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Abstract

Let K be a global field of finite characteristic p ≥ 2, and let E/K be a non-isotrivial elliptic

curve. We give an asympotoic formula of the number of places ν for which the reduction of E
at ν is a cyclic group. Moreover we determine when the Dirichlet density of those places is 0.

1 Statement of results

Let K be a global field of characteristic p and genus gK , and let k = Fq ⊂ K (q = pf ) be the
algebraic closure of Fp in K. We denote by VK the set of places of K. For ν ∈ VK , we denote by kν
the residue field of K at ν, and by deg(ν) := [kν : Fq] the degree of ν. Let k be an algebraic closure
of k. Denote φ : (x 7→ xq) ∈ Gal(k/k) the q-Frobenius. Let kr|k be the unique degree r extension
in k.

Let E/K be an elliptic curve over K with j-invariant jE /∈ k, which we shall standardly call
non-isotrivial. We denote by VE/K the set of places of K for which the reduction Eν/kν is smooth
and |V E/K | =∑ν /∈VE/K

deg(ν). For n ∈ N \ {0} let VE/K(n) = {ν ∈ VE/K | deg(ν) = n}.
From the theory of elliptic curves we know that for ν ∈ VE/K , Eν(kν) ≃ Z/dνZ× Z/dνeνZ for

nonzero integers dν , eν , uniquely determined by E and ν. We call the integers dν and dνeν the
elementary divisors of Eν .

The goal of this paper is to extend the results of [CT] about the distribution of the places
ν ∈ VE/K for which Eν(kν) is a cyclic group. Such questions have been investigated for the
reductions of an elliptic curve defined over Q (e.g. in [BaSh], [Co1], [Co2], [CoMu], [GuMu], [Mu1],
[Mu2], [Se2]), mainly in relation with the elliptic curve analogue of Artin’s primitive root conjecture
formulated by Lang and Trotter in [LaTr]. This latter conjecture was investigated in the function
field setting E/K by Clark and Kuwata [ClKu], and by Hall and Voloch [HaVo] (see also Voloch’s
work on constant curves [Vo1], [Vo2]). In [ClKu], a particular emphasis was placed on the study of
the cyclicity of Eν(kν).

In this paper we obtain an explicit asymptotic formula for the number of places ν ∈ VE/K , of
fixed degree, for which Eν(kν) is cyclic. Our result is a direct extension of the work of [CT] which
worked in finite characteristic p > 3.

Theorem 1. Let E/K be a non-isotrivial elliptic curve. For all ε > 0 there exists c = c(K,E, ε)
such that for all n ∈ N we have

∣

∣

∣

∣

#
(

ν ∈ VE/K(n)|Eν(kν) is cyclic
)

− δ(E/K, 1, n)
qn

n

∣

∣

∣

∣

≤ c
qn/2+ε

n
,

where

δ(E/K, 1, n) =
∑

m≤qn/2+1

m|qn−1

µ(m)ordm(q)

|K(E[m]) : K| ,

a µ is the Moebius function and ordm(q) denotes the multiplicative order of q modulo m for m ∈ N,
(m, q) = 1.
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Here the second parameter of δ refers to dν = 1. The exact same calculation for
#
(

ν ∈ VE/K(n)|dν = d
)

yields a same result.
We are also able to answer a previously unsolved question concerning the Dirichlet density

δ(E/K, 1) of places ν such that Eν(kν) is cyclic: we can characterize when this density is 0.

Theorem 2. Let E/K be a non-isotrivial elliptic curve. Then δ(E/K, 1) = 0 if and only if
δ(E/K, 1, 1) = 0.

Surprisingly this can happen in the case, when the torsion subgroup of E(K) is cyclic, as well.

We sketch the original proof of Theorem 1 in the following:
With simple inclusion-exclusion principle we get

#
(

ν ∈ VE/K(n)|Eν(kν) is cyclic
)

=
∑

m

µ(m)#
(

ν ∈ VE/K(n)|(Z/mZ)2 ≤ Eν(kν)
)

,

moreover the sum has very few nonzero terms: if (Z/mZ)2 ≤ Eν(kν) then

• by Hasse’s theorem |Eν(kν)| ≤ qn + 1 + 2
√
qn, thus m ≤ qn/2 + 1,

• by the Weil-pairing the cyclotomic field Fq(ζm) ≤ kν , thus m|qn − 1.

