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Abstract
In [6] the authors conjecture that if every vertex of an infinite 
square grid is reachable from a pebble distribution, then the 
covering ratio of this distribution is at most 3.25. First we pre-
sent such a distribution with covering ratio 3.5, disproving the 
conjecture. The authors in the above paper also claim to prove 
that the covering ratio of any pebble distribution is at most 
6.75. The proof contains some errors. We present a few interest-
ing pebble distributions that this proof does not seem to cover 
and highlight some other difficulties of this topic.

Keywords
optimal pebbling, pebbling, grid graph 

1 Introduction
Graph pebbling has its origin in number theory. It is a model 

for the transportation of resources. Starting with a pebble distri-
bution on the vertices of a simple connected graph, a pebbling 
move removes two pebbles from a vertex and adds one pebble 
at an adjacent vertex. We can think of the pebbles as fuel con-
tainers. Then the loss of the pebble during a move is the cost of 
transportation. A vertex is called reachable if a pebble can be 
moved to that vertex using pebbling moves. There are several 
questions we can ask about pebbling. One of them is: How can 
we place the smallest number of pebbles such that every vertex 
is reachable? The minimum number of pebbles in such a peb-
ble distribution is called the optimal pebbling number of the 
graph. The optimal covering ratio of a graph is the number of 
vertices of the graph divided by the optimal pebbling number. 
Moreover, the covering ratio of an arbitrary distribution is the 
number of vertices reachable from the distribution divided by 
the number of pebbles in the distribution. For a comprehen-
sive list of references for the extensive literature see the survey 
papers [3,4,5]. 

In Section 3 we show a pebble distribution which disproves 
a conjecture of Xue and Yerger. Section 4 and 5 contain some 
interesting counterexamples for some lemmas stated in [6]. We 
also mention some phenomenons why we think that the proof 
of Theorem 8 of [6] can not be corrected, and a proper proof 
requires a different approach. 

In the last section we introduce a new problem, called opti-
mal integer fractional covering ratio, where the tools intro-
duced in [6] can be used. We give a lower and an upper bound 
on the optimal integer fractional covering ratio of large grids.

2 Definitions
In this section we summarize the definitions which the paper 

uses. We start with basic ones, which are well known in the 
area of pebbling, then continue with more complicated ones, 
which were introduced in [6].
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2.1 Traditional pebbling
A pebbling distribution D  is a V G( )→   function. If 
( ) 2D v ≥  and u  and v  are adjacent vertices, then we can 

apply a ( )v u→  pebbling move. It decreases ( )D v  by two and 
increases ( )D u  by one. A vertex v  is reachable under D  if 
either ( ) 1D v ≥  or we can apply a sequence of pebbling moves 
such that the last one is an ( )u v→  move. 

A distribution is solvable if each vertex is reachable under 
it. We use D| |  for the size of distribution D , which is the 
total number of pebbles placed on the graph. A distribution is 
optimal on graph G  if its size is minimal among all solvable 
distributions of G . The optimal pebbling number is the size of 
an optimal distribution and it is denoted by π opt G( ) . 

The coverage of distribution D  is the set of reachable ver-
tices. We denote the size of this set by Cov( )D . The covering 
ratio of D  is defined as Cov( )D

D| | . The covering ratio of an opti-
mal distribution of G  is called as the optimal covering ratio 
of G .

2.2 Infinite graphs
We are mainly interested in the pebbling parameters of 

square grids. We denote the n n×  square grid by n nG ×  and we 
write infG  for the infinite square grid. 

In [6] the authors talk about infG , they do not provide a 
proper definition for the covering ratio in the case when the 
distribution is infinite. In their reasoning they assume that the 
number of pebbles is finite, therefore we will assume the same. 
When solvability comes into play, we think about arbitrarily 
large but finite square grids, whose border’s size is marginal 
compared to their total size. Therefore their covering ratio is 
well defined. We define the optimal covering ratio of 1infG  as 
the limit of larger and larger square grids’s optimal covering 
ratios. Conversely, it can be written as lim

opt ( )n
G
G
n n

n n→∞
| |×

×π .

Proposition 1.  lim
opt ( )n
G
G
n n

n n→∞
| |×

×π exists.
 
