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CHROMATIC ROOTS AND LIMITS OF DENSE GRAPHS

PÉTER CSIKVÁRI, PÉTER E. FRENKEL, JAN HLADKÝ, AND TAMÁS HUBAI

Abstract. In this short note we observe that recent results of Abért and Hubai
and of Csikvári and Frenkel about Benjamini–Schramm continuity of the holomor-
phic moments of the roots of the chromatic polynomial extend to the theory of
dense graph sequences. We offer a number of problems and conjectures motivated
by this observation.

1. Introduction

Recently, there has been much work on developing limit theories of discrete struc-
tures, and of graphs in particular. The best understood limit concepts are those for
dense graph sequences and bounded-degree graph sequences. The former one was
developed by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi [6, 15], and the
latter was initiated by Benjamini and Schramm [5]. The convergence notion in both
these theories is based on frequencies of finite subgraphs, and it is a fundamental
programme to understand what other parameters are captured in the limits (i.e., are
continuous with respect to the corresponding topologies). In this short note we show
that recent proofs of Abért and Hubai and of Csikvári and Frenkel about the con-
vergence of holomorphic moments of the chromatic roots in a Benjamini–Schramm
convergent sequence translate to the dense model as well. Furthermore, we conjecture
that in the dense model we actually have weak convergence of the root distributions.

Let us now give the details. We assume the reader’s familiarity with basics of graph
limits, we shall however give pointers to Lovász’s recent monograph [14] throughout.

Recall that given a graph G of order n, its chromatic polynomial P (G, x) (in a
complex variable x) is defined as

(1.1) P (G, x) =

n
∑

k=0

ip(G, k)x(x− 1) . . . (x− k + 1) ,

where ip(G, k) is the number of partitions of V (G) into k non-empty independent
sets. In other words, for nonnegative integer values of x, P (G, x) counts the number
of proper vertex-colorings of G with x colors.
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Next, we recall the result of Abért and Hubai [3], which concerns convergence
of bounded-degree graphs. To this end, recall that a sequence of graphs (Gn)n of
maximum degree uniformly upper-bounded by D is Benjamini–Schramm convergent
if for each fixed connected graph F , the number sequence hom(F,Gn)/v(Gn) con-
verges. Here hom(F,G) denotes the number of homomorphisms from F to G, and
v(G) denotes the number of nodes in G. There are many equivalent definitions of
Benjamini–Schramm convergence. A detailed treatment appears in [14, Chapter 19].

Suppose that G is a graph of maximum degree at most D. We can associate to
it the uniform probability measure µG on the multiset of the roots of the chromatic
polynomial P (G, x). The Sokal bound [16] tells us that this chromatic measure µG

is supported in the disk of radius (strictly less than) 8D. The main result of [3] then
reads as follows.

Theorem 1.1. Suppose that (Gn)n is a Benjamini–Schramm convergent sequence of
graphs of maximum degree at most D. Suppose that f : B → C is a holomorphic
function defined on the open disk B = B(0, 8D). Then the sequence

∫

f(z)dµGn
(z)

converges.

Note that to prove Theorem 1.1 it suffices to prove the convergence of the holo-
morphic moments

∫

zkdµGn
(z) (k ∈ N)

for a Benjamini–Schramm convergent graph sequence (Gn)n, and this is indeed how
the proof goes.

As was noted in [3], it is not always the case that the measures µGn
in a Benjamini–

Schramm convergent graph sequence converge weakly. This can be seen from the
following example.

Example 1.2. Consider paths Pn and cycles Cn of growing order. These two se-
quences have the same Benjamini–Schramm limit but the weak limit of (µPn

)n→∞ is
concentrated on 1 whereas the weak limit of (µCn

)n→∞ is the uniform measure on the
unit circle with the center in 1.

Csikvári and Frenkel [8] generalized Theorem 1.1 to a wider class of graph polyno-
mials. This is discussed in Section 4.2.