By [CT] Corollary 10, (Z/mZ)2 ⊆ Eν(kν) if and only if ν splits completely in K(E[m])/K) or
equivalently the conjugacy class of the Frobenius at ν in Gal(K(E[m])/K) ≤ GL2(Z/mZ) is the set
consisting of the identity element. Thus let cm be the integer for which the algebraic closure of k
in K(E[m]) is Fqcm and π1(n,K(E[m]/K) = #(ν ∈ VE/K(n)|ν splits completely in K(E[m])/K)).

Note that cm = ordm(q), which corresponds to the algebraic part of the field extensionK(E[m])/K
and Gal(K(E[m])/KFqcm ) ≤ SL2(Z/mZ) describes the geometric part.

This enables us to use an effective version of the Chebotarev density theorem ([MuSc] Theorem
2): we obtain that if m,n ∈ N such that (m, p) = 1 and ordm(q)|n, then there exists ρ = ρ(E,K,m)
such that
∣

∣

∣

∣

π1(n,K(E[m])/K)− ordm(q) · qn
[K(E[m]) : K]

∣

∣

∣

∣

≤ 2

(

(3gK + (ρ+ 1)|V E/K |)q
n/2

n
+

|V E/K |
2n

)

+ |V E/K |.

If K(E[m])/K is at most tamely ramified for all n (consequently if p > 3) then ρ = 0. The
contribution of the paper to the proof is that we handle wildly ramified field extensions to bound ρ
independently from m. For this we need to do some local computation, this is contained in Section
2.

Now we can simply sum up these estimations and by standard arguments prove the theorem.

In Section 3 we investigate the density δ(E/K, 1).
If K(E[ℓ]) = K for some prime ℓ 6= p or equivalently if the torsion subgroup of E(K) is not

cyclic, it is clear that for all ν ∈ V (E/K) the group of Eν(kν) is not cyclic either. It is a natural
question to ask whether the converse is true. In [CT] is proven that for the special case K = Fq(jE)
the answer is affirmative.

We start by showing an elliptic curve E/K with cyclic torsion subgroup such that for infinitely
many n ∈ N the value of δ(E/K, 1, n) is 0 (and for at least one n we have
#(ν ∈ VE/K(n)|Eν(kν) is cyclic) = 0.)

Then we prove Theorem 2 and finally we construct an elliptic curve E/K with cyclic torsion
subgroup for which δ(E/K, 1, 1) = 0 and hence δ(E/K, 1) is also 0.

2 Chebotarev density theorem for wildly ramified extensions

Let L|K be a Galois extension of function fields with constant field k, and unramified away from
a set of places S. Let |S| =

∑

ν∈S deg(ν) and let c be the integer such that the algebraic closure of
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k in L is a degree c extension of k. Let π1(n, L/K) be the number of places of degree n of K which
split completely in L/K. ρL/K is an integer as defined in [Se3] 1.2 and [MuSc] 3 and which we will
redefine and estimate thereafter.

We will use the following version of Chebotarev density theorem for global function fields:

Theorem 3. ([MuSc], Theorem 2.) If c|n, then

∣

∣

∣

∣

π1(n, L/K)− c
1

[L : K]
|VK(n)|

∣

∣

∣

∣

≤ 2

(

(3gK + (ρL/K + 1)|S|)q
n/2

n
+

|S|
2n

)

+ |S|.

Otherwise π1(n, L/K) = 0.

