
Accepted Manuscript

Insights into the evolution of an alkaline magmatic system: An
in situ trace element study of clinopyroxenes from the Ditrău
Alkaline Massif, Romania

Anikó Batki, Elemér Pál-Molnár, M. Éva Jankovics, Andrew C.
Kerr, Balázs Kiss, Gregor Markl, Adrián Heincz, Szabolcs
Harangi

PII: S0024-4937(17)30414-0
DOI: doi:10.1016/j.lithos.2017.11.029
Reference: LITHOS 4490

To appear in:

Received date: 7 August 2017
Accepted date: 28 November 2017

Please cite this article as: Anikó Batki, Elemér Pál-Molnár, M. Éva Jankovics, Andrew
C. Kerr, Balázs Kiss, Gregor Markl, Adrián Heincz, Szabolcs Harangi , Insights into
the evolution of an alkaline magmatic system: An in situ trace element study of
clinopyroxenes from the Ditrău Alkaline Massif, Romania. The address for the
corresponding author was captured as affiliation for all authors. Please check if
appropriate. Lithos(2017), doi:10.1016/j.lithos.2017.11.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.lithos.2017.11.029
https://doi.org/10.1016/j.lithos.2017.11.029


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Insights into the evolution of an alkaline magmatic system: an in situ trace 

element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania 

 

Anikó Batki
a,b,*,1

, Elemér Pál-Molnár
a,b,1

, M. Éva Jankovics
a,b

, Andrew C. Kerr
c
, Balázs 

Kiss
a,b

, Gregor Markl
d
, Adrián Heincz

b
, Szabolcs Harangi

a
 

 

a 
MTA-ELTE Volcanology Research Group, Pázmány Péter sétány 1/C, H-1117 Budapest, 

Hungary 

b 
’Vulcano’ Petrology and Geochemistry Research Group, Department of Mineralogy, 

Geochemistry and Petrology, University of Szeged, Egyetem Street 2, H-6722 Szeged, 

Hungary 

c
 School of Earth and Ocean Sciences, Cardiff University, Main Building, Cardiff CF10 3AT, 

United Kingdom 

d
 Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 

Tübingen, Germany 

 

*Corresponding author. Telephone: 003613722500 8359. Fax: 003613812108. E-mail: 

aniko.batki@gmail.com 

1
The first two authors have contributed equally to this work. 

 

Abstract 

Clinopyroxene is a major constituent in most igneous rock types (hornblendite, diorite, 

syenite, nepheline syenite, camptonite, tinguaite and ijolite) of the Ditrău Alkaline Massif, 

Eastern Carpathians, Romania. Phenocryst and antecryst populations have been distinguished 

based on mineral zoning patterns and geochemical characteristics. Major and trace element 
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compositions of clinopyroxenes reflect three dominant pyroxene types including primitive 

high-Cr Fe-diopside, intermediate Na-diopside-hedenbergite and evolved high-Zr aegirine-

augite. Clinopyroxenes record two major magma sources as well as distinct magma evolution 

trends. The primitive diopside population is derived from an early camptonitic magma related 

to basanitic parental melts, whilst the intermediate diopside-hedenbergite crystals represent a 

Na-, Nb- and Zr-rich magma source recognised for the first time in the Ditrău magmatic 

system. This magma fractionated towards ijolitic and later phonolitic compositions. Field 

observations, petrography and clinopyroxene-melt equilibrium calculations reveal magma 

recharge and mingling, pyroxene recycling, fractional crystallisation and accumulation. 

Repeated recharge events of the two principal magmas resulted in multiple interactions 

between more primitive and more fractionated co-existing magma batches. Magma mingling 

occurred between mafic and felsic magmas by injection of ijolitic magma into fissures (dykes) 

containing phonolitic (tinguaite) magma. This study shows that antecryst recycling, also 

described for the first time in Ditrău, is a significant process during magma recharge and 

demonstrates that incorporated crystals can crucially affect the host magma composition and 

so whole-rock chemical data should be interpreted with great care. 

 

Keywords: Clinopyroxene; Alkaline igneous complex; LA-ICP-MS; Zoning patterns; 

Antecryst recycling; Magma recharge 

 

1. Introduction 

 

Open- and closed-system magma chamber processes such as magma mixing, mingling, 

recharge, crystal mush remobilisation, crystallisation and assimilation significantly affect the 

evolution of different magmas in the lithosphere as well as their volcanic activity. 
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Investigation of exhumed magma reservoirs, i.e., plutonic systems, can significantly 

contribute to our understanding these magmatic processes (e.g., Frost and Mahood, 1987; 

Barbarin and Didier, 1992; Kerr et al., 1999; Baxter and Feely, 2002; Weidendorfer et al., 

2014; Michel et al., 2016; Ma et al., 2017). 

 

The textural, zoning and compositional characteristics of clinopyroxene in petrologically and 

geochemically diverse volcanic and plutonic rocks have been extensively studied over the 

past 40 years (e.g., Wass, 1979; Duda and Schmincke, 1985; Dobosi et al., 1991; Dobosi and 

Fodor, 1992; Neumann et al., 1999; Nakagawa et al., 2002; Streck et al., 2002; Marks et al., 

2004; Shane et al., 2008; Stroncik et al., 2009; Winpenny and Maclennan, 2011; Jankovics et 

al., 2012, 2016; Ubide et al., 2014a, b; Gernon et al., 2016). These detailed mineral-scale 

studies have inferred the origin of different clinopyroxene populations, from open- and 

closed-system petrogenetic processes operating in subvolcanic magma storage systems to the 

evolution and ascent histories of different magmas (replenishment, magma mixing, mingling, 

xenocryst incorporation, fractional crystallisation and contamination). Based on these results, 

clinopyroxene is considered as a significant petrogenetic indicator that can be effectively used 

to unravel the evolution of magmatic systems. 

 

The petrogenesis of the Ditrău Alkaline Massif has been in the focus of many studies in the 

last 150 years (e.g., Streckeisen, 1954, 1960; Codarcea et al., 1957; Streckeisen and Hunziker, 

1974; Pál-Molnár and Árva-Sós, 1995; Dallmeyer et al., 1997; Kräutner and Bindea, 1998; 

Morogan et al., 2000; Pál-Molnár, 2000, 2010b; Fall et al., 2007; Batki et al. 2014; Pál-

Molnár et al., 2015b). However, because of the wide range of lithologies and complex field 

relationships, contrasting models for the origin and magmatic evolution of the massif have 

been proposed. Since most of its rock types contain clinopyroxene, an integrated textural and 
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geochemical study of this mineral phase serves as a useful tool to unravel the succession and 

interactions of magmas as well as the deep-seated petrogenetic processes in the Ditrău 

plutonic system. 

 

In this study, we present the textural varieties and a new major and trace element geochemical 

dataset of diverse clinopyroxene crystals from seven related rock types of the alkaline igneous 

suite of the Ditrău plutonic system. Textural and zoning characteristics are combined with 

chemical compositions to identify distinct phenocryst and antecryst populations. We use in-

situ LA-ICP-MS data to carry out clinopyroxene-melt equilibrium calculations in order to 

reveal the dominant open- and closed-system magma chamber processes. Additionally, a new 

magma source has been discovered in the Ditrău magmatic system and further genetic 

relationships between the studied alkaline igneous rocks have been identified. 

 

2. Geological setting 

 

The Ditrău Alkaline Massif is a Mesozoic igneous complex located in the Eastern 

Carpathians, Romania (Fig. 1a). The massif outcrops immediately east of the Călimani–

Gurghiu–Harghita Neogene–Quarternary volcanic chain (Fig. 1b) and is partly covered by 

andesitic pyroclastic deposits and lavas as well as by Pliocene–Pleistocene sediments 

(Codarcea et al., 1957; Pál-Molnár, 2010a). The igneous complex was formed during an 

extensional phase of the Alpine orogeny related to a rifted continental margin adjacent to 

Tethys. The intrusions are inferred to have been related to the opening events of the Meliata–

Hallstatt ocean (Hoeck et al., 2009) where rifting is proposed to have commenced in the 

Pelsonian Substage (Middle Triassic) (Kozur, 1991). 
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The basement of the Eastern Carpathians is composed of Neoproterozoic to early Paleozoic 

peri-Gondwanan terranes that were variably affected by the Variscan orogeny, and so is 

similar to other basement terrains of Europe (Balintoni et al., 2014). The Ditrău Alkaline 

Massif lies within the Dacia Mega-Unit (Median Dacides; Săndulescu, 1984) of the Alpine–

Carpathian–Dinaric region (Fig. 1a) and intrudes the Variscan metamorphic rocks that form 

the Alpine nappes in the Eastern Carpathians. The Alpine nappes from the bottom to the top 

are: the Bucovinian, the Subbucovinian and the Infrabucovinian Nappes. These nappes were 

thrust over each other during the Cretaceous (Austrian tectogenesis), and have an eastern 

vergence. Structurally, the Ditrău Alkaline Massif is the part of the lowermost Bucovinian 

Nappe, and is in direct contact with four of its Pre-Alpine Ordovician Gondwanan terranes 

(metamorphic units) (Bretila Terrane, Tulgheş Terrane, Negrişoara Terrane and Rebra 

Terrane; Balintoni et al., 2014). 

 

The massif consists of a series of ultramafic and mafic cumulates grading to intermediate and 

felsic rocks from west to east (Pál-Molnár, 2000, Pál-Molnár et. al, 2015a, b). Hornblendite, 

gabbro and diorite are the dominant rock-types in the north- and central-west part of the 

igneous complex; monzonite, syenite, quartz syenite and granite extend from the north to the 

south-east, while nepheline syenite is concentrated in a large area of the central and eastern 

part of the massif (Fig. 1c). The whole massif is cut by numerous dykes including 

camptonites, tinguaites, alkali feldspar syenites and nepheline syenites. 

 

The ultramafic rocks represent the oldest part of the Massif and were emplaced from 237 to 

216 Ma, although their ages overlap that of the gabbros (234 Ma). The nepheline syenites and 

granites are younger, and have been dated at 232–216 Ma and 217–196 Ma, respectively. 

Ages have been obtained by K–Ar on hornblende, biotite, nepheline and feldspar separates 
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(Pál-Molnár and Árva-Sós, 1995), and a mid- to late-Triassic age of the early components was 

later confirmed by additional 
40

Ar/
39

Ar hornblende ages of 231 Ma and 227 Ma for gabbro 

and diorite, respectively (Dallmeyer et al., 1997). A U–Pb zircon age of 229.6 ± 1.7 Ma has 

been reported for the syenites (Pană et al., 2000). 

