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Abstract

It is well-known that in every k-coloring of the edges of the complete graph Kn

there is a monochromatic connected component of order at least n
k−1 . In this paper

we study an extension of this problem by replacing complete graphs by graphs of
large minimum degree. For k = 2 the authors proved that δ(G) > 3n

4 ensures a
monochromatic connected component with at least δ(G) + 1 vertices in every 2-
coloring of the edges of a graph G with n vertices. This result is sharp, thus for
k = 2 we really need a complete graph to guarantee that one of the colors has
a monochromatic connected spanning subgraph. Our main result here is that for
larger values of k the situation is different, graphs of minimum degree (1− εk)n can
replace complete graphs and still there is a monochromatic connected component
of order at least n

k−1 , in fact

δ(G) >

(
1− 1

1000(k − 1)9

)
n

suffices.
Our second result is an improvement of this bound for k = 3. If the edges of G

with δ(G) > 9n
10 are 3-colored, then there is a monochromatic component of order

at least n
2 . We conjecture that this can be improved to 7n

9 and for general k we
conjecture the following: if k > 3 and G is a graph of order n such that δ(G) >(
1− k−1

k2

)
n, then in any k-coloring of the edges of G there is a monochromatic

connected component of order at least n
k−1 .
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†Research supported in part by NKFIH Grants No. K116769, K117879.
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1 Introduction

Erdős and Rado noticed that in every coloring of the edges of a complete graph with
two colors there is a monochromatic spanning tree. This remark has been extended into
many directions, a survey on the subject is [9]. For example, a well-known extension of
the remark is that in every k-edge coloring of a complete graph on n vertices there is a
monochromatic connected component of order at least n

k−1
([8]). In this paper connected

components of a graph are just called components and in edge-colored graphs monochro-
matic components are the components of the graph defined by the edges of the same color.
Components with one vertex are called trivial and considered monochromatic in any color.

Recently there has been significant interest in extending classical Ramsey-type results
to non-complete host graphs (e.g. [1], [3], [4], [5], [6], [7], [10], [12]). One such class is the
graphs with appropriately large minimum degree. Along these lines, the authors obtained
the following extension of the remark of Erdős and Rado.

Lemma 1.1. (Gyárfás, Sárközy [10]) Let G be a graph with n vertices and minimum
degree δ(G) > 3

4
n. If the edges of G are colored with two colors, then there is a monochro-

matic component with at least δ(G) + 1 vertices. This bound is sharp.

The sharpness of Lemma 1.1 is shown by the graph obtained from Kn by removing
the edges of a complete balanced bipartite subgraph [A,B] (|A| = |B| 6 n/2) with the
2-coloring where edges incident to A (B) are colored with color 1 (2). Thus we really
need a complete graph to obtain a monochromatic spanning component. However, we
show that for k > 3 the situation changes, a slightly lower minimum degree still ensures
the same result as in the case of the complete graph.

Theorem 1.2. For every k > 3 there exists an n0 = n0(k) such that the following is true.

Let G be a graph of order n > n0 with δ(G) >
(

1− 1
1000(k−1)9

)
n. If the edges of G are

k-colored then there is a monochromatic component of order at least n
k−1

.

For k = 3 the degree condition in Theorem 1.2 is improved as follows.

Theorem 1.3. Let G be a graph of order n and with δ(G) > 9
10
n. If the edges of G are

3-colored then there is a monochromatic component of order at least n
2
.

The degree bound of Theorem 1.2 is obviously far from best possible perhaps the
following conjecture would give the right one.

Conjecture 1.4. Let G be a graph of order n such that for some integer k > 3, δ(G) >(
1− k−1

k2

)
n. If the edges of G are k-colored then there is a monochromatic component of

order at least n
k−1

.

