2 ordered lexicographically
is called the duplication of L.

Corollary 5.5. A linearly ordered set is representable in B1 then its duplication is also
representable.

The first part of Theorem 5.2 answers Question 2.5, while Corollary 5.5 answers Question
2.2 from [2] affirmatively.

Now let us define the above mentioned operations on collections of linearly ordered sets.
Suppose that H is an arbitrary set of ordered sets.

Definition 5.6. Let α < ω1 be an ordinal, then

Hα = {L1 ⊂ Lα : L ∈ H},
where Lα is ordered lexicographically. Let us denote by H∗ the closure of H under the
operation H 7→ Hα for every α < ω1.

Definition 5.7. S(H) denotes the closure of H under gluing.

It can be shown that such H∗ and S(H) exist.

Suppose that every element of H is representable in B1. The first part of Theorem 5.2
clearly implies that every element of H∗, while the second part yields that every element
of S(H) is representable in B1. So it is natural to ask the following:

Question 5.8. (Elekes, [2, Question 3.10.]) Does S({[0, 1]α : α < ω1})ω or S({[0, 1]α :
α < ω1})∗ equal to the linearly ordered sets representable in B1?
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To answer this question we need a property that is invariant under the above operations.

Definition 5.9. We will say that a linearly ordered set L has property (*) if every
uncountable subset of L contains an uncountable subset order-isomorphic to a subset of
R.

Proposition 5.10. Suppose that every L ∈ H has property (*). Then (*) holds for every
element of H∗ and S(H) as well.

Proof. In order to prove that every element of H∗ has the required property it is enough
to prove that if α < ω1 and L has property (*) then so does Lα.

We prove this by induction on α. Suppose that we are done for every β < α and let
L1 ⊂ Lα be uncountable.

Observe that if there exists an ordinal β < α such that L2 = {p̄ ∈ Lβ : (∃q̄)(p̄ _ q̄ ∈ L1)}
is uncountable then using that L2 ⊂ Lβ and the inductive hypothesis we obtain that L2

contains an uncountable real order type R2. Thus, there exists an R1 ⊂ L1 such that for
every p̄ ∈ R2 there exists a unique q̄ such that p̄ _ q̄ ∈ R1. It is easy to see that since Lα

is ordered lexicographically we have that R1 is an uncountable real order type in L1 (in
fact it is isomorphic to R2).

So we can suppose that there is no such a β.

If α is a successor then using the above observation for β = α− 1 we obtain that the set
{p̄ ∈ Lα−1 : (∃q ∈ L)(p̄ _ q ∈ L1)} is countable. By the uncountability of L1 there exists
a p̄ ∈ Lα−1 such that the set {q : p̄ _ q ∈ L1} is uncountable. But this is a subset of L, so
by the assumption on L there exists an uncountable real order type R ⊂ {q : p̄ _ q ∈ L1}.
Then {p̄ _ q : q ∈ R} is an uncountable real order type in L1.

Suppose now that α is a limit ordinal. By the above observation for every β < α the set
{p̄ ∈ Lβ : (∃q̄)(p̄ _ q̄ ∈ L1)} is countable. So there exist countable sets Dβ ⊂ L1 with the
following property: whenever for a point p̄ ∈ Lβ there exists a q̄ such that p̄ _ q̄ ∈ L1 then
there exists a q̄′ such that p̄ _ q̄′ ∈ Dβ . Let D =

⋃
β<αDβ , then D is a countable set.

We claim that D is dense in L1 (equipped with the order topology). In order to prove
this let x̄, ȳ ∈ L1 such that (x̄, ȳ) ∩ L1 is nonempty. Choose a z̄ ∈ (x̄, ȳ) ∩ L1. Since α
is a limit there exists a β < α such that β > max{δ(x̄, z̄), δ(ȳ, z̄)}. Then there exists a
w̄ ∈ Dβ ⊂ D such that w̄|β = z̄|β . But then clearly w̄ ∈ (x̄, ȳ) ∩ L1 ∩D. So D is indeed
dense. Consequently, L1 contains an uncountable real order type (see [13, 3.2. Corollary]).
This proves that Lα has property (*), so it is true for every element of H∗.
In order to prove that every element of S(H) has property (*) one can use similar ideas:
just use the above observation and the same argument as in the case of successor α. �

Now we are ready to answer Question 5.8. An Aronszajn line is an uncountable linearly
ordered set that does not contain ω1, ω∗1 and uncountable sets isomorphic to a subset of R.
An Aronszajn line is called special if it has an R-special partition tree. Special Aronszajn
lines exist, see [13, Theorem 5.1, 5.2]. Notice that Proposition 4.6 immediately gives the
following important corollary:

Corollary 5.11. If A is a special Aronszajn line then A ↪→ B1.

