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5 Choosability and paintability of the lexicographic
product of graphs
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Abstract

This paper studies the choice number and paint number of the lexicographic product
of graphs. We prove that if G has maximum degree ∆, then for any graph H on n

vertices ch(G[H]) ≤ (4∆+2)(ch(H)+log2 n) and χP (G[H]) ≤ (4∆+2)(χP (H)+log2 n).

1 Introduction

A list assignment L of a graph G assigns to each vertex v a set L(v) of permissible colors.
An L-coloring of G is a proper vertex coloring of G which colors each vertex with one
of its permissible colors. We say that G is L-colorable if there exists an L-coloring of G.
Given a function f : V (G) → N, we say G is f -choosable if for every list assignment L
with |L(v)| = f(v) for all v ∈ V (G), G is L-colorable. We say G is k-choosable if for the
constant function f ≡ k, G is f -choosable. The choice number of G is ch(G) = min{k : G
is k-choosable}. List coloring of graphs has been studied extensively in the literature (cf.
[12, 5, 11]).

More generally, we say that G is (a, b)-choosable for some integers a and b, a ≥ 2b > 1, if,
for any assignment of lists with |L(v)| = a for all v ∈ V , there are subsets C(v) ⊂ L(v) with
|C(v)| = b such that C(u) and C(v) are disjoint for all pairs of adjacent vertices u and v (the
sets C(v) form a b-fold L-coloring). The b-choice number of a graph is chb(G) = min{a : G
is (a, b)-choosable}.
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Investigation of online variants of combinatorial problems is very common. One reason
is that motivations from practical applications and from computer science put emphasis on
the algorithmic aspects. Furthermore, besides having direct implications, on-line variants
usually also give a deeper insight into the original offline problem. As for many other coloring
problems, on-line variant of list coloring came into the attention of researchers.

Assume that ∪v∈V (G)L(v) = {1, 2, . . . , q} for some integer q. For i = 1, 2, . . . , q, let
Vi = {v : i ∈ L(v)}. The sequence (V1, V2, . . . , Vq) is another way of specifying the list
assignment. An L-coloring of G is equivalent to a sequence (X1, X2, . . . , Xq) of independent
sets that form a partition of V (G) and such that Xi ⊆ Vi for i = 1, 2, . . . , q. This point of
view of list coloring motivates the definition of on-line (b-fold) list coloring in the form of
the following painting game on a graph G, which was introduced in [9, 10].

Definition 1.1. Given a finite graph G and two mappings f, g : V (G) → N, the g-fold
f -painting game on G is played by two players, Lister and Painter. In the i-th round, Lister
presents a non-empty subset Vi of V (G), where each v ∈ Vi is contained in less than g(v)
of the Xj’s for j ≤ i − 1, and Painter chooses an independent set Xi contained in Vi. If at
the end of some round, a vertex v is contained in f(v) of the sets Vi’s but contained in less
than g(v) of the sets Xi’s, then the game ends and Lister wins the game. Otherwise, at some
round, each vertex v is contained in g(v) of the sets Xi, the game ends and Painter wins the
game.

If v ∈ Vi, then we say color i is a permissible color of vertex v. If v ∈ Xi, then we say v
is colored by color i.

We say G is g-fold f -paintable if Painter has a winning strategy in the g-fold f -painting
game on G, and we say G is b-fold k-paintable if G is g-fold f -paintable for the constant
functions f ≡ k and g ≡ b. The b-paint number of G, denoted by χP,b(G), is the least integer
k such that G is b-fold k-paintable. The paint number of G, denoted by χP (G), is the least
integer k such that G is 1-fold k-paintable.