The bound in the conjecture cannot be improved when k is a prime power and n is
divisible by k2. Consider an affine plane of order k and delete the pairs in one of the k+1
parallel classes. Then color the pairs within the groups of the ith parallel class with color
i for i = 1, 2, . . . , k. Replace each point with a complete graph of order t and color their
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edges arbitrarily while all edges between the complete graphs replacing v, w get the color
of vw. The graph obtained has n = k2t vertices, it is regular of degree

tk2 − (k − 1)t− 1 =

(
1− k − 1

k2

)
n− 1,

yet the largest monochromatic component has size only n
k
. Thus if Conjecture 1.4 is true,

there is a surprising jump in the size of the largest monochromatic component if we add
one to the minimum degree.

Note that Conjecture 1.4 claims that for k = 3 the bound δ(G) > 9
10
n in Theorem 1.3

can be improved to δ(G) > 7
9
n.

2 Proof of Theorem 1.2

For a set S, |S| denotes the cardinality of S, while for a real number x, |x| denotes the
absolute value of x.

Our starting point is the following lemma of the first author.

Lemma 2.1. (Gyárfás [8]) Let t > 2 be an integer and G be a bipartite graph with partite
sets of size m and n. If |E(G)| > mn

t
, then G has a component of order at least dm+n

t
e.

Our main tool will be a stability version of this lemma, i.e. either we have a slightly
larger component than guaranteed by Lemma 2.1 or we are close to the extremal case
which may be interesting on its own.

Lemma 2.2. For every integer t > 2 and δ > 0 there is an n0 = n0(t, δ) with the
following properties. Let G be a bipartite graph with partite sets V1, V2 of size m and n
with n0 6 n

2t
6 m 6 n. If |E(G)| > (1− δ)mn

t
, then one of the following two cases holds:

(i) G has a component of order at least dm+n
t
e.

(ii) In G there are t components Ci such that for each Ci, 1 6 i 6 t we have the following
properties:

(a) |Ci| < dm+n
t
e,

(b)
∣∣|Ci ∩ V1| − m

t

∣∣ 6 10t2
√
δm
t

= 10t
√
δm,

(c)
∣∣|Ci ∩ V2| − n

t

∣∣ 6 10t2
√
δ n
t

= 10t
√
δn.

Proof of Lemma 2.2: Let us assume that there is a bipartite graph G with partite sets
V1, V2 of size m and n with n0 6 n

2t
6 m 6 n and we have

|E(G)| > (1− δ)mn
t
, (1)

but (i) is not true in Lemma 2.2.
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Thus we may assume that the components C1, . . . , Cr of G satisfy |Ci| 6 dm+n
t
e− 1 =

M for all 1 6 i 6 r. For 1 6 i 6 r, set |Ci ∩V1| = ai, |Ci ∩V2| = bi and ci = ai + bi = |Ci|
(ci > 1).

Obviously we have

|E(G)| 6 S =
r∑
i=1

aibi. (2)

A sequence z′ of q pairs of non-negative integers, a′1, b
′
1, . . . , a

′
q, b
′
q is a good sequence if

S 6 S ′ =

q∑
i=1

a′ib
′
i, (3)

q∑
i=1

a′i = m,

q∑
i=1

b′i = n, (4)

and
a′i + b′i 6M, i = 1, 2, . . . , q. (5)

Since dm+n
t
e < m+n

t
+ 1, we have

q >
m+ n

M
=

m+ n

dm+n
t
e − 1

> t.

This implies

Claim 2.3. q > t+ 1 for any good sequence.

Note that a1, b1, . . . , ar, br is a good sequence, so r > t + 1. A good sequence is
A-ordered (B-ordered) if a′1 > . . . > a′q (b′1 > . . . > b′q) and C-ordered if c′1 > . . . > c′q.

The next proposition will help us to give an upper bound for S. The idea behind this
proposition is that the maximum number of edges is achieved if we have components with
exactly M vertices.

