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Abstract. Let D be a finite and simple digraph with vertex set V(D). A twin Roman dominating
function (TRDF) on D is a labeling f : V(D) — {0, 1,2} such that every vertex with label 0
has an in-neighbor and out-neighbor with label 2. The weight of a TRDF f is the value w(f) =
ZveV( p) S (v). The twin Roman domination number of a digraph D, denoted by yr(D), equals
the minimum weight of a TRDF on D. In this paper we initiate the study of the twin Roman
domination number in digraphs. In particular, we present sharp bounds for y;(D) and determine
the exact value of the twin Roman domination number for some classes of digraphs.
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1. INTRODUCTION

Let D be a finite simple digraph with vertex set V(D) = V and arc set A(D) =
A. A digraph without directed cycles of length 2 is an oriented graph. The order
n = n(D) of a digraph D is the number of its vertices. We write d b" (v) for the
out-degree of a vertex v and d, (v) for its in-degree. The minimum and maximum
in-degree and minimum and maximum out-degree of D are denoted by §— = §7 (D),
AT =A"(D),§T =87 (D) and AT = AT (D), respectively. The minimum degree
8(D) of a digraph D is defined as the minimum of all in-degrees and all out-degrees
of vertices in D and the maximum degree A(D) of a digraph D is defined as the
maximum of all in-degrees and all out-degrees of vertices in D. If uv is an arc of
D, then we also write ¥ — v, and we say that v is an out-neighbor of u and u is an
in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-neighbors and
out-neighbors of v by N7 (v) = N, (v) and N*t() = Ng (v), respectively. If X C
V(D), then D[X] is the subdigraph induced by X. If X C V(D) and v € V(D), then
E(X,v) is the set of arcs from X to v. Consult [8] for the notation and terminology
which are not defined here. For a real-valued function f : V(D) — R the weight of
fisw(f) =2 yeyp) f(v), and for S C V(D), we define f(S) =}, 5 f(v), s0
w(f) = f(V(D)).
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A vertex u in a digraph D out-dominates itself and all vertices v such that uv is
an arc of D, similarly, ¥ in-dominates both itself and all vertices w such that wu is
an arc of D. A set S of vertices of D is a twin dominating set of D if every vertex
of D is out-dominated by a vertex of S and in-dominated by a vertex of S. The twin
domination number y*(D) is the cardinality of a minimum twin dominating set. A
y*(D)-function is a twin dominating function of D with weight y*(D). The twin
domination, was introduced by Chartrand, Dankelmann, Schultz, and Swart [3] and
has been studied by several authors (see [1,2,6]).

A Roman dominating function (RDF) on a digraph D is a function f :V —
{0, 1,2} satistfying the condition that every vertex v for which f(v) = 0 has a in-
neighbor u for which f(u) = 2. The weight of an RDF f is the value w(f) =
> vey f(v). The Roman domination number of a digraph D, denoted by yr(D),
equals the minimum weight of an RDF on D. A yr(D)-function is a Roman domin-
ating function of D with weight yg(D). The Roman domination for digraphs was
introduced by Kamaraj and Hemalatha [5] and investigated in [7].

A twin Roman dominating function (TRDF) on D is a Roman dominating function
of D such that every vertex with label 0 has an out-neighbor with label 2. The twin
Roman domination number of a digraph D, denoted by y (D), equals the minimum
weight of a TRDF on D. A yp(D)-function is a twin Roman dominating function
of D with weight yp(D). A twin Roman dominating function f : V — {0,1,2}
can be represented by the ordered partition (Vp, V1, V2) (or (Vf , Vlf , sz ) to refer
f)of V,where V; ={v e V| f(v) =i}. Inthis representation, its weight is w( ) =
[V1]|+2|V>|. Since Vlf U sz is a twin dominating set when f is a TRDF, and since
placing weight 2 at the vertices of a twin dominating set yields a TRDF, we have

y*(D) < yg(D) =2y*(D). (1.1)
Obviously the function f = (&, V(D), ) is a TRDF of D which implies that
yr(D) <n. (1.2)

Our purpose in this paper is to establish some sharp bounds for the twin Roman
domination number of a digraph.
We make use of the following results in this paper.

Theorem 1 ([3]). Let D be a digraph of order n and minimum degree §(D) > 1.