 

A mantle origin for the mafic and ultramafic bodies was inferred by Kräutner and Bindea 

(1998) and by Morogan et al. (2000). Morogan et al. (2000) suggested that the massif was 

formed from primitive basanitic magmas that resulted from small-fraction asthenospheric 

melts, followed by progressive evolution to phonolitic residues. They attributed an important 

role to assimilation and fractionation, in conjunction with the mixing of felsic and basanitic 

melts. The hornblendites are interpreted as gravitational cumulates on a magma chamber floor 

(Pál-Molnár, 2000, 2010b; Pál-Molnár et al., 2015b) or as disrupted bodies of former side-

wall cumulates (Morogan et al., 2000). Modelling suggests that camptonite dykes have been 

generated by 1–4% partial melting of an enriched, amphibole-bearing garnet lherzolite mantle 

source. These dykes represent the only primitive mafic melt known in the massif and 

therefore have been interpreted as the parental melts of the whole igneous complex (Batki et 

al., 2014).  

 

3. Field relations and samples  

 

Hornblendite cumulates are enclosed in gabbroic–dioritic rocks as lenticular or block-shaped 

bodies from a few centimetres to a hundred metres or more in size. The cumulates span a 

wide range of compositions but predominantly consist of olivine and/or clinopyroxene to 

essentially mono-mineralic hornblendite. A complete igneous rock series from hornblendite to 

gabbro, diorite, monzodiorite, monzonite, quartz monzonite, syenite, quartz syenite and 
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granite can be observed from the north-west to the north-east part of the massif (Pál-Molnár et 

al., 2015b) (Fig. 1c). 

 

Syenites show mingling features with dioritic/gabbroic rocks (described as “Ditro essexite” by 

Streckeisen, 1960) (Fig. 2a). Nepheline syenites are the most abundant rocks of the massif and 

predominate in the eastern part and form large bodies and dykes. 

 

Rare tinguaites, which are petrogenetically related to nepheline syenites (Streckeisen, 1954) 

form thin dykes crosscutting the granites, syenites and nepheline syenites. Additionally, small, 

discrete, rounded, ijolitic enclaves occur within some of the tinguaite dykes indicating 

mingling (mechanical interaction) of co-existing mafic and felsic magmas before 

solidification (e.g., Barbarin and Didier, 1991; Ubide et al., 2014c). The globular to lenticular 

dark grey ijolite enclaves with sharp margins vary in diameter from 1 to 9 centimetres (Fig. 

2b). 

 

Representative samples of rocks containing clinopyroxenes i.e., hornblendite cumulates, 

diorites, syenites, nepheline syenites, camptonites and tinguaite dykes including ijolite 

enclaves were collected from distinct parts of the Ditrău Alkaline Massif (Pietrăriei de Sus, 

Tarniţa de Jos, Teasc, Jolotca, Creanga Mare, Ditrău and Cetăţii Creeks) (Table 1, Fig. 1c). 

Hornblendite cumulate, nepheline syenite, camptonite, tinguaite and some of the ijolite 

samples have formed part of previous petrological and mineralogical studies (Fall et al., 2007; 

Batki et al., 2004; 2012a,b, 2014; Pál-Molnár, 2000; Pál-Molnár, 2010b, Batki and Pál-

Molnár, 2011; Pál-Molnár et al., 2015b). 

 

4. Petrography and whole rock geochemistry 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

4.1. Hornblendite cumulate 

Hornblendite cumulates have been recently described by Pál-Molnár (2010b) and Pál-Molnár 

et al (2015). According to these studies, two cumulate types can be recognised: poikilitic 

olivine-bearing hornblendite cumulate, and pyroxene-rich hornblendite cumulate. The rocks 

are dark grey, coarse-grained, inequigranular and display orthocumulate and mesocumulate 

textures. Poikilitic olivine-bearing cumulates consist of up to 30 modal% olivine and 23% 

cumulus clinopyroxene enclosed by intercumulus amphibole oikocrysts. Pyroxene-rich 

cumulates comprising a nearly monomineralic assemblage of up to 90 vol.% amphibole 

accompanied by biotite (up to 10 vol.%), up to 16 vol.% clinopyroxene, ~5 vol.% plagioclase, 

~5 vol.% apatite, ~3 vol.% titanite, and ~3 vol.% magnetite. Amphibole oikocrysts enclose 

small clinopyroxenes with sizes of around 450 µm (Fig. 2b in Pál-Molnár et al., 2015b). 

Brown-coloured, euhedral to subhedral, cumulus clinopyroxene is also present (Fig. 3a). 

 

Olivine-bearing cumulates are the most primitive amongst the Ditrău mafic-ultramafic 

cumulate series with MgO contents of 16–17 wt.% and the highest Ni and Cr contrentrations 

(<390 ppm and <509 ppm, respectively). They are also the least enriched in rare earth element 

(REE) and have positive Pb, Hf and Ti and negative Zr and Y anomalies on primitive mantle-

normalised diagrams. Pyroxene-rich cumulates have high alkali, TiO2, P2O5 and FeO
T
 

contents and high Sr, Ba, Zr, Nb and Y concentrations (Table 2). Chondrite-normalised REE 

patterns have no Eu anomaly and are enriched in LREE, while primitive mantle-normalised 

patterns have negative P, Ti, U and K (Pál-Molnár et al., 2015b). 

 

4.2. Diorite 

The studied diorite is dark-to-light grey coloured, medium-grained with granular texture, and 

is composed of amphibole (44 vol.%), biotite (11 vol.%), plagioclase (35 vol.%), subordinate 
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clinopyroxene (4 vol.%), apatite, magnetite, and titanite. Anhedral clinopyroxene is 

surrounded by euhedral amphibole crystals (250–3000 µm sized) and subhedral biotite (up to 

7.5 mm) (Fig. 3b). 

 

The diorite is moderately evolved (mg# 0.4) and is compositionally similar to the Ditrău 

camptonites (Table 2). It plots in the basanitic field of the TAS diagram (not shown) with 

SiO2 contents of 43 wt.% and total alkalis (Na2O+K2O) of 5.4 wt.%. The TiO2 content is high 

(4 wt.%) and is a common feature of the Ditrău mafic rocks, along with high Nb, Zr, Sr, Ba 

and LREE enrichment. 

 

4.3. Syenite 

The greyish pink coloured syenite is inequigranular and medium- to fine-grained. It consists 

of amphibole (2 vol.%), biotite (1 vol.%), potassium feldspar (80 vol.%), subordinate 

plagioclase (11 vol.%), and rarely, clinopyroxene. Accessory minerals (~5 vol.%) include 

zircon, apatite, magnetite, titanite and rutile. The subhedral, commonly cracked, 1–5 mm 

sized amphibole occurs as mafic crystal clots enclosing anhedral clinopyroxene crystals, 

biotite, magnetite and titanite. (Fig. 3c). 

 

The studied syenite is alkaline and peraluminous with an agpaitic index of 0.64, slightly Si-

undersaturated with 3.4% nepheline in the norm, and does not contain normative quartz or 

leucite. Sodium and potassium concentrations are high and nearly equal (6.1 wt.% Na2O and 

6.2 wt.% K2O; Table 2). The syenite is relatively enriched in Zr, Nb, Sr, Ba, La and Ce. 

Chondrite-normalised REE patterns are enriched in LREE and show a slight depletion in 

MREE. 
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4.4. Nepheline syenite 

The white to reddish nepheline syenite is coarse- to medium-grained. It consists of large 

crystals of 40–55 vol% feldspar (orthoclase, microcline and subordinate albite) and 10–35 

vol.% nepheline (up to 25 mm and 15 mm, respectively), subordinate biotite (2–10 vol.%) and 

clinopyroxene (2–7 vol.%), amphibole (2–5 vol.%), late-stage hydrothermal 

calcite+canrinite+sodalite+analcime and 3–5 vol.% accessory zircon, monazite, apatite, 

titanite, magnetite and ilmenite (Fig. 3d). 

 

The Ditrău nepheline syenites are characterised as peraluminous and miaskitic rocks (agpaitic 

index varies from 0.8 to 1.0) and two different geochemical compositions are observed (Table 

2). Generally, nepheline syenite-I has higher Al2O3 contents (21–24 wt.%) and alkalis (14–16 

wt.% Na2O+K2O) but lower REE concentrations with a significant negative Sm anomaly than 

that of nepheline syenite-II (Al2O3 <21 wt.% and Na2O+K2O <13.5 wt.%). Chondrite-

normalised REE patterns of both types are U-shaped with a marked depletion in MREE 

typical of phonolitc compositions but MREE depletion of nepheline syenite-I is more 

pronounced. Both types of nepheline syenites have pronounced positive Sr and Zr-Hf 

anomalies and lack Eu anomalies on primitive mantle-normalised plots.  

 

4.5. Camptonite 

Camptonite dykes were previously investigated by Batki et al. (2004, 2014). Based on their 

results the clinopyroxene-bearing camptonite dykes are fine grained with a hypocrystalline 

porphyritic and panidiomorphic texture. Major minerals are clinopyroxene, amphibole, biotite 

and plagioclase. Texturally, subhedral to anhedral clinopyroxene crystals (ca. 1–10 vol.%) are 

set in a groundmass of kaersutite, subordinate annite, anhedral plagioclase, accessory acicular 

apatite, opaque minerals and titanite (Fig. 3e).  
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The Ditrău camptonites are basanitic and trachy-basaltic in composition and Si-undersaturated 

with olivine and nepheline in the norms. The samples are high in alkalis (Na2O/K2O = 1–3) 

and titanium (up to 4 wt.% TiO2). Mg# varies from 0.44 to 0.70 and positively correlates with 

Cr and Ni abundances (Table 2). High 
143

Nd/
144

Nd ratios, high field strength element (HFSE; 

such as Zr, Hf and Nb), large ion lithophile element (LILE; like Rb, Ba and Sr) and LREE 

concentrations are characteristic. Chondrite-normalised REE patterns lack Eu anomalies and 

show significant fractionation of HREE (La/Yb=15–38) (Batki et al., 2004, 2014). 

 

4.6. Tinguaite 

As noted by Batki and Pál-Molnár (2011) tinguaite dykes are fine grained with a porphyritic 

and sugary texture. The rocks possess clinopyroxene crystals (up to 5 vol.%) embedded in a 

holocrystalline to hypocrystalline groundmass where alkali feldspar randomly crosses 

nepheline giving a radial appearance (Fig. 3f, g). The groundmass also includes biotite 

microcrysts and interstitial cancrinite with accessory zircon, titanite and magnetite. Secondary 

biotite also occurs together with subordinate chlorite, epidote, magnetite and calcite, seldom 

clearly reflecting the shape of clinopyroxene crystals. 