Recall the definition of ρL/K :
By the abuse of notation let first K denote a local field, with ring of integers oK , maximal ideal

mK ⊳ oK and standard valuation valK : K → Z ∪ {∞}.
Let L|K be a finite, totally ramified extension with ramification index eL/K , different ideal

DL/K ⊳ oL and let us denote by valL(DL/K) the expontent of mL in DL/K : the integer n for which
DL/K = mn

L.
We then have p ∤ eL/K ⇐⇒ valL(DL/K) = eL/K − 1 ⇐⇒ L|K is at most tamely ramified.

([Na], Theorem 4.8)
Thus there exists an integer 0 ≤ j < eL/K such that valL(DL/K) ≡ −j − 1 (mod eL/K). Then

j = 0 ⇐⇒ L|K is at most tamely ramified. Finally let

ρL/K =

{

0, if L/K is at most tamely ramified,
valL(DL/K)−(eL/K−j−1)

eL/K
, if L/K is wildly ramified,

Notice that this is really an integer and ρL/K =
⌈

valL(DL/K)+1

eL/K

⌉

− 1, where ⌈·⌉ is the ceiling

function. Remark that if we would have Hensel’s bound valL(DL/K) ≤ eL/K − 1 + valp(eL/K)
(which fails in the function field case), then we would get ρL/K = 1 if L|K is wildly ramified and 0
otherwise.

Also note that if L = K(α) with a separable Eisenstein polynomial f satisfying f(α) = 0, then
eL/K = deg(f) and valL(DL/K) = valL(f

′(α)).
Now, return to the original situation, that is, K denotes a global function field, and L/K is a

Galois extension with constant field k. Then let ρL/K = maxν(ρLν/Kν
).

Lemma 4. Let M |L|K be a tower of totally ramified Galois extensions with constant field k. We
then have

1. ρL/K ≤ ρM/K ≤ ρL/K +
⌈

ρM/L

eL/K

⌉

.

2. ρM/K = ρL/K if M |L is at most tamely ramified.

Proof. Clearly it suffices to verify the statements locally. Let us once again denote by K = Kν ,
L = Lν and M =Mν . Then

ρM/K =

⌈

valM (DM/K) + 1

eM/K

⌉

− 1 =

⌈

valM (DM/L) + valM (DL/K) + 1

eM/L · eL/K

⌉

− 1 =

=

⌈

1

eL/K
· valM (DM/L) + 1

eM/L
+

valL(DL/K) + 1

eL/K
− 1

eL/K

⌉

− 1.

Using the trivial inequality ⌈a+ b⌉ ≤ ⌈a⌉+ ⌈b⌉ we get the upper bound in 1. The lower bound
is also clear since (valM (DM/L) + 1)/eM/L ≥ 1, hence

1

eL/K

(

valM (DM/L) + 1

eM/L
− 1

)

≥ 0.

Moreover equality holds if and only if M |L is at most tamely ramified, which proves 2.
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Proposition 5. Let E/K be a non-isotrivial elliptic curve over K and m,n ∈ N such that (m, p) = 1
and ordm(q)|n. Then there exists ρ independent from n such that

∣

∣

∣

∣

π1(n,K(E[m])/K)− ordm(q) · qn
[K(E[m]) : K]

∣

∣

∣

∣

≤ 2

(

(3gK + (ρ+ 1)|V E/K |)q
n/2

n
+

|V E/K |
2n

)

+ |V E/K |.

Proof. We use the fact that there exits a finite extension K ′|K such that E/K ′ has either good
or split multiplicative reduction over K ′ ([Si1] Proposition VII.5.4.), hence for all m we have that
K(E[m])/K is at most tamely ramified ([Si2] Theorem 10.2). Then by Lemma 4 we get that
ρK(E[m])/K ≤ ρK′(E[m])/K = ρK′/K =: ρ, which does not depend on m.

Theorem 1 follows from this by standard arguments.

Remarks. 1. Let k = F2, K = k(j) and E/K be the elliptic curve with j-invariant j defined
by the equation y2 + xy + x3 + j−1 = 0. Here K(E)/K is wildly ramified at ∞. How-
ever if we consider the Deuring normal form E′ : y2 + txy + y + x3 = 0, some computation
with Tate’s algorithm show that there is no more wild ramification. The j-invariant of E′ is
t12/(t3 + 1). Hence we can set L = K(t) = k(t) with t satisfying f(t) = t12 + jt3 + j = 0 -
doing that we adjoin the coordinates of 2 points of the 3-torsion. Here we have eL/K = 12 and
valL(DL/K) = valL(f

′(t)) = 14 since f is an Eisenstein polynomial. Thus

ρL/K =
⌈

valL(DL/K)+1

eL/K

⌉

− 1 = 1.