Then,
« 2n
AUHES

The proof of the following observations are straightforward and therefore omitted.

Observation 1. Let D be a digraph on n vertices. Then
() If yg(D) = n then for any yg-function f = (Vo,V1,V2) on D, |Vo| = |V2|.
(i) If Vol = | V2| for some yg-function f = (Vo,V1,V2) on D, then y (D) = n.
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Observation 2. Let D be a digraphand f = (V{' .V . V) a TRDF on D.
W) Ifx,y,zeVi,x—>y,y—>x,y—>zandz — y theng = (VOfU{x,z}; Vlf—
{x.y.25:V; U{y}) is a TRDF on D with w(g) = w(f)— 1.

Gi) Ifx € Vo, ye Vi, x > yand y — x then g = (Vg U{yy:V{ =y} V5 ) is
a TRDF on D with w(g) = w(f)—1.

Observation 3. Let D be a digraph and f = (Vo,V1,V2) a yg(D)-function.

() Ifve V(D) and d™ (v)d~(v) =0 then f(v) #0.

Gi) Ifx,y,z€ Vi, x > yand y — x then y 5 z or Z /> y holds.
(iii) If x € Vj then at least one of the sets N T (x) N\ Vy and N~ (x) N Vs, is empty.
@iv) V2| = [Vol-

We will say that a digraph D is a twin Roman digraph if yx(D) = 2y* (D).

Observation 4. A digraph D is a twin Roman digraph if and only if it has a
yr(D)-function f = (Vo,V1,V2) with V1 = @.

Proof. Let D be a twin Roman digraph, and let S be a y*(D)-set of D. Then
f=W(D)—S8,2.5)isaTRDF on D such that w(f) = 2|S| =2y*(D) = yx(G),
and therefore f is a y(D)-function with V1 = @.

Conversely, let f = (Vo.,V1,V2) be a yg(D)-function with V; = & and thus
Yg(D) = 2|V2|. Then V3 is also a twin dominating set of D implying that 2y*(D) <
2|V3| = y(D). Applying (1.1), we obtain the identity y (D) = 2y*(D), i.e. D is
a twin Roman digraph. O

2. BASIC PROPERTIES AND BOUNDS ON THE TWIN ROMAN DOMINATION
NUMBER

First we characterize the digraphs D with the properties that y (D) =2, yx(D) =
3, yp(D) =4oryp(D) =5.

Proposition 1. () For adigraph D of order n > 2, yx(D) = 2 if and only if
n =2 or there is a vertex v withd*(v) =d~(v) =n—1.

(ii) For a digraph D of order n > 3, yp(D) = 3 if and only if D has no vertex v
with d T (v) = d~(v) = n— 1. In addition (a) n = 3 or (b) D has a vertex v
with NT(W)NN~(v)| =n—2.

(iii) Foradigraph D of ordern >4, yx(D) = 4 ifand only fINT(W)NN~(v)| <
n —3 for any vertex v € V(D). In addition, (a) n = 4 or (b) there is a vertex
v with INT (V) NN~ (v)| = n —3 or (c) there are two vertices u,v € V(D)
such that (N} (u) U N (v)) N (Np, () NN, (v)) = V(D) —{u,v}.

(iv) Foradigraph D of ordern > 5, yx(D) = 5 ifand only IfINT(W)NN~(v)| <
n—4 for any vertex v € V(D) and |(N5r(x) UN;(y)) N(Np(x)UNp(¥)| <
n — 3 for all pairs of vertices x,y € V(D). In addition, (a) there are two ver-
ticesu,v € V(D) such that (N} (u) UN (v))N(Np(u)UN5 (v))| =n—3
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or (b) n =5 or (c) D contains a vertex w with [NT(w) NN~ (w)| =n—4
and the induced subdigraph H = D[V (D) — (N T[w] N N~ [w])] does not
contain a vertex x with |NIZI" (X)NNg(x)| =2

Proof. Since the proof of (i) is clear, we omit it.

(ii) Let D have no vertex v with d ¥ (v) = d~(v) = n — 1, then it follows from (i)
that y % (D) > 3. The other two assumptions show that y (D) < 3, and so we obtain
Yr(D) =3.