This corollary was proved by Elekes and Steprāns. Although it is not mentioned ex-
plicitly in the Elekes-Steprāns paper, the embeddability of the Aronszajn line answers
the questions of Elekes negatively: on the one hand an Aronszajn line does not contain
uncountable real order types. On the other hand by Proposition 5.10 every element of
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every collection of linear orderings obtainable from {[0, 1]} by the operations H 7→ H∗ or
H 7→ S(H) has property (*).

5.2. Completion. Now we will answer Question 2.7 from [2] negatively.

Theorem 5.12. There exists a linearly ordered set such that it is representable in B1, but
none of its completions are representable.

Proof. Let L ⊃ [0, 1]<ω1

↘0 be a completion of [0, 1]<ω1

↘0 , that is, a complete linear order

containing [0, 1]<ω1

↘0 as a dense subset. If it was representable then by Corollary 5.5 there

would be an order preserving embedding Ψ : L × 2 ↪→ [0, 1]<ω1

↘0 . We will denote the
lexicographical ordering on L×2 by <L×2 and somewhat ambiguously the lexicographical
ordering on [0, 1]<ω1

↘0 × 2 by <altlex×2. Notice that <altlex×2 is the restriction of <L×2 to

[0, 1]<ω1

↘0 × 2.

Notation. For each s ∈ σ∗[0, 1] let Js be the basic interval in [0, 1]<ω1

↘0 × 2 assigned to s,

that is, the set {x̄ ∈ [0, 1]<ω1

↘0 : s ⊂ x̄} × 2. We will use the notation

(5.1) I(s) = Ψ(inf(Js)) and S(s) = Ψ(sup(Js)).

Notice that if L is complete then the set L×2 ordered lexicographically is also a complete
linearly ordered set, hence I(s) and S(s) exist for every s ∈ σ∗[0, 1].

Let us define a map Φ : σ∗[0, 1]→ [0, 1] as follows:

Definition 5.13. For s ∈ σ∗[0, 1] let

δs = δ(I(s), S(s))

and

Φ(s) = max{I(s)(δs), S(s)(δs)}.

Let us also use the notation

φ(s) = min{I(s)(δs), S(s)(δs)}.

Notice that Φ and φ are well defined, since for every s ∈ σ∗[0, 1] the interval Js contains
at least two elements (one with last element 0 and another with 1), so I(s) and S(s) must
differ. From this we have for all s that

(5.2) 0 ≤ φ(s) < Φ(s).

In the following lemma we collect the easy observations that will be needed in the proof
of the theorem.

Lemma 5.14. Let s, t, u ∈ σ∗[0, 1] with s ⊂ t. Then

(1) δs ≤ δt,
(2) (a) Φ(s) ≥ Φ(t),

(b) max{I(t)(δs), S(t)(δs)} ≤ Φ(s),
(3) if δ ≤ δt then Φ(t) ≤ max{I(t)(δ), S(t)(δ)},
(4) if Φ(s) = Φ(t) then δs = δt,
(5) if r, q ∈ [0, 1] such that t _ r ≤altlex t _ q then

(a) I(t _ r)|δt = S(t _ r)|δt = I(t _ q)|δt = S(t _ q)|δt ,
(b) I(t _ r)(δt) ≤ S(t _ r)(δt) ≤ I(t _ q)(δt) ≤ S(t _ q)(δt) if δt is even,
(c) I(t _ r)(δt) ≥ S(t _ r)(δt) ≥ I(t _ q)(δt) ≥ S(t _ q)(δt) if δt is odd,

(6) if t ≤altlex u and δ is an even ordinal such that I(t)|δ = S(t)|δ = I(u)|δ then

I(t)(δ) ≤ S(t)(δ) ≤ I(u)(δ).
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Proof. Js ⊃ Jt, so by the fact that Ψ is order preserving we get

I(s) ≤altlex I(t) ≤altlex S(t) ≤altlex S(s).