Proof: We prove that the A opt n nG

n
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2 , moreover Theorem 2 
implies a better lower bound. Therefore the limit of this series 
is not zero which implies the proposition. 
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Write n  as km r+  such that 0 r m≤ <  and partition n nG ×  
into 2k  pieces of disjoint m mG ×  and 2 2r rkm+  remaining ver-
tices. We use its optimal distribution on each m mG ×  and place 
one pebble on each remaining vertex. In such a way we obtain 
a solvable distribution of n nG × . Therefore: 
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□

We note that there are several ways to define pebbling 
parameters for infinite graphs by considering infinite distribu-
tions. Nevertheless, it is beyond the scope of this paper.

2.3 Combining distributions
Assume that we have two distributions D  and D′ . We say 

that these two distributions interact at vertex v  if v  is reach-
able under both. Vertex v  is a boundary vertex of D  if v  is 
reachable under D  but one of its neighbours is not. 

It is a natural idea to unify two distributions D  and D∗  
by placing ( ) ( )D v D v∗+  pebbles at v , to create a bigger one. 
D  and D∗  are stronger together in the sense, that some verti-
ces are not reachable under D  nor D∗ , but they are reachable 
under the D′  which we get by combining them. This phenom-
enon requires the presence of interacting vertices. 

For example, if an interaction vertex is boundary in both D  
and D∗  and one of its neighbours is not reachable under D  
and D∗ , then this neighbour is reachable under D′ .

A unit is a vertex having at least one pebble. A unit distribu-
tion contains only one unit. 

Using the combination method we can build any distribution 
from unit distributions. It often happens, that the coverage of a 
unit is disjoint from coverage of the rest of the distribution. So 
the unit and the rest do not share an interaction vertex and they 
can be handled separately. We say that these units are lonely. 

We can also ask that what is the difference between the cov-
ering ratios of D  and D′ . Of course, it depends on D∗ , but 
we would like to measure it. This motivates the definition of 
marginal covering ratio, which is the following: 

Cov( ) Cov( )D D
D D
′ −

.
′| | − | |

We can not compute the covering ratio of D′  if we know the 
covering ratio of D  and the marginal covering ratio. On the other 
hand, we can state upper bounds, which we are interested in.
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2.4 Fractional pebbling
A variation of the pebbling problem if we allow fractional 

pebbles. This leads to the area of fractional pebbling, which is 
well studied in [2]. 

A continuous distribution on G  is a ( ) [0 )V G → ,∞  func-
tion. A continuous pebbling move removes t  pebbles from a 
vertex and place 2t /  pebbles to an adjacent vertex, where t  
can be any positive real number. 

The optimal fractional pebbling number is the size of the 
smallest solvable continuous distribution. It can be calculated 
by solving a linear program and it is a lower bound on the opti-
mal pebbling number. 

Let D  be a continuous distribution. The weight function of 
D , which is defined on the vertex set of G , is defined as: 

( )

( )
( ) ( )2 d u v

D
v V G

W u D v − ,

∈

= .∑

It tells us the number of pebbles that can be moved to a ver-
tex under D  by continuous pebbling moves. It is a very useful 
tool, widely used by several authors in this topic. 

In a solvable distribution the weight of each vertex is at least 
one. However, if we are considering optimal pebbling distribu-
tions, then several vertices have more weight than one. We can 
consider this extra weight as an excess, and try to calculate it. 
The sum of these values gives an estimate on the difference 
between the fractional and the traditional optimal pebbling 
numbers. 

So we define the excess weight function as: 



( ) 1 if ( ) 1
( )

( ) if ( ) 1
D D

D
D D

W u W u
uW W u W u

− > ,
=  ≤ .

With the help of this function, we can give a fractional gen-
eralization of covering ratio. To construct the numerator we 
count the number of reachable vertices and also add the weight 
of not reachable vertices. The covering ratio ceiling of D  is: 



( ) ( )

( )

( ) ( )

( )
D Dv V G v V G

v V G

W v vW
D v

∈ ∈

∈

−
.