 

The Ditrău tinguaites are moderately to strongly silica-undersaturated (Ne=7–25) intermediate 

rocks (54–58 wt.% SiO2) and are phonolitic in composition. They have peralkaline to 

peraluminous characteristics and are enriched in alkalis, Zr, Nb, Rb, Ba, Sr and LREE (Table 

2). Chondrite-normalised REE patterns are convex-downwards with marked enrichment in 

LREE and slight enrichment in HREE (La/Yb=24–40) (Batki and Pál-Molnár, 2011). 

 

4.7. Ijolite 
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Ijolite enclaves are holocrystalline to hypocrystalline with porphyritic textures. Major 

minerals are similar to tinguaites, however, mafic minerals dominate over feldspars and 

feldspathoids. Pale brown and green clinopyroxene crystals (up to 15 vol.%) are set in a very 

fine grained groundmass composed of mostly aegirine-augite needles and small biotite grains 

of 10–80 µm with interstitial alkali feldspar and cancrinite (Fig. 3h). Accessory minerals 

include titanite, apatite and magnetite. A characteristic feature of the ijolite enclaves is the 

presence of abundant spherical or ellipsoidal leucocratic globules, 0.2–2.0 mm in size. They 

contain alkali feldspar and cancrinite ± albite (Batki et al., 2012a, b). 

 

The ijolite enclaves are nephelinitic in composition (45–49 wt.% SiO2 and 11–13 wt.% 

Na2O+K2O; Table 2). They have metaluminous to peraluminous characteristics and are high 

in Th, U, Nb, Zr, Rb, Ba, Sr and LREE. The Cr (48–116 ppm) and Ni (57–80 ppm) 

concentrations are higher compared to other ijolites worldwide (e.g., 3–8 ppm Cr and <50–70 

ppm Ni, Flohr and Ross, 1989; 9 ppm Cr and 33–48 ppm Ni, Wittke and Holm, 1996). 

Chondrite-normalised REE patterns are sloping with marked enrichment in LREE and slight 

depletion in MREE resulting in a convex-downwards shape. 

 

5. Analytical methods 

 

Electron microprobe analyses (EMPA) were carried out on 20 clinopyroxene crystals from 7 

polished thin section (30 µm) with a JEOL 8900 electron microprobe operated in wavelength-

dispersive mode at the Fachbereich Geowissenschaften, Universität Tübingen, Germany, 

using a beam current of 15nA, an acceleration voltage of 15 kV, and a defocused beam 

diameter of 10 µm and at the Institute of Geological Sciences, University of Bern, 

Switzerland, using a Cameca SX-50 electron microprobe in wavelength-dispersive mode 
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operated at an acceleration voltage of 15 kV and a beam current of 20 nA. Counting times 

were 16s for peak and 8s for background measurements. Additional EMPA on 7 

clinopyroxene crystals from 2 polished thin sections were performed at the Institute for 

Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, 

Hungarian Academy of Sciences, Budapest, Hungary, using a JEOL Superprobe 733 operated 

at an acceleration voltage of 20 kV and a beam current of 15 nA. Standards used were both 

natural and synthetic mineral phases. The raw data were processed using the JEOL integrated 

ZAF correction (Armstrong, 1991) and online PAP Cameca Software. 

 

Trace and rare earth element concentrations in clinopyroxenes were determined by laser-

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using the same 30 µm-

thick polished sections as for the EMPA and a New Wave Research UP213 Nd-YAG 213 nm 

UV laser system coupled to a Thermo X Series 2 ICP-MS system at Cardiff University, UK. 

All measurements were carried out using spot analysis and Thermo Elemental PlasmaLab 

time-resolved analysis mode. The laser beam diameter was 40 μm, with a frequency of 10 Hz 

and a power of ∼5 J cm
−2

. Ablations were carried out under a pure helium atmosphere. 

Acquisitions lasted 50 s, including a 20-s gas blank prior to laser ablation and a 10-s washout 

at the end. BIR-1, BIR-2, BHVO, BHVO-2, BCR and BCR2 standards were used as external 

standards. Ca and Si concentrations were used as internal standards to correct concentration 

values. Ca and Si concentrations were quantitatively measured prior to LA-ICP-MS using 

EPM. Gas blank subtraction and internal standard corrections were performed using Thermo 

Plasmalab software. 

 

6. Clinopyroxene texture and zoning 
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Clinopyroxene crystals in the different Ditrău rocks show diverse textural and zoning features 

(Figs. 3 and 4) and this section describes clinopyroxene characteristics from each studied rock 

type. 

 

In the poikilitic olivine-bearing cumulates, clinopyroxene microcrysts are euhedral-subhedral, 

unzoned, brown coloured and 150–600 µm sized (Fig. 2b in Pál-Molnár et al., 2015b). Brown 

clinopyroxene crystals in the pyroxene-rich cumulates are rarely zoned, euhedral to subhedral 

in shape and occur as macrocrysts up to 4 mm in size (Fig. 3a) (Pál-Molnár et al., 2015b). 

 

The diorite clinopyroxene crystals are green, up to 2.7 mm in size, have an anhedral shape and 

are partly decomposed to chlorite and actinolite. They usually contain apatite, magnetite, 

titanite and hornblende inclusions (Fig. 3b). 

 

Clinopyroxene crystals (660–800 µm) and crystal relicts (80–150 µm) in syenite are green, 

anhedral and partly decomposed to secondary amphibole. All the clinopyroxene crystals are 

enclosed by subhedral hornblende grains and occur together as crystal clots with irregular 

boundaries (Fig. 3c). 

 

In the nepheline syenite, clinopyroxene is present as dark green, subhedral, elongated aegirine 

and aegirine-augite showing irregular zoning commonly surrounded by a magnetite + albite + 

biotite corona. Aegirine needles can reach 6 mm in size (Fig. 3d). 

 

The pale brown clinopyroxene crystals in camptonites are subhedral, unzoned and 0.6- to 2.4-

mm-diameter sized (Fig. 3e). They vary in abundance and generally have been replaced by an 

assemblage of tremolite to actinolite, and biotite (Fig. 3a in Batki et al., 2014). 
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In the tinguaite dykes, three clinopyroxene populations are present: 1) pale green-yellowish 

green crystals, 2) pale brown-beige macro- and microcrysts (0.3–1.2 mm) and 3) green 

groundmass microlites of 20–200 µm size. Green crystals are subhedral and show multiple 

zoning with an anhedral corroded core surrounded by a growth zone and a rim which usually 

consists of small clinoproxene grains similar to those of the green groundmass microlites 

(Figs. 3f and 4a, b). Pale brown clinopyroxene macro- and microcrysts are subhedral and 

normal zoned with an unzoned, slightly rounded core overgrown by a rim consisting of small 

crystals like those of the green groundmass microlites (Figs. 3g and 4c). 

 

The ijolite enclaves consist of green clinopyroxene crystals (70–1700 µm) that are zoned, 

euhedral to subhedral, often skeletal enclosing the groundmass and also enclose titanite and F-

apatite grains (Fig. 4d). Pale brown clinopyroxene crystal cores (50–1200 µm) show 

oscillatory or sector zoning. They are subhedral with slightly resorbed cores reflecting partial 

dissolution and are overgrown by a later aegirine-augite rim (Fig. 4e, f). 

 

7. Clinopyroxene compositions 

7.1. Major elements 

Representative major element analyses of the clinopyroxene populations can be found in 

Table 3 and the complete dataset is given in Supplementary Table I. In the pyroxene 

quadrileratal (Morimoto et al., 1989) they range in composition from diopside to aegirine-

augite. The clinopyroxene compositional trends observed in the different rock types are 

shown in Fig. 5.  
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The most primitive, diopside-rich pyroxene is found in camptonite (Di77–93, Hd1–19, 

mg#=Mg/(Mg+Fe
2+

)=0.81–0.99), in olivine-bearing hornblendite (Di72–81, Hd13–25, mg#=0.75–

0.86; Pál-Molnár et al., 2015b) and in ijolite as resorbed cores (Di80–94, Hd1–15, mg#=0.84–

0.99) (Fig. 4.e, f). In tinguaite, the growth zones around the anhedral green crystal cores (Fig. 

4a, b) also have a high Di component (Di78, mg#=0.82–0.83). Clinopyroxene in pyroxene-rich 

hornblendite is less primitive with higher in Hd-contents (Di67–78, Hd15–26, mg#=0.74–0.84), 

and overlaps the compositional range of camptonite crystals. 

 

In diorite and syenite, green clinopyroxene crystals show an increase in Aeg-contents (up to 

14 mol% and 43 mol%, respectively) without any significant enrichment of the Hd 

component (Hd<29 mol%, mg#diorite=0.74–0.84, mg#syenite=0.69–0.79) compared to 

hornblendite diopsides. Intermediate compositions are also represented by green 

clinopyroxenes from the tinguaite dykes and associated ijolite enclaves. In tinguaite, green 

crystal cores have hedenbergite and aegirine contents of Hd20-32Aeg12-15 (mg#=0.65–0.78), 

whilst in ijolite, green crystal cores span a wider compositional range (mg#=0.55–0.81) 

starting with high Hd up to 40 mol% and 10–23 mol% Aeg. 

 

A similarly broad compositional range is covered by the ijolite pyroxene rims where green 

crystal rims (Hd23-31Aeg28-51, mg#=0.40–64) and overgrowth rims on brown resorbed cores 

(Hd12-28Aeg35-55, mg#=0.53–0.78) clearly overlap. Tinguaite pyroxene rims are higher both in 

Hd (Hd26–37, mg#=0.19–48) and Aeg components (45–64 mol%). Continuous Aeg enrichment 

can be observed from ijolite pyroxene rims through ijolite ocelli (Aeg43–59) and groundmass 

microlites (Aeg61–63), tinguaite pyroxene rims to tinguaite matrix microlites (Aeg69–85) and 

nepheline syenite phenocryst compositions. Nepheline syenite contains the most evolved 

clinopyroxene with 76–90 mol% Aeg. 
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Compared with trends from other alkaline suites (Fig. 5), the Ditrău pyroxenes are 

compositionally similar to the Lovozero (Korobeinikov and Laajoki, 1994), Alnö (Hode 

Vuorinen et al., 2005) and Uganda (Taylor and King, 1967) trends in that they start with a 

high Di-content and show a slight initial increase of Fe
2+

 during fractionation before trending 

towards Aeg. Ijolite pyroxenes also display similarities with the Fen acmitic trend (Mitchell, 

1980) indicating a notable increase in Na
+ 

within individual grains. 

