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POLYNOMIAL IDENTITIES FOR MATRICES OVER

THE GRASSMANN ALGEBRA

PÉTER E. FRENKEL

Abstract. We determine minimal Cayley–Hamilton and Capelli
identities for matrices over a Grassmann algebra of finite rank. For
minimal standard identities, we give lower and upper bounds on
the degree. These results improve on upper bounds given by L.
Márki, J. Meyer, J. Szigeti, and L. van Wyk in a recent paper.

1. Notations

Let R be a commutative ring with 1. For m ≥ 0, consider the
Grassmann algebra

Em = R〈v1, . . . , vm〉/(v
2
k, vivj + vjvi | 1 ≤ k ≤ m, 1 ≤ i < j ≤ m)

of rank m. It is a graded R-algebra (each vi has degree 1). We write
Em

i for the degree i component, so

Em =
m
⊕

i=0

Em
i , Em

0 = R, Em
m = Rv1 · · · vm.

We write

Em
≥r =

m
⊕

i=r

Em
i .

Let MnX be the set of n-square matrices with entries in the set X.

2. Cayley–Hamilton identity

L. Márki, J. Meyer, J. Szigeti, and L. van Wyk have shown [4, 3.4
Theorem] that if the base ring R is a field of characteristic zero and m ≥
2, then any element of MnE

m satisfies a monic polynomial of degree
n · 2m−1 over R. This was achieved by constructing a CT-embedding
of Em into a 2m−1-square matrix algebra over a suitable commutative
R-algebra — an interesting result in its own right. In the present
paper, we allow R to be any commutative ring with 1 and reduce
the degree of the monic polynomial from n · 2m−1 to n · (⌈m/2⌉ + 1),
which turns out to be least possible in general. Moreover, a suitable
polynomial of this degree is given explicitly. For the proof, we do not
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2 P. E. FRENKEL

use CT-embeddings. Instead, we directly exploit the nilpotency and
supercommutativity properties of the Grassmann algebra.

We now set up notation that will be used throughout this section.
Let A ∈ MnE

m. We decompose A into its homogeneous components:

A =

m
∑

i=0

Ai, Ai ∈ MnE
m
i .

Let

f(x) = det(xI −A0) ∈ R[x]

be the (monic) characteristic polynomial of A0 ∈ MnR. The main
result of this paper is

Theorem 1. For any A ∈ MnE
m, we have

f(A)⌈m/2⌉+1 = 0.

For m = 0, this recovers the Cayley–Hamilton Theorem.
As a first step towards the proof, we decompose B = f(A) ∈ MnE

m

into its homogeneous components:

B =

m
∑

i=0

Bi, Bi ∈ MnE
m
i .

Before attacking Theorem 1 in its full generality, we treat a special
case.

Lemma 2. If the degree zero component A0 of A ∈ MnE
m is a diagonal

matrix A0 = diag(λi)
n
i=1 with distinct diagonal elements λi ∈ R, and

A1 = (vij) with vij ∈ Em
1 , then

(0)

B0 = 0,

(1)

B1 = diag(f ′(λi)vii)
n
i=1,

(2)

B2
1 = 0.

(3)

(B2)rs =
1

λr − λs

(f ′(λr)vrr + f ′(λs)vss) vrs

for r 6= s.
(4) If B+

2 and B−
2 denote the diagonal and off-diagonal part of B2

respectively, then B1 commutes with B+
2 but anticommutes with

B−
2 .

Proof. We have

f(x) =

n
∏

i=1

(x− λi),
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whence

(2.1) B = f(A) =
n
∏

i=1

(A− λiI).

(0) We have B0 = f(A0), which is zero by the Cayley–Hamilton
Theorem, or, if you prefer, by the trivial computation

f(A0) =
n
∏

i=1

(A0 − λiI) = diag

(

n
∏

i=1

(λj − λi)

)n

j=1

= 0.

(1) The factors in (2.1) commute, so, for any indices r 6= s, we have

(2.2) B = (A− λrI)C(A− λsI)

for some C ∈ MnE
m. In the first factor, the r-th row has no degree

zero component. In the last factor, the s-th column has no degree zero
component. Thus, the (r, s) entry in B has no degree 1 component.

The degree 1 component of the (r, r) entry in B arises by taking
a degree 1 component from the r-th row of A − λrI and degree zero
components from all other A−λiI. But the degree zero components of
these matrices are diagonal, so the only possibility is to use the (r, r)
entry from each factor. The result is

vrr
∏

i 6=r

(λr − λi),

as claimed.
(2) This is clear because B1 is diagonal and homogeneous of degree

1.
(3) Using formulas (2.1) and (2.2), we obtain

(B2)rs =
n
∑

j=1

vrjvjs
∏

i 6=r,s

(λj − λi) = vrrvrs
f ′(λr)

λr − λs

+ vrsvss
f ′(λs)

λs − λr

,

which yields the result.
(4) The first statement is clear because B1 and B+

2 are diagonal and
B+

2 is homogeneous of degree 2 — note that in the Grassmann algebra,
homogeneous elements of even degree are central.

