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Abstract. In this paper we recover convergence and subsequential convergence of a sequence
of real numbers regularly generated by another sequence in some sequence spaces under certain
conditions. We also give some information about the behavior of a sequence whose generator is
given in terms of a moderately divergent sequence.
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1. INTRODUCTION

Throughout this paper, No will denote the set of all nonnegative integers. Let
u = (u,) be a sequence of real numbers and any term with a negative index be zero.
Let p = (pn) be a sequence of nonnegative numbers such that pg > 0 and

n
P, :=Zpk—>oo,n—>oo. (1.1)

k=0

The n™ weighted mean of the sequence (uy) is defined by

1 n
Onp(u) = 2= >, prciti (1.2)
" k=0

for all n € Ny.
The sequence (1) is said to be summable by the weighted mean method determ-
ined by the sequence p; in short, (N, p) summable to a finite number s if

lim oy p(u) =s.
n—oo

The difference between u,, and its n™ weighted mean on,p(u), which is called the
weighted Kronecker identity, is given by
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where
1 n
Vip(Au) := — 3" Py Auy, (1.4)
Py
k=0
and
AUy =Up—Up—1. (1.5)

The (N, p) summability method is regular if and only if P, — 00 as n — oo If p, =
1 for all n € Ny, then (N, p) summability method reduces to Cesaro summability
method.

A sequence (u) is slowly oscillating [ 14] if

lim limsup max  |ug—u,|=0, (1.6)
A—11T n—oo n+1<k<[An]
where [An] denotes the integer part of An.

The space of all slowly oscillating sequences is denoted by §©@. Dik [9] proved
that if a sequence (u) is slowly oscillating, then (V},,1(Au)) is bounded and slowly
oscillating.

A generalization of slow oscillation is given as follows.

A sequence (up) is moderately oscillating [14] if

limsup max  |ux —up|< oo (1.7)
n—oo n+1<k<[An]
for A > 1. The space of all moderately oscillating sequences is denoted by M.

Set »
n
ty, =n , 1.8
n P (1.8)
for n € Ng. We say that (u) is regularly generated by a sequence & = () in some

sequence space + and « is called a generator of (u) if

n
t
unzan+2?kak. (1.9)
k=1

The space of all sequences which are regularly generated by sequences in 4 is de-
noted by U(A).

If (up,) is regularly generated by a sequence (o) where (Aay) € 80O, we write
(un) € U(80O p). If (u,) is regularly generated by a sequence (o) where () € §0,
we write (u,) € U(50).

A positive sequence (1) is O-regularly varying [12] if

u
limsup 21 < o0 (1.10)
n—oco Un
for A > 1 and it is slowly varying if
u
lim —21 —
n—>00 Uy,

1. (1.11)
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It was proved by [1 1] that if a positive sequence (1) is O-regularly varying, then
(loguy) is slowly varying.
A positive sequence (1) is moderately divergent [13] if for every A > 1

Up =o(nk_1), n— 00 (1.12)
and
o0
Un
Y 2 <o (1.13)
n
n=1

We denote the space of all moderately divergent sequences by MD. Note that every
slowly oscillating sequence of positive numbers is moderately divergent.

The convergence of a sequence (u,) implies that (u,) is bounded and Au, =
o(1) as n — oco. But it is clear that the converse of this implication is not true in
general. In the case where (1) is bounded with Au, = o(1) as n — co, we may not
recover convergence of (1) but we may have convergence of some subsequences of
(un). A new kind of convergence is defined as follows (See [8] for more details on
subsequentially convergent sequences):

A sequence u = (u) is said to be subsequentially convergent if there exists a finite
interval /(1) such that all accumulation points of (u,) are in /(u) and every point of
I(u) is an accumulation point of (u).

Recently, several results in terms of regularly generated sequences for different
purposes have been obtained by Dik et al. [10], Canak et al. [1], Canak and Totur [3],
Canak et al. [2], Canak et al. [7], Canak and Totur [5] and many more. In this paper,
we first recover convergence and subsequential convergence of a sequence which
is regularly generated by another sequence in some sequence spaces under certain
conditions. Secondly, we give some information about the behavior of a sequence
whose generator is given in terms of a moderately divergent sequence.

2. THE PRELIMINARY RESULTS

We need the following lemmas for the proof of our results.

Lemma 1 ([8]). Let (un) be a bounded sequence of real numbers. If Au, = o(1)
as n — oo, then (up) converges subsequentially.

Lemma 2. If (3 j_; k) is moderately oscillating, then (3 j_; %ak) con-
verges.

Proof. Set Ry, := exp (‘ZZ=1 [0 D Then we have

[An]

<exp Z ol |- (2.1)
k=n+1

Rijn)

n
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Taking limsup of both sides of (2.1) as n — oo gives

Ry, [An]
lim sup Zlan] <exp | limsup Z ol |- 2.2)

Since (3 %_; k@) is moderately oscillating, we have

R
lim sup Zlan]
n—>oo n

(2.3)

is finite for A > 1. This says that (R,) is O-regularly varying. Since (R;) is O-
regularly varying, (log R,) is slowly varying. It follows that

00 1 n p
Zn—p > tgog| < oo (2.4)
n=1 k=1
for p > 1. This implies that
2t
> Loy < oo, (2.5)
n
n=1
d

Lemma 3. If (3, %"ak) converges, then o, p(a) = 0(1), n — oo.