Proposition 2.4. Assume that m + n > t(t + 1) and z′ = a′1, b
′
1, . . . , a

′
q, b
′
q is a good

sequence. Then there exists another good sequence Z = A1, B1, . . . , At+1, Bt+1 such that

(i) Ai +Bi = M for i = 1, 2, . . . , t− 1.

(ii) Additionally,

(A) If z′ is A-ordered, then A1 > a′1, At +Bt = M,At+1 +Bt+1 6 t.

(B) If z′ is B-ordered, then B1 > b′1, At +Bt = M,At+1 +Bt+1 6 t.

(C) If z′ is C-ordered, then At +Bt = K,At+1 +Bt+1 6M −K + t for any integer
K satisfying c′t = a′t + b′t 6 K 6M .

the electronic journal of combinatorics 24(3) (2017), #P3.54 4



Proof. Initially we set Ai = a′i, Bi = b′i for i = 1, . . . , q. Since (ii)(A) and (ii)(B) are
symmetric, it is enough to ensure one of them, say (ii)(A). With Procedure A we will
ensure (i) and (ii)(A) and with Procedure C we will ensure (i) and (ii)(C). Both proce-
dures will redefine Ai, Bi, but for simplicity we keep the notation Ai, Bi throughout the
iterations in the procedures. A pair Ai, Bi is called saturated, if Ai + Bi = M , otherwise
called unsaturated.

Procedure A

Step 1: A-order the pairs of the sequence Ai, Bi. If there exist two unsaturated pairs
Ai, Bi and Aj, Bj, 1 6 i < j 6 q (implying Ai > Aj), then in Step 2 either Ai, Bi is
saturated or Aj, Bj is removed (both can happen). Then we repeat Step 1. Otherwise (if
the required pairs do not exist), the procedure ends.
Step 2:
Case 1: Bi > Bj. We can find non-negative integers x, y such that by changing Ai, Bi

to Ai + x,Bi + y and Aj, Bj to Aj − x,Bj − y, either Ai, Bi becomes saturated or Aj, Bj

becomes the 0, 0 pair. In the latter case the pair Aj, Bj is removed. Continue with Step
1.
Case 2: Bi < Bj. Now we can find a non-negative integer z such that changing Ai, Bi to
Ai, Bi + z and Aj, Bj to Aj, Bj − z, either Ai, Bi becomes saturated or Bi + z > Bj − z
and we may continue with Case 1 in Step 2.

End of Procedure A

To see that Procedure A gives the required good sequence, note first that the changes
in both cases of Step 2 preserve (4) and (5) in the definition a good sequence. Furthermore,
(3) is preserved in Case 1 because if 0 6 x 6 Aj 6 Ai and 0 6 y 6 Bj 6 Bi, then

AiBi + AjBj 6 (Ai + x)(Bi + y) + (Aj − x)(Bj − y).

Similarly, (3) is preserved in Case 2 as well, since

AiBi + AjBj 6 Ai(Bi + z) + Aj(Bj − z).

This proves that A1, B1, . . . is a good sequence. From Claim 2.3, we have more than t
pairs. On the other hand, Procedure A ends when at most one pair is unsaturated. Thus
we have exactly t+ 1 pairs because

m+ n⌈
m+n
t

⌉
− 1
6 t+ 1

follows from the assumption m+n > t(t+1). Now we have that Ai+Bi = M for 1 6 i 6 t
as required in (i) and in (ii)(A).

Since m+ n = t(dm+n
t
e − 1) + At+1 +Bt+1 we have

At+1 +Bt+1 − t = m+ n− t
⌈
m+ n

t

⌉
6 0
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i.e. At+1 + Bt+1 6 t also holds in (ii)(A). The property A1 > a′1 in (iiA) is also ensured
since initially A1 = a′1 and in Step 2 we have Ai > Aj and Ai is not decreased. In
particular, when i = 1, A1 cannot decrease. Thus Procedure A ensures (i) and (ii)(A).