Many papers studied the connection of this on-line list coloring with the usual list col-
oring. First, it follows from the definition that for any graph G, χP (G) ≥ ch(G) and
chb(G) ≤ χP,b(G). It was proved in [8] that the difference χP (G)− ch(G) can be arbitrarily
big for complete bipartite graphs. On the other hand, many currently known upper bounds
for the choice numbers of classes of graphs remain upper bounds for their paint number. For
example, the paint number of planar graphs is at most 5 [9], the paint number of planar
graphs of girth at least 5 is at most 3 [9, 4], the paint number of the line graph L(G) of
a bipartite graph G is ∆(G) [9], the maximum degree of G, and if G has an orientation
in which the number of even Eulerian1 subgraphs differs from the number of odd Eulerian
subgraphs and f(x) = d+(x) + 1, then G is f -paintable [10].

1A spanning subgraph of a directed graph is even (resp. odd) Eulerian if it has an even (resp. odd)
number of edges, and for each vertex its in-degree equals its out-degree.
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To avoid confusion we mention that a different list coloring game, game list coloring, was
investigated by Borowiecki, Sidorowicz and Tuza [3]. In their list coloring game, the graph
and the lists are given at the beginning of the game, and both players colour vertices with
colours from their lists, however, with opposite goals.

Various graph products, such as direct product, Cartesian product, strong product and
lexicographic product, are important and popular methods of constructing new graphs from
old ones. It is interesting to understand how a graph parameter of a product graph relates to
graph parameters of the factor graphs. In this paper, we are interested in the choice number
and the paint number of the lexicographic product of graphs.

Definition 1.2. Let G = (V1, E1) and H = (V2, E2) be two graphs. The lexicographic product
of G and H is the graph G[H ] with vertex set V1×V2 and (v1, v2) is joined to (v′1, v

′

2) if either
(v1, v

′

1) ∈ E1 or v1 = v′1 and (v2, v
′

2) ∈ E2.

Lexicographic products have a close connection with fractional colorings. The fractional
chromatic number of a graph G is defined as χf (G) = inf χ(G[Kn])/n, where the infi-
mum is over all n. The fractional choice number or choice ratio is defined as chf (G) =
inf{chb(G)/b} = inf{a/b : G is (a, b)-choosable}. In the same vein, fractional paint number
is defined as χP,f(G) = inf{χP,b(G)/b}. Note that the b-choice number can be imagined as a
restricted version of the choice number of the lexicographic product G[Kb], in which the lists
are restricted such that all vertices of a copy of Kb have the same set of permissible colors.
Thus chb(G) ≤ ch(G[Kb]). Similarly, χP,b(G) ≤ χP (G[Kb]).

It follows from the definition that χf (G) ≤ chf (G) for all graphs G. Although ch(G) −
χ(G) can be arbitrarily large, Alon, Tuza and Voigt [2] showed the equality chf (G) = χf(G)
holds for all graphs G. This result was further strengthened by Gutowski [7], who showed
that for any graphG, its fractional paint number also equals the fractional chromatic number.
About the choice number of lexicographic products our knowledge is much more limited. In
this paper we investigate the choice number of lexicographic products along with its on-line
variant, the paint number of lexicographic products.

1.1 Our results and discussion

First we summarize the trivial relations between the coloring numbers we are interested in:

Observation 1.3. χ(G[H ]) ≤ chχ(H)(G) ≤ ch(G[H ]) ≤ χP (G[H ]).

Our aim is to bound these coloring numbers with a function of parameters depending
on G and H . For the chromatic number of lexicographic products, the following is trivially
true:

Observation 1.4. χ(G[H ]) ≤ χ(G)χ(H).
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In general this bound cannot be improved as seen by choosing G = Kr and H = Kn (it
can be slightly improved in certain cases [6]).

Recall that the b-choice number can be regarded as a restricted version of the choice
number of the lexicographic product G[Kb] or more generally of G[H ] where χ(H) = b. For
the b-choice number we do not know a bound as in Observation 1.4, yet a simple greedy
coloring (of copies of H one by one) shows that:

Observation 1.5. chb(G) ≤ b∆(G).