For the second statement, observe that B1 is diagonal and B−
2 is off-

diagonal, so their product, in either order, is off-diagonal. Moreover,
for r 6= s, the (r, s) entry in the product is

(B1B
−
2 )rs = (B1)rr(B2)rs = f ′(λr)vrr

1

λr − λs
f ′(λs)vssvrs

for one order and is

(B−
2 B1)rs = (B2)rs(B1)ss =

1

λr − λs

f ′(λr)vrrvrsf
′(λs)vss

for the other order. These add up to zero as claimed. �
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Proof of Theorem 1. The coefficients of the polynomial f(x) are poly-
nomials with integer coefficients in the entries of A0. Hence, the coor-
dinates in the natural R-basis

(2.3) {vi1 · · · vik |i1 < · · · < ik}

of the entries of the matrix f(A)⌈m/2⌉+1 are polynomials with integer
coefficients in the coordinates of the entries of A. The theorem is equiv-
alent to the statement that these n22m polynomials are all identically
zero. Thus, we may assume that R = C. We may assume that A0 has
n distinct eigenvalues, since such matrices are dense in Mn(C).Then A0

is diagonalizable by an invertible complex matrix P . Since the conju-
gation by P is an automorphism of MnE

m as a graded algebra over C,
we may assume that P = I, i.e., A0 is diagonal with distinct diagonal
entries. Then, by Lemma 2, we have

B =
m
∑

i=1

Bi,

where Bi ∈ MnE
m
i , B2

1 = 0, B2 = B+
2 + B−

2 , and B1B
±
2 = ±B±

2 B1. If
Bk 6= 0 for an exponent k, then there is a nonzero product

B•
i1
· · ·B•

ik
,

where i1, . . . , ik ∈ {1, . . . , m}, and B•
i means B±

2 if i = 2 and means
Bi otherwise. But then, in the sequence i1, . . . , ik, any two 1’s are
separated by at least one i ≥ 3, whence

m ≥ i1 + · · ·+ ik ≥ 2k − 1,

so k ≤ ⌊(m+ 1)/2⌋ = ⌈m/2⌉. �

We now show that the degree of the polynomial in Theorem 1 cannot
be reduced.

Proposition 3. Let R be a field of characteristic either 0 or a prime
p > ⌈m/2⌉. Let λ1, . . . , λn ∈ R be distinct elements and

v = v1v2 + v3v4 + · · ·+ v2⌊m/2⌋−1v2⌊m/2⌋{+vm} ∈ Em

(the last term appears only if m is odd).
Let

A = diag(λi + v)ni=1 ∈ MnE
m,

so that A0 = diag(λi)
n
i=1. Then the characteristic polynomial of A0 is

f(x) =
n
∏

i=1

(x− λi)

and the minimal polynomial of A over R is

f(x)⌈m/2⌉+1.
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Proof. Observe that

v⌈m/2⌉ = ⌈m/2⌉!v1 . . . vm 6= 0.

Thus, the polynomial

gi(x) =
f(x)⌈m/2⌉+1

x− λi

= (x− λi)
⌈m/2⌉

∏

j 6=i

(x− λj)
⌈m/2⌉+1

does not vanish at A. Indeed, the (i, i)-entry of gi(A) is

v⌈m/2⌉
∏

j 6=i

(λi − λj + v)⌈m/2⌉+1 = v⌈m/2⌉f ′(λi)
⌈m/2⌉+1 6= 0.

�

3. Capelli identity

Recall [3, Definition 1.5.3] that the Capelli polynomial dk is defined
by the formula

dk(x1, . . . , xk; y0, . . . , yk) =
∑

π∈Sk

(−1)πy0xπ(1)y1xπ(2) · · · yk−1xπ(k)yk.

We say that the Capelli identity of x-degree k holds in a ring A if
the above expression is 0 for all x1, . . . , xk, y0, . . . , yk ∈ A. It is trivial
that the Capelli identity of x-degree k implies the Capelli identity of
x-degree k + 1.

It is well known that the ring of n-square matrices over a commu-
tative ring satisfies the Capelli identity of x-degree n2 + 1 (because
the Capelli polynomial is alternating in the variables xi), but does not
satisfy the Capelli identity of x-degree n2 if the base ring has 1 6= 0
(because we may choose the xi to be the usual matrix units in some
order, and choose the yi to be suitable matrix units such that exactly
one term in dn2 is nonzero). We now wish to generalize this to matrices
over the Grassmann algebra Em. We shall need the following lemma.