Conversely, assume that y (D) = 3. It follows from (i) that D has no vertex v with
dt(v)=d~(v)=n—1.Let f = (Vo,V1,V2) be a y}(D)-function. If V, = &, then
|Vi| = 3 = n and thus (a) holds. If V> # @, then |V1| = | V2| = 1. Suppose V> = {v}.
Then (u,v), (v,u) € A(D) for each u € V and hence [INT(v) NN~ (v)| =n —2.
Thus condition (b) is proved.

(iii) Since | Nt (v) N N~ (v)| < n—3 for any vertex v € V(D), we deduce from (i)
and (ii) that yz (D) > 4. The other three assumptions show that y (D) < 4, and so
we obtain yg (D) = 4.

Conversely, assume that yz(D) = 4. It follows from (i) and (ii) that [N Tw)N
N~ (v)| <n—3forany vertex v € V(D). Let f = (Vo, V1, V2) be a yx(D)-function.
If V, = @, then n = | V1| = 4 and so (a) holds. We distinguish two cases.

Case 1. Assume that |V,| =1 and |V;| = 2. If V5 = {v}, then we deduce that
|NT(v) NN~ (v)| = n—3 and the condition (b) holds.

Case 2. Assume that |V,| = 2. If V5 = {u, v}, then we conclude that (N IJ)F (w)u
NL")" (v))N (NB' (w)u NB‘ (v)) = V(D) —{u, v}, and we obtain condition (c).

(iv) By (i), (ii), (iii), the conditions [N T (v) N N~ (v)| < n — 4 for any vertex v €
V(D) and [(N7 (x) UNZ () N (Np (x) UNp (y))| <n—3 for all pairs of vertices
x,y € V(D) imply that y (D) > 5. The other three assumptions show that y 3 (D) <
5, and so we obtain y (D) = 5.

Conversely, assume that )/Z(D) = 5. Using (i), (ii) and (iii), we can see that
INT ()N N~ (v)| <n—4forany vertex v € V(D) and |(N5r(x)UNg(y))ﬂ(ND_(x)
UNp(¥))| <n—3 for all pairs of vertices x,y € V(D). Let f = (Vo,V1.V2) a
yg(D)-function. If V = @, then |V1| = 5 and thus n = 5. Again, we distinguish
two cases.

Case 1. Assume that |V2| =1 and |V;| = 3. If V, = {w}, then we deduce that
INT(w)NN~(w)| =n—4. Let {a,b,c} = V(D)= (NT[w]NN"(w)). If H =
D[{a,b,c}] contains a vertex x with |N1;,r (x) N Ny (x)| = 2, then we have condition
(a). If D[{a,b,c}] does not contain a vertex x with |N;IL (x) " Ng(x)| = 2, then we
have condition (c).

Case 2. Assume that |V3| =2 and |V;| = 1. If V5 = {u, v}, then it follows that
|(N3' (w)u NB' (v)) N (Np (u) U Np(v))| = n—3 and condition (a) is proved. O

Corollary 1. For any oriented graph D of order n > 4, yx(D) > 4.
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Theorem 2. Let D be a digraph of order n, maximum outdegree A* > 1 and
maximum indegree A~. Then

V}'E(D)ZmaXH 21 —‘{ _2n —H
At +1 AT +1

Proof. We only prove y;,(D) > [(211)/(AJr +1)], as y;,(D) >[(2n)/ (A~ 4+ 1)]
can be proved similarly. Let = (Vo,V1,V2) be a y¢(D)-function. Then yz(D) =
[Vi| +2|V2| and n = |Vp| + |V1]| 4 |V2|. Since each vertex of Vp has at least one
in-neighbor in V5, we observe that |Vo| < AT|V5|. Since AT > 1, we deduce that

(AT + Dyp(D) =(AT + (V1] +2|Va]) = (AT + D|V1| +2|Va| +247T| V5|
>(AT + )|V +2|Va| +2|Vo| =20+ (AT = 1)|V1]| = 2n.

This inequality chain leads to yz(D) > [2n)/ (AT +1)]. O

If K is the complete digraph of order n > 2, then Proposition 1 (i) implies that
yr(Ky) =2. If K, is the complete bipartite digraph with n > 4, then it follows
from Theorem 2 that y (K, ,) > 4. Now it is easy to see that yg (K, ,) = 4. These
examples show that Theorem 2 is sharp.

If D is the empty digraph of order n, then clearly y (D) = n. Therefore Theorem
2 yields to the next result immediately.