 

Di-rich pyroxenes in camptonite, ijolite and tinguaite are also high in TiO2 (up to 3.3 wt.%, 

2.3 wt.% and 3.5 wt.% respectively) and Al2O3 (up to 7.9 wt.%, 6.8 wt.% and 8.6 wt.% 

respectively), whilst nepheline syenite aegirine-augite (TiO2 < 0.8 wt.%; Al2O3 < 2.5 wt.%) 

and tinguaite groundmass microlite (TiO2 < 0.2 wt.%; Al2O3 < 2.2 wt.%) are poor in these 

elements (Fig. 6). All rim and groundmass compositions in ijolite and rims in tinguaite have 

low and fairly constant Al2O3 but variable TiO2 contents. Green crystals in ijolite and 

tinguaite, and the other pyroxenes in horblendite, diorite and syenite show variable 

concentrations both in TiO2 and Al2O3 (Fig. 6). Plots of SiO2 and Al2O3 against Mg# clearly 

reveal two variation trends in clinopyroxene compositions. On the one hand, SiO2 in brown-

coloured pyroxenes increases with decreasing Mg# from camptonite and ijolite to 

hornblendite cumulate crystals, while Al2O3 decreases. On the other hand, the green pyroxene 

rims and groundmass microlites in ijolite and tinguaite show increasing SiO2 and decreasing 

Al2O3 with decreasing Mg#. Diorite and syenite pyroxenes represent a distinct group between 

the two variation trends with mid-range SiO2 and low Al2O3 contents (Fig. 6). 

 

7.2. Trace elements 
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The different clinopyroxene populations, macrocryst, microphenocryst and crystal cores in the 

Ditrău rocks have been analysed for trace elements. However, overgrowth mantles and rims, 

as well as groundmass microlites, were too small to get reliable data sets by spot analyses. 

The analyses are summerised in Table 4 and in Supplementary Table II. Rare earth element 

(REE) and trace element patterns are normalised to chondritic values of McDonough and Sun 

(1995). 

 

Di-rich pyroxenes in camptonite, olivine-bearing hornblendite and ijolite display variable Cr 

concentrations and can reach exceptionally high values up to 5540 ppm (Batki et al., 2014), 

5360 ppm and 5290 ppm, respectively. In ijolite, some of the overgrowth rims which are very 

close to the pale brown, resorbed crystal margin (< 1847 ppm Cr) and ocelli groundmass 

microlite (< 1505 ppm Cr) also have high Cr contents. All the other pyroxenes have low Cr 

values (< 90 ppm). Zr concentrations in pyroxenes increase from primitive diopside to the 

most evolved aegirine-augite reaching 6260 ppm in nepheline syenite phenocryst. Generally, 

the increase in Aeg component accompanied by an increase in Zr is already known from other 

alkaline complexes (e.g. Larsen, 1976; Nielsen, 1979; Mann et al., 2006). 

 

Normalised REE concentrations for Di-rich pyroxenes in camptonite and ijolite are 2 and 2.5 

to 40 and 60 times enriched relative to chondritic values, respectively (Fig. 7a). Although 

resorbed crystals in ijolite are slightly more enriched in REE than camptonite macrocrysts, 

their patterns clearly overlap. LaN/YbN values span a narrow range between 0.5–0.6 

(camptonite macrocrysts) and between 0.6–0.9 (ijolite resorbed crystals). The REE contents 

of tinguaite brown pyroxene crystals are 5 to 70 times those of chondrite whilst hornblendite 

cumulus crystals are up to 100 times enriched relative to chondritic values (Fig. 7b). Tinguaite 

brown pyroxene and hornblendite pyroxene crystals have LaN/YbN ratios of 0.8 to 1.0 and 0.7 
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to 1.0, respectively. Normalised REE patterns of tinguaite brown pyroxene crystals are fairly 

parallel to the cumulate crystals from pyroxene-rich hornblenite (Fig. 7b). The normailsed 

REE patterns of cumulate crystals from olivine-bearing hornblendites are very similar to 

camptonite and ijolite diopsides with LaN/YbN ratios ranging between 0.4 and 0.8. All REE 

patterns for Di-rich pyroxenes are convex-upwards and lack a negative Eu anomaly (Fig. 7). 

Normalised trace element patterns for all primitive diopsides are very similar, with marked 

negative Pb and Ba anomalies and smaller negative anomalies for Sr and Zr. A negative Ti 

anomaly is also observed for all rock types except for the camptonite diopsides. 

 

Chondrite-normalised REE patterns for Na-rich diopsides and aegirine-augites in diorite, 

syenite, tinguaite, ijolite and nepheline syenite are markedly variable (Fig. 8). They are 

enriched in both LREE and HREE but poor in MREE which results in U-shape, convex-

downwards patterns, similar to those of aegirines from Puklen and Ilímaussaq (Larsen, 1976; 

Shearer and Larsen, 1994; Marks et al., 2004), Mont Saint-Hilaire (Piilonen at al., 1998) and 

Alnö (Hode Vuorinen et al., 2005). Ijolite green pyroxenes have the highest LREE 

concentrations (540 times chondrite) with LaN/YbN ratios between 2.2 and 4.3 and pyroxene 

phenocrysts in nepheline syenite have the most pronounced enrichment of HREE (140 times 

chondrite) amongst Aeg component enriched pyroxenes with LaN/YbN ratios between 1.1 and 

1.9 (Fig. 8a). Syenite pyroxenes display a slight negative Eu anomaly (Eu/Eu*=0.68–0.86) 

whilst the other pyroxenes lack a Eu anomaly (Fig. 8b). LaN/YbN ratios are similar to those of 

ijolite green pyroxenes with ranges of 2.2 to 3.0 in diorite pyroxenes, from 2.1 to 4.7 in 

syenite pyroxenes and from 1.8 to 3.0 in tinguaite green pyroxenes. Negative anomalies are 

observed for Pb, Sr, Ba and Ti similar to Di-rich pyroxenes (with the exception of pyroxenes 

from diorite) (Fig. 8a, b). In contrast to the Di-rich pyroxenes, the nepheline syenite 

clinopyroxene phenocrysts are markedly enriched in Zr and Hf (up to 6260 ppm and 184 ppm, 
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respectively; Fig. 9). A positive correlation exists between Hf and Sm, Sr and Ce and Yb and 

Zr in the Ditrău clinopyroxenes which is also observed in other pyroxene suites (e.g., Akinin 

et al., 2005). La/Nd and Sm/Yb ratios, the variation in Yb and Zr as well as in Hf and Sm 

confirm the presence of the two variation trends in clinopyroxene compositions and show that 

diorite and syenite pyroxenes belong to the green pyroxene compositional trend, a feature 

which cannot be recognised on the basis of major element compositions (Fig. 9). 

 

8. Discussion 

Major and trace element concentrations of the studied clinopyroxenes showing a wide range 

of textures and zoning patterns, reveal three compositional types of pyroxenes in the Ditrău 

Alkaline Massif (Figs. 5–8): 

1. Pale brown, primitive ferroan, aluminian-ferroan and chromian diopsides occurring in 

hornblendite cumulates, camptonite and tinguaite dykes, and ijolite enclaves. 

2. Green, intermediate pyroxene crystals (sodian-ferroan diopside and sodian-magnesian 

hedenbergite) found in diorite, syenite, ijolite and tinguaite. 

3. The most evolved pyroxenes are green to dark green coloured aegirine and aegirine-augite 

phenocrysts in nepheline syenite as well as crystal rims and groundmass microlites in 

tinguaite and ijolite. 

The main features of the Ditrău clinopyroxene crystals are summarised in Fig. 10. This figure 

also includes interpretations concerning the origin and magmatic history of the Massif that are 

discussed in detail below. 

 

8.1. Origin of the primitive diopside crystals (Type 1) 

Primitive diopside crystals were previously described as phenocryst ( sensu stricto) phases in 

the Ditrău camptonites (Fig. 10a) by Batki et al. (2014) and as cumulate micro- and 
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macrocrysts in the Ditrău hornblendites (Fig. 10b, c) by Pál-Molnár et al. (2015b). The term 

‘phenocryst’ is used to phases which are in equilibrium with the host melt (e.g., Cox et al., 

1979; Streck, 2008), whilst ‘antecrysts’ are defined as crystals did not crystallise directly from 

the magma in which they are now hosted but represent crystals recycled by other magmas 

related to the same magmatic system (e.g., Charlier et al., 2005; Davidson et al., 2007; Streck, 

2008; Francalanci et al., 2012; Ubide et al., 2012, 2014a, b). In tinguaite and ijolite, the 

partially resorbed appearance of the crystal cores in the pale brown macro- and microcrysts 

(Figs. 4c, e, f and 10e, g) and their similar major and trace element compositions to those of 

the studied camptonite diopsides (Figs. 5–7) suggest an antecrystal origin for these diopside 

crystals in tinguaite and ijolite. The nearly parallel trace element patterns for all the primitive 

Ditrău diopside populations (Fig. 7) imply that they represent co-genetic and possibly co-

magmatic crystallisation sequences. 

 

To calculate the trace element compositions of the melt in equilibrium with the primitive 

diopside crystals we used clinopyroxene-melt equilibrium equations with Kd values 

determined for camptonite compositions (Ubide et al., 2014a). Melts in equilibrium with 

diopside crystals in camptonite, ijolite, tinguaite and hornblendite cumulates have similar 

LREE, Ta and Sr enrichment and negative Pb and Zr-Hf anomalies (Fig. 11); however, they 

show variable REE and incompatible trace element concentrations in the different rock types. 

Chondrite-normalised trace element patterns for the calculated diopside equilibrium melt in 

camptonite and olivine-bearing hornblendite are characterised by relatively high LREE (50 to 

150 and 70 to 200 times higher than C1 values, respectively) and variable Th and U 

concentrations (Fig. 11a–d). Melts in equilibrium with diopside in ijolite have somewhat 

higher LREE contents (80–300 times those of C1 values) than those of the camptonite 

diopside liquids (Fig. 11e,f), whilst diopside equilibrium melts in tinguaite and pyroxene-rich 
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hornblendite are the most enriched in REE (200–350 and 200–500 times LREE relative to C1 

values, repectively) and incompatible trace elements (Fig. 11c, d, g, h). 

 

Ditrău camptonite whole-rock compositions are also shown for comparison in Fig. 11. The 

calculated equilibrium melts for camptonite diopsides show essentially the same patterns as 

that of the whole-rock composition but the calculated melts have much lower REE and 

incompatible trace element concentrations than the average Ditrău camptonite magmas (Fig. 