Or, equivalently, chχ(H)(G) ≤ ∆(G)χ(H).
For the choice number ch(G[H ]) of G[H ] no such bound can be expected as shown by

G = K2 and H = En, the empty graph on n vertices. Indeed, for these graphs ch(G[H ]) =
Ω(log n) while ∆(G) = χ(H) = 1. Still, we are interested in finding a similar upper bound for
the choice number of G[H ]. In order to do that, we study the corresponding problem about
the paint number. We present an upper bound on the paint number of the lexicographic
product G[H ] in terms of the maximum degree ∆(G) of G, the paint number of H and the
cardinality of H . It turns out that the proof can be immediately adjusted for the choice
number. This shows that indeed the investigation of the paint number was beneficial in
understanding the behaviour of the choice number. Let log stand for the base 2 logarithm.

Theorem 1.6. For any graph G and any graph H on n vertices,

• ch(G[H ]) ≤ (4∆(G) + 2)(ch(H) + log n),

• χP (G[H ]) ≤ (4∆(G) + 2)(χP (H) + log n).

Note that this theorem generalizes to b-fold colorings, for details see Corollary 2.3. Ap-
plying the theorem with H = Kb we get a similar bound on χP,b(G) as in Observation 1.5
we had for chb(G):

Corollary 1.7. χP,b(G) ≤ cb∆(G) for some constant c.

Theorem 1.6 generalizes a result of Alon about complete multipartite graphs (his proof
is based on probabilistic arguments). Let Kn∗r denote the complete r-partite graph with n
vertices in each vertex class. Applying Theorem 1.6 with G = Kr and H = En (the empty
graph on n vertices), we get the upper bound in Alon’s following result:

Theorem 1.8. [1] There exist two positive constants c1 and c2 such that for every n ≥ 2
and for every r ≥ 2

c1r logn ≤ ch(Kn∗r) ≤ c2rlog n.

Alon’s result implies for an arbitrary graph G that ch(G) ≤ c2χ(G) logm where m is
the number of vertices of G. This was proved also for the paint number [13], showing that
χP (G) ≤ χ(G) lnm + 1, where ln stands for the natural logarithm. More generally, about
the b-paint number it was proved that:
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Theorem 1.9. [13] χP,b(G) ≤ cχ(G)(b+ logm) for some constant c.

Comparing this result with Corollary 1.7 we see that while this upper bound depends on
χ(G) and also on m, the size of G, our upper bound depends only on ∆(G). Thus as a side
effect of our main results we got a bound on χP,b(G) which is best known for many pairs of
G and b. Note that, e.g., if b is big compared to lnm then the bound of Theorem 1.9 remains
better then the one in Corollary 1.7.

We continue by showing that Theorem 1.6 is considerably tight. For simplicity, from now
on ∆ denotes ∆(G). First observe that if G = Kr and H = Kn then G[H ] = Krn and so
χP (G[H ]) = ch(G[H ]) = ch(Krn) = rn = (∆+1) ch(H) = (∆+1)χP (H). On the other hand
if G = Kr and H = En, then G[H ] = Kn∗r, ∆ = r−1 and χP (H) = 1 while the lower bound
in Theorem 1.8 gives χP (G[H ]) ≥ ch(G[H ]) = Ω(∆ log n). Therefore, the ∆(G) ch(H) (resp.
∆(G)χP (H)) term and the ∆(G) logn term in Theorem 1.6 are both needed, the theorem is
tight up to a constant multiplicative factor.

Nevertheless, inspired by the bound of Observation 1.4, we ask if bounds similar to the
ones in Observation 1.5 and Theorem 1.6 hold in which the dependence on ∆ is replaced by
a dependence on ch(G) or χP (G):

Problem 1.10. Does there exist a constant c such that for any graph G and any graph H
on n vertices,

(i) chb(G) ≤ cb ch(G),

(ii) ch(G[H ]) ≤ c ch(G)(ch(H) + logn),

(iii) χP (G[H ]) ≤ cχP (G)(χP (H) + log n)?