Corollary 2. Let D be a digraph of order n. If yi(D) < n, then AY(D) >2and
A (D) =2.

Let C,; be the digraph of order n > 3 with vertex set {vy,v2,...,V,} such that v; —
Vi+1, Vi41 = v; for1 <i <n—1, v; — vy and v; — v,. Now it is straightforward
to verify that yx(C,’) = [(2n)/3] < n for n > 3. The digraph C,’ demonstrates that
AT (D) =2and A~ (D) =2 in Corollary 2 is possible. In addition, this is a further
example showing the sharpness of Theorem 2.

Proposition 2. Let D be a digraph of order n, maximum out-degree A and
maximum in-degree A~. If AT + A~ > n + 3, then yr(D) <n.

Proof Letdt(v)=AT.

First we assume that d ~(v) = A~. In this case the condition AT + A~ >n 43
leads to |N T (v) N N~ (v)| > 4. Then the function f = (NT(v) NN~ (v), V(D) —
((NT()NN~(v))U{v}),{v}) is a TRDF on D of weight w(f) < n—3 and thus
yR(D) <n-3.

Second we assume that d ~(u) = A~ for a vertex u # v. The condition A™ 4
A~ >n+3implies that |[N T (v) N N~ (u)| > 3. Therefore the function f = (Nt (v)N
N~(u),V(D)— ((NT(v) NN~ (u)) U {u,v}),{u,v}) is a TRDF on D of weight
o(f) <n—1and thus yp(D) < n— 1. This completes the proof. O
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Let H be the digraph with vertex set {v,uy,us,...,uy—1} withn > 5 such that v —
uj fori =1,2,....n—1,upy — uy and uz — uy. Then AT (H)+ A~ (H)=n—-2
and y (H) = n. This example demonstrates that the condition AT+ AT >n4+3in
Proposition 2 is best possible in some sense.

Proposition 3. Let D be a digraph. The following statements are equivalent.
(@) y*(D) = yg(D).
(ii) y*(D) = [V(D)|.

(iii) There is no a directed path of length 2 in D.

Proof. () = (ii): Let y*(D) = yg(D). Then for any yx(D)-function f =
(Vo.V1,V2) on D we have y*(D) < [Vi| + |Va| < [V1] +2|V2| = yx(D). Hence
V2 = @ implying that Vo = @. Therefore y*(D) = yg(D) = |V1| = |V(D)|.

(i) = (i): The result follows immediately by (1.1) and (1.2).

(i) < (iii): Obvious. O

Proposition 4. If D is a digraph on n vertices, then y (D) > min{n,y*(D) +1}.

Proof. If yx(D) = n, then the result is immediate. Assume now that yz(D) <n,
and suppose to the contrary that yz (D) < y*(D). By (1.1) we have yx (D) = y*(D).
Now Proposition 3 implies yz (D) = n, a contradiction.

Proposition 5. Let D be a digraph of order n # 3 with (D) > 1. Then yx(D) =
y*(D) + 1 if and only if there is a vertex v € V(D) with INT(vV) NN~ (v)| =n —
y(D).

Proof. Let D have a vertex v with [N (v) N N~ (v)| = n—y*(D). Then clearly
f=(NT@W)NN~(v),V(D)—(NT[v]Nn N~[v]),{v}) is a TRDF on D of weight
y*(D)+ 1. Hence yx(D) < y*(D) + 1, and the result follows by Proposition 4.

Conversely, let yp (D) = y*(D)+1andlet f = (Vo, V1, V2) be a yg(D)-function.
Then either (1) |V1| =y*(D)+1and |V2| =00r (2) |V1|=y*(D)—1and | V3| = 1.

In case (1), since | V2| = 0, we have |Vp| = 0. Hence n = y*(D) + 1. It follows
from Theorem 1 thatn = y*(D)+1 < 27” + 1, a contradiction when n > 4. If n = 2,
then the hypothesis 6(D) > 1 implies that D consists of two vertices x and y such
thatx - y > xand thus [NT(x) NN~ (x)|=1=2—1=n—y*(D).