11a, b). This suggests that (i) the studied camptonite diopsides crystallised from the host 

camptonitic melt which points to their phenocryst s.s. origin as described previously by Batki 

et al. (2014), and that (ii) they represent an earlier and more primitive lamprophyric melt than 

those of the Ditrău camptonite magmas. 

 

Trace element patterns and concentrations for calculated diopside equilibrium melts in 

olivine-bearing hornblendites are very similar to the calculated camptonite diopside liquids 

(Fig. 11c, d) which implies a common origin, i.e., they crystallised from the same early 

camptonitic melt. On the other hand, equilibrium melts calculated for diopside in pyroxene-

rich hornblendite cumulate display similar trace element patterns to those of the average bulk 

composition of camptonite dykes indicating that these cumulus pyroxenes are likely to have 

been formed from more differentiated lamprophyric melts which repeatedly fed the 

camptonite dykes. This is in a good agreement with proposed models for the origin of the 

Ditrău hornblendite cumulates (Pál-Molnár et al., 2015b). 

 

Calculated equilibrium melts for primitive diopsides occurring in ijolite and tinguaite also 

show similar trace element patterns to those of the camptonite bulk rock compositions but not 

to those of the ijolite and tinguaite whole-rock compositions (Fig. 11e–h). However, the 
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calculated melts have lower trace element concentrations than the camptonite melts which 

again suggests their origin from early lamprophyric melts. This is also consistent with the 

textural observations and confirms the antecrystal origin of the primitive diopside crystals in 

tinguaite dykes and ijolite enclaves. 

 

8.2. Origin of the intermediate pyroxene crystals (Type 2) 

Green clinopyroxenes have been described from many localities worldwide, for example from 

alkaline basalts of the Massif Central (Wass, 1979) and the Eifel region (Duda and 

Schmincke, 1985); from basanites of the Pannonian Basin (Dobosi and Fodor, 1992), alkaline 

lamprophyres of the Kola Peninsula and the Kaiserstuhl province (Arzamastsev et al., 2009); 

ijolites of Alnö Island (Hode Vuorinen et al., 2005) or volcanic rocks of the Leucite Hills 

(Barton and van Bergen, 1981) and Uganda (Taylor and King, 1967; Lloyd, 1981). These 

studies from different provinces suggest that green clinopyroxenes (with Mg# ranging from 

0.42 to 0.77) have crystallised from evolved magmas which later mixed with a more mafic 

host magma or may be xenocrysts from igneous wall-rocks, or root zones of alkaline 

intrusions or even from the locally metasomatised upper mantle. 

 

The studied green intermediate pyroxenes in diorite and syenite (Fig. 10h) represent anhedral, 

partly decomposed macrocrysts. In ijolite, these pyroxenes are euhedral to subhedral, unzoned 

and often skeletal (Figs. 4d and 10d), whilst in tinguaite, they appear as multiple-zoned 

crystals (Figs. 4a, b and 10f). Despite the textural differences, all the intermediate pyroxenes 

have similar major element compositions with high iron and sodium contents (Fig. 5) and 

similar trace element patterns (Fig. 8). To identify the equilibrium melts for intermediate 

pyroxenes clinopyroxene-melt equilibrium calculations were carried out using minimum and 

maximum mineral-melt partition coefficients determined for syenite compositions (Marks et 
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al., 2004). To obtain the REE concentrations of the calculated melts more specific augite-melt 

REE partition coefficients (Marks et al., 2004) were used. 

 

REE patterns for the intermediate pyroxene equilibrium melts show an enrichment both in 

LREE and HREE relative to MREE (Fig. 12). Trace element patterns for the calculated melts 

have primitive mantle normalised peaks in La-Ce, Sr and Zr-Hf, along with negative Ta and 

Pb anomalies, and Sm-Tb depletion. Calculated Th and U concentrations are highly variable 

for all the equilibrium melts. 

 

The calculated liquids for clinopyroxenes in diorite show the lowest REE compositions (100 

times LREE relative to C1 values) among all calculated melts and, except for Ta, similar 

patterns to those of the nepheline syenite-I bulk compositons. The completely different 

patterns of the calculated melts for clinopyroxene from diorite to that of the diorite whole-

rock composition, in accordance with textural observations, indicate that these pyroxene 

crystals are antecrysts and most likely originated from a Na-rich magma from which group I 

of the Ditrău nepheline syenitic rocks were also crystallised (Fig. 12a, b), then in the later 

stages of the magmatic system, these were incorporated into the dioritic magma.  

 

Normalised trace element patterns of the calculated melts for syenite clinopyroxene cores 

display higher REE concentrations (200–300 times LREE relative to C1 values) and, unlike 

the calculated diorite pyroxene melts, they lack a positive Sr peak. Calculated melt for the 

syenite pyroxene rim has a marked negative Ta peak, lower MREEs and higher Th and U 

contents than the calculated melts in equilibrium with pyroxene cores. All the calculated 

syenite pyroxene melts possess similar patterns to those of the nepheline syenite-I whole-rock 
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compositons and not to the syenite bulk composition (Fig. 12c, d) which is consistent with an 

antecryst origin, like diorite clinopyroxenes. 

 

Ijolite pyroxene equilibrium melts are more enriched in LREE (350–1400 times higher than 

C1 values) and other incompatible trace elements (e.g., Nb, Sr, Zr and Hf) compared to 

syenite pyroxene equilibrium melts. Calculated melts are similar to both ijolite and the more 

evolved nepheline syenite-II bulk rock composition but have slightly higher LREE and lower 

MREE concentrations than that of the ijolite whole-rock composition (Fig. 12e, f). However, 

ijolite enclaves contain numerous primitive diopside antecrysts which can modify the bulk 

rock composition (e.g., Ubide et al., 2014b). The Ditrău ijolite enclaves have much higher Cr 

concentrations than an ijolite should possess, and it is most likely that these are composed of 

the primitive diopside antecrysts. Thus, taking into account the skeletal texture of the ijolite 

intermediate pyroxene (Fig. 4d) and the similarity between calculated pyroxene melts and 

ijolite bulk rock compositions, we conclude that the green Na-, Nb- and Zr-rich diopside-

hedenbergite population is in equilibrium with the host rock and interpret them as phenocrysts 

(s.s.) in ijolites. This is consistent with a magmatic origin for the green clinopyroxenes and it 

is likely they represent crystallisation from evolved melts (e.g., basanites of the Pannonian 

Basin, Dobosi and Fodor, 1992). 

 

In tinguaite, calculated melts for the anhedral rounded cores of multiplyzoned crystals (Fig. 

4a, b) have very similar trace element patterns to those of the ijolite phenocryst liquids with 

LREE chondrite-normalised concentrations of up to 350 (Fig. 12g, h). Positive anomalies in 

Th and U are notable (17,000 and 11,700 times those of C1 values, respectively). Calculated 

pyroxene equilibrium melts for the anhedral cores also show a good agreement with nepheline 

syenite-II bulk rock composition rather than with the tinguaite bulk rock composition. The 
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rounded nature of the cores and the calculated melt patterns together suggest an antecrystic 

origin for the green pyroxene cores. The calculated liquids fit best to the ijolite phenocryst 

pyroxene melt patterns suggesting a similar origin. 

 

8.3. Origin of the evolved pyroxene crystals (Type 3) 

The studied Na-rich pyroxenes in nepheline syenite are subhedral and show irregular zoning 

(Fig. 10i). Calculated equilibrium melts for these crystals have a marked U-shaped patterns 

with high LREE and HREE concentrations (150–300 times LREE and 70 times HREE 

relative to C1 values) (Fig. 12i, j). They also have a marked enrichment in Th, U, Nb and Zr-

Hf. With the exception of HREE, Th, U, Nb and Zr-Hf, the calculated melts for aegirine-

augites are similar to nepheline syenite-II bulk rock composition confirming the phenocryst 

s.s. origin of these pyroxene crystals as previously proposed by Morogan et al. (2000), Fall et 

al. (2007) and Pál-Molnár (2010b). 

 

HREE enrichment is also observed in sodic-calcic and particularly Na-rich mafic silicates, for 

example in the Grønnedal-Ika aegirine-augites and the Puklen and Ilímaussaq aegirines. It is 

interpreted to be due to a crystal chemical control on trace element partitioning (Marks et al., 

2004). REE enrichment in sodic-calcic clinopyroxenes towards sodic members may reflect a 

general preference for 3
+
 REE as the incorporation of Na

+
 needs charge balance with a 

trivalent ion (Na
+
 + REE

3+ 
  2 Ca

2+
 on the M2 site) as proposed by Wood and Blundy (1997) . 

This partitioning in clinopyroxene should also affect the LREE abundances, which is 

confirmed by the LREE enrichment in the Ditrău aegirine-augites. A pronounced enrichment 

in Zr and Hf with increasing Na-content can also be observed. 
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Calculated equilibrium melt for the tinguaite green pyroxene rims are similar to the nepheline 

syenite aegirine-augite crystals with 600 times LREE and 40 times HREE relative to C1 

values, and a particularly high Zr-Hf peak (3,900 and 1,700 times those of C1 values, 

respectively) inferring crystallisation from the same phonolitic melt as aegirine-augite 

phenocrysts (Fig. 12g–j). 

 

8.4. Fractionation and accumulation 

The overall similar trace element patterns for all the calculated primitive diopside equilibrium 

melts and the bulk rock composition of the Ditrău camptonite dykes (Fig. 11) indicate that the 

Fe-diopside crystals and the camptonite dykes originate from basanitic parental melts (called 

magma1) from the same magmatic environment (Fig. 13). Slight differences in trace element 

distributions of the equilibrium melts suggest that the primitive diopside populations observed 

in camptonite, hornblendite, tinguaite and ijolite could have derived from multiple recharge 

events of magma1 (M1) and reflect different stages of the evolution of the parental basanitic 

melts which have already undergone fractional crystallisation at deeper levels (e.g., Furman et 

al., 1992; Weidendorfer et al., 2014). Fe-diopside phenocrysts s.s. of the camptonite sample 

VRG7292 most probably represent the earliest stage of evolution. The early camptonitic 

magma has undergone small-to-moderate degrees of closed-system fractional crystallisation 

(modelled maximum degree of fractionation [Fmax] = 46.8; Batki et al., 2014) producing 

differentiated mafic magmas, called magma1a (M1a) (Fig. 13b). Further fractional 

crystallisation and crystal accumulation has taken place (Pál-Molnár et al., 2015b) generating 

cumulus pyroxene macrocrysts in the pyroxene-rich hornblendite cumulates (Fig. 13b). 