Therefore, by the definition of <altlex it is clear that δs ≤ δt, so we have (1).

Now we show part (b) of (2). It is easy to see from the definition of <altlex that for every
x̄ ∈ [inf(Js), sup(Js)] we have Ψ(x̄)(δs) ∈ [φ(s),Φ(s)]. In particular, as [inf(Jt), sup(Jt)] ⊂
[inf(Js), sup(Js)] we obtain

(5.3) max{I(t)(δs), S(t)(δs)} ∈ [φ(s),Φ(s)],

which gives part (b). Since I(t) and S(t) are strictly decreasing sequences, using (1) we
have

I(t)(δt) ≤ I(t)(δs) and S(t)(δt) ≤ S(t)(δs).

Hence, (5.3) yields that Φ(t) ≤ Φ(s). Thus we have verified (2).

In order to see (3), use again that the sequences I(t) and S(t) are decreasing. Hence from
δ ≤ δt and the definition of δt we have (3):

Φ(t) = max{I(t)(δt), S(t)(δt)} ≤ max{I(t)(δ), S(t)(δ)}.

In order to prove (4) using (1) it is enough to show that δs < δt implies Φ(t) < Φ(s). If
δs < δt then by the definition of δt, the fact that the sequences I(t) and S(t) are strictly
decreasing and (5.3), we obtain

Φ(t) = max{I(t)(δt), S(t)(δt)} < max{I(t)(δs), S(t)(δs)} ≤ Φ(s),

which proves (4).

Now we prove (5). Notice that t _ r ≤altlex t _ q implies that Jt_r ≤altlex×2 Jt_q. Thus,

inf(Jt_r) ≤L×2 sup(Jt_r) ≤L×2 inf(Jt_q) ≤L×2 sup(Jt_q).

Consequently, by the fact that Ψ is order preserving, we get

(5.4) I(t _ r) ≤altlex S(t _ r) ≤altlex I(t _ q) ≤altlex S(t _ q).

From Jt_r, Jt_q ⊂ Jt it is clear that

I(t) ≤altlex I(t _ r) ≤altlex S(t _ r)

≤altlex I(t _ q) ≤altlex S(t _ q) ≤altlex S(t).

Thus, from the definition of δt we have

I(t)|δt = I(t _ r)|δt = S(t _ r)|δt = I(t _ q)|δ = S(t _ q)|δt = S(t)|δt ,

so this shows that (a) holds. Now using (a), the definition of <altlex and (5.4) we obtain
(b) and (c) of (5) as well.

The proof of (6) is similar to the previous argument: t ≤altlex u implies Jt ≤L×2 Ju,
consequently I(t) ≤altlex S(t) ≤altlex I(u). Since by assumption δ is even and I(t)|δ =
S(t)|δ = I(u)|δ, the definition of <altlex implies

I(t)(δ) ≤ S(t)(δ) ≤ I(u)(δ).

�

The following lemma is the essence of our proof.

Lemma 5.15. There exists a $-increasing sequence {sα}α<ω1
such that sα ∈ σ∗[0, 1],

l(sα) = α and

(*) (∀r ∈ sα)(Φ(sα) < r).
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Proof. We define sα by induction on α.

Suppose that we have defined sβ for β < α. Then by the inductive hypothesis for every
β < α we have

(5.5) (∀r ∈ sβ)(Φ(sβ) < r).

Now we define sα for limit and successor α’s separately.

α is a limit. Let sα =
⋃
β<α sβ . If r ∈ sα is arbitrary then r ∈ sβ for some β < α.

Notice that part (a) of (2) of Lemma 5.14 and (5.5) imply

(sβ ⊂ sα and r ∈ sβ)⇒ Φ(sα) ≤ Φ(sβ) < r.

Hence, using sβ ⊂ sα we obtain Φ(sα) < r so sα satisfies requirement (*).

α is a successor. Let α = β + 1.

Our aim is to find a real x such that

(5.6) sβ
_ x ∈ σ∗[0, 1] and Φ(sβ

_ x) < x.

Clearly, this ensures that sα = sβ
_ x satisfies (*).

Now notice that (5.5) yields

(5.7) sβ
_ Φ(sβ) ∈ σ∗[0, 1].