In case (2), let Vo = {v}. Then (v,u),(u,v) € A(D) for each u € Vy. Since
NT@)NN~(v)NV; =@, weobtain [NT(0)NN~ ()| =|Vo| =n—|Vi|—|Va| =
n—y*(D). O

Proposition 6. Let D be a digraph on n > 7 vertices with §(D) > 1. Then
yr(D) = y*(D)+2 if and only if:

(i) D does not have a vertex v with with [N T (v) N N~ (v)| = n —y*(D).
(ii) either D has a vertex v with with INT(V)NN~(v)| =n—y*(D)—1 or D
contains two vertices v, w such that
((NTRJUNTw) N (N p]UN " [w])| =n—y*(D) +2.
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Proof. Let yp(D) = y*(D) + 2. It follows from Proposition 5 that D does not
have a vertex v with [INT(v) NN~ (v)| =n —y*(D). Let f = (Vo,V1.V2) be a
yg(D)-function. Then either (1) [V1| = y*(D)+2 and V2| =0, 2) V1] = y*(D)
and |V2| = 1,0r 3) |[Vi| =y*(D)—2and |V2| = 2.

In case (1), we have |Vp| = 0. Then V(D) = V;. By Theorem 1, we have n =
y*(D)+2< 27” + 2 which leads to a contradiction because n > 7.

In case (2), let V, = {v}. Obviously (v,u) € A(D) and (u,v) € A(D) for each
u € Vj. Since for each x € Vq, (v,u) € A(D) or (u,v) ¢ A(D), we obtain [N+ (v) N
N-(w)|=n—y*(D)—1.

In case (3), let V5 = {v,w}. Since (v,u) € A(D) or (w,u) € A(D) and (u,v) €
A(D) or (u,w) € A(D) for each u € V and since x & (N T[v]JUN T[w]) N (N~ [v]U
N~ [w]) for each x € Vj, we deduce that | (N T [v]UN T[w]) N (N [v]UN"[w])| =
n—Vil=n—-(*(D)-2)=n—y*(D)+2.

Conversely, let D satisfy (i) and (ii). It follows from Proposition 5 and (i) that
yR(D) = y*(D)+2. If D has a vertex v with [NT(v) NN~ (v)| =n—y*(D) -1,
then obviously f = (NT(v) " N~ (v),V(D)— (NT[v]N N~ [v]),{v}) is a TRDF
on D of weight y*(D) + 2 implying that yz(D) < y*(D) + 2. If D has two ver-
tices v, w such that (N T[v]U N T[w]) N (N~ [v]U N~ [w])| = n —y*(D) + 2, then
S = (N RIJUNTw) NN [p]JuN"[w]), V(D) — (N T[] UNF[w) N (N~ [v]U
N~[w]),{v,w}) is a TRDF on D of weight y*(D) + 2 and the result follows again.
This completes the proof. ([l

3. TWIN ROMAN DOMINATION IN ORIENTED GRAPHS

An orientation of a graph G is a digraph D obtained from G by choosing an
orientation (x — y or y — x) for every edge xy € E(G). Clearly, two distinct
orientations of a graph can have distinct twin domination numbers. Motivated by
this observation Chartrand et al. [3] introduced the concept of the lower orientable
twin domination number dom™(G) and the upper orientable twin domination number
DOM™*(G) of a graph G, as

dom™(G) = min{y*(D) | D is an orientation of G},
and
DOM™*(G) = max{y*(D) | Dis an orientation of G}.

This concepts have been studied in [2].

Here, we propose similar concepts the lower orientable twin Roman domina-
tion number dom%(G) and the upper orientable twin Roman domination number
DOM%(G) as follows.

dom’% (G) = min{yg(D) | D is an orientation of G},
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and
DOM%(G) = max{yg(D) | Dis an orientation of G}.
Clearly dom’% (G) < DOM%(G) < n for every graph G of order n.

Proposition 7. Let G be a graph of order n with at most one cycle. Then
domy (G) = n.