Cumulus pyroxene microcrysts in olivine-bearing hornblendite cumulates are also the result 

of closed-system processes, however, these crystallised and accumulated directly from the 

early camptonitic magma (M1) (Fig. 13a). 
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8.5. Magma recharge, crystal recycling and mingling 

Mineral textures and compositions preserve changes in magmatic systems. Interactions of 

discrete magma batches can result in disequilibrium features such as mineral dissolution and 

overgrowth rims on pre-existing crystals (Streck, 2008). In the following section we discuss 

the observed clinopyroxene textures and compositions to identify the open-system processes 

of magma recharge, crystal recycling and mingling. The term ‘mingling’ is used in the sense 

of mechanical interaction and physical dispersion among two magmas (e.g., Barbarin and 

Didier, 1992; Michel et al., 2016). 

Major and trace element compositional variations (Figs. 5 and 8) and similarity in calculated 

equilibrium melt compositions for all the green intermediate pyroxenes (Fig. 12) indicate their 

common origin and represent a different magma source, called magma2 (M2), in the Ditrău 

magmatic system. This magma is represented by the ijolite clinopyroxene phenocryst s.s. 

phases (Fig. 13c). The primitive Fe-diopside antecrysts could have been recycled by repeated 

injections of M1 magma batches (recharge of magma1) into the ijolitic magmatic 

environment (Fig. 13c). This magma, including the green pyroxene phenocrysts and the 

recycled primitive diopside antecrysts, fractionated towards to the ijolitic magma 

composition, called magma2a, and is represented by overgrowth rims on ijolite phenocrysts 

and antecrysts, and ijolite groundmass microlite crystals. Further fractionation produced a 

phonolitic magma (called magma2b) which crystallised clinopyroxene phenocrysts s.s. of 

aegirine-augitic composition in nepheline syenite and aegirine-augite groundmass microlites 

in tinguaite (Fig. 13c). 

 

The ijolite green clinopyroxene phenocrysts were also recycled from M2 into the M1a 

environment through M2 recharge events that resulted in disequilibrium textures. The 
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rounded, resorbed shape of the green pyroxene cores can be explained by the higher 

temparature of M1a which dissolved the green crystals. These are mantled by an overgrowth 

zone of M1a composition reflecting subsequent crystallisation in the M1a environment (Fig. 

13d). A new recharge event of M1a recycled a number of these green mantled cores and 

primitive Fe-diopside crystals from M1a into the phonolitic magma (M2b) from which 

aegirine-augite crystallised as rims around both antecryst populations (Fig. 13e) followed by 

the formation of tinguaite groundmass microlites as indicated by their compositions (Fig. 5). 

The presence of rounded ijolite enclaves in tinguaite dykes (Fig. 2b) indicates that magma 

mingling occurred between co-existing M2a and M2b before solidification (Fig. 13f). The 

enclaves most likely formed by injection of the mafic M2a magma into the felsic M2b 

magma, i.e., the crystallising tinguaite dyke (e.g., Barbarin and Didier, 1992; Ubide et al., 

2014c). 

 

As suggested by the compositional similarity of calculated equilibrium melts for all the green 

intermediate pyroxenes (Fig. 12), all of these crystals derive from the Na-enriched magma2. 

However, equilibrium melts for diorite pyroxene antecrysts represent slighty more primitive 

compositions compared to those of the pyroxenes in syenite, ijolite or tinguaite. These 

differences in trace element distributions of the equilibrium melts suggest that the 

intermediate pyroxene populations observed in diorite, syenite, ijolite and tinguaite could 

have originated from repeated recharge events of magma2 and reflect different stages of the 

evolution of the parental melts. The green pyroxene antecrysts, present in diorite, could have 

been recycled into the dioritic magma through an M2 recharge (Fig. 13g). The presence of 

amphibole crystal clots including green pyroxene antecrysts in syenites (Fig. 13h) confirms 

repeated recharge events and crystal recycling in the magmatic evolution of the Ditrău rocks. 
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9. Conclusions 

1. The texture and composition of diverse clinopyroxene populations in the Ditrău 

alkaline igneous rocks reveals the complexity of deep magmatic processes and the 

evolution history of different magmas and magma sources. The different 

clinopyroxene crystals show evidence for open- and closed-system petrogenetic 

processes that played a role in the magmatic evolution: magma recharge, pyroxene 

recycling through interaction of magma batches, mingling, fractional crystallisation 

and accumulation. 

2. Clinopyroxenes record two major magma sources and evolution trends. The high-Cr 

Fe-diopside population derive from an early camptonitic magma (magma1) derived 

from basanitic parental melts, whilst the Na-Fe diopside crystals, rich in Nb and Zr, 

originate from another distinct magma source (magma2). Fe-diopsides show 

increasing Hd component and REE concentrations during fractionation of magma1. 

Meanwhile, in the Na-rich magmatic environment (magma2), clinopyroxenes display 

a continuous development from Na-diopside-hedenbergite towards aegirine-augitic 

compositions coupled with a pronounced HREE, Nb, Zr and Hf enrichment with 

increasing Na/Ca ratio. 

3. Multiple interactions between the identified magma batches indicate that repeated 

recharge events of magma1 and magma2 resulted in crystal recycling and mingling 

between the co-existing magma batches. These events represent the dominant open-

system petrogenetic processes that were involved in the evolution of the magmatic 

system. 

4. Investigation of complex zoning characteristics and equilibrium melt calculations 

reveal a diverse antecryst cargo in the studied Ditrău rocks. Antecryst recycling into 

dioritic, syenitic, tinguaitic and ijolitic magma is described for the first time in the 
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magmatic history of the Ditrău Alkaline Massif. Incorporated crystals can significantly 

affect the original magma composition and therefore, whole-rock chemical data should 

be interpreted with great care. Hence, this study reveals that detailed mineral-scale 

analysis is crucial not only in reconstructions of complex subvolcanic plumbing 

systems but also in investigations of plutonic rocks. 
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Figure captions 

 

Fig. 1. (A) Location of the Ditrău Alkaline Massif in the structural system of the Alpine 

Carpathian–Dinaric region (Pál-Molnár, 2010a). (B) Alpine structural units of the Eastern 

Carpathians (Săndulescu et al., 1981, modified). (C) Schematic geological map of the Ditrău 

Alkaline Massif (Pál-Molnár et al., 2015b) showing sample locations. 

 

Fig. 2. Field relations indicating mingling features between co-existing magmas in the Ditrău 

Alkaline Massif. (A) Diorite enclaves enclosed in syenite at Jolotca Creek. (B) Fine-grained 

ijolite enclaves in tinguaite dykes at Creanga Mare Creek. 

 

Fig. 3. Characteristic petrographic features of the studied igneous rocks containing 

clinopyroxene in the Ditrău Alkaline Massif. (A) Brown cumulus diopside in pyroxene-rich 

hornblendite cumulate VRG6706, 1N. (B) Green, anhedral clinopyroxene crystal extensively 

decomposed to chlorite and actinolite in diorite VRG6567, 1N. (C) Hornblende crystal clot 

enclosing green, anhedral clinopyroxene crystals and crystal relicts, biotite, magnetite and 

titanite in syenite VRG7420, 1N. (D) Dark green, subhedral aegirine-augite showing irregular 

zoning with magnetite+albite+biotite corona in nepheline syenite VRG6727, 1N. (E) Pale 
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brown, subhedral diopside crystals in ocellar camptonite dyke VRG7292, 1N. (F) Contact 

between ijolite enclave and the host tinguaite dyke VRG7338, 1N. (G) Fe-diopside crystals 

overgrown by aegirine-augite groundmass microlites in tinguaite dyke VRG7306, 1N. (H) 

Green, euhedral and skeletal clinopyroxene together with brown, subhedral diopside, biotite 

aggregates, ocelli and feldspar xenocryst in ijolite enclave VRG7338, 1N. Mineral 

abbreviations are after Kretz (1983). 

 

Fig. 4. BSE images of detailed textural and zoning characteristics of the Ditrău tinguaite and 

ijolite clinopyroxene crystals showing the analysed laser spots. (A and B) Multiple-zoned 

green clinopyroxene crystals with anhedral, rounded cores, growth reverse zones and 

overgrowth rims similar to the groundmass microlites in tinguaite VRG7338 and VRG7306. 

(C) Unzoned, subhedral diopside clot overgrown by aegirine-augite in tinguaite VRG7306. 

(D) Green, euhedral and skeletal clinopyroxene phenocryst enclosing titanite and F-apatite in 

ijolite VRG7338 (note the same mineral assemblages in the skeletal parts of the crystal and 

the groundmass). (E and F) Brown, subhedral pyroxene crystals with sector and oscillatory 

zoning showing resorbed cores and overgrowth aegirine-augite rim in ijolite VRG7338. 

 

Fig. 5. Compositional variations of the Ditrău clinopyroxenes in terms of Di–Hd–Aeg end 

member mol%. In the right triangle clinopyroxene trends from other alkaline complexes are 

shown for comparison: (1) Murun, Siberia (Mitchell and Vladykin, 1996), (2) Lovozero, Kola 

Peninsula (Korobeinikov and Laajoki, 1994), (3) Fen, Norway, acmitic trend (Mitchell, 1980), 

(4) Alnö Island, Sweden, sodic trend (Hode Vuorinen et al., 2005), (5) Eastern Uganda 

(Taylor and King, 1967), (6) South Qôroq, South Greenland (Stephenson, 1972), (7) 

Ilímaussaq, South Greenland (Larsen, 1976). 
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Fig. 6. Major element variation diagrams for the Ditrău clinopyroxenes with respect to Mg#. 

Symbol legend is the same as in Fig. 5. 

 

Fig. 7. Chondrite-normalised REE and trace element patterns for Fe-diopsides of (A) Ditrău 

camptonite and ijolite and (B) Ditrău hornblendite cumulates and tinguaite dykes. 

Normalising values are after McDonough and Sun (1995). 

 

Fig. 8. Chondrite-normalised REE and trace element patterns for Na-Fe diopsides of (A) 

Ditrău nehpehline syenite, tinguaite and ijolite and (B) Ditrău syenite, diorite and ijolite for 

comparison. Normalising values are after McDonough and Sun (1995). 

 

Fig. 9. Trace element compositions and Sm/Yb vs La/Nd ratios of the Ditrău clinopyroxenes. 

Symbol legend is the same as in Fig. 5. except purple stars which represent Fe-diopside cores 

in tinguaite dykes. 

 

Fig. 10. Summary of the Ditrău clinopyroxene textures, zoning, chemical characteristics and 

the interpretation in regard to their origin and crystallisation history. M1–magma1, M1a–

magma1a, M2–magma2, M2a–magma2a, M2b–magma2b which refer to magmatic 

environments in the Ditrău Alkaline Massif. 