Properties (i) and (ii)(C) will be ensured with Procedure C. It is similar to Procedure
A with a slight natural modification of the concept of saturation. A pair Ai, Bi is called
saturated if

Ai +Bi =

{
K if i = t
M if i 6= t,

otherwise called unsaturated.

Procedure C

Step 1: C-order the pairs Ai, Bi of the sequence. If there exist two unsaturated pairs
Ai, Bi and Aj, Bj such that Ai + Bi > Aj + Bj, 1 6 i < j 6 q and j 6= t, then in Step 2
either Ai, Bi is saturated or Aj, Bj is removed (both can happen). Then we repeat Step
1. Otherwise (if the required pairs do not exist) the procedure ends.
Step 2: (Almost identical to Step 2 in Procedure A.) Since Ai + Bi > Aj + Bj, either
Ai > Aj or Bi > Bj. In the former case we can use Step 2 in Procedure A. Otherwise,
when Bi > Bj, the roles of Ai and Bi are reversed, namely:
Case 1: Ai > Aj. We can find non-negative integers x, y such that by changing Ai, Bi

to Ai + x,Bi + y and Aj, Bj to Aj − x,Bj − y, either Ai, Bi becomes saturated or Aj, Bj

becomes the 0, 0 pair. In the latter case the pair Aj, Bj is removed. Continue with Step
1.
Case 2: Ai < Aj. Now we can find a non-negative integer z such that changing Ai, Bi to
Ai + z,Bi and Aj, Bj to Aj − z,Bj, either Ai, Bi becomes saturated or Bi + z > Bj − z
and we may continue with Case 1 in Step 2.
End of Procedure C.

We show that Procedure C gives the required good sequence. Again note first that
the changes in both cases of Step 2 preserve (4) and (5) in the definition a good sequence.
The changes in both cases of Step 2 preserve (3) as well, since Step 2 in Procedure C does
the same changes as Step 2 in Procedure A.

Procedure C can seemingly end with two unsaturated pairs Ai, Bi and Aj, Bj, i < j.
However, this can happen only when j = t and there are no other unsaturated pairs
other than i and j. This would mean that there are no pairs with index larger than t,
contradicting q > t. We conclude that there is at most one unsaturated pair and this is
possible only if the unsaturated pair is At+1, Bt+1. Thus A1 + B1 = A2 + B2 = · · · =
At−1 +Bt−1 = M,At +Bt = K as required in (i) and in (ii)(C). Finally,

m+ n = (t− 1)M +K + At+1 +Bt+1 = tM −M +K + At+1 +Bt+1 =

t

(⌈
m+ n

t

⌉
− 1

)
−M +K + At+1 +Bt+1.

Thus At+1 +Bt+1−M +K− t = m+n− t
⌈
m+n
t

⌉
6 0 implying At+1 +Bt+1 6M −K+ t

as required in (ii)(C).
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Proposition 2.5. For any good sequence z′ = a′1, b
′
1, . . . , a

′
q, b
′
q, we have a′i 6

m
t

+ 2
√
δm,

b′i 6
n
t

+ 2
√
δn for 1 6 i 6 q.

Proof. Suppose w.l.o.g. indirectly that z′ is A-ordered and

a′1 >
m

t
+ 2
√
δm. (6)

We apply Proposition 2.4 for z′ and we get another good sequence Z = A1, B1, . . . ,
At+1, Bt+1 satisfying (i) and (ii)(A). (Similarly, if b′1 >

m
t

+ 2
√
δm we apply Proposition

2.4 for z′ and we get another good sequence satisfying (i) and (ii)(B) and the proof is
symmetric.) Then, since Z is a good sequence as well, we get the following upper bound
for the number of edges in G.