Proof. By (1.2), it is enough to prove yx (?})) > n. First let G be not a cycle. We
proceed by induction on n. The result can be easily verified for all graphs with at most
3 vertices. Hence, suppose that n > 4 and the result is true for all graphs of order less
than n. Let G be a graph of order n. By assumption G has an end vertex, say x. Let

E) be an orientation of G. Then obviously for any y (E))—function =011, V2),

f(x)#0. If f(x)=1then g = (Vp, V1 —{x},V>) is a TRDF on 5)—{x} and it
— —

follows from the induction hypothesis that yz(G) = w(g) +1> yx(G —{x}) +1>

n, as desired. Now let f(x) = 2. Then f(y) = 0, where y is the support vertex of x
in G. This implies that the function h = (Vo —{y}; V1 U{y}; V> —{x}) is a TRDF on

6 —{x} with w(h) = yx(D)— 1. Now the result follows by the induction hypothesis
as above. N
Now let G = C, and let G be an orientation of G. Assume to the contrary that

Ygr(D) < n. Suppose f = (Vf, Vlf, sz) is a y;(?}))—function. Then both of Vof
and sz are nonempty. Hence (a) each vertex in Vof has exactly 2 neighbors and they
both are in sz , and (b) each vertex in sz has at most 1 neighbor not in Vof . From (a)
and (b) it immediately follows that |V0f | < |V2f |. Hence y (6) = |V1f | + 2|V2f | =
|V0f |+ |V1f |+ |V2f | = n and the proof is completed. O
The next results are immediate consequences of Proposition 7.
Corollary 3. Forn > 1, dom»(Kj,,) = n.
Corollary 4. dom}(Cy,) = dompy(P,) = Domk(Cp) = Domy(Py,) = n.
Proposition 8. For any graph G of order n > 4 with clique number ¢ > 4,

domyx(G) <n—c+4.

ﬁ
Proof. Let S ={vq,va,...,v.}beacliquein G. Let G be an orientation of G such
that the edges are oriented from v; to v, vs,..., v, and from v3,v4,..., V. to v and
the other edges oriented arbitrary. Then f = ({v3,v4,...,vc}, V(G)—S,{v1,v2}) is

a twin Roman dominating function of G which yields dom%(G) <n—c +4. O
An independent set is a set of vertices that no two of which are adjacent. A max-

imum independent set is an independent set of largest possible size. This size is called
the independence number of G, and denoted by «(G).
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Proposition 9. For any graph G of order n > 4 with §(G) > 2, domyx(G) < 2(n—
a(G)).

Proof. Let § = {v1,v2,...,Vq(G)} be an independent set of G. Since § is inde-
pendent and §(G) > 2, each v; has two neighbors u;, w; in V —S§. Let 3 be an orient-
ation of G such that (v;,u;), (w;,v;) € A(?})). Then the function f = (S,2,V —.39)
is a twin Roman dominating function of E) that implies that dom%(G) < 2(n —

a(G)). O

The next results are immediate consequences of Corollary 1 and Propositions 8
and 9.

Corollary 5. Forn > 4, domy(K,) = 4.
Corollary 6. Forn > 2, domy (K> ,) = 4.
Theorem 3. ([2]) Forr > s >3,

% 3 it s=3
dom™(Krs) =1 4 it 54,
Proposition 10. For every two integers r > s > 3,
5 if s=3
" )6 if s=4
domp(Krs) =17 it s=5
8 if s=>6.

Proof. Let G = K,y and let X = {x1,x2,...,xs}and ¥ = {y1,y2,...,y,} be the
partite sets of G. Consider the following cases.
Case 1. s = 3.
It follows from Propositions 4, 5 and Theorem 3 that yx(G) > y*(G) +2 = 5. Let

G be an orientation of G such that (x1,vi), (yi.x2) € A(E})) for each i. Clearly,
g = (Y, {x3},{x1,x2}) is a TRDF of G that implies yz(G) < 5. Hence y5(G) = 5.
Case 2. s = 4.

Using an argument similar to that described in Case 1, we obtain y3(G) = 6.

Case 3. 5= 5. N

Suppose G is an orientation of G such that (x1,y;),(yi,x2) € A(G) for each i.
Obviously, g = (Y,{x3,x4,x5},{x1,x2}) is a TRDF of el implying that y5(G) <
7. Let D be an arbitrary orientation of G. Since G has no cycle of length 2 and
for any two vertices u,v € V(G), [[NTv]UNT[u]) N (N"[v]]UN[u])| <n-—
3=|V(G)|—y*(G)+ 1, we deduce from Propositions 4, 5, 6 and Theorem 3 that
Yr(G) = y*(G)+3=7. Thus yx(G) =7.

Cased. s > 6.