Let us now turn to dense graphs. The convergence notion in the dense model
was introduced by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi. Of the
many equivalent definitions, we shall give the one that is the most convenient for our
purposes. We refer to [14, Chapters 11-12] for more details. A sequence of graphs
(Gn)n is convergent in the dense model if for each fixed graph F , the number sequence
hom(F,Gn)/v(Gn)

v(F ) converges. Let us also recall that if we have a convergent
sequence of dense graphs then we can associate to it a limit object, a so-called graphon,
see [14, §11.3].

Suppose that G is a graph of order n. Then the vertices of G have arbitrary degrees
between 0 and n−1. The measure µG need not be supported in a bounded region for
a such a graph G; the Sokal bound gives only a bound of roughly 8n on the modulus
of the chromatic roots. This bound can probably be improved down to n − 1 (see
Conjecture 4.1) but not more. Thus, it is natural to scale down µG by the factor of
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n, defining a new probability measure νG, νG(X) := µG(nX), where for X ⊂ C we
define nX = {nx : x ∈ X} ⊂ C. Now, νG is supported in the disk of radius 8. The
main result of this note is the observation that Theorem 1.1 has a counterpart for
sequence of dense graphs.

Theorem 1.3. Suppose that (Gn)n is a sequence of graphs which converges in the
dense model. Suppose that f : B → C is a holomorphic function defined on an open
disk B = B(0, 8). Then the sequence

∫

f(z)dνGn
(z)

converges.

We will give a sketch of a proof of Theorem 1.3 in Section 2.

Note that by a standard argument from complex analysis, we can approximately
count the number of colorings in a convergent graph sequence. Note that when G
has n vertices and ℓ = Cn, we expect P (G, ℓ) to grow as (cn)n for some c ∈ R.

Theorem 1.4. Let (Gn)n be a sequence of graphs convergent in the dense model,
where Gn has order n. Then for each C > 8, the quantity

n

√

P (Gn, Cn)

n
converges as n → ∞.

The proof follows the same lines as Theorem 1.2 of [3]. Also, the result can be
stated a bit more generally, as can again be seen in Theorem 1.2 of [3].

We believe that there exists no counterpart to Example 1.2 for dense graphs. This
is the main conjecture of the present paper.

Conjecture 1.5. Suppose that (Gn)n is a sequence of graphs convergent in the dense
model. Then the rescaled chromatic measures νGn

converge weakly.

In general, a graphon does not carry much information about chromatic properties
of graphs which converge to it. For example, it is easy to construct a sequence of
graphs such that their chromatic numbers grow almost linearly with their orders,
yet converge to the constant-zero graphon. On the other hand it is easy to construct
another sequence of graphs such that their chromatic numbers grow arbitrarily slowly,
yet converge to the constant-one graphon. That is, in a sense, the chromatic number
is not even semicontinuous with respect to the cut-distance.

An immediate consequence of Conjecture 1.5 would be that it would allow us
to associate “chromatic roots” to graphons. This is perhaps the most substantial
information about chromatic properties which could be reflected in the limit.

The only support for Conjecture 1.5 is a lack of counterexamples we could come up
with. In particular, the Conjecture asserts that the normalized chromatic measures
of Erdős–Rényi random graphs (with constant edge probability) or more generally
random graphs coming from sampling from a graphon converge — and this seems to
be a very weak form of the conjecture. It would be very interesting to prove this, and
to describe the weak limit.

Problem 1.6. What is the typical distribution of the chromatic roots of the Erdős–
Rényi random graph Gn,p, for a fixed p ∈ (0, 1)?
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Computational restrictions allowed us to run simulations only for n ≤ 10. Such
limited simulations did not hint for any limit behavior.

Last, let us remark that the measure νG is not trivialized by the scaling we intro-
duced. This is stated in the following proposition.

Proposition 1.7. For every δ > 0 there exists ǫ > 0 such that the following holds.
Suppose that G is a graph of order n with at least δn2 edges. Then at least ǫn of the
chromatic roots of G have modulus at least ǫn.