S 6
t∑
i=1

AiBi + At+1Bt+1 =

t∑
i=1

(Ai +Bi)Ai −
t∑
i=1

A2
i + At+1Bt+1 = M(m− At+1)−

t∑
i=1

A2
i + At+1Bt+1 (7)

(using Ai +Bi = M, 1 6 i 6 t in the last equality).
To estimate

∑t
i=1 A

2
i from below we will use the “defect form” of the Cauchy-Schwarz

inequality (as in [13] or in [11]): if

k∑
i=1

Ai =
k

t

t∑
i=1

Ai + ∆ (k 6 t),

then
t∑
i=1

A2
i >

1

t

(
t∑
i=1

Ai

)2

+
∆2t

k(t− k)
.

Indeed, we will use this with k = 1. Then from (6) and property A1 > a′1 in (ii)(A) in
Proposition 2.4 we get

|∆| =
∣∣∣∣A1 −

m

t
+
At+1

t

∣∣∣∣ > ∣∣∣A1 −
m

t

∣∣∣− ∣∣∣∣At+1

t

∣∣∣∣ > (a′1 − m

t

)
− At+1

t
>

2
√
δm− At+1

t
> 2
√
δm− 1 >

3

2

√
δm,

(using the triangle inequality and m > n0(t, δ)) and thus ∆2t
t−1

> ∆2 > 9
4
δm2. Thus

continuing the estimation in (7), the number of edges in G is less than

M(m− At+1)− (m− At+1)2

t
− 9

4
δm2 + At+1Bt+1 6

m+ n

t
(m− At+1)−

m2 − 2mAt+1 + A2
t+1

t
− 9

4
δm2 + At+1Bt+1 6
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mn

t
− nAt+1

t
+
mAt+1

t
− 9

4
δm2 + At+1Bt+1 6

mn

t
− 9

4
δm2 + At+1Bt+1 6

mn

t
− 9

8
δ
mn

t
+ t2 6 (1− δ)mn

t
,

indeed a contradiction with (1) (here in the last line we used At+1, Bt+1 6 t (see (ii)(A)
in Proposition 2.4) and m > n

2t
> n0(t, δ)).

Proposition 2.6. For any C-ordered good sequence z′ = a′1, b
′
1, . . . , a

′
q, b
′
q, we have c′t =

a′t + b′t > (1− 2tδ)M .

Proof. Suppose indirectly that c′t < (1 − 2tδ)M and set K = (1 − 2tδ)M (for simplicity
we assume that this is an integer). We apply Proposition 2.4 for z′ and we get another
good sequence Z = A1, B1, . . . , At+1, Bt+1 satisfying (i) and (ii)(C) with this choice of
K. Then, using (ii)(C) we obtain the following upper bound for the number of edges in
G.

S 6
t+1∑
i=1

AiBi =
t+1∑
i=1

(Ai +Bi)Ai −
t+1∑
i=1

A2
i 6

M(m− At − At+1) + (1− 2tδ)MAt + (2tδM + t)At+1 −
t+1∑
i=1

A2
i =

M(m− 2tδAt − (1− 2tδ)At+1) + tAt+1 −
t∑
i=1

A2
i − A2

t+1

To estimate
∑t

i=1A
2
i from below here we will use the “ordinary form” of the Cauchy-

Schwarz inequality and thus continuing the estimation, the number of edges in G is at
most

M(m− 2tδAt − (1− 2tδ)At+1)− (m− At+1)2

t
+ tAt+1 − A2

t+1 6

m+ n

t
m− 2tδ

m+ n

t
At − (1− 2tδ)

m+ n

t
At+1 −

m2 − 2mAt+1 + A2
t+1

t
+ tAt+1 − A2

t+1 6

mn

t
− 2tδ

m+ n

t
At − (1− 2tδ)

2m

t
At+1 +

2m

t
At+1 + tAt+1 =

mn

t
− 2tδ

n

t
At − 2tδ

m

t
At + 2tδ

2m

t
At+1 + tAt+1 6

mn

t
− 2tδ

n

t
At < (1− δ)mn

t
,

indeed a contradiction with (1). Here in the last line we used that m > n0(t, δ), At+1 6
2tδM + t � m