Now we have to separate two cases.

First, suppose that
Φ(sβ

_ Φ(sβ)) < Φ(sβ).

Let x = Φ(sβ). It is clear that x satisfies (5.6) by induction, so sα = sβ
_ x is a suitable

choice for (*).

Second, suppose that Φ(sβ
_ Φ(sβ)) ≥ Φ(sβ). Since sβ ⊂ sβ _ Φ(sβ), by part (a) of (2) of

Lemma 5.14 we have Φ(sβ
_ Φ(sβ)) ≤ Φ(sβ), so in fact

(5.8) Φ(sβ
_ Φ(sβ)) = Φ(sβ).

Moreover, by (4) of Lemma 5.14 we obtain that (5.8) implies

(5.9) δsβ
_

Φ(sβ) = δsβ .

In order to find an x that satisfies (5.6) we will distinguish 3 cases according to the parity
of β and δsβ .

Case 1. β and δsβ have the same parity.
By (5.2) we can choose an

(5.10) x ∈ (φ(sβ
_ Φ(sβ)),Φ(sβ

_ Φ(sβ))) = (φ(sβ
_ Φ(sβ)),Φ(sβ))

where the equality holds because of (5.8).

We claim that x has property (5.6). Clearly, x < Φ(sβ) and therefore by (5.5) we have
sβ

_ x ∈ σ∗[0, 1], hence the first part of (5.6) holds. Now we can use (5) of Lemma 5.14
(part (b) with t = sβ , r = x, q = Φ(sβ) if δsβ and β are even and part (c) with t = sβ ,
r = Φ(sβ), q = x if they are odd) and we obtain

(5.11) max{I(sβ
_ x)(δsβ ), S(sβ

_ x)(δsβ )} ≤
min{I(sβ

_ Φ(sβ))(δsβ ), S(sβ
_ Φ(sβ))(δsβ )} = φ(sβ

_ Φ(sβ)) < x,

where the equality follows from the definition of φ and (5.9) and the last inequality follows
from (5.10).

By (1) of Lemma 5.14 we have δsβ ≤ δsβ_x and (3) of Lemma 5.14 implies

Φ(sβ
_ x) ≤ max{I(sβ

_ x)(δsβ ), S(sβ
_ x)(δsβ )}.
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Combining this inequality with (5.11) we obtain that the second part of (5.6) holds for x.
So sα = sβ

_ x satisfies (*), hence we are done with the first case.

Case 2. β is even and δsβ is odd.
Then clearly, by (5.8), (5.9) and the odd parity of δsβ

Φ(sβ) = Φ(sβ
_ Φ(sβ)) =

max{I(sβ
_ Φ(sβ))(δsβ

_
Φ(sβ)), S(sβ

_ Φ(sβ))(δsβ
_

Φ(sβ))} =

max{I(sβ
_ Φ(sβ))(δsβ ), S(sβ

_ Φ(sβ))(δsβ )} = I(sβ
_ Φ(sβ))(δsβ ).

Thus,

(5.12) Φ(sβ) = I(sβ
_ Φ(sβ))(δsβ ).

Let z < Φ(sβ) be arbitrary. Clearly, by the parity of β we get sβ
_ z <altlex sβ

_ Φ(sβ).

Hence, using part (c) of (5) of Lemma 5.14 with t = sβ , r = z and q = Φ(sβ) we obtain

(5.13) I(sβ
_ z)(δsβ ) ≥ S(sβ

_ z))(δsβ ) ≥ I(sβ
_ Φ(sβ))(δsβ ) ≥ S(sβ

_ Φ(sβ))(δsβ ).

Now, part (b) of (2) of Lemma 5.14 applied to sβ and sβ
_ z yields

(5.14) max{I(sβ
_ z)(δsβ ), S(sβ

_ z)(δsβ )} ≤ Φ(sβ).

Comparing this inequality with (5.13) and (5.12) we have

(5.15) I(sβ
_ z)(δsβ ) = S(sβ

_ z)(δsβ ) = I(sβ
_ Φ(sβ))(δsβ ).

Therefore, as by (1) of Lemma 5.14 δsβ
_
z ≥ δsβ , we obtain that

(5.16) for every z < Φ(sβ) we have δsβ
_
z ≥ δsβ + 1.