∑ ∑
∑

Like the marginal covering ratio we also define a quantity 
which measures in some way the change of covering ratio ceil-
ing in case of adding some extra pebbles. So let D  and D′  be 
distributions, such that ( ) ( )D v D v′≤  for each vertex. The mar-
ginal covering ratio ceiling of these distributions is defined by 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
D DD Dv V G v V G v V G v V G

v V G v V G

W v v W v vW W
D v D v

∈ ∈ ∈ ∈

∈ ∈

− − −
.

′ −

∑ ∑ ∑ ∑
∑ ∑

3 Lower bound for the optimal covering ratio of the 
grid

Conjecture 2 in [6] states that if every vertex of an infinite 
square grid is reachable from a pebble distribution, then the 
covering ratio of this distribution is at most 3.25. 

We present a sequence of distributions on big grids whose 
covering ratios converge to 3.5, disproving the conjecture. 
Repeating periodically the optimal distribution of n nG ×  results 
a solvable distribution on the infinite grid. Therefore consider-
ing real infinite graphs and distributions can not decrease the 
optimal covering ratio, if it is defined intuitively. 

A distribution is shown on Fig. 1, units consisting of four 
pebbles are placed to every other vertex on every 7th diagonal. 
It is easy to calculate that the covering ratios of such distribu-
tions tends to 7 2 3 5/ = . . The arrows and the shaded areas on 
the figure indicate how to reach all vertices of the grid from this 
distribution. We conjecture that this is best possible.4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4

4 4 4 4

1 1 1 1 1 1 1 2

Fig. 1 Pebble distribution of the grid with covering ratio 3.5

Conjecture 1. If every vertex of an infinite square grid is reach-
able from a pebble distribution, then the covering ratio of this 
distribution is at most 3.5.

4 Comments on the upper bound for the optimal 
covering ratio of the grid

In [6] the authors claim to prove that the optimal covering 
ratio of the grid is at most 6.75 (see [6]). The proof contains 
some errors. Although some of these errors may be corrected 
somehow, in our opinion some others cannot be corrected. We 
do not see how to complete the proof, but we believe that the 
statement is true. In forthcoming paper [1] we are to prove a 
better bound: the covering ratio is at most 6.5. In the rest of 
this note we point out some errors in the proof and show some 
interesting pebble distributions that highlight the difficulties of 
this problem. 

First we summarize the above mentioned proof. It is an 
inductive proof on the number of units contained in the dis-
tribution. First, as the base case, it is shown that the theorem 
holds for one unit. Now assume that it also holds for any dis-
tribution containing n  units. Consider a distribution of 1n +  
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units, remove an arbitrary unit, apply the inductive hypothe-
sis for the remaining units. Depending on the position of the 
removed unit and the remaining distribution apply [6] or [6] 
to complete the proof. (In the original paper in Section 6 all 
reference to the lemmas are shifted by one, so any reference to 
Lemma i  should be to Lemma 1i − .)

4.1 Comments on [6]
The lemma states: For initial distribution D  and unit U , 

if only the boundary vertices of U  are reachable via pebbles 
from D , then the marginal covering ratio of a unit on Ginf  is 
at most 4.25. 

We present several counterexamples to this lemma. 
In the first example (see Fig. 2) let D  be the distribution 

consisting units of size 1 in a horizontal row. The covering ratio 
of D  is clearly 1 . Now let U  be a unit of size 2 placed at the 
end of this row. Only a boundary vertex of U  is reachable from 
D  (i.e. a unit of D  is on the boundary of U ), so the condi-
tions of the lemma are satisfied. However after adding U , all 
vertices in the shaded area become reachable. Since the size 
of U  is constant (it is 2), the marginal covering ratio depends 
on the size of D . It can be arbitrary large even if we consider 
finite D  distributions, and it can be infinite if D  is made infi-
nitely large.

4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4

4 4 4 4

1 1 1 1 1 1 1 2

Fig. 2 Distribution with large marginal covering ratio.

Another example is shown on Fig. 3, where a similar prob-
lem appears. Adding a unit of size 1 can increase the number of 
newly reachable vertices by an arbitrary large amount. 

The proof presented in [6] works only for the following 
weaker statement:
Lemma 1. Let D  be a distribution and U  be a unit such that 
only the boundary vertices of D  and U  interact. Assume, 
moreover, that if D  has a unit of size one, then U  also has 
size one. Then, the marginal covering ratio of U  on infG  is at 
most 4.25 .