 

Fig. 11. Chondrite-normalised (McDonough and Sun, 1995) REE and trace element patterns 

of calculated equilibrium melts for the Ditrău Fe-diopsides compared to those of the studied 

camptonite sample VRG7292 and the average Ditrău camptonites (Batki et al., 2014), 

tinguaite (sample VRG7306) and ijolite (sample VRG7338) whole-rock compositions. Ol 

Hbl: Olivine-bearing Hornblendite, Px Hbl: Pyroxene-rich hornblendite. 
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Fig. 12. Chondrite-normalised (McDonough and Sun, 1995) REE and trace element patterns 

of calculated equilibrium melts for the Ditrău Na-Fe diopsides and aegirine-augites compared 

to those of the Ditrău nepheline syenite (unpublished data except representative samples 

VRG7506 and VRG7507), syenite (sample VRG7420), diorite (sample VRG6774), ijolite 

(sample VRG7338) and tinguaite (sample VRG7306) whole-rock compositions. 

 

Fig. 13. Schematic model of open and closed system processes involved in the magmatic 

evolution of the studied Ditrău rocks. Mineral symbols and abbreviations for magmatic 

environments are the same as in Fig. 10. except brown hexagons which represent amphibole 

crystals and green rectangles that represent biotite in diorite and syenite (g and h). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 1 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 2 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 3 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 4 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 5 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 6 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 7 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 8 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 9 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 10 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 11 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 12 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 13 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Table 1. Mineral assemblage of the investigated samples from the Ditrău Alkaline Massif, Romania 

Phase Rock type Phenocrysts* (ph) 

cumulus minerals 

(c ) 

Groundmass 

minerals (gr), 

intercumulus 

minerals (ic) 

Accessory 

minerals 

Secondary 

minerals 

Samples 

Cumulate Ol-bearing 

Hornblendite 

Cpx, ol (c) Amph (ic) Ap, mag Srp, mag VRG23 

Cumulate Pyroxene-rich 

Hornblendite 

Cpx, amph (c) Bt, pl (ic) Ap, ttn, mag Act, chl, ep VRG6706 

Intrusive Diorite Cpx, amph, bt 

(ph) 

─ Ap, ttn, mag Act, chl, ser VRG6567 

Intrusive Syenite Cpx, amph, bt, pl, 

kfs (ph) 

─ Zrn, ap, ttn, 

mag, rt 

Chl, mag, hem, 

ilm, ep, ms, cal 

VRG7420 

Intrusive Nepheline 

syenite 

Aeg, ne, kfs, ab, 

bt (ph) 

─ Zrn, ap, ttn, 

mag, ilm 

Ms, anl, sdl, 

ccn, mag 

VRG6727 

Dyke Camptonite Cpx (ph) Amph, bt, pl (gr); 

ocellus cal 

Ap, ttn, mag Act, chl, mag VRG7292, 

VRG7294 

Dyke Tinguaite Cpx (ph) Aeg, ne, ab, kfs, ccn 

(gr) 

Zrn, ap, ttn, 

fl 

Bt, ser, mag VRG7306, 

VRG7338 

Enclave Ijolite Cpx (ph) Aeg, ccn, kfs (gr) Ap, ttn Bt, mag VRG7338, 

VRG7480 

*The term "phenocrysts" is used here in a general sense regardless of their origin. 

Cpx, clinopyroxene; ol, olivine; amph, amphibole; bt, biotite; pl, plagioclase; kfs, K-feldspar; aeg, aegirine; ne, nepheline; 

ab, albite; ccn, cancrinite; ap, apatite; mag, magnetite; ttn, titanite; zrn, zircon; rt, rutile; ilm, ilmenite; fl, fluorite; srp, 

serpentine; act, actinolite; chl, chlorite; ep, epidote; ser, sericite; hem, hematite; ms, muscovite; cal, calcite; anl, analcime; 

sdl, sodalite. 
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Table 2. Whole-rock major (wt.%) and trace element (ppm) compositions of the studied igneous rocks, Ditrău Alkaline Massif, Romania. 

Locatio
n 

Pietrăriei de 
Sus Creek 

Pietrăriei 
de Sus 
Creek 

Teasc 
Creek 

Ditrău 
Creek 

Teasc 
Creek 

Jolotca 
Creek 

Creanga 
Mare 
Creek 

Creanga 
Mare 
Creek 

Cetăţii 
Creeks 

Sample VRG6706 
VRG677
4 

VRG742
0 

VRG750
6 

VRG750
7 VRG7292 

VRG730
6 

VRG733
8 

VRG748
0 

Rock 
type 

Px-rich 
Hornblendit
e 

Diorite Syenite 
Nephelin
e syenite-
I 

Nephelin
e syenite-
II 

Camptonit
e dyke 

Tinguaite 
dyke 

Ijolite 
enclave 

Ijolite 
enclave 

  
Pál-Molnár   
et al. (2015)         

Batki et al. 
(2014)       

SiO2 32.36 43.53 60.54 57.89 55.44 45.22 57.50 49.02 45.51 

TiO2 5.25 3.96 0.62 0.17 1.34 2.08 0.50 1.33 2.13 

Al2O3 9.88 14.50 19.13 21.69 18.06 12.52 21.81 18.85 16.13 

FeO
t
 20.73 14.42 3.03 3.31 5.23 10.47 3.99 6.13 8.48 

MnO 0.26 0.26 0.08 0.06 0.20 0.16 0.16 0.19 0.26 

MgO 9.06 5.15 0.49 0.01 1.24 10.01 0.96 3.03 5.08 

CaO 13.55 10.98 2.08 0.22 3.67 8.85 2.15 4.42 5.82 

Na2O 1.77 3.54 6.12 9.32 6.48 3.01 9.38 8.17 5.75 

K2O 1.38 1.87 6.20 5.91 5.52 2.36 5.47 4.72 5.89 

P2O5 2.72 1.46 0.11 n.d. 0.22 0.26 0.08 0.35 0.42 

LOI 2.60 n.a. 1.30 1.30 2.30 n.a. n.a. 3.20 4.10 

Total 99.56 99.67 99.70 99.88 99.70 94.93 102.00 99.41 99.57 

mg# 0.53 0.41 0.26 0.00 0.32 0.70 0.32 0.50 0.54 

          Be n.d. 1.86 n.d. n.d. 1 1.20 4.96 12 19 

Sc 24 10 1 n.d. 2 17 1.71 6 11 

V 356 223 28 43 68 150 29 102 125 

Cr n.d. 4.04 n.d. n.d. n.d. 277 20 89 103 

Co 63 32 2.1 0.8 7.8 45 6.84 19 25 

Ni 28 20 0.3 n.d. n.d. 214 15 46 83 

Cu 58 81 0.7 n.a. n.a. 49 16 4.1 4.4 

Zn 142 149 52 n.a. n.a. 104 124 132 335 

Sr 778 1246 610 421 855 695 411 1200 676 

Ba 418 616 899 192 767 597 221 1244 582 

Rb 29 80 117 114 168 184 467 310 505 

Pb 2.60 n.a. 2.4 n.a. n.a. n.a. n.a. 17 7.1 

Th 2.70 n.a. 9.6 8.3 8.9 n.a. n.a. 28 41.8 

U 1.00 n.a. 3.2 21.7 1.6 n.a. n.a. 8.0 8.2 

Zr 160 343 493 60 362 168 602 484 534 

Nb 48 185 86 37.6 155 53 104 126 212 

Ta 3.20 n.a. 5.1 0.9 6.3 n.a. n.a. 3.3 4.5 

Y 36 41 14.8 1.2 22 14.7 12.9 22 31 

Hf 4.90 12.66 8.9 0.8 8.5 8.00 7.21 8.8 7.8 

Mo 1.40 3.86 2.00 n.a. n.a. 7.80 2.13 0.4 0.4 

S n.a. 837 n.a. n.a. n.a. 595 135 n.a. n.a. 

La 71 113 62 7.80 106.9 32 81 102 133 

Ce 155 229 101 8.70 170.5 55 114 138 148 

Pr 20 n.a. 9.66 0.70 14.18 n.a. n.a. 12.36 13 

Nd 88 91 33 2.00 42 22 19 40 41 

Sm 17.3 17.5 4.34 0.20 6.18 4.80 4.29 5.87 6.37 

Eu 5.18 4.80 1.32 0.14 1.82 1.50 1.03 1.67 2.09 

Gd 15 n.a. 3.37 0.21 5.13 n.a. n.a. 4.58 6.22 

Tb 1.94 n.a. 0.51 0.03 0.72 n.a. n.a. 0.66 0.89 

Dy 8.89 9.76 2.66 0.18 3.80 4.00 2.39 3.72 5.01 

Ho 1.36 n.a. 0.52 0.03 0.76 n.a. n.a. 0.68 0.92 

Er 3.07 n.a. 1.37 0.13 1.90 n.a. 3.20 1.83 2.68 

Tm 0.38 n.a. 0.21 0.03 0.29 n.a. n.a. 0.32 0.38 

Yb 2.21 4.46 1.36 0.20 1.91 2.20 1.99 1.88 2.46 

Lu 0.31 n.a. 0.23 0.02 0.30 n.a. n.a. 0.29 0.27 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

FeO
t
 as total iron; mg#=Mg/(Mg+Fe

2+
), Fe

2+
 calculated according to Irvine and Baragar (1971); n.a.=not analysed;                        

n.d.=not detected. 
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Table 3. Representative major element compositions (wt.%) of the clinopyroxene populations, 
Ditrău Alkaline Massif, Romania 

    Sa
mpl
e 

VRG
6567 

VRG
7420 

VRG
6727 

VRG
7294 

VRG
7338 

VRG
7338 

VRG
7338 

VRG
7338 

VRG
7338 

VRG
7338 

VRG
7338 

VRG
7338 

VRG
7338 

VRG
7338 

VRG
7338 

Ro
ck 
typ
e 

Diori
te 

Syen
ite 

Nep
helin
e 
syeni
te 

Camp
tonite 
dyke 

Ting
uaite 
dyke 

Ting
uaite 
dyke 

Ting
uaite 
dyke 

Ting
uaite 
dyke 

Ijolit
e 
encl
ave 

Ijolit
e 
encl
ave 

Ijolit
e 
encl
ave 

Ijolit
e 
encl
ave 

Ijolit
e 
encl
ave 

Ijolit
e 
encl
ave 

Ijolit
e 
encl
ave 

Sp
ot 

Bn5
18/2
4 

Bp2
2 Bn21 Tü22 

Up3
0 Tü51 Tü54 Tü57 Tü28 Tü31 Tü29 

Bp1
5 Bp2 Tü90 

Bp3
3 

Cp
x 
cry
stal 

Ante
cryst 

Ante
cryst 

Phen
ocr. 