We need one more field extension, since E and E′ are not isomorphic over L, only over
M = L(s) with s2 + ts + t = 0. Here we have eM/L = 2 and valM (DM/L) = 4. Hence as in
the proof of 4

ρM/K =

⌈

valM (DM/L) + eM/L · valL(DL/K) + 1

eM/L · eL/K

⌉

− 1 =

⌈

33

24

⌉

− 1 = 1.

Hence in this case we have
∣

∣

∣

∣

π1(n,K(E[m])/K)− 2n

|SL2(Zm)|

∣

∣

∣

∣

≤ 8 · 2
n/2 + 1

n
+ 2.

For a ∈ F∗
2n let E(a)/F2n : y2 + xy + x3 + a = 0 and let E(0)/F2n : y2 + y + x3 = 0. Denote

f(n) = #(a ∈ F2n |E(a) is cyclic) =
∑

d|n d#(ν ∈ VE/K(d)|dν = 1). Here only the term d = n

is relevant, thus f(n) ≃ g(n)+O(2n/2), where g(n) = 2n
∑

m≤2n/2+1

m|2n−1

1
|SL2(Z/mZ)| . We computed

some values of f(n) and g(n), and the following tables illustrate the result.

n f(n) g(n) f(n)− g(n)
1 2 2 0
2 3 3.83 −0.83
3 8 8 0
4 15 15.2 −0.2
5 32 32 0
6 60 61.14 −1.14
7 128 128 0
8 246 243.22 2.78

n f(n) g(n) f(n)− g(n)
9 512 510.48 1.52
10 977 980.55 −3.55
11 2047 2047.83 −0.83
12 3873 3878.98 −5.98
13 8192 8192 0
14 15670 15701.13 −31.13
15 32673 32669.37 3.63
16 62294 62265.91 28.09

Note that if 2n − 1 > 3 is a Mersenne prime, then our esimate is sharp: there is no nontrivial
m such that m|2n − 1, thus δ(E/K, 1, n) = 1 and also Eν(kν) is cyclic for all ν ∈ VE/K(n).

2. Let k = F3 and K = k(j) and E : y2 + xy− x3 + j−1 = 0 the elliptic curve with j-invariant j
over K. We have wild ramification at ∞ again.

Now set L = K(µ) with µ12 − j((µ4 − 1))2 = 0. E/L is isomorphic with
E′ : y2 = x(x − 1)(x − µ2 + 1) - this is a bit varied version of the Legendre normal form

4



composed with a quadratic extension. Here is no more wild ramification and again we have
ρL/K = 1.

The Chebotarev density theorem in this case gives:

∣

∣

∣

∣

π1(n,K(E[m])/K)− 3n

|SL2(Zm)|

∣

∣

∣

∣

≤ 8 · 3
n/2 + 1

n
+ 2.

3 Dirichlet density of places with cyclic reduction

Let n ∈ N \ {0}. Recall that

δ(E/K, 1, n) =
∑

m≥1

m|qn−1

µ(m)ordm(q)

|K(E[m]) : K| .

It is mentioned in [CT] Remark 17, that if there exists a prime ℓ 6= p such that K(E[ℓ]) = K (or
equivalently the torsion subgroup of E(K) is not cyclic), then for all n we have δ(E/K, 1, n) = 0.
Moreover if K = Fq(jE), then the converse holds.

We show that it is not true in general:

Proposition 6. There exists an elliptic curve E/K with cyclic torsion subgroup such that for
infinitely many n ∈ N we have δ(E/K, 1, n) = 0.

Proof. Let K = F5(t). We construct a curve E such that the extension K(E[3])|K is algebraic and
of degree 2. Then since ord3(5) = 2, and if 2|n we have

δ(E/K, 1, n) =
∑

m≥1

m|5n−1

µ(m)ordm(5)

|K(E[m]) : K| =
∑

3∤m

1≤m|5n−1

(

µ(m)ordm(5)

|K(E[m]) : K| −
µ(m)ord3m(5)

|K(E[3m]) : K|

)

.

