

GLOBAL RAINBOW DOMINATION IN GRAPHS

J. AMJADI, S.M. SHEIKHOLESLAMI, AND L. VOLKMANN

Received 27 May, 2014

Abstract. For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set $\{1,2,\ldots,k\}$ such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$, the condition $\bigcup_{u \in N(v)} f(u) = \{1, 2, ..., k\}$ is fulfilled, where N(v) is the neighborhood of v. The weight of a kRDF f is the value $\omega(f) =$ $\sum_{v \in V} |f(v)|$. A kRDF f is called a global k-rainbow dominating function (GkRDF) if f is also a kRDF of the complement \overline{G} of G. The global k-rainbow domination number of G, denoted by $\gamma_{grk}(G)$, is the minimum weight of a GkRDF on G. In this paper, we initiate the study of the global k-rainbow domination number and we establish some sharp bounds for it.

2010 Mathematics Subject Classification: 05C69

Keywords: k-rainbow dominating function, k-rainbow domination number, global k-rainbow dominating function, global k-rainbow domination number

1. Introduction

In this paper, G is a simple graph with vertex set V(G) and edge set E(G) (briefly V, E). The order |V| of G is denoted by n = n(G). Denote by K_n the complete graph, by C_n the cycle and by P_n the path of order n, respectively. For every vertex $v \in V(G)$, the open neighborhood $N_G(v) = N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$ and its closed neighborhood is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $\deg_G(v) = \deg(v) = |N(v)|$. The open neighborhood of a set $S \subseteq V$ is the set $N_G(S) = N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N_G[S] = N[S] = N(S) \cup S$. The minimum and maximum degrees of G are respectively denoted by $\delta(G) = \delta$ and $\Delta(G) = \Delta$. A leaf of a graph is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a vertex adjacent to at least two leaves. For a vertex v in a rooted tree T, let C(v)denote the set of children of v. Let D(v) denote the set of descendants of v and $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . We use [12, 19] for terminology and notation which are not defined here.

A subset S of vertices of G is a dominating set if N[S] = V. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set S of

© 2017 Miskolc University Press

G is global dominating set of G if S is a dominating set both of G and \overline{G} . The global domination number $\gamma_g(G)$ of G is the minimum cardinality of a global dominating set. The global domination number was introduced independently by Brigham and Dutton [7] (the term factor domination number was used) and Sampathkumar [15] and has been studied by several authors (see for example [3, 20]). Since then some variants of the global domination parameter, such as connected (total) global domination, global minus domination, and global Roman domination, have been studied [4,5,10,13].

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set $\{1,2,\ldots,k\}$ such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$, the condition $\bigcup_{u \in N(v)} f(u) = \{1,2,\ldots,k\}$ is fulfilled. The weight of a kRDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The k-rainbow domination number of a graph G, denoted by $\gamma_{rk}(G)$, is the minimum weight of a kRDF of G. A $\gamma_{rk}(G)$ -function is a k-rainbow dominating function of G with weight $\gamma_{rk}(G)$. Note that $\gamma_{r1}(G)$ is the classical domination number $\gamma(G)$. The k-rainbow domination number was introduced by Brešar, Henning, and Rall [6] and has been studied by several authors (see for example [1,2,8,9,11,14,16-18]). A 2-rainbow dominating function (briefly, rainbow dominating function) $f:V \longrightarrow \mathcal{P}(\{1,2\})$ can be represented by the ordered partition $(V_0,V_1,V_2,V_{1,2})$ (or $(V_0^f,V_1^f,V_2^f,V_{1,2}^f)$ to refer f) of V, where $V_0=\{v\in V\mid f(v)=\emptyset\}$, $V_1=\{v\in V\mid f(v)=\{1\}\}$, $V_2=\{v\in V\mid f(v)=\{2\}\}$ and $V_{1,2}=\{v\in V\mid f(v)=\{1,2\}\}$. In this representation, its weight is $\omega(f)=|V_1|+|V_2|+2|V_{1,2}|$.