We note that a positive answer to Problem 1.10(i) is implied by the following well known
conjecture of Erdős, Rubin and Taylor:

Conjecture 1.11. [5] If G is (a, b)-choosable, then G is (an, bn)-choosable for every n ∈ N.

Indeed, Conjecture 1.11 for b = 1 is equivalent to Problem 1.10(i) with c = 1 (note that
n in Conjecture 1.11 plays the role of b in Problem 1.10(i)). However, to our knowledge, it is
already unknown whether or not there exists a polynomial p such that chb(G) ≤ p(b) ch(G).

2 An upper bound for ch(G[H]) and χP (G[H])

We denote byNG(x) the open neighborhood of x inG, i.e., the set containing all the neighbors
of x in G, and by NG[x] the closed neighborhood of x in G, i.e., NG[x] = NG(x) ∪ {x}. In
G[H ], for x ∈ V (G), let

Vx = {(x, y) : y ∈ H},
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which is called a layer of G[H ]. Observe that each Vx induces a copy of H . For C ⊂ G[H ],
let

C(x) = C ∩ Vx,

and call C(x) a layer of C. Let En be the empty graph (i.e., edgeless) on n vertices.
In this section, we first give an upper bound for χP,b(G[En]). Then we use this result to

prove Theorem 1.6. Note that Corollary 1.7 already follows from the following lemma by
setting n = 1.

Lemma 2.1. For any graph G and positive integer n, χP,b(G[En]) ≤ (4∆(G)+2)(b+logn).

Proof. The idea of the proof is similar to the idea used in [13]. Let

k = ⌈(4∆ + 2)(b+ log n)⌉.

We shall give a winning strategy for Painter in the b-fold k-painting game on G[En].
During the game, Painter will keep track of a weighting function, which is dynamic as

the weight of vertices will change during the game. We shall denote by hi(v) the weight of
v at the end of the ith round.

For a set X of vertices of G[En], let

hi(X) =
∑

v∈X

hi(v).

At the beginning no vertex is colored and each vertex has weight h0(v) = 1.
Assume that in round i, Lister presents a set of vertices, C, all colored less than b times.

We construct an independent set I of G recursively as follows:
Initially I = ∅ and U = V (G).
Repeat the following step until U becomes empty: choose a vertex x ∈ U with

hi−1(C(x)) = max{hi−1(C(y)) : y ∈ U},

let
I := I ∪ {x}, U := U −NG[x].

When this procedure of choosing greedily maximal weight layers of C ends, I is a maximal
independent set of G. It follows from the construction that for any x′ /∈ I, there is a vertex
x ∈ I ∩NG(x

′) such that hi−1(C(x)) ≥ hi−1(C(x′)).
Painter colors the vertices in ∪x∈IC(x). The weight function is updated as follows:

hi(v) =











(1 + 1
4∆+1

)hi−1(v), v ∈ C(x), x /∈ I,
1
2
hi−1(v), v ∈ C(x), x ∈ I,

hi−1(v), v /∈ C,
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We shall prove that this is a winning strategy for Painter.
We first show that for any vertex x of G, hi(Vx) ≤ 2n.
Assume x is a fixed vertex of G. We construct recursively an infinite rooted tree T and

a homomorphism φ from T to G. Initially, let T0 be the tree with a single root vertex r.
Let φ0(r) = x. Assume Ti and a homomorphism φi : Ti → G have been constructed. We
construct Ti+1 and φi+1 as follows: For each leaf vertex a of Ti, add dG(φi(a)) − 1 leaves
(dG(φi(a)) leaves in the case i = 0) adjacent to a, and extend φi to these leaves in such a
way that φi+1(NTi+1

(a)) = NG(φi(a)). In other words, the restriction of φi+1 to NTi+1
(a) is

a bijection from NTi+1
(a) to NG(φi(a)).