Then either we have 2|ordm(5) = ord3m(5) and K(E[3m]) = K(E[3])K(E[m]) = K(E[m]), since
K(E[m]) contains the cyclotomic field K(ζm) ≥ K(ζ3) = K(E[3]). Or 2 ∤ ordm(5) and hence
ord3m(5) = 2 · ordm(5), moreover K(E[3]) � K(E[m]) since (ordm(q), ord3(q)) = 1, consequently
|K(E[3m]) : K(E[m])| = 2. Thus all terms on the right-hand side are 0, and δ(E/K, 1, n) = 0.

To realize an explicit example set p(t) = t3 − t2 + 2t, q(t) = 2t6 + t5 + t − 1 and

E : y2 = x3+p(t)x+q(t) over K. Then ∆E = −16(4p(t)3+27q(t)2) 6= 0 and jE = 1728 · 4p(t)
3

∆E
/∈ Fq,

thus E is non-isotrivial.
Moreover E0 : y2 = x3 − 1 has 6 points over F5, hence the torsion subgroup of E(K) is cyclic.
The third division polynomial is

ψ3(x) = 3(x4 + 2p(t)x2 − q(t)x− 2p(t)2) = 3(x2 − (1 + 2t2)x− (t4 − 2t3 − t− 1))(x + 2t2)(x + 1),

where on the right-hand side the first term is irreducible over F5[t]. However if we
denote L = K(

√
2), the following points are in E(L)[3]: (−1,±

√
2(t3 − t2 + 2t − 2)),

(−2t2,±2(t3 − 2t2 + 2t + 1)), hence E(L)[3] is the whole 3-torsion. Thus K(E[3]) = L and
|K(E[3]) : K| = 2, indeed.

Remarks. 1. For n = 2 it is easy to verify, that there is no place ν ∈ VE/K(2) such that Eν ’s
group is cyclic. Thus #(ν ∈ VE/K(n)|dν = 1) = 0 6=⇒ ∃ℓ 6= p : K(E[ℓ]) = K.

2. The same can be carried out for q 6= 5, q ≡ 2 (mod 3). For example if q = 2 we can choose
K = F2(t)(u), where u2+(t3+1)u+(t12+1) = 0 and E/K : y2+xy = x3+(t12+ t9+ t6+ t3).
If q 6≡ 2 (mod 3), then we shall use a different prime ℓ instead of 3 such that ordℓ(q) > 1.
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Now we shall turn to a slightly different question. Whether the same phenomenon can arise if
we consider all places ν ∈ VE/K at once. Recall that by the definition of Dirichlet density we have

δ(E/K, 1) = lim
s→1+0

∑

ν∈VE/K

dν=1

q−s deg(ν)

∑

ν∈VE/K
q−s deg(ν)

.

Of course, if the torsion subgroup of E(K) is not cyclic, then by definition δ(E/K, 1) = 0. Our
goal is to determine when δ(E/K, 1) = 0 in general.

Recall that for all but finitely many primes ℓ we have Gal(K(E[ℓ])/KFqordℓ(q)) ≃ SL2(Zℓ) ([Ig]
Theorem 4, [Se1], [CT] Theorem 6) Let M(E/K) be the torsion conductor of E/K - the product
of the finitely many exceptional primes ℓi and N(E/K) be the least common multiple of ordℓi(q).
Moreover if m1,m2 ∈ N such that (m1, p) = (m2, p) = (m2,M) = 1 and m1 is composed of primes
dividing M(E/K), then K(E[m1]) ∩K(E[m2]) = KFq(ordm1 (q),ordm2 (q)) . ([CT] Corollary 8)

Now we are ready to prove Theorem 2:

Proof. First assume that δ(E/K, 1, 1) > 0. Let N = N(E/K) and M = M(E/K). If (n,N) = 1,
then in the definition of δ(E/K, 1, n) all m|qn − 1 can be written in the form m = m0m

′ with
(m0,M) = 1 and m′|q − 1. Note that ordm(q) = ordm0(q). Using the previously mentioned facts
we get |K(E[m]) : K| = |K(E[m0]) : K| · |K(E[m′]) : K| and we can proceed as in [CT] Remark
17:

δ(E/K, 1, n) =
∑

m0|qn−1

(m0,q−1)=1





∑

m′|q−1

µ(m0m
′)ordm0m′(q)

|K(E[m0m′]) : K|



 =

=
∑

m0|qn−1

(m0,q−1)=1

µ(m0)

|K(E[m0]) : KF
ordm0(q)
q |





∑

m′|q−1

µ(m′)

|K(E[m′]) : K|



 =

=









∑

m0|qn−1

(m0,q−1)=1

µ(m0)

|SL2(Z/m0Z)|









· δ(E/K, 1, 1) > δ(E/K, 1, 1)
∏

ℓ∤pM

(

1− 1

ℓ(ℓ2 − 1)

)

= ε > 0.

Now from the definition of δ(E/K, 1) we have

δ(E/K, 1) = lim
s→1+0

∑

n>n0

∑

ν∈VE/K(n)

dν=1

q−sn

∑

n>n0
|VE/K(n)|q−sn

≥

∑

n≡1 (mod N)
n>n0

#(ν ∈ VE/K(n)|dν = 1)q−sn

∑

n≡1 (mod N)
n>n0

N |VE/K(n)|q−sn
≥

≥

∑

n≡1 (mod N)
n>n0

ε/2 · |VE/K(n)|q−sn

∑

n≡1 (mod N)
n>n0

N |VE/K(n)|q−sn
=

ε

2N
> 0.

Here we used the fact that |#(ν ∈ VE/K(n)|dν = 1)−δ(E/K, 1, n)·|VE/K(n)|| < c(K,E)qn/2 < qn/2
for a fixed c(K,E) > 0 and for n > n0(K,E) depending only on K,E (cf [CT] Theorem 1.1 and
the asymptotic formula for |VE/K(n)|).

To prove the converse statement assume that δ(E/K, 1, 1) = 0. We will show that for all n ∈ N
we have δ(E/K, 1, n) = 0. Then there exists C > 0 such that |VE/K(n)| ≥ Cqn/n and by Theorem
1 we have some c = c(K,E, 1) such that #(ν ∈ VE/K(n)|dν = 1) ≥ cqn/2+1/n. So by definition

δ(E/K, 1) = lim
s→1+0

∑

n #(ν ∈ VE/K(n)|dν = 1)q−ns

∑

n |VE/K(n)|q−ns
≤ lim

s→1+0

∑

n cq
1−n(s−1/2)/n

∑

n Cq
−n(s−1)/n

= 0,

and we are done.
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We shall examine in detail when is δ(E/K, 1, 1) = 0.

δ(E/K, 1, 1) =
∑

m|q−1

µ(m)

|K(E[m]) : K| =
1

|K(E[q − 1]) : K|
∑

m|q−1

|K(E[q − 1]) : K(E[m])|.

Let H = Gal(K(E[q − 1])/K) ≤ SL2(Z/(q − 1)Z) and for primes ℓ|q − 1 denote Hℓ = H ∩Ker(πℓ),
where πℓ : SL2(Z/(q− 1)Z) → SL2(Z/ℓZ)) is the modulo ℓ reduction. So by the inclusion exclusion
principle δ(E/K, 1, 1) = 0 if and only if we have H =

⋃

ℓHℓ.
Now let n be an arbitrary integer. We can refine our computation of δ(E/K, 1, n) as follows:

δ(E/K, 1, n) =
∑

m0|qn−1

(m0,q−1)=1

∑

m′|q−1

µ(m0m
′)ordm0m′(q)

|K(E[m0m′]) : K| =
∑

m0|qn−1

(m0,q−1)=1

µ(m0)ordm0(q)

|K(E[m0(q − 1)]) : K|S
(m0),

where S(m0) =
∑

m′|q−1 µ(m
′)|K(E[m0(q − 1)]) : K(E[m0m

′])|.
We claim that S(m0) is 0 for all m0. For this let H(m0) = Gal(K(E[m0(q − 1)]) : K(E[m0]))

and for primes ℓ|q − 1 let H
(m0)
ℓ = Gal(K(E[m0(q − 1)])/K(E[m0ℓ])). As before, we have

S(m0) = 0 ⇐⇒ H(m0) =
⋃

ℓH
(m0)
ℓ .