Notice that (a) of (5) of Lemma 5.14 applied to sβ
_ z and sβ

_ Φ(sβ) and (5.9) imply
that

(5.17) I(sβ
_ z)|δsβ = S(sβ

_ z)|δsβ = I(sβ
_ Φ(sβ))|δsβ = S(sβ

_ Φ(sβ))|δsβ .

Now the even parity of δsβ + 1, sβ
_ z <altlex sβ

_ Φ(sβ), (5.15) and (5.17) show that (6)
of Lemma 5.14 can be applied for t = sβ

_ z and u = sβ
_ Φ(sβ) and δ = δsβ + 1. This

yields for every z < Φ(sβ) that

(5.18) max{I(sβ
_ z)(δsβ + 1), S(sβ

_ z)(δsβ + 1)} ≤

≤ I(sβ
_ Φ(sβ))(δsβ + 1) < I(sβ

_ Φ(sβ))(δsβ ) = Φ(sβ),

where the last inequality follows from the fact that I(sβ
_ Φ(sβ)) is strictly decreasing

and the equality comes from (5.12).

So by equations (5.16), (5.18) and (3) of Lemma 5.14 for an x ∈ (I(sβ
_ Φ(sβ))(δsβ +

1),Φ(sβ)) we obtain

Φ(sβ
_ x) ≤ max{I(sβ

_ x)(δsβ + 1), S(sβ
_ x)(δsβ + 1)}

≤ I(sβ
_ Φ(sβ))(δsβ + 1) < x.

Thus, the second part of (5.6) holds for x. The first part is clear from x < Φ(sβ) and
(5.5), hence sα = sβ

_ x is an appropriate choice for (*).

Case 3. β is odd and δsβ is even.
Then sβ has a least element min sβ , and by induction and (5.8) min sβ > Φ(sβ) = Φ(sβ

_

Φ(sβ)). Now let x ∈ (Φ(sβ),min sβ). Then we have sβ
_ x ∈ σ∗[0, 1], so the first part of

(5.6) holds. Since β is odd, we have sβ
_ x <altlex sβ

_ Φ(sβ). Therefore, from the fact
that δsβ is even using part (b) of (5) of Lemma 5.14 it follows that

(5.19) I(sβ
_ x)(δsβ ) ≤ S(sβ

_ x)(δsβ ) ≤ S(sβ
_ Φ(sβ))(δsβ )

≤ Φ(sβ
_ Φ(sβ)) = Φ(sβ) < x,
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where the last ≤ uses (5.9) while the equality comes from (5.8). Hence, using (1) of
Lemma 5.14 we get δsβ

_
x ≥ δsβ , so by (3) of Lemma 5.14 and (5.19) we obtain

Φ(sβ
_ x) ≤ max{I(sβ

_ x)(δsβ ), S(sβ
_ x)(δsβ )} < x,

thus, again x satisfies the second part of (5.6) so sα = sβ
_ x is a good choice for (*).

Thus, in any case we can carry out the induction. �

In order to prove the theorem just notice that Lemma 5.15 gives an ω1-long $-increasing
sequence of elements in σ∗[0, 1]. But then

⋃
α<ω1

sα would be an ω1-long decreasing

sequence of reals, which is a contradiction. Therefore no completion of ([0, 1]<ω1

↘0 , <altlex)
can be embedded into itself and this finishes the proof of the theorem. �

Remark 5.16. Let C be the following set:

{x̄ _ xξ
_ 0 : x̄ ∈ σ∗[0, 1], ξ is even, l(x̄) = ξ + 1, xξ 6= 0}.

The ordering <altlex extends to the set C ∪ [0, 1]<ω1

↘0 naturally and it is not hard to show
that this ordering is complete. By Theorem 5.12 this is not representable in B1. However,
one can show that this ordering does not contain ω1, ω∗1 and Suslin lines. Thus, we obtain
another proof of [5, Theorem 4.1].

6. Proof of Proposition 3.5

Proposition 3.5. ([8]) Let X be a Polish space and f ∈ bB+
1 (X). Then Φ(f) is defined,

Φ(f) ∈ σ∗bUSC+ and we have

(1) f =
∑∗
β<α(−1)βfβ + (−1)αgα for every α ≤ ξ,

(2) fξ ≡ 0,
(3) f =

∑∗
α<ξ(−1)αfα.