It follows from Theorem 3 and (1.1) that yz (G) < 8. Let D be an arbitrary orientation
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of G and f = (Vo.V1,V2) a yx(D)-function. Since yx(G) < 8, we deduce that
Vo#@. If VoNX # @ and Vo NY # &, then we must have |V NY| > 2 and
|V2N X| > 2 that implies yz(G) > 8 as desired. Now let, without loss of generality,
VoNX =@. Then VoNY # @ that implies |V2 N X| > 2 and hence yx(D) >
4+|X|—2=s5+2>8. Thus yx(G) = 8 and the proof is completed. 0

Proposition 11. Let G = Ky m,
withl <mqi <my <...<m,. Then

m, (r = 3) be the complete r-partite graph

.....

4 if m=---=m,=1,
« 4 if my=myp=1o0rm; =2forsomei,
dompy (Kimy.my....m;) = 5 if mjy=3orm;=1andmy =23,
6 if mp;=>4.

Proof. Let G = Ky ms,...m, and let X1 = {x1,x2,....,xm, }, X2 = {y1.y2,...,
Ymo ) X3 =1{21.22,...,Zms}> X4, Xs,..., X, be the partite sets of G.
If my =---=m; =1then G = K, and by Corollary 5, we have y5(G) = 4. If

m1 = my = 1, then let 6 be an orientation of G such that (x1,x),(x,y;) € A(g)
for each x € V(G) —{x1,y1}. Obviously, g = (V(D)—{x1,y1},&.{x1.y1}) is a
TRDF of Z}) implying that y5(G) = 4 by Corollary 1. If m; = 2 for some i, say
i = 2, then assume 6 is an orientation of G such that (y1,x),(x,y2) € A(g) for
each x € V(G)—{y1,y2}. Clearly, g = (V(D)—{y1,y2},9,{y1,y2}) is a TRDF of
?}) that implies yz(G) = 4 again. If m1 = 3 or m; = 1 and m» = 3 then as Case 1.
in Proposition 10, we deduce that yl’g (G) =5.

Finally, let m; > 4. It follows from Proposition 1 that yz(G) > 6. Let ?}) be
an orientation of G such that (x1,x),(x,y1) € A(E)) for each x € V(G) —{x1,y1},
(z1,xi) € A(g) for2 <i <m and (y;,21) € A(ﬁ) for 2 <i <ms. Itis easy to

see that g = (V(D) —{x1,¥1,21},9,{x1,y1,21}) is a TRDF of Z?) which implies
Yr(G) < 6. Thus y(G) = 6 and the proof is completed. O

Theorem 4. Forn > 9, domk(Wp41) = [2] +2.

Proof. Let W;, 41 =x+Cy, and C,, = (v1,V2,...,0y). Let W, 41 be an orientation
—— ——

of W, 41 such that (v;, x) € A(Wy,41) foreachi and (v;,vi—1), (vi,vi+1) € AWy41)
for each i = 1 (mod 3). It is easy to see that the function f that assigns 2 to x and v;
fori = 1 (mod 3), @ to v;j—; and v; 41 fori = 1 (mod 3) and 1 to the other vertices,
. e . * * —— 2n
is an TRDF of W, 11 that yields dom%z (Wy+1) < yg(Wn+1) <[5 1+ 2.

Now let D be any orientation of Wy,41 and let f be an yg(D)-function. If
f(v) <1, then f is a TRDF of Cy and hence yx(D) = o(f) >n > [2?”] +2 by
Corollary 4. Assume f(v) = 2. Then the function f, restricted to C, is an RDF of
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Cy and we deduce from Proposition 7 in [4] that y 3 (D) = o(f) > f%”} + 2. Thus
domy (Wy41) = f%"} + 2 and the proof is completed. O

Theorem 5 ([2]). Forn >3, DOM*(W,,+1) >n—1.
Theorem 6. Forn > 4, DOMj(Wp41) =n+ L.

Proof. Let D be an orientation of W, for which DOM* (Wy, 1) = y*(Wy+1) >
n—1. Assume that f = (Vp,V1,V2) is a V;kz (D)-function. If Vo = &, then V, = @
and we have yp(D) = |Vi| =n + 1. Let Vo # @. To in-dominate and out-dominate
of each vertex u € Vo, we must have |V2| > 2. Then yg(D) = V1| +2|V2| > 2 +
Vil + V2| =2+ y*(D) = n + 1. It follows that DOM% (Wy+1) =n + 1. O
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