Proof. Set yn := Y j_; %a. Then we obtain
Pn—l

Op = Ayn (2.6)
Pn
and
On,p(@) = Vn,p(Ay) 2.7)
for n € Nyg. Since (y,,) converges, it follows by the weighted Kronecker identity
Yn = 0n,p(¥) = Va,p(Ay) (2.8)
that
Vi, p(Ay) =0(1), n — oo.
This completes the proof. U
Lemma 4 ([6]). Let (pn) satisfy the condition
Pp
157—>1,n—>oo. (2.9)

If (uy) is slowly oscillating, then (Vy, p(Au)) is slowly oscillating and bounded.

Lemma 5 ([15]). Let (uy) be Cesaro summable to s. If (uy) is slowly oscillating,
then (uy) converges to s.
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3. THE MAIN RESULTS

Theorem 1. Suppose that

(szak) e MO, (3.1)

k=1
Py
1<——=1,n— o0, (3.2)
n
th = 0(1),n — oo. 3.3)

If (uy) € U(SO p), then (uy) converges subsequentially.

Proof. Since (un) € U($0 4), (un) can be written as
Un = oty + 1; % (3.4)

where (Awy) € §O. Moderate oscillation of (ZZZI tkozk) implies convergence of
(yn) = (Zi=1 %‘ak) by Lemma 2 and oy, ,(0) = o(1) as n — oo by Lemma 3.
Hence, (1) is (N, p) summable to the limit of (y,). By the condition (3.3), it

follows that
o
2 50,n—>00 (3.5)
n

by Lemma 3. Since (Aay,) € 80O, we have that
Aay, — 0,n — 00 (3.6)

by Lemma 5. Taking the backward difference of (3.4), we have
Pn

Au, = Aoy + ay 3.7
n—1
for n € Ny.
It follows by (3.3), (3.5) and (3.6) that
Au, =o(l),n — 0. (3.8)

To complete the proof, it suffices to prove that (1) is bounded. Applying Lemma
410 (vn) = (X k=1 ok!k), and taking (v,) € O into account, we obtain (Vy, ,(?))
is bounded and slowly oscillating, where at = (anty).

From the weighted Kronecker identity

Sn(et) =0, p(S(a)) = Vi, p(a) (3.9
where S(@) = (Sp(@)) = (X f—o k), we have
tn — LV (@) = AV (). (3.10)

Pn—l
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Replacing «;, by apt, in (3.10) and then dividing by #,, we have
_ Va,p(at) 4 Pn—q

n AVy p(at). (3.11)

n npn
It follows from (3.11) that (o) is bounded. Hence, (1) is bounded. By Lemma 1,
(up) is subsequentially convergent. U

Theorem 2. Suppose that

(szak) € MO, (3.12)

k=1
Py
1<——=1, n— oo, (3.13)
n
P, P,
| < liminf 2™ <limsup “2M <00, for A1, (3.14)
n—00 n n—00 n
.. P, . P,
1 < liminf < limsup <oo, for 0<A<l, (3.15)
n=>00 Ppnl  n—oo Plan
th = 0(1), n — oo. (3.16)

If (uy) € U(80), then (uy) converges.

Proof. Assume that (u,) € U($0). Then, (4,) can be written as
Un =0p+ Y L (3.17)

where (o) € 0. From (3.17), we have
Vi, p(Au) = Vy p(Aa) + 0y, p(a). (3.18)

Moderate oscillation of (}_%_; fxak) implies convergence of (y,) = (> j—; tﬁak)
by Lemma 2 and 0y, () = 0(1) as n — oo by Lemma 3. Therefore, (u,) is (N, p)
summable to the limit of (y;,).

Since (o) is slowly oscillating, (Vy,»(Aw)) is bounded and slowly oscillating by
Lemma 4.

It follows from (3.18) that (V}, ,(Au)) € 8O and bounded. Since (u,) is (N, p)
summable, (1) converges to lim, o0 0y, p(4) by Theorem 6 in [4]. O

Theorem 3. Suppose that (uy) is regularly generated by (o) and

1
Pn__Pntl _ o) 45 . (3.19)

If
n
Z ar =n"my (3.20)
k=1
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for some (my) € MD and some y € (0,1), then

i) (un) is (N, p) summable.
i) uy, = Am¥Ymy) + Bn, where B, = 0(1),n — oo.
o0

. Un
i) u, = d — < 00.
) up =o0(n),n — oo an an 00
n=1
Proof. 1) By Abel’s partial summation formula, we have

n

= E —(Sk(a) Sk—1(e))
Pk “ Pk
= —S — — 8
E_ - k(@) k§=1 P Ok 1(@)

p DPn 14
_ Z (—S (@~ P Sk(a)) R IR

_ pn 5, )+Z(Ppk pk+1)S @

P
=1 k= 1

(3.21)
Since Sy, (@) = n¥my, for some (my) € MD, we have
n Sn(oz)=0( M ) n — oo (3.22)
n—1 nl=v
By moderate divergence of (m), we have
Pn_ g (@) =o(l), n— oo. (3.23)
Pn—l

The second term on the right of (3.21) converges by (3.19). It follows from the
representation

a, (3.24)

that (1,,) is (N, p) summable.
ii) Note that the sequence (8,) defined by 8, = Inn
zero. From the representation and the condition (3.20) i"z follows that
Up = A(n"mp) + Bn (3.25)

t
where 8, = 2y,
iii) By ii), we have
Up =n"my—m—1my—1+ Bn. (3.26)
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Dividing (3.26) by n, we have

Un mp Mp—1 Bn
— = — —. 3.27
n nl7v (m-D7v + n (3-27)

Since (my) € MD and B, = o(1), we have

Un =o0(1),n — oo. (3.28)
n
By (3.26), we obtain
Uk N Mk e Mg = B
-1
— = — +y = (3.29)
2 2~y Z 127 2
k=2k k=2k k=2 (k 1) k=2k
Taking the limit of both sides of (3.29) as n — oo, we obtain ) no " < o0 O
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