Proof. First we show that Φ(f) is defined and Φ(f) ∈ σ∗bUSC+. In order to prove this,
we will show the following lemma.

Lemma 6.1. The functions gα and fα (assigned to f in Definition 3.4) are bounded
nonnegative and the sequence (fα) is decreasing.

Proof. It follows trivially from the definition of the upper regularization that if g is an
arbitrary function then

(6.1) g is bounded⇒ ĝ exists, bounded and ĝ ≥p g.

Now we prove the statement of the lemma by induction on α. If α = 0 then g0 = f and

f0 = f̂ , hence from f ∈ bB+
1 (X) and (6.1) clearly follows that g0 and f0 are bounded

nonnegative functions.

If α is a successor then by definition gα = ĝα−1 − gα−1 so by the second part of (6.1) we
have gα ≥p 0. Moreover, since gα−1 is bounded ĝα−1 is also bounded. Thus, gα is the
difference of two bounded functions, therefore it is also bounded. Therefore, by (6.1) fα
exists (notice that we have defined the upper regularization only for bounded functions)
and also bounded and nonnegative.

Now we show that the sequence (fα) is decreasing. By the nonnegativity of gα−1 we have
fα−1 − gα−1 ≤p fα−1, so

fα = ̂fα−1 − gα−1 ≤p f̂α−1 = fα−1.
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For limit α we have

(6.2) gα = inf{gβ : β < α and β is even},
so clearly gα ≥p 0 and gα is bounded. Hence using again (6.1) we obtain that fα is
bounded and nonnegative.

Now for every β we have gβ ≤p fβ . Therefore, if β is an even ordinal and β < α then by
(6.2) we have

gα ≤p gβ ≤p fβ ,
so fα = ĝα ≤p f̂β = fβ . But if β is odd, then β + 1 is even and β + 1 < α. Using (6.2) we
obtain gα ≤p gβ+1 hence by the definition of fα and fβ+1 and the inductive hypothesis
we have fα ≤p fβ+1 ≤p fβ . This finishes the proof of the lemma. �

Clearly, by the definition of upper regularization, the functions fα are upper semicontin-
uous. Therefore, by Lemma 6.1 we obtain that (fα) is a decreasing sequence of nonneg-
ative USC functions, so it must stabilize for some countable ordinal ξ ([10] or Lemma
3.7). Therefore, for every function in f ∈ bB+

1 (X) we have that Φ(f) is defined and
Φ(f) ∈ σ∗bUSC+(X).

Now we need the following lemma.

Lemma 6.2. Let (fα)α<ξ ∈ σ∗USC+. Then
∑∗
α<ξ(−1)αfα is a Baire class 1 function.

Proof. We prove the lemma by induction on ξ.

First, if ξ is a successor just use that Baire class 1 functions are closed under addition and
subtraction.

Second, if ξ is a limit, by definition of the alternating sums we have that

Σ∗α<ξ(−1)αfα = sup{Σ∗β<α(−1)βfβ : α < ξ, α even}.
For even α < ξ we have

(*) Σ∗β<α(−1)βfβ = Σ∗β<α+1(−1)βfβ − fα.
Again, for even α

Σ∗β<α(−1)βfβ + fα − fα+1 = Σ∗β<α+2(−1)βfβ

so since the sequence (fα)α<ξ is decreasing the sequence (
∑∗
β<α(−1)βfβ)α even is increas-

ing. Similarly, the sequence (
∑∗
β<α+1(−1)βfβ)α even is decreasing. Notice that if (rβ)β<α

and (tβ)β<α are decreasing transfinite sequences of nonnegative reals such that rβ − tβ is
increasing, then

sup{rβ − tβ : β < α} = inf{rβ : β < α} − inf{tβ : β < α}.
Therefore, applying (∗) and these facts we have

sup{Σ∗β<α(−1)βfβ : α < ξ even} =

inf{Σ∗β<α+1(−1)βfβ : α < ξ even} − inf{fα : α < ξ even}.
The infimum of USC functions is also USC, hence the right-hand side of the equation
is the difference of the infimum of a countable family of Baire class 1 functions and a
USC function. Therefore, sup{