2t
6 At. To get the last inequality, observe that Z is a good sequence and

thus using Proposition 2.5 we get

At = K −Bt > (1− 2tδ)
m+ n

t
− 1−Bt > (1− 2tδ)

m+ n

t
− 1− n

t
− 2t
√
δ
n

t
>

m

t
− 2tδ

m

t
− 4t
√
δ
n

t
− 1 >

m

2t
,

indeed if m is sufficiently large.
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Remark 2.7. Note that we will use Propositions 2.6 and 2.5 only for a1, b1, . . . , ar, br.
However, for the proof of Proposition 2.6 we needed Proposition 2.5 for a more general
good sequence. For uniformity, we proved Proposition 2.6 also for a general good sequence.

Now we can use Propositions 2.5 and 2.6 to finish the proof of Lemma 2.2. Assume
that |C1| > . . . > |Cr| holds for the components of G, i.e. a1, b1, . . . , ar, br is a C-ordered
good sequence.

We claim that C1, . . . , Ct satisfy (ii)(b) and (ii)(c) in Lemma 2.2. Thus for each
1 6 i 6 t we need to show

m

t
− 10t

√
δm 6 ai 6

m

t
+ 10t

√
δm,

and
n

t
− 10t

√
δn 6 bi 6

n

t
+ 10t

√
δn.

Indeed, we already have a stronger upper bound for ai and bi from Proposition 2.5.
To get the lower bound for ai (and similarly for bi) by using Proposition 2.6 for Ci and
Proposition 2.5 for bi (and similarly for ai) we have

ai = |Ci| − bi > (1− 2tδ)
m+ n

t
− 1− bi > (1− 2tδ)

m+ n

t
− 1− n

t
− 2t
√
δ
n

t
>

m

t
− 2tδ

m

t
− 4t
√
δ
n

t
>
m

t
− 10t2

√
δ
m

t
,

as desired (using again n 6 2tm).

End of proof of Lemma 2.2.
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2: Let k > 3 be an integer and let G be a graph of order n > n0 with

δ(G) >
(

1− 1
1000(k−1)9

)
n and a k-coloring on the edges. Put t = k − 1 (then t > 2) and

let δ′ = 1
1000t9

. We have to show that there is a monochromatic component of order at
least n

t
. Assume indirectly that this is not the case. Consider the largest monochromatic

component (say it is red) and denote the set of vertices in this component by V1. Let
V2 = V (G) \ V1, |V1| = m′ and |V2| = n−m′ = n′. We may clearly assume the following

n′ >
n

t
> m′ >

n′

2t
. (8)

(For the last inequality we may consider the monochromatic stars from any vertex of V1

to vertices of V2.) We consider the bipartite graph Gb induced by G between V1 and V2.
Using the minimum degree condition in G, the number of edges in Gb is at least

m′(n′ − δ′n) > m′(n′ − 2δ′n′) = (1− 2δ′)m′n′, (9)

(using n′ > n
2
). We cannot have a red edge in Gb and thus the number of colors used on

the edges is at most t = k−1. Denote the monochromatic bipartite graphs induced by the
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t colors with Gb
1, . . . , G

b
t . Then for each 1 6 i 6 t we have |E(Gb

i)| < m′n′

t
, since otherwise

we are done by applying Lemma 2.1 to Gb
i , we have a monochromatic component of order

at least n/t in color i. This implies that for each 1 6 i 6 t we have

|E(Gb
i)| > (1− 2tδ′)

m′n′

t
. (10)

Indeed, otherwise the number of edges in Gb would be less than

(1− 2tδ′)
m′n′

t
+ (t− 1)

m′n′

t
= (1− 2δ′)m′n′,

a contradiction with (9).
Using (10), we can apply Lemma 2.2 for each Gb

i , 1 6 i 6 t with m = m′, n = n′ and
δ = 2tδ′. Note that (8) and (10) imply that the conditions of the lemma are satisfied.
Since we cannot have (i) in Lemma 2.2, we must have the t components described in
(ii) of Lemma 2.2 for each Gb

i , call these the main components. Consider the remaining
set of vertices not covered by the union of these main components. By (ii)(a) this set is
non-empty and by (ii)(b) and (ii)(c) the intersections of this set with both partite classes
of Gb

i are small. Thus we get the following claim.