A kRDF f is called a global k-rainbow dominating function (GkRDF) if f is also a kRDF of the complement \overline{G} of G. The global k-rainbow domination number of G, denoted by $\gamma_{grk}(G)$, is the minimum weight of a GkRDF on G. A $\gamma_{grk}(G)$ -function is a GkRDF of G with weight $\gamma_{grk}(G)$. Since every global k-rainbow dominating function f of G is a kRDF of G and \overline{G} , and assigning 1 to the vertices with nonempty label under f is a global dominating set of G, and since assigning $\{1, 2, \ldots, k\}$ to the vertices of a global dominating set yields a GkRDF, we deduce that

$$\max\{\gamma_g(G), \gamma_{rk}(G), \gamma_{rk}(\overline{G})\} \le \gamma_{grk}(G) \le k\gamma_g(G). \tag{1.1}$$

We note that the global k-rainbow domination number can differ significantly from the k-rainbow domination number. For example, for $n \ge k+1$, $\gamma_{rk}(K_n) = k$ and $\gamma_{grk}(K_n) = n$.

Our purpose in this paper is to initiate the study of the global k-rainbow domination number in graphs. We study basic properties of the global k-rainbow domination number and we establish some bounds for it.

We make use of the following results in this paper.

Theorem A ([14]). For any graph G of order n and maximum degree $\Delta(G) \ge 1$, $\gamma_{rk}(G) \ge \frac{k \, n}{\Delta(G) + k}$.

Theorem B ([6]). *For* $n \ge 1$,

$$\gamma_{r2}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1.$$

Theorem C ([6]). *For* $n \ge 3$,

$$\gamma_{r2}(C_n) = \left| \frac{n}{2} \right| + \left\lceil \frac{n}{4} \right\rceil - \left| \frac{n}{4} \right|.$$

Theorem D ([1]). *If* G *is a graph of order* n, *then* $\gamma_{rk}(G) \leq n - \Delta(G) + k - 1$.

Theorem E ([9]). Let G be a connected graph. If there is a path $v_3v_2v_1$ in G with $deg(v_2) = 2$ and $deg(v_1) = 1$, then G has a $\gamma_{r2}(G)$ -function f such that $f(v_1) = \{1\}$, and $2 \in f(v_3)$.

Since the function f defined by $f(v) = \{1\}$ for each $v \in V(G)$ is a GkRDF of a graph G, we have the first part of the following observation. The second part is easy to see and therefore its proof is omitted.

Observation 1. If G is a graph of order n, then $\gamma_{grk}(G) \leq n$. Furthermore, if $1 \leq n \leq 4$, then $\gamma_{grk}(G) = n$.

2. Graphs with
$$\gamma_{rk}(G) = \gamma_{grk}(G)$$

In this section we provide some sufficient conditions for a graph to satisfy $\gamma_{rk}(G) = \gamma_{grk}(G)$.

Proposition 1. If G is a disconnected graph with at least two components of order at least k, then

$$\gamma_{\sigma rk}(G) = \gamma_{rk}(G)$$
.

Proof. Let G_1, G_2, \ldots, G_k be the components of G. Assume, without loss of generality, that $|V(G_i)| \geq k$ for i=1,2. Let f be a $\gamma_{rk}(G)$ -function. Obviously, $\sum_{v \in V(G_i)} |f(v)| \geq k$ for i=1,2. If $f(x) = \emptyset$ for some $x \in V(G_i)$, then clearly $\bigcup_{v \in V(G_i)} f(v) = \{1,2,\ldots,k\}$, otherwise we may assume $\bigcup_{v \in V(G_i)} f(v) = \{1,2,\ldots,k\}$ for i=1,2 because $|V(G_1)| \geq k$ and $|V(G_2)| \geq k$. Then f is a GkRDF of G and hence $\gamma_{grk}(G) \leq \gamma_{rk}(G)$. Now the result follows from (1.1).

According to Proposition 1, if G is the disjoint union of two copies of the complete graph K_n $(n \ge k)$, then $\gamma_{grk}(G) = \gamma_{rk}(G)$.