∑∗
β<α(−1)βfβ : α < ξ even} is the infimum of a countable

family of Baire class 1 functions. Moreover, by the inductive hypothesis, this function is
also the supremum of a countable family of Baire class 1 functions. Now, using the fact
that a function is Baire class 1 if and only if the preimage of every open set is Σ0

2(X) it
is easy to see that if a function h is the infimum of a countable family of Baire class 1
functions then for every a ∈ R we have that h−1((−∞, a)) is in Σ0

2(X). Similarly, if h is
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the supremum of a countable family of Baire class 1 functions then the sets h−1((a,∞)) are
also in Σ0

2(X). But this implies that a function that is both an infimum and a supremum
of countable families of Baire class 1 functions is also Baire class 1.

So, as an infimum and supremum of countable families of Baire class 1 functions, the
function sup{

∑∗
β<α(−1)βfβ : α < ξ even} is also a Baire class 1 function, which completes

the inductive proof. �

Now we prove (1) of the Proposition by induction on α.

For α = 0 this is clear. If α is a successor, then gα−1 = fα−1 − gα, so

f = Σ∗β<α−1(−1)βfβ + (−1)α−1gα−1 =

Σ∗β<α−1(−1)βfβ + (−1)α−1(fα−1 − gα) = Σ∗β<α(−1)βfβ + (−1)αgα.

For limit α notice that we have by induction for every even β < α

f = Σ∗γ<β(−1)γfγ + gβ .

Then, using that the sequence (fβ)β<α is decreasing, the sequence (Σ∗γ<β(−1)γfγ)β even

is increasing, so (gβ)β even is decreasing as their sum is constant f .

Notice that if (rβ)β<α is an increasing and (tβ)β<α is a decreasing transfinite sequence of
nonnegative reals such that rβ + tβ = c is constant, then

c = sup{rβ + tβ : β < α} = sup{rβ : β < α}+ inf{tβ : β < α}.
So

f = sup
β even,β<α

(
Σ∗γ<β(−1)γfγ + gβ

)
=

sup
β even,β<α

Σ∗γ<β(−1)γfγ + inf
β even,β<α

gβ = Σ∗β<α(−1)βfβ + gα,

where the last equality follows from the definition of
∑∗
β<α(−1)βfβ and gα.

This proves the induction hypothesis, so we have (1).

After rearranging the equality in (1) we have that

(−1)α+1gα = Σ∗β<α(−1)βfβ − f.
By Lemma 6.2 we have that the sum on the right-hand side of the equation is a Baire class
1 function, therefore gα is also Baire class 1. We have that fξ+1 ≡ fξ, so by Definition

3.4 we have ̂̂gξ − gξ = ĝξ. Hence in order to prove (2) it is enough to show the following
claim.
Claim. If g is a nonnegative, bounded Baire class 1 function such that ĝ = ̂̂g − g then
g ≡ 0.

Proof of the Claim. Suppose the contrary. Then there exists an ε > 0 such that {x :

g(x) > ε} 6= ∅. Let K = {x : g(x) > ε}. Since g is a Baire class 1 function we have that
there exists an open set V such that

ε > osc(g,K ∩ V ) (= sup
x,y∈K∩V

|g(x)− g(y)|)

and K ∩ V is not empty (see [7, 24.15]).

The function lim supy→x g(y) (here in the lim sup we do not exclude those sequences which
contain x) is USC. Therefore, by definition ĝ ≤p lim sup g. Hence letting h = ĝ − g we
have that

(6.3) h ≤p lim sup(g)− g.
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Now, we claim that

(6.4) (lim sup(g)− g)|V ∩K ≤ ε.

Suppose the contrary. Then there exists an x ∈ V ∩K such that (lim supy→x g(x))−g(x) >
ε. Consequently, there exists a sequence yn → x, such that limn→∞ g(yn) > g(x) + ε.
Using the nonnegativity of g and the fact that g|Kc ≤ ε we get that yn ∈ K ∩ V except
for finitely many n’s. But then osc(g,K ∩ V ) > ε, a contradiction. So we have (6.4) and
using (6.3) we obtain

(6.5) h|V ∩K ≤ ε.

Observe now that if for a bounded function f and an open set U we have that f |U ≤ ε,

then f̂ |U ≤ ε (clearly, if |f | < K then the function K ·χUc +ε ·χU is an USC upper bound
of f).