Claim 2.8. For each Gb
i the set uncovered by the union of the main components is

nonempty, and this set intersects both partite classes of Gb
i in at most 10t2

√
2tδ′m′ ver-

tices.

Assume that Gb
1 is blue. By Claim 2.8 (applied to Gb

1) there is a vertex uncovered by
the main blue components, say v ∈ V1. The edges between v and the set of vertices in
V2 covered by the main blue components cannot be blue or red, so they are colored with
(t− 1) colors. This implies using the minimum degree condition in G and Claim 2.8 that
in one of these (t− 1) colors (say in a green Gb

2), there is a green star from v to V2 of size
at least

n′ − δ′n− 10t2
√

2tδ′n′

t− 1
>

1− 12t2
√

2tδ′

t− 1
n′.

However, this leads to contradiction because by Lemma 2.2 and Claim 2.8 (applied to
Gb

2) this green star cannot be inside of any main green component and cannot be inside
the set of vertices uncovered by their union, provided that

1− 12t2
√

2tδ′

t− 1
> max

{
10t2
√

2tδ′,
1

t
+ 10t

√
2tδ′
}
.

This in turn is true if
1− 12t2

√
2tδ′

t− 1
>

1

t
+ 10t2

√
2tδ′,

which is true if

1− 4t
√

2tδ′ > 1− 1

t
+ 10t3

√
2tδ′.
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Finally, this is true if

1 > 1− 1

t
+ 22t3

√
2tδ′,

1

t
> 22t3

√
2tδ′,

1

968t9
> δ′,

which is true by our choice of δ′.

3 Proof of Theorem 1.3

Our starting point is the following lemma.

Lemma 3.1. Assume that G = [A,B] is a bipartite graph with |A| = αn, |B| = βn and
α 6 β. Set ρ = min{α, β

2
}. If every vertex of G is non-adjacent to less than ρn vertices,

then G is connected.

Proof. Let x, y ∈ A. Since ρn 6 |B|
2

, the neighbors of x, y intersect in B. Also, because
ρn 6 |A|, every vertex of B has a neighbor in A. Thus any two vertices of G can be
connected by a path (of length at most four).

Let G be a graph of order n with δ(G) > (1−ρ)n (thus every vertex is non-adjacent to
less than ρn vertices) and consider a 3-coloring on its edges. Let v be an arbitrary vertex
and let Ni denote its neighbors in color i. We may assume that |N1| > |N2| > |N3|, let
C1, C2 be the monochromatic components in colors 1, 2 containing N1, N2. Assume that
|C1|, |C2| < n

2
. We are going to prove that there is a monochromatic component of size at

least n
2

in color 3. Set

M = C1 ∩ C2, A1 = C1 \M,A2 = C2 \M,X = V (G) \ (C1 ∪ C2).

Observe that all edges of the bipartite graphs [A1, A2], [M,X] are colored with color
3. We claim that the larger of them is connected and this proves the theorem since the
larger must have at least n

2
vertices.

Case 1. [A1, A2] has at least n
2

vertices. We may assume that |A1| 6 |A2| (otherwise
the argument is symmetric). Since δ(G) > (1− ρ)n, the choice of C1, C2 implies that

|A1| = |(C1 ∪ C2) \ C2| >
2n

3
(1− ρ)− n

2
=
n(1− 4ρ)

6
.