Lemma 4. Let a1, . . . , ak be elements of a ring. Suppose that [k] =
{1, . . . , k} = M ∪ N is a disjoint union. Suppose that ai and aj anti-
commute for distinct i, j ∈ M , but commute otherwise.

Let P be a partition of [k] into |N | classes, each class containing
exactly one element of N . Let S ⊆ Sk be the Young subgroup corre-
sponding to P (i.e., S is the group of permutations leaving each class
invariant).

(a) If |M | is odd, then

(3.1)
∑

π∈S

(−1)πaπ(1) · · · aπ(k) = 0.
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(b) If P consists of intervals of odd cardinalities m1+1, . . . , m|N |+1
respectively, and N consists of the leftmost elements of these intervals,
then

(3.2)
∑

π∈S

(−1)πaπ(1) · · · aπ(k) = m1! · · ·m|N |!a1 · · · ak.

Proof. (a) We use induction on m = |M |. For m = 1, the group S has
two elements of distinct sign, and all ai commute, so (3.1) holds.

Let m ≥ 3 be odd. Suppose that the claim is true for m− 2. Let us
prove it for m.

Consider the special case when P is a partition into intervals. Then
the left hand side of (3.1) can be written as a product. For each interval
I ∈ P, we get a factor of the form

(3.3)
∑

π∈SI

(−1)π
∏

i∈I

aπ(i).

Since m is odd, we can choose an interval I ∈ P that has an even
number of elements. There is a unique i ∈ I ∩ N . The terms in (3.3)
where π−1(i) is even can be paired off with those where π−1(i) is odd.
This can be done so that in each pair π has different signs but

∏

i∈I aπ(i)
is the same, so the sum within each pair is zero. This proves the special
case.

To finish the proof, it suffices to prove the following. If the lemma
is true for a sequence a1, . . . , ak and a partition P, and i− 1 and i are
in distinct classes S and T of P respectively, then the lemma remains
true for a′i = ai−1, a

′
i−1 = ai, M

′ = M∆{i − 1, i}, N ′ = N∆{i − 1, i},
S ′ = (S−{i−1})∪{i}, T ′ = (T −{i})∪{i−1} (all other data remain
unchanged).

To prove this, we examine the change made in the left hand side of
(3.1). The terms remain the same up to order and sign. The terms
that change sign are exactly those where π(i− 1) and π(i) both come
from the set M . It suffices to prove that these terms sum to zero. This
is true even if π(i− 1) and π(i) are fixed elements of M , due to the
induction hypothesis.

(b) We may assume that |N | = 1. Then the claim is trivial. �

Theorem 5. The ring MnE
m satisfies the Capelli identity of x-degree

k = n2 + 2⌊m/2⌋+ 1.

Proof. Let A1, . . . , Ak, B0, . . . , Bk ∈ MnE
m. We prove that

(3.4) dk(A1, . . . , Ak;B0, . . . , Bk) = 0.

By multilinearity, we may assume that each Ai and each Bi has only
one nonzero entry, which is an element of the standard R-basis (2.3)
of Em. Moreover, we may assume that the degrees of these 2k + 1
basis elements sum to at most m. Then at most m of these degrees are
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nonzero. I.e., at least 2k + 1−m of these 2k + 1 basis elements are 1.
At least k −m of these 1’s come from the matrices Ai.

If m is even, then k −m = n2 + 1, so, by the pigeonhole principle,
there exist indices i 6= i′ such that Ai = Ai′, whence (3.4) holds.

If m is odd, then k −m = n2. We may assume that

A1, . . . , An2

is the standard R-basis of MnR, while

An2+i = viAji,

where 1 ≤ ji ≤ n2 for i = 1, . . . , m. We may also assume that each Bi

comes from the standard R-basis of MnR. The claim now follows from
Lemma 4(a), applied to the nonzero entries of the matrices Ai. �

Proposition 6. The ring MnE
m does not satisfy the Capelli identity of

x-degree k = n2 + 2⌊m/2⌋ if the base ring R is a field of characteristic
either zero or a prime p > 2 ⌈⌊m/2⌋/n2⌉.