By the above observation used for g on Kc we have that ĝ|Kc ≤ ε, in particular from
h = ĝ − g ≤p ĝ we obtain that h|Kc ≤ ε. Then from (6.5) we get h|V ≤ ε. So finally,

using the above observation for h and V we obtain ĥ|V ≤ ε.
The set {x : g(x) > ε} is dense in K, hence there exists an x0 ∈ V ∩ {x : g(x) > ε}. On

the one hand ĝ(x0) ≥ g(x0) > ε, on the other by x ∈ V we get ĥ(x0) ≤ ε. This contradicts

the assumption that ĝ = ĥ. �

So we have proved (2) of Proposition 3.5.

(3) easily follows from Lemma 6.1, (1), (2) since 0 ≤ gξ ≤ fξ ≡ 0. This finishes the proof
of the proposition. �

7. Open problems

Probably the most natural and intriguing problem is the following. Recall that the αth
level of the Baire hierarchy in a space X is denoted by Bα(X). Unless stated otherwise,
X is an uncountable Polish space.

Problem 7.1. Let 2 ≤ α < ω1. Characterize the order types of the linearly ordered
subsets of Bα(X). For instance, does there exist a (simple) universal linearly ordered set
for Bα(X)? And how about the class of Borel measurable functions ∪α<ω1

Bα(X)?

We remark here that Komjáth [9] proved that under the Continuum Hypothesis every
ordered set of cardinality at most c can be represented in B2(X) (hence in Bα(X) for
any α ≥ 2 as well). Nevertheless, a ZFC result would be very interesting and in light
of our solution to Laczkovich’s problem now it seems conceivable that one can construct
relatively simple universal linearly ordered sets in these cases as well. As a first step in
this direction it would be interesting to see if the result of Kechris and Louveau can be
generalized to Bα(X). Actually, closely related results from this paper have already been
generalised from the Baire class 1 case to the Baire class α case in [3].

Let (Ln)n∈ω and L be linearly ordered sets. We say that L is a blend of (Ln)n∈ω if L can
be partitioned to pairwise disjoint subsets (L′n)n∈ω such that Ln is order isomorphic to L′n
for every n. Elekes [2] proved that if the duplication and completion of every representable
ordering was representable then countable blends of representable orderings would also
be representable. As we have seen (Theorem 5.12), the second condition of this theorem
fails, hence it is quite natural to ask the following.

Problem 7.2. Suppose that the linearly ordered sets Ln are representable in B1(X) and
L is a blend of (Ln)n∈ω. Does it follow that L is also representable in B1(X)?
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The authors would expect a negative answer using similar ideas and techniques as in the
proof of Theorem 5.12.

Elekes and Kunen [4] investigated Problem 1.1 in general, for non-Polish X. This raises
the next question:

Problem 7.3. Let X be a topological space (e. g. a separable metric space). Characterize
the order types of the linearly ordered subsets of B1(X). For instance, does there exist a
(simple) universal linearly ordered set for B1(X)?

We believe that an affirmative answer might be useful in answering Question 7.1 using
topology refinements.

The next problem concerns characterizing all the subposets of our function spaces instead
of only the linearly ordered ones. For example, it is not hard to check that F(X) = C([0, 1])
contains an isomorphic copy of a poset P iff (P(ω),$) does.

Problem 7.4. Characterize, up to poset-isomorphism, the subsets of B1(X). Does there
exist a simple, informative universal poset? For instance, is ∆0

2(X) or USC<ω1

↘0 (X)
universal?

Here USC<ω1

↘0 is defined analogously to [0, 1]<ω1

↘0 and is ordered by the natural modifica-

tion of <altlex. Notice that our method of proving that (B1(X), <p) ↪→ (∆0
2(X),$) does

not give a poset isomorphism between B1(X) and its image. In fact, the image is linearly
ordered. Unfortunately, it can be easily seen that even the Kechris-Louveau-type embed-
ding B1(X) → bUSC<ω1

↘0 , that is, assigning to every Baire class 1 function its canonical
resolution as a sum is not a poset isomorphism.

At first sight Laczkovich’s problem seems to be closely related to the theory of Rosenthal
compacta [6].

Problem 7.5. Explore the connection between the topic of our paper and the theory of
Rosenthal compacta.
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