Proposition 2. If G is a disconnected graph with $r \geq 2$ components $G_1, G_2, ..., G_r$ of order at most k-1 such that $\sum_{i=1}^r |V(G_i)| \geq k$, then

$$\gamma_{grk}(G) = \gamma_{rk}(G).$$

Proof. Assume that $\bigcup_{i=1}^r V(G_i) = \{v_1, v_2, \dots, v_s\}$, and let f be a $\gamma_{rk}(G)$ -function. Then clearly $f(v_i) \neq \emptyset$ for each i. Define $g: V(G) \longrightarrow \mathcal{P}(\{1, 2, \dots, k\})$ by $g(v_i) = \{k - i - 1\}$ for $1 \le i \le k - 1$, $g(v_i) = \{1\}$ for $i = k, k + 1, \dots, s$ and g(x) = f(x)

for $x \in V(G) - \{v_1, v_2, \dots, v_s\}$. Then obviously g is a GkRDF of G of weight $\omega(g) = \gamma_{rk}(G)$ and the proof is complete.

According to Proposition 2, if G is the disjoint union of k copies of K_1 and a copy of the complete graph K_n $(n \ge k)$, then $\gamma_{grk}(G) = \gamma_{rk}(G)$.

Theorem 1. For any connected graph G with radius $rad(G) \ge 4$, $\gamma_{gr2}(G) = \gamma_{r2}(G)$.

Proof. Let $f=(V_0,V_1,V_2,V_{1,2})$ be a $\gamma_{r2}(G)$ -function such that $|V_{1,2}|$ is maximum. We show that f is a G2RDF of G. Suppose to the contrary that f is not a 2RDF of \overline{G} . Then there exists a vertex $v\in V_0$ such that $V_{1,2}\subseteq N(v)$ and either $V_1\subseteq N(v)$ or $V_2\subseteq N(v)$. Assume, without loss of generality, that $V_1\subseteq N(v)$. Let u be an arbitrary vertex in V(G). If $u\in V_1\cup V_{1,2}$, then d(u,v)=1. If $u\in V_0$, then u and v have a common neighbor in V_1 or $V_{1,2}$ implying that $d(u,v)\leq 2$. Let $u\in V_2$. If u has a neighbor in $V_1\cup V_{1,2}$, then $d(u,v)\leq 2$ as above. If u has a neighbor w in v_0 , then $d(u,v)\leq d(u,w)+d(w,v)\leq 3$. Otherwise, since v_0 is connected, v_0 has a neighbor v_0 in v_0 . Then the function v_0 defined by v_0 by v_0 is a v_0 of v_0 for v_0 for v_0 for v_0 for v_0 and the proof is complete.

Corollary 1. Let G be a connected graph of diameter $diam(G) \ge 7$. Then

$$\gamma_{gr2}(G) = \gamma_{r2}(G)$$
.

The next results is an immediate consequence of Theorems B, C and 1.

Corollary 2. For $n \geq 8$,

$$\gamma_{gr2}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1.$$

Corollary 3. For $n \ge 8$,

$$\gamma_{gr2}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{4} \right\rceil - \left\lfloor \frac{n}{4} \right\rfloor.$$

3. BOUNDS ON THE GLOBAL k-RAINBOW DOMINATION NUMBER In this section we present some sharp lower and upper bounds on $\gamma_{grk}(G)$.

Proposition 3. For any integer $k \ge 2$ and any graph G of order $n \ge 2k$,

$$\gamma_{\sigma rk}(G) \geq 2k$$
.

Proof. Let f be a $\gamma_{grk}(G)$ -function, and let $V_0 = \{v \in V(G) \mid f(v) = \varnothing\}$. If $V_0 = \varnothing$, then $\gamma_{grk}(G) = n \ge 2k$. Let $V_0 \ne \varnothing$ and $v \in V_0$. Then $\bigcup_{x \in N_G(v)} f(x) = \{1, 2, \dots, k\}$ and $\bigcup_{x \in N_{\overline{G}}(v)} f(x) = \{1, 2, \dots, k\}$. Since $N_G(v) \cap N_{\overline{G}}(v) = \varnothing$, we obtain $\gamma_{grk}(G) = \omega(f) \ge 2k$, as desired.