3 3 3 3 31

Fig. 3 Distribution with large marginal covering ratio.

4.2 Comments on the inductive step
In the inductive step, we assume that there is a distribution 

D  with covering ratio at most 6.75. Now we add a unit U
. The authors do not explain this step in detail, but we assume 
that their intention is to apply [6] if “only the boundary vertices 
of U  are reachable via pebbles from D ”, and apply [6] if “the 
unit interacts not only on the boundary vertices”. 

The examples in the previous subsection show that in some 
cases, when some units of size 1 are involved, [6] cannot be 
used. We think that the authors intended to handle this problem 
with the following sentence in the proof of [6]: “We assume 
that D  does not contain lonely units with one pebble because 
if D  contains those units, we can remove them first and add 
them after U  has been added.” This suggests that in the induc-
tive step one should be more careful how to select the unit to 
be removed, remove the lonely units first. The above example 
suggests that this does not work. On the other hand, it looks 
promising to always remove a unit which is on the “boundary” 
of D , but now the boundary is understood differently, some-
thing like the “convex hull”. However, this approach does not 
look easy. 

Now let us consider the case when [6] is applied. (The 
lemma in fact states, that the marginal covering ratio ceiling in 
this case is at most 6, however, the proof gives 6.75, so this is 
clearly a typo). We give an example, when this fails to prove 
the inductive step: Two units of size 2  on adjacent vertices of 
the grid. In this case one of the units is D  the other is U , the 
interaction happens not only on the boundaries. The covering 
ratio of D  is 2 5 6 75. < . , so the inductive hypothesis holds. 
Now [6] implies that the marginal covering ratio ceiling of U  
is at most 6 75. . These facts do not imply that the covering ratio 
of D U∪  is at most 6 75. . (Of course, the covering ratio is in 
fact 2 6 75< . , just the proof does not imply this.) 

The covering ratio is Cov( )D D/ | | . However, in the defini-
tion of the marginal covering ratio ceiling neither Cov( )D  nor, 
more importantly, Cov( )D U∪  appear, so it seems impossi-
ble that these two inequalities would imply anything useful for 
Cov( )D U∪ . We suspect that the intention of the authors was 
to say that if the marginal covering ratio ceiling of D  is at most 
6 75.  and the marginal covering ratio ceiling of the pair ( )D U,  
is at most 6 75. , then the covering ratio ceiling of D U∪  is 
at most 6 75. . This implication is correct, but then we do not 
see how to obtain the desired bound for the covering ratio. Of 
course, since the covering ratio ceiling is an upper bound for 
the covering ratio, it would be enough to prove with the previ-
ous argument that the covering ratio ceiling is at most 6 75. . 
The above argument does not give this. The covering ratio ceil-
ing of D U∪  is in fact 7 25. , implying only that the covering 
ratio is at most 7 25. . The basic problem is that the covering 
ratio ceiling of the only unit of size 2 in D  is 8 5. .
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5 Connection between the covering ratio and the 
covering ratio ceiling

The covering ratio ceiling is an upper bound for the cover-
ing ratio. It is also clear that the marginal covering ratio ceiling 
cannot be large if we add a new unit to a distribution. Does this 
imply something about the change in the covering ratio? 

Theorem 1. The distribution given in Fig. 4 shows that the 
covering ratio can increase by more than one while the cover-
ing ratio ceiling decreases.

Proof: Let us consider the distribution in Fig. 4. A unit of size  
3 on every second vertex in a row of length 2 1n +  ( 1n +  such 
units in a row), repeated in every fifth row (see Fig. 4) in 5 1m +  
rows. The marginal covering ratio ceiling of a unit is W W

D
∆ −∆
∆| | , 

where W∆  is the sum of the changes of the weights which all 
pebbles contributes to a vertex, W∆  is the same for the weight 
ceiling function, and D∆ | |  is the number of added pebbles.

0
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11

12
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14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 22 3 22 3 22 3 22 3 22 3 22 3 22 3 22 322

3 22 3 22 3 22 3 22 3 22 3 22 3 22 3 22 322

3 22 3 22 3 22 3 22 3 22 3 22 3 22 3 22 322

3 22 3 22 3 22 3 22 3 22 3 22 3 22 3 22 322

Fig. 4 Pebble distribution with increasing covering ratio.