Observe that Ti is a subtree of Ti+1 and the homomorphism φi of Ti to G is extended to
a homomorphism φi+1 of Ti+1 to G. Let T = limi→∞ Ti, and let φ = limi→∞ φi. It follows
from the definition that for any vertex a of T , dT (a) = dG(φ(a)) and φ is a bijection between
NT (a) and NG(φ(a)). For each vertex a of T , the level l(a) of a is the distance from a to the
root r. In particular, l(r) = 0. For a ∈ T , let

η(a) =
1

(2∆)l(a)
.

Let
wi(T ) =

∑

a∈T

η(a)hi(Vφ(a)).

Notice that by definition hi(Vx) ≤ wi(T ): when a is the root of the tree, then the
corresponding summand is hi(Vx) . Since the maximum degree of T is equal to the maximum
degree of G, we know that the number of vertices of level l is at most ∆(∆− 1)l−1 < ∆l. As
h0(Vy) = n for any vertex y of G, we have

w0(T ) ≤ n
∞
∑

l=0

∆l 1

(2∆)l
= 2n.

Next we show that for i ≥ 0, wi+1(T ) ≤ wi(T ).
Let

A = {a ∈ V (T ) : hi+1(Vφ(a)) > hi(Vφ(a))}

B = {a ∈ V (T ) : hi+1(Vφ(a)) < hi(Vφ(a))}.

For simplicity, for a ∈ T , let hi(a) = hi(C(φ(a))). It follows from the definition that

∀a ∈ A, hi+1(Vφ(a))− hi(Vφ(a)) =
1

4∆ + 1
hi(a),

∀b ∈ B, hi+1(Vφ(b))− hi(Vφ(b)) = −
1

2
hi(b).
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Claim 2.2. For each a ∈ A, there exists b ∈ B such that a, b are adjacent in T and
hi(a) ≤ hi(b).

Proof. Let x = φ(a). By our choice of I, x has a neighbor x′ ∈ I for which hi(C(x′)) ≥
hi(C(x)). By our construction of T , a has a unique neighbor b with φ(b) = x′.

Continuing the proof of Lemma 2.1, for b ∈ B, let

Ab = {a ∈ A : ab ∈ E(T ), hi(a) ≤ hi(b)}.

wi+1(T )− wi(T ) =
∑

a∈A∪B

η(a) (hi+1(V (φ(a)))− hi(V (φ(a))))

=
1

4∆ + 1

∑

a∈A

hi(a)η(a)−
1

2

∑

b∈B

hi(b)η(b)

≤
∑

b∈B

(

1

4∆ + 1

∑

a∈Ab

hi(a)η(a)−
1

2
hi(b)η(b)

)

≤
∑

b∈B

hi(b)

(

1

4∆ + 1

∑

a∈Ab

η(a)−
1

2
η(b)

)

We shall show that 1
4∆+1

∑

a∈Ab
η(a) − 1

2
η(b) ≤ 0 for all b ∈ B, which will imply that

wi+1(T ) − wi(T ) ≤ 0. There is at most one a′ ∈ Ab for which l(a′) = l(b) − 1. For all
other vertices a ∈ Ab, we have l(a) = l(b) + 1. Thus η(a′) = 2∆η(b), and η(a) = 1

2∆
η(b) for

a ∈ Ab − {a′} (the vertex a′ may not exist). Therefore,

1

4∆ + 1

∑

a∈Ab

η(a)−
1

2
η(b) ≤ η(b)

(

∆− 1

4∆ + 1

1

2∆
+

2∆

4∆+ 1
−

1

2

)

≤ 0

Therefore wi+1(T ) ≤ wi(T ). Hence

hi(Vx) ≤ wi(T ) ≤ w0(T ) = 2n.

Assume v ∈ V (G[En]) is contained in layer Vx. If at the end of the ith round, v has been
given s permissible colors and is colored with t ≤ b− 1 colors, then

hi(v) =

(

1 +
1

4∆ + 1

)s−t(
1

2

)t

≤ hi(Vx) ≤ 2n.
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Hence

s ≤ t+ log1+ 1
4∆+1

(2t2n) = t +
log(2t2n)

log(1 + 1
4∆+1

)
≤ b− 1 + (4∆ + 1)(b− 1 + log 2n) =

= (4∆ + 2)(b+ logn)− log n− 1 ≤ k − 1.