This bound is sharp for the disjoint union of two copies of the complete graph K_n $(n \ge k + 1)$.

Proposition 4. For any graph G of order $n \ge 4$, $\gamma_{gr2}(G) = 4$ if and only if of G satisfies one of the following properties.

- (i) n = 4,
- (ii) there exist two vertices u and v in G such that $N(u) \cap N(v) = \emptyset$ and $N[u] \cup N[v] = V$,
- (iii) there exist three distinct vertices u, v, w in G such that $N(u) \cap (N(v) \cup N(w)) = \emptyset$ and $N(u) \cup (N(v) \cap N(w)) = V \{u, v, w\},$
- (iv) there exist four distinct vertices u, v, w, x in G such that $(N(u) \cap N(v)) \setminus \{w, x\} = \emptyset$, $(N(w) \cap N(x)) \setminus \{u, v\} = \emptyset$, $(N[u] \cup N[v]) \setminus \{w, x\} = V \{w, x\}$ and $(N[w] \cup N[x]) \setminus \{u, v\} = V \{u, v\}$.

Proof. If n=4, then it is clear that $\gamma_{gr2}(G)=4$. Let $n\geq 5$. If (ii) holds, then the function $f:V\longrightarrow \mathcal{P}(\{1,2\})$ defined by $f(u)=f(v)=\{1,2\}$ and $f(z)=\varnothing$ for $z\in V(G)-\{u,v\}$, is a 2RDF of G and \overline{G} which yields $\gamma_{gr2}(G)=4$ by Proposition 3. If (iii) holds, then the function $f:V\longrightarrow \mathcal{P}(\{1,2\})$ defined by $f(u)=\{1,2\}$, $f(v)=\{1\}$, $f(w)=\{2\}$ and $f(z)=\varnothing$ for $z\in V(G)-\{u,v,w\}$, is a 2RDF of G and \overline{G} which yields $\gamma_{gr2}(G)=4$ again. Let (iv) hold. Then the function $f:V\longrightarrow \mathcal{P}(\{1,2\})$ defined by $f(u)=f(v)=\{1\}$, $f(w)=f(x)=\{2\}$ and $f(z)=\varnothing$ for $z\in V(G)-\{u,v,x,w\}$, is a 2RDF of G and \overline{G} . This implies that $\gamma_{gr2}(G)=4$.

Conversely, Let $\gamma_{gr2}(G) = 4$ and let $f = (V_0, V_1, V_2, V_{1,2})$ be a $\gamma_{gr2}(G)$ -function such that $|V_{1,2}|$ is maximum. We consider three cases.

Case 1. $|V_{1,2}| = 2$.

Let $V_{1,2} = \{u,v\}$. Then $V_0 = V(G) - \{u,v\}$. Since f is a G2RDF, each vertex in $w \in V(G) - \{u,v\}$ must be adjacent to a vertex in $\{u,v\}$ in both G and \overline{G} . It follows that $N[u] \cup N[v] = V$ and $N(u) \cap N(v) = \emptyset$, i.e. G satisfies (ii).

Case 2. $|V_{1,2}| = 1$.

Then $|V_1| = |V_2| = 1$. Let $V_{1,2} = \{u\}$, $V_1 = \{v\}$ and $V_2 = \{w\}$. Hence $V_0 = V(G) - \{u, v, w\}$. Every vertex of $w \in V(G) - \{u, v, w\}$ must be adjacent to u or both of v, w in G and \overline{G} because f is a 2RDF of G and \overline{G} . This yields $N(u) \cap (N(v) \cup N(w)) = \emptyset$ and $N(u) \cup (N(v) \cap N(w)) = V - \{u, v, w\}$. Thus G satisfies (iii) in this case.

Case 3. $|V_{1,2}| = 0$.