Let us first see the weights at all vertices in this distribu-
tion. For example the total weight for every vertex in row 0 is 
clearly at least 3. Thus the total weight at every vertex in row 
1 is at least 3 2/ . The weight for every vertex in row 2 is at 
least 3 4 3 8 9 8/ + / = / , since the pebbles in row 0 contribute at 
least 3 4/  and pebbles in row 5  contribute at least 3 8/  to its 
weight. The same is true for all other rows, therefore it is clear 
that the weight of every vertex is at least 1

 
. 

If the weight of a vertex is at least 1 then any positive change 
in the total weight will result in the same amount of positive 
change of W . So these vertices contribute 0 to W W∆ −∆ . 
This implies that if further units are added to this distribution, 
then their marginal covering ratio ceiling will always be  0 . 
This calculation also shows that the covering ratio ceiling is

(5 1)(2 1) 10
3( 1)( 1) 3

m n
n m
+ +

< .
+ +

Let us calculate the covering ratio of the distribution. It is 
easy to see that each vertex in rows 0 1 4 5 6 9 10, , , , , , ,  11 …,  is 
reachable, but no vertex in rows 2 3 7 8 …, , , ,  is reachable. There-
fore, the covering ratio is 

(3 1)(2 1) 2
3( 1)( 1)

m n
n m
+ +

< .
+ +

Now we add units of size  2  near both ends of the row con-
taining pebbles (the lighter, smaller pebbles on Fig. 4) one by 
one. The above argument shows that the marginal covering 
ratio ceiling is  0  in every step, and the covering ratio ceiling 
becomes 

(5 1)(2 1) (5 1)(2 1) 10
3( 1)( 1) 4 3( 1)( 1) 3

m n m n
n m m n m

+ + + +
< < ,

+ + + + +

so it is decreasing. On the other hand, it is easy to see that 
one can move  4  pebbles to any vertex of row 5k , thus every 
vertex of the grid becomes reachable. Therefore the covering 
ratio is also 

(5 1)(2 1)
3( 1)( 1) 4

m n
n m m

+ +
+ + +

which is close to 10
3  if n  and m  are large enough. So while 

the covering ratio ceiling is decreasing, the covering ratio is 
increasing from  2  to 10

3 .    □

6 Optimal fractional covering ratio of integer 
distributions

The above arguments lead to an interesting question. What 
is the best upper bound we can hope for using [6]? The idea 
behind this lemma is that the fractional covering ratio is an 
upper bound on the covering ratio, and if the starting pebble 
distribution has only integer number of pebbles, then there must 
be a certain amount of excess weight. It is easy to prove that the 
optimal fractional covering ratio on the grid is 9. The optimal 
distribution is obtained by placing 1 9/  pebbles at every vertex. 
How does this change if we only consider integer distributions? 
Let us call this the optimal integer fractional covering ratio, 
and denote it by IFCov( )G . We give upper and lower bounds 
for this ratio in case of the n n×  grids .

Theorem 2.  For any ε > 0 there exists n(ε) such that if n > 
n(ε) then

7 − ε ≤ IFCov 213( ) 8 52
25n nG × ≤ = .

Proof: Consider the distribution given in Fig. 5. It is easy to 
calculate, that the number of pebbles is 2 7 ( )n O n/ + , there-
fore if n  is large enough, then  IFCov(Gn×n) ≥ 7 − ε . We 
need to show, that every vertex of the grid is covered by this 



222 Period. Polytech. Elec. Eng. Comp. Sci. E. Győri, Gy. Y. Katona, L. F. Papp

distribution in the fractional sense, i.e. the weight of each ver-
tex is at least one. This is clearly true for the vertices, where 
a pebble is placed. By the structure of the distribution, it is 
clear that it is enough to show this for the vertices marked with 
A B C, , . For A : there is  1  pebble at distance  1 , 1  at distance 

2 ,  1  at distance  3  and  3  at distance  4 . Thus the weight at A  
is at least 31 1 1

2 4 8 16 1+ + + > . Similar calculations show that the 
weight at B  is at least 32 1 2

4 8 16 32 1+ + + = , and the weight at C  is 
at least 31 1 1

2 4 8 16 1+ + + > . For vertices near the border, the extra 
pebbles placed on the border guarantees the required weight. 
Hence the lower bound is proven. 