(The second inequality above follows from the fact that 1/ log(1+1/x) ≤ x as 2 ≤ (1+1/x)x

for x = 4∆ + 1.) In other words, if k permissible colors have been assigned to a vertex v,
then v would have been colored b times. Hence the strategy is a winning strategy for Painter.
This completes the proof of Lemma 2.1.

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. Recall that we want to prove that assuming G is a graph of maximum
degree ∆, then for any graph H on n vertices, ch(G[H ]) ≤ (4∆(G) + 2)(ch(H) + logn) and
χP (G[H ]) ≤ (4∆ + 2)(χP (H) + log n).

Let b = ch(H) and k = (4∆+ 2)(b+ log n). For any list assignment L of G[H ] with lists
of size k we shall present an L-coloring of G[H ].

By Lemma 2.1 chb(G[En]) ≤ χP,b(G[En]) ≤ k and so there exists a b-fold L-coloring of
G[En]. Now this coloring assigns b colors to each vertex of G(H). Define on the vertices of
each layer Vx (x ∈ G) a list Lx where the list of v ∈ Vx consists of the b colors assigned to v
in this L-coloring. As b = ch(H), each copy G[Vx] of H can be Lx-colored. The list colorings
Lx (x ∈ G) assign a color to each vertex, let this be our final coloring. This coloring by
definition assigns a permissible color (by L) to each vertex, furthermore by the first round
we made sure that if two vertices in different layers are connected then they are colored
differently. Finally, in the second round we made sure that if two vertices in the same layer
are connected then they are colored differently. Thus this is a proper coloring, and so it is
an L-coloring, as required.

The proof of the second part of the theorem is similar. Let b = χP (H) and k = (4∆ +
2)(b + log n). We shall present a winning strategy for Painter in the k-painting game on
G[H ].

Assume that in a certain round Lister presents a set C of uncolored vertices of G[H ].
Painter’s response is determined in two steps. In the first step, Painter plays the b-fold
k-painting game on G[En], using the strategy in the proof of Lemma 2.1. Assume I is the
independent set of G[En] chosen by Painter in the first step. In the second step, for each
vertex x of G, Painter plays the b-painting game on G[Vx], by assuming that Lister has
chosen the set I ∩ Vx in this round, using his winning strategy for this game (which exists
as b = χP (H)). Assume for each vertex x of V (G), Painter’s choice (in the second step) is
Ax. For the k-painting game on G[H ], Painter’s response in this round is ∪x∈V (G)Ax.

First we prove that ∪x∈V (G)Ax is an independent set of G[H ] contained in C. Indeed, as
I is an independent set of G[En] contained in C, we conclude that the set {x : I ∩ Vx 6= ∅}
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is an independent set of G. As each Ax is an independent set of G[H ] contained in Vx ∩ I,
we conclude that ∪x∈V (G)Ax is an independent set of G[H ] contained in C.

It remains to show that every vertex of G[H ] will eventually be colored. Assume v ∈ Vx.
As v has k permissible colors, during the first steps, v will be given b colors, i.e., v is contained
in b of I’s that are chosen by Painter in the first steps. That means for the b-painting game
on G[Vx], v will be given b permissible colors. As Painter is using a winning strategy for
the b-painting game on G[Vx], v will eventually be colored. Therefore the above strategy
is a winning strategy for Painter on the k-painting game on G[H ] and hence χP (G[H ]) ≤
(4∆ + 2)(χP (H) + log n).

This proof easily generalizes also for the case of b-paint number:

Corollary 2.3. Assume G is a graph of maximum degree ∆. Then for any graph H on n
vertices,

• chb(G[H ]) ≤ (4∆(G) + 2)(chb(H) + logn),

• χP,b(G[H ]) ≤ (4∆(G) + 2)(χP,b(H) + log n).
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