If $V_0 = \varnothing$, then $V_1 \cup V_2 = V(G)$ which implies that $4 = \gamma_{gr2}(G) = |V_1 \cup V_2| = n$, i.e. G satisfies (i). Now assume that $V_0 \neq \varnothing$ and let $z \in V_0$. Since f is a 2RDF of G and \overline{G} , $\bigcup_{v \in N_G(z)} f(v) = \{1, 2\}$ and $\bigcup_{v \in N_{\overline{G}}(z)} f(v) = \{1, 2\}$. Assume that $u, w \in N_G(z)$ and $x, v \in N_{\overline{G}}(z)$ such that $f(u) = f(v) = \{1\}$ and $f(w) = f(x) = \{2\}$. Since f is a G2RDF, each vertex in $V(G) - \{u, v, w, x\}$ must be adjacent to a vertex in $\{u, v\}$ and a vertex in $\{w, x\}$ in G and \overline{G} . It follows that $(N(u) \cap N(v)) \setminus \{w, x\} = \varnothing$, $(N(w) \cap N(x)) \setminus \{u, v\} = \varnothing$, $(N[u] \cup N[v]) \setminus \{w, x\} = V - \{w, x\}$ and $(N[w] \cup N[x]) \setminus \{u, v\} = V - \{u, v\}$. Thus G satisfies (iv). This completes the proof.

Proposition 5. Let $k \ge 2$ be an integer. If the graph G has $r \ge 1$ components G_1, G_2, \ldots, G_r with $\sum_{i=1}^r |V(G_i)| \le k-1$ then

$$\gamma_{grk}(G) \leq \gamma_{rk}(G) + k - \sum_{i=1}^{r} |V(G_i)|.$$

Proof. Let $\bigcup_{i=1}^r V(G_i) = \{v_1, v_2, \dots, v_s\}$, and let f be a $\gamma_{rk}(G)$ -function. Clearly, $f(v_i) \neq \emptyset$ for each i. Define $g: V(G) \longrightarrow \mathcal{P}(\{1, 2, \dots, k\})$ by $g(v_s) = \{s, s + 1, \dots, k\}, g(v_i) = \{i\}$ for $i = 1, 2, \dots, s - 1$ and g(x) = f(x) for $x \in V(G) - \{v_1, v_2, \dots, v_s\}$. Then obviously g is a GkRDF of G with weight $\omega(g) = \gamma_{rk}(G) + k - s$ and so $\gamma_{grk}(G) \leq \gamma_{rk}(G) + k - \sum_{i=1}^r |V(G_i)|$.

Let H be the disjoint union of $r \le k-1$ isolated vertices and a star $K_{1,s}$ with $s \ge k$. Then $\gamma_{rk}(H) = r + k$ and $\gamma_{grk}(H) = 2k$. This example demonstrates that Proposition 5 is tight.

Proposition 6. Let G be a graph of order $n \ge 4$ and $u, v \in V(G)$. If $uv \notin E(G)$, then

$$\gamma_{grk}(G) \le n - \deg(u) - \deg(v) + 2|N(u) \cap N(v)| + 2k - 2,$$

and if $uv \in E(G)$, then

$$\gamma_{grk}(G) \le n - \deg(u) - \deg(v) + 2|N(u) \cap N(v)| + 2k.$$

Proof. Define $f: V(G) \longrightarrow \mathcal{P}(\{1, 2, ..., k\})$ as follows

$$f(z) = \begin{cases} \{1, 2, \dots, k\} & \text{if } z \in \{u, v\} \\ \emptyset & \text{if } z \in ((N(u) \cup N(v)) - \{u, v\}) \setminus (N(u) \cap N(v)) \\ \{1\} & \text{otherwise.} \end{cases}$$

It is easy to see that f is a GkRDF of G which attains the bound. This completes the proof.

Corollary 4. If G is a connected triangle-free graph of order n > 4, then

$$\gamma_{grk}(G) \leq \min\{n - \Delta(G) - \delta(G) + 2k, \