2. Proof of Theorem 1.3

It is only needed to observe that the argument in [3] is valid even in the dense
model. More precisely, in [3, Theorem 3.4] the following is proven. The symbol
hom(T,H) stands for the number of homomorphisms from a graph T to a graph H .

Theorem 2.1 ([3, Theorem 3.4]). Let H be a graph, and for k ∈ N let

pk = |V (H)|
∫

zkdµH(z).

Then

(2.1) pk =
∑

T

(−1)k−1kck(T ) hom(T,H) ,

where ck(T ) are constants, and the summation ranges over connected graphs T of
order at most k + 1.

With this result, the proof of Theorem 1.3 is straightforward. Let us write pk,n
for the number pk from the previous theorem associated to the graph Gn. As was
remarked earlier, it suffices to prove the theorem for f(z) = zk, k ∈ N. For simplicity,
let us assume that the graph Gn has n vertices. We have

∫

zkdνGn
(z) =

1

nk

∫

zkdµGn
(z) =

pk,n
nk+1

.

The sequence (Gn) is convergent. In particular, for every graph T of order at most
k + 1 the quantity

hom(T,Gn)

nk+1

converges. Observe that the right-hand side of (2.1) (for a fixed number k) contains
only a bounded number of summands. Consequently,

pk,n
nk+1

converges as n → ∞, finishing the proof.

3. Proof of Proposition 1.7

It is well known, and easy to see from the formula (1.1), that the sum of the chro-
matic roots of G is the number of edges in G. By the assumption of the proposition,
this is at least δn2. Also, recall that the chromatic roots are contained in the disk of
radius 8n. Thus, for

δn2 ≤
∑

x chr.root

x

to hold, we must have at least δ
9
n roots x of the chromatic polynomial with ℜ(x) ∈

[

δ
9
n, 8n

]

.



CHROMATIC ROOTS AND LIMITS OF DENSE GRAPHS 5

4. Remarks and conjectures

4.1. Variants of Sokal’s bound. Recall that the bound asserts that if a graph has
maximum degree ∆, then all the chromatic roots lie in the disk of radius r = 8∆.
The value 8∆ is not optimal; Sokal himself actually gives 7.96 . . . × ∆. On the
other hand the complete bipartite graph K∆,∆ shows [17] that one cannot go below
r = 1.59 . . .∆.1 Here, we suggest to bound the moduli of the chromatic roots by the
order instead of the maximum degree.

Conjecture 4.1. Every graph G of order n has all the chromatic roots of modulus
at most n− 1.

If true, complete graphs would be the extremal graphs for the problem.2 Note that
Conjecture 4.1 is known to be true for real zeros. Indeed, if x > n−1 is real then each
summand in (1.1) is non-negative, and the summand for k = n is strictly positive,
yielding P (G, x) > 0. Secondly, we claim that if x is negative then it is not a root
of P (G, ·). Indeed, it is well-known (see e.g. [9, Corollary 2.3.1]) that the coefficients
of P (G, ·) alternate in sign. The value P (G, x) is then a sum of terms with the same
sign, and in particular, non-zero.

By enumerating all graphs of a given order on a computer, we have verified Con-
jecture 4.1 for n ≤ 10.

Our next problem can be seen as an extension of Sokal’s bound, but is also con-
nected to Conjecture 1.5 as we show below.

Problem 4.2. Suppose that G is a graph and G′ is obtained from G by adding edges
in such a way that the degree at each vertex increases by at most ∆. Is it true that
the chromatic roots move by at most c∆, for some absolute constant c? (By “moving”
we mean that there is a bijection π from the multiset of the chromatic roots of G to
the multiset of the chromatic roots of G′ so that |x− π(x)| ≤ c∆ for each chromatic
root x of G.)

Note that to answer Problem 4.2 in the affirmative, it would suffice to prove the
case ∆ = 1.