Therefore if we select ρ to satisfy

ρ =
(1− 4ρ)

6

i.e. ρ = 1
10

, then |A1| > n
10

. We also have

|A2|
2
>

n
4

2
=
n

8
.
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Therefore Lemma 3.1 implies that (the color 3) bipartite graph [A1, A2] is connected.
Case 2. [M,X] has at least n

2
vertices. Since |C1|, |C2| 6 n

2
,

n = |C1|+ |C2| − |M |+ |X| 6 n− |M |+ |X|,

we have |M | 6 |X|. Also, from the choice of C1, C2, |C1 ∪ C2| > 2n
3

(1 − ρ), therefore
|X| 6 n

3
(1 + 2ρ) thus

|M | > n

2
− n

3
(1 + 2ρ) =

n(1− 4ρ)

6
,

giving the same inequality for |M | as we had before for |A1|. Since |M | 6 |X|, the same
proof as in Case 1. works here as well.

Thus if ρ = 1
10

(i.e. δ(G) > 9n
10

) we have a monochromatic component of size at least
n
2

in every 3-coloring of the edges of G.

4 Further directions

A further extension of the problem addressed in this paper would be to investigate graphs
of smaller minimum degree, for example, extending Lemma 1.1 in this direction. For
graphs of “very small” minimum degree this problem can be answered easily. Indeed,
there is always a monochromatic star that has at least d δ(G)

2
e+1 vertices, and this estimate

is close to best possible if δ(G) < 2
√
n. For instance, if δ(G) is even, one can partition

n vertices into disjoint copies of K δ
2
�K δ

2
(where � denotes the Cartesian product) and

color the edges between vertices in the same row blue, the edges in the same column red.
Thus the order of the largest monochromatic component (connected subgraph) we can

guarantee decreases roughly from δ(G) to δ(G)/2 when δ(G) decreases from 3
4
n to 2

√
n.

It is natural to ask what happens in-between. Somewhat surprisingly in this range the
order of the largest monochromatic component changes as a stepwise constant function in
terms of δ(G). More precisely, the following holds.

Theorem 4.1. (White [14]) Let G be a graph of order n such that for some integer m > 3,
δ(G) > 2m−1

m2 n. If the edges of G are 2-colored then there is a monochromatic component
of order at least n

m−1
.

This result is basically implicit in the proof of Lemma 4.7 in White [14] (see also in
[15]); however, it is not even stated there as a separate statement. Note that Theorem 4.1
is false for m = 2, in which case Lemma 1.1 gives the order of the largest monochromatic
component. The bound on the minimum degree in Theorem 4.1 cannot be weakened as
the following example shows.

Example 4.2. Let Gb�Gr be the Cartesian product of a blue m-clique Gb and a red
m-clique Gr, and substitute every vertex of Gb�Gr by an arbitrarily 2-colored t-clique,
for any t > 1. We obtain a graph on n = m2t vertices, which has minimum degree
δ = (2m− 1)t− 1 = 2m−1

m2 n− 1, and each monochromatic component has only n
m

vertices.

We believe that a similar phenomenon occurs for more than 2 colors.
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Conjecture 4.3. Let m > 3, k > 2,m > k be integers and let G be a graph of order n
such that δ(G) > k(m−1)+1

m2 n. If the edges of G are k-colored then there is a monochromatic
component of order at least n

m−1
.

Again this would be best possible. For k = 2 we get Theorem 4.1. For m = k > 3 we
get Conjecture 1.4.

Remark. Bal, DeBiasio and McKenney [2] (with a similar proof) improved the condition
δ(G) > 9

10
to δ(G) > 7

8
in Theorem 1.3.
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colored graphs by monochromatic paths and cycles, Combinatorica 34 (2014), 507–
526.
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MTA SZTAKI Tanulmányok 71/1977, (In Hungarian), MR 58, 5392.
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