Let σ ∈ H(m0). We can view it as an element of Gal(K(E[m(q − 1)])/K, and thus
σ = σ|K(E[q−1]) ∈ H . Since δ(E/K, 1, 1) = 0 there exists ℓ|q − 1 such that σ ∈ Hℓ. But this means
that σ fixes K(E[ℓ]). Moreover by definition σ fixes K(E[m0]), thus also
K(E[m0ℓ]) = K(E[ℓ]) · K(E[m0]). Hence σ ∈ H

(m0)
ℓ = Gal(K(E[m0(q − 1)])/K(E[m0ℓ])) and

as we can do that for any σ, we got H(m0) =
⋃

ℓH
(m0)
ℓ .

Corollary 7. The proof shows that if q−1 has at most 2 prime factors ℓ1 and ℓ2, then δ(E/K, 1) > 0
if and only if E(K) has cyclic torsion subgroup.

Proof. In this case H 6= Hℓ1 ∪ Hℓ2 - the union of two proper subgroup can not be the whole
group.

By the first glimpse one would expect that δ(E/K, 1, 1) = 0 if and only if the torsion subgroup
of E(K) is not cyclic. This is not true, in the following we construct counterexamples.

Proposition 8. If q − 1 has at least 3 distinct prime divisors, there exists an elliptic curve E/K
with cyclic torsion subgroup for which δ(E/K, 1) = 0.

Proof. If q − 1 has at least 3 distinct prime divisors, we can construct some subgroups
H ≤ SL2(Z/(q − 1)Z) such that H =

⋃

ℓHℓ.
In the case of p = 2 we can write q − 1 = q1q2q3 with qi > 2 and pairwise relatively prime. Let

H contain the central elements diag(1), diag(x1), diag(x2) and diag(x3) of SL2(Z/(q − 1)Z), where
we have xi ≡ 1 (mod qj) if i = j and xi ≡ −1 (mod qj) if i 6= j. Then H ≃ (Z/2Z)2 and the Hℓ-s
are the nontrivial subgroups of H .

In the case of p > 2 we can write q − 1 = 2αq1q2 with α ≥ 1, qi odd and (q1, q2) = 1. There
exists r ∈ Z/(q − 1)Z such that r ≡ 1 (mod 2α), r ≡ 1 (mod q1), r ≡ −1 (mod q2). Let

H =

{(

1 0
0 1

)

,

(

−1 0
0 −1

)

,

(

r 2α−1q1q2
0 r

)

,

(

−r 2α−1q1q2
0 −r

)}

.

As above we have H ≃ (Z/2Z)2 and the Hℓ-s are the nontrivial subgroups of H .
For example the smallest q is q = 31, then we have

H =

{(

1 0
0 1

)

,

(

11 15
0 11

)

,

(

19 15
0 19

)

,

(

29 0
0 29

)}

≃ (Z/2Z)2 ≤ SL2(Z/30Z).

Now our task is to find an elliptic curve E/K such that the algebraic closure of the prime
field in K has q elements and Gal(K(E[q − 1])/K) = H . Let E/Fq(t) be a curve with j-
invariant t. Then by Igusa’s results ([Ig], Theorem 3) we have N(E/Fq(t)) = 1. We have
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G = Gal(Fq(t)(E[q − 1])/Fq(t)) ≃ SL2(Z/(q − 1)Z), hence we can identify G with the special
linear group. Let H ≤ G the subgroup we constructed above and K = (Fq(t)(E[q − 1]))

H and con-
sider E/K. It is clear that the constant field of K has size q and that Gal(K(E[q−1])/K) = H ≤ G.
Moreover the only exceptional primes are the primes dividing q− 1, since the geometric part of the
extensions Fq(t)(E[ℓ]) are disjoint.

Remark.

It does not follow from the statement that for no ν ∈ VE/K is Eν(kν) cyclic. However we have
proven that for only a few ν-s this is the case.
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