Phen
ocr. 

Matri
x 
micr
olite 

Crys
tal 
rim 
(cpx
2) 

Ante
cryst 
core 
(cpx
2) 

Ante
cryst 
grow
th z. 
(cpx
2) 

Phe
nocr. 
core 
(cpx
1) 

Phe
nocr. 
core 
(cpx
1) 

Phe
nocr. 
rim 
(cpx
1) 

Ante
cryst 
rim 
(cpx
5) 

Ante
cryst 
core 
(cpx
6) 

Matri
x 
micr
olite 

Ocell
us 
micr
olite 

Typ
e 

Type 
II 

Type 
II 

Type 
III 

Type 
I 

Type 
III 

Type 
III 

Type 
II 

Type 
I 

Type 
II 

Type 
II 

Type 
III 

Type 
III 

Type 
I 

Type 
III 

Type 
III 

Min
eral 

Na-
Fe-
diop
side 

Na-
Fe-
diop
side 

Aegir
ine-
augit
e 

Fe-
diopsi
de 

Aegi
rine-
augit
e 

Aegi
rine-
augit
e 

Na-
Fe-
diop
side 

Fe-
diop
side 

Na-
Mg 
Hd 

Na-
Fe-
diop
side 

Aegi
rine-
augit
e 

Aegi
rine-
augit
e 

Cr-
Fe-
diop
side 

Aegi
rine-
augit
e 

Aegi
rine-
augit
e 

SiO

2 
50.2

0 
50.5

0 
50.8

4 48.01 
52.1

2 
53.0

8 
48.0

8 
45.5

8 
49.2

0 
47.8

3 
52.9

1 
52.4

9 
48.0

7 
53.5

1 
51.8

5 
TiO

2 
0.59 

1.12 0.19 2.28 
0.15 

0.79 1.85 3.36 1.08 1.45 0.27 0.17 1.66 1.36 0.97 
Al2
O3 

2.82 
2.81 1.57 7.44 

1.92 
1.70 5.78 8.37 4.64 5.74 1.67 1.10 6.28 1.86 1.32 

Cr2

O3 n.a. n.a. n.a. n.a. 
0.02 

n.a. n.a. n.a. n.a. n.a. n.a. 0.00 0.68 n.a. 0.22 
Fe
O

t
 

10.9
9 

11.6
9 

24.7
1 6.63 

25.2
5 

22.5
9 

11.5
0 7.59 

14.0
9 

12.5
5 

17.9
6 

19.0
8 5.98 

20.3
3 

20.2
9 

Mn
O 

0.43 
0.90 1.23 0.12 

0.62 
1.81 0.42 0.11 0.72 0.51 0.91 0.52 0.37 0.42 0.25 

Mg
O 

11.0
8 

10.0
2 1.04 13.86 

1.39 
1.90 9.51 

12.1
5 7.89 8.69 5.58 5.66 

14.1
8 3.53 4.40 

ZrO

2 n.a. n.a. n.a. 0.00 n.a. 0.67 0.05 0.02 0.08 0.13 0.25 n.a. n.a. 0.17 n.a. 
Ca
O 

22.1
2 

20.9
7 3.35 21.60 

3.49 
7.53 

19.5
9 

22.0
1 

19.3
9 

19.9
4 

12.0
7 

14.8
4 

23.1
1 8.06 

11.8
2 

Na2

O 
1.75 

1.73 
11.5

5 0.60 
11.5

2 9.19 1.61 0.67 2.12 1.71 6.61 5.64 0.23 9.17 7.59 
K2

O 
0.02 

0.00 0.00 0.03 
0.00 

0.02 0.00 0.00 0.00 0.02 0.01 n.a. n.a. 0.04 n.a. 
Tot
al 

100.
00 

99.7
4 

94.4
8 

100.5
7 

96.4
7 

99.2
8 

98.3
8 

99.8
6 

99.2
0 

98.5
7 

98.2
3 

99.5
0 

100.
56 

98.4
5 

98.7
1 

 

 
   

 
          Mg

# 0.84 0.70 0.99 0.86 0.63 0.33 0.65 0.83 0.58 0.63 0.60 0.59 0.91 0.53 0.64 

Di 70 59 6 82 8 10 56 78 47 53 30 33 88 19 26 

Hd 15 28 4 14 7 26 32 17 37 33 23 25 10 18 16 
Ae
g 14 13 90 5 85 64 12 6 16 14 47 42 2 63 58 

FeO
t
 as total iron; Phenocr.=Phenocryst; Na-Mg Hd=Na-Mg-hedenbergite; growth z.=growth zone; sector 

z.=sector zone; n.a.=not analysed. 
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Table 4. Representative trace element compositions (ppm) obtained by LA-ICP-MS on the clinopyroxene populations, Ditrău 
Alkaline Massif, Romania 

Rock 
type 

Campt
onite 
dyke 

Px-rich 
hornble
ndite 

Ijolite 
enclav
e 

Ijolite 
enclav
e 

Ijolite 
encla
ve 

Tingu
aite 
dyke 

Tingu
aite 
dyke 

Tingu
aite 
dyke 

Nephel
ine 
syenite 

Nephel
ine 
syenite 

Syenit
e 

Syenit
e 

Diorit
e 

Sam
ple 

VRG7
292 

VRG67
06 

VRG7
480 

VRG7
338 

VRG7
338 

VRG7
338 

VRG7
338 

VRG7
306 

VRG6
727 

VRG6
727 

VRG7
420 

VRG7
420 

VRG6
567 

Cryst
al 
type 

Pheno
cryst 
core 

Cumula
te 
macroc
ryst 

Pheno
cryst 
core 

Pheno
cryst 
core 

Antec
ryst 
core 

Antec
ryst 
core 

Antec
ryst 
rim 

Antec
ryst 
core 

Pheno
cryst 
core 

Pheno
cryst 
core 

Antec
ryst 
core 

Antec
ryst 
core 

Antec
ryst 
core 

Cpx 
type Type I Type I Type II Type II Type I 

Type 
II 

Type 
III Type I 

Type 
III 

Type 
III 

Type 
II 

Type 
II 

Type 
II 

Cs 0.16 0.10 0.10 0.15 0.20 0.15 0.29 0.13 0.16 0.15 0.17 0.16 0.19 

Rb 0.13 0.21 0.20 0.01 9.82 0.02 18.30 1.17 0.11 0.17 2.62 0.13 0.28 

Ba 3.80 0.00 0.00 0.80 7.97 1.08 4.40 0.37 1.52 1.30 0.97 0.94 0.70 

Th 0.05 0.05 0.16 0.12 0.10 0.14 1.94 0.14 0.05 0.28 0.02 0.09 0.02 

U 0.05 0.02 0.05 0.01 0.07 0.01 0.72 0.01 0.20 1.28 0.02 0.03 0.00 

Nb 0.41 0.70 8.03 4.15 1.24 5.04 16.52 2.42 4.72 20.11 1.17 1.37 0.10 

Ta 0.07 0.10 0.55 0.28 0.13 0.45 0.43 0.37 0.19 0.45 0.08 0.09 0.01 

La 3.08 13.23 52.41 31.83 5.83 32.76 55.75 14.82 9.65 13.56 23.96 26.02 8.68 

Ce 11.36 50.40 98.93 66.81 18.33 76.90 79.15 43.57 25.80 23.73 57.89 55.26 17.32 

Pb 1.13 0.15 3.61 0.08 0.48 0.13 1.20 0.47 0.14 0.21 0.16 0.31 1.23 

Pr 1.97 7.33 9.71 7.33 2.69 8.88 6.47 6.17 3.64 3.62 6.07 5.31 2.00 

Sr 106 245 297 349 151 401 141 230 9 12 27 24 88 

Nd 11.36 33.90 33.48 27.51 14.09 35.86 20.40 29.09 13.81 13.87 22.04 17.83 6.81 

Zr 43 100 1122 610 67 579 3550 212 6257 5344 462 751 442 

Hf 2.22 3.64 22.85 14.82 2.53 14.15 69.08 6.88 
184.0

0 
176.2

0 10.61 15.07 13.32 

Sm 3.15 8.10 5.19 4.75 3.80 6.66 3.05 7.30 2.53 2.84 3.44 3.20 1.08 

Eu 1.17 2.81 1.78 1.56 1.29 1.89 0.82 2.41 0.81 0.85 0.79 0.65 0.34 

Gd 3.40 6.55 4.85 4.00 3.72 5.60 2.82 6.43 2.65 2.36 3.40 2.36 1.27 

Tb 0.49 0.89 0.63 0.55 0.41 0.74 0.30 0.76 0.40 0.43 0.42 0.39 0.10 

Dy 2.81 4.84 3.89 3.59 2.41 4.44 2.12 4.49 2.29 3.03 2.39 2.15 1.06 

Y 9.7 20.6 23.8 18.0 10.1 22.4 13.4 19.2 15.7 15.2 16.3 13.6 4.5 

Ho 0.42 0.85 0.82 0.73 0.36 0.79 0.46 0.67 0.49 0.60 0.52 0.43 0.09 

Er 0.96 2.00 2.50 2.03 0.86 2.41 2.11 1.70 2.45 2.65 1.36 1.33 0.40 

Tm 0.11 0.24 0.41 0.38 0.09 0.36 0.79 0.21 0.89 0.86 0.26 0.25 0.07 

Yb 0.69 1.80 3.79 3.10 0.53 3.00 9.95 1.43 12.16 12.01 2.76 2.97 0.87 

Lu 0.07 0.20 0.81 0.64 0.06 0.50 2.46 0.13 3.51 3.50 0.55 0.59 0.18 

V 219 123 354 296 139 285 184 210 125 188 129 125 231 

Cr 3158 36 10 14 5288 34 11 1159 8 9 10 12 1.2 

Ni 202 77 6 25 209 28 12 108 5 5 6 6 6 
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Highlights 

1. Clinopyroxenes record two magma sources and evolution trends in the Ditrău plutonic 

system 

2. A new, Nb and Zr rich parental melt has been recognised in the Ditrău magmatic 

system 

3. Zoning patterns and trace element variations reveal open- and closed system processes 

4. Magma recharge triggers mingling and antecryst recycling between mafic and felsic 

magmas 

5. Incorporated clinopyroxene antecrysts crucially affect the host magma composition 
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