Suppose that G1 and G2 are two n-vertex graphs with edit-distance at most ǫn2.
That means that after a suitable vertex identification of V (G1) and V (G2) the graph
G on the same vertices whose edges are the common edges of G1 and G2 has the
property that for at most 2

√
ǫn vertices do we have degG(v) ≤ degG1

(v) − √
ǫn or

degG(v) ≤ degG2
(v) − √

ǫn. For the sake of drawing the link to Conjecture 1.5, let
us assume that there are no such exceptional vertices. Then a positive solution to
Problem 4.2 would give that the chromatic measure νG1

and νG2
are close in the weak∗

topology. In particular, a positive answer to Problem 4.2 would provide a support
for Conjecture 1.5 when the topology generated by the cut-distance is replaced by
the stronger L1-metric.

4.2. Matching polynomial. As mentioned before, Theorem 1.1 has been [8] ex-
tended to a large class of “multiplicative graph polynomials of bounded exponential
type”. (In particular, this includes univariate polynomials derived from the Tutte
polynomial, and a modified version of the matching polynomial. For the matching

1Let us note that this has not been proven rigorously.
2Recall that the roots of the chromatic polynomial of a complete graph Kn are {0, 1, . . . , n− 1}.
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polynomial, the behavior of the root distribution in Benjamini–Schramm convergent
graph sequences was discussed in [1, 2].)

The proof in [8] of this more general statement translates verbatim to the dense
setting as well,3 thus giving Theorem 1.3 for multiplicative graph polynomials of
bounded exponential type. Problem 1.6 can be asked for these alternative graph
polynomials as well.

The case of the matching polynomial is particularly simple. We recall the definition.
Let G = (V,E) be a finite graph on v(G) = n vertices. Let mk(G) be the number
of k-matchings. Note that m0(G) = 1 and mk(G) = 0 for k > ⌊n/2⌋. The matching
polynomial µ(G, x) in one variable x is defined as

µ(G, x) =

⌊n/2⌋
∑

k=0

(−1)kmk(G)xn−2k.

A well-known result of Heilmann and Lieb [12] asserts that the roots of the matching
polynomial are all real. It is easy to see that the matching polynomial is multiplicative
(w.r.t. disjoint union) and the coefficient of xn−i is a linear combination of subgraph
counts. Thus, the version of the main result of [8] for dense graphs applies. Recall
the Weierstrass approximation theorem: on a compact interval, any continuous func-
tion can be uniformly approximated by polynomials. It follows that convergence of
(holomorphic) moments, i.e.,

∫

xkdνn →
∫

xkdν, (k = 1, 2, . . . )

is equivalent to the weak convergence νn → ν for probability distributions νn, ν
supported on a compact interval. We get the following. If (Gn) is a sequence of
graphs converging in the dense model, consider the uniform distribution πn on the
roots of the matching polynomial µ(Gn, x). Then πn scaled down by a factor of
v(Gn) converges weakly. Let us explain why this corollary is trifling. Indeed, the
full Heilmann–Lieb theorem asserts that if G is a graph of maximum degree D, and
G is not a matching, than the roots of the matching polynomial µ(G, x) lie in the

interval
[

−2
√
D − 1, 2

√
D − 1

]

, and in particular in
[

−2
√

v(G)− 2, 2
√

v(G)− 2
]

.

In other words, the distribution πn scaled down by a factor of v(Gn) converges to the
Dirac measure at 0. So, the rescaling suggested by the Heilmann–Lieb theorem is by
a factor of

√

v(Gn). To get the right statement, we need to introduce the modified
matching polynomial. This is a polynomial in one variable x defined by

M(G, x) =

⌊n/2⌋
∑

k=0

(−1)kmk(G)xn−k.

The matching polynomial and its modified version encode the same information.
Indeed, we have µ(G, x) = x−nM(G, x2). We can factor M(G, x) as

(4.1) M(G, x) = x⌈n/2⌉

⌊n/2⌋
∏

i=1

(x− γi(G)) .