Proof. Let us write 2⌊m/2⌋ as a sum of n2 even numbers that are
smaller than p if the characteristic is p > 0. Let these even numbers
be m1, . . . , mn2 . Let A1, . . . , An2 be the standard basis of MnR.
For each r, consider mr matrices of the form viAr, chosen so that
each index i = 1, . . . , 2⌊m/2⌋ is used exactly once. Let us insert the
chosen mr multiples of Ar immediately after Ar into the sequence A1,
. . . , An2 . This gives us a sequence C1, . . . , Ck. Now let B0, . . . , Bk

be elements from the standard basis of MnR with the property that
B0C1B1 · · ·CkBk 6= 0. Then

(3.5) dk(C1, . . . , Ck;B0, . . . , Bk) = B0C1B1 · · ·CkBk

n2

∏

r=1

mr!

by Lemma 4(b), applied to the case where ai is the unique nonzero
entry of the matrix Ci (i = 1, . . . , k). The right hand side of (3.5) is
nonzero because mr < p if the characteristic is p > 0. �

4. Standard identity

The standard polynomial sk is defined by the formula

sk(x1, . . . , xk) =
∑

π∈Sk

(−1)πxπ(1)xπ(2) · · ·xπ(k).

We say that the standard identity of degree k holds in a ring A if
the above expression is 0 for all x1, . . . , xk ∈ A. It is trivial that the
standard identity of degree k implies the standard identity of degree
k + 1. When A ∋ 1 and k is even, the converse implication holds as
well because

sk(x1, ..., xk) = sk+1(1, x1, ..., xk).
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Also, the Capelli identity of x-degree k implies the standard identity
of degree 2⌊k/2⌋ if A ∋ 1. Indeed, we may substitute 1 for each yi in
the Capelli identity to get the standard identity of degree k, and then
we can use the previous remark.

The celebrated Amitsur–Levitzki theorem [1], see e.g. also [3], states
that the ring of n-square matrices over a commutative ring satisfies the
standard identity of degree 2n. An easy example shows that it does
not satisfy the standard identity of degree 2n − 1 if the base ring has
1 6= 0. We now wish to generalize this to matrices over the Grassmann
algebra Em.

L. Márki, J. Meyer, J. Szigeti, and L. van Wyk [4, 3.7 Theorem]
used an embedding into a matrix algebra over a commutative ring and
invoked the Amitsur–Levitzki Theorem to show that for m ≥ 1, the
standard identity of degree 2mn holds in MnE

m. They also invoked
a very general theorem of M. Domokos [2, Theorem 5.5] to show that
the standard identity of degree (m + 1)n2 + 1 holds in MnE

m [4, 3.8
Remark]. We now show that these degree bounds can be substantially
reduced. For the latter one, this is already clear from Theorem 5, which
yields

Corollary 7. The standard identity of degree

2

(⌊

n2 + 1

2

⌋

+
⌊m

2

⌋

)

holds in MnE
m.

An improvement of the degree bound 2mn is given by

Proposition 8. The standard identity of degree k = 2n(⌊m/2⌋ + 1)
holds in MnE

m.

Proof. We prove the stronger identity

s2n(A1, . . . , A2n)s2n(A2n+1, . . . , A4n) · · · s2n(Ak−2n+1, . . . , Ak) = 0

for all A1, . . . , Ak ∈ MnE
m. It suffices to prove that each of the ⌊m/2⌋+

1 factors is contained in MnE
m
≥2. In fact, it suffices to prove this for

the first factor. Observe that the ring

Em/(v2, . . . , vm) ≃ R[v1]/(v
2
1)

is commutative. Thus, by the Amitsur–Levitzki Theorem, n-square
matrices over this ring satisfy the standard identity of degree 2n. Thus,
each entry in the matrix s2n(A1, . . . , A2n) is contained in the ideal
(v2, . . . , vm); moreover, by the same argument, it is contained in

m
⋂

i=1

(vj |j 6= i) = Em
≥2,

as claimed. �
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Note that for m = 0 or m = 1, the ring MnE
m is commutative and

Proposition 8 reduces to the Amitsur–Levitzki Theorem (k = 2n) and
therefore is sharp.

Proposition 8 is sharp for n = 1, and Corollary 7 is sharp for n = 1
or n = 2. More generally, we have

Proposition 9. The standard identity of degree k = 2(n+ ⌊m/2⌋)− 1
does not hold in MnE

m if the base ring R is a field of characteristic
either zero or a prime p > 2⌊m/2⌋.

Proof. Consider the 2n − 1 matrices e12, e23, . . . , en−1,n, enn, en,n−1,
en−1,n−2, . . . , e21, together with the 2⌊m/2⌋ further matrices vie11,
where i = 1, . . . , 2⌊m/2⌋. The standard polynomial sk evaluated at
these k matrices is the same as

s2⌊m/2⌋+1(e11, v1e11, . . . , v2⌊m/2⌋e11).

By Lemma 4(b), applied to the trivial partition, this is

(2⌊m/2⌋)!v1 · · · v2⌊m/2⌋e11 6= 0.

�

Problem 10. Does the standard identity of degree 2(n+ ⌊m/2⌋) hold
in MnE

m?

For m = 0, or m = 1, or n = 1, or n = 2, the answer is clearly
affirmative.
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