To prove the upper bound, the following Lemma is needed.
 
Lemma 2.  If a distribution covers all vertices of the grid in the 
fractional sense and the vertex v  contains a unit of size k  then 
the excess weight at this vertex is at least 12

25 k . 

Proof: If 1k >  then the excess weight is at least 12
251k k− > , 

so the claim clearly holds. Therefore we only have to deal with 
the 1k =  case. The contribution of this pebble to the weight of 
its neighbours is 1

2 , thus the contribution of other pebbles must 
also be at least 1

2 . Similarly, the contribution of this pebble is 
1
4  to the vertices at distance 2 from v , thus the contribution 

of other pebbles must also be at least 3
4 . So consider the dis-

tance 2 neighborhood of v  and partition all vertices of the grid 
according to Fig. 6. For simplicity denote by ix  ( iy ) the total 
weight contribution of all pebbles in region iX  ( iY ) to the cor-
responding vertex. Consider now for example vertex 1x . The 
weight from pebbles in 1X  is 1x , the weight from pebbles in 

1Y  is clearly 1
12 y , since the distance of any pebble in 1Y  and 1x  

is one more than the distance to 1y . Similarly, the weight from 

2X  to 1x  is 1
24 x , from 2Y  to 1x  is 1

28 y , etc. Since the total 
weight at 1x  must be at least  1  and the contribution of v  is 1

2 , 

1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 11
2 4 4 4 2 8 8 2

x x x x y y y y≤ + + + + + + + +

must hold. For all ix  and iy  we can obtain similar inequalities:

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2

1 1 1 1 1 1 1 11
2 4 4 4 2 8 8 2

1 1 1 1 1 1 1 11
2 4 4 4 2 2 8 8
1 1 1 1 1 1 1 11
2 4 4 4 8 2 2 8
1 1 1 1 1 1 1 11
2 4 4 4 8 8 2 2
1 1 1 1 1 11
4 2 2 8 8 4

x x x x y y y y

x x x x y y y y

x x x x y y y y

x x x x y y y y

x x x x y y

≤ + + + + + + + +

≤ + + + + + + + +

≤ + + + + + + + +

≤ + + + + + + + +

≤ + + + + + + 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 1
16 8

1 1 1 1 1 1 1 11
4 8 2 2 8 4 4 16
1 1 1 1 1 1 1 11
4 8 8 2 2 16 4 4
1 1 1 1 1 1 1 11
4 2 8 8 2 4 16 4

y y

x x x x y y y y

x x x x y y y y

x x x x y y y y

+ +

≤ + + + + + + + +

≤ + + + + + + + +

≤ + + + + + + + +

The vertex v  contains  1  pebble, so the weights coming from 
other vertices will give excess weight at v . This excess weight 
is 1 1

1 2 3 4 1 2 3 42 4( ) ( )x x x x y y y y+ + + + + + + . To determine the 
minimum value of the excess weight, so that the above ine-
qualities are satisfied, a linear program can be solved. Using 
duality, one can easily verify that this minimum is 12

25 . (The 
minimum is taken when 0ix =  and 12

25iy = .)    □
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Fig. 5 Pebble distribution with  7 − ε ≤ IFCov(Gn×n) 
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Fig. 6 Proof of the upper bound

Let D  be any pebble distribution. An easy calculation 
shows that the sum of the weight contributions of a single peb-
ble to all other vertices on the grid is  9 , therefore the sum of 
weights for every vertex on the grid cannot exceed 9 D| | . If 
D  covers every vertex on the grid then the weight at every 
vertex is at least  1 , however, if the vertex contains k  peb-
bles then the excess weight on this vertex is at least 12

25 k  by 
Lemma 2. Hence 2 12

259 D n D| |≥ + | |  holds. This implies that 
2 21312

25 259 8 52n
D| | ≤ − = = . , proving our claim.   □

Theorem 2 implies that the best upper bound for the (inte-
ger) covering ratio we can hope using the approach of integer 
fractional covering is  7 .
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