Then the real numbers
(

±
√

γi(G)
)⌊n/2⌋

i=1
,

3Let us remark that the proof is quite different from the original proof by Abért and Hubai.
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together with an extra zero if n is odd, are the roots of µ(G, x).
It can be easily checked directly from [8, Definitions 1.3, 1.4] that M(G, x) is

a graph polynomial of bounded exponential type. So, it is the modified matching
polynomial that we want to apply the main result of [8] to. We thus readily obtain
a counterpart of Conjecture 1.5 for the roots of the matching polynomial, with the
right scaling.

Theorem 4.3. Suppose that (Gn)n is a sequence of graphs convergent in the dense
model. Let πn be the uniform probability measure on roots of the matching polynomial
µ(Gn, x). Then the rescaled measures

λn(X) := πn

(

√

v(Gn)X
)

converge weakly.

In particular, this allows us to associate a “matching measure” to a graphon (cf.
text below Conjecture 1.5).

In the rest of this section we answer the counterpart of Problem 1.6 for the matching
polynomial. This was done independently, and prior to the current manuscript being
publicly available, in [7]. Our proof relates the roots of the matching polynomial
of Gn to those of the complete graphs Kn. To compare, the proof in [7] goes via
counting “tree-like walks”, a concept introduced in [10].

We can now state the main result of [7].

Theorem 4.4. Let p ∈ (0, 1), and let (Gn)n be a sequence of Erdős–Rényi random
graphs Gn ∼ Gn,p. Let πn be the uniform probability distribution on the roots of the
matching polynomial of Gn. Then almost surely, the measures λn(X) := πn (

√
nX)

converge weakly to the semicircle distribution SCp whose density function is

ρp(x) :=
1

2π

√

4− x2

p
, −2p ≤ x ≤ 2p .

In combination with Theorem 4.3, this determines the limit of matching measures
for an arbitrary sequence of quasirandom (in the sense of Chung–Graham–Wilson)
graphs. Also, note that we present a proof only for p fixed, but the same technique
works also for

p = Ω

(

logconst n

n

)

.

Proof. Since all the roots of the matching polynomial are real, the convergence of the
holomorphic moments

∫

zkdλn(z), k ∈ N readily implies convergence in distribution.
Let us thus argue that for each k ∈ N, almost surely we have

∫

zkdλn(z) →
∫

zkdSCp(z) .

For each fixed k = 0, 1, 2, . . ., and for the random graphs Gn, we asymptotically
almost surely have

(4.2)
mk(Gn)

mk(Kn)
= (1 + o(1))pk ,

as each set of k pairs of vertices has probability pk of being entirely included as edges
of Gn, and this quantity is concentrated around the expectation. For details on how
to prove such a result, see [4, Chapter 4]. Since the mi(G) are elementary symmetric
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polynomials of the roots γi(G) (cf. (4.1)), the Newton identities give that for each
fixed k,

⌊n/2⌋
∑

i=1

γi(G)k = Pk(m1(G), . . . , mk(G))

for some multivariate polynomial Pk. It follows from the Newton identities that the
polynomial Pk has the property that

Pk(a1t, . . . , akt
k) = tkP (a1, . . . , ak).

Putting this together with (4.2), we get that

⌊n/2⌋
∑

i=1

γi(G)k = (1 + o(1))pkPk(m1(Kn), . . . , mk(Kn)).

We conclude that
⌊n/2⌋
∑

i=1

γi(G)k = (1 + o(1))pk
⌊n/2⌋
∑

i=1

γi(Kn)
k.

By a classical result of Heilmann and Lieb [12, (3.15)], the matching polynomials
of complete graphs are the Hermite polynomials. The distribution of zeros of the
Hermite polynomial of degree n scaled down by

√
2n converges to the semicircle

distribution SC1, see for instance [13]. Hence almost surely the measures λn converge
weakly to the semicircle distribution SCp. (Note that the zeros of the matching
polynomial are supported on ±√

γi so we have to rescale the semicircle distribution
only by a factor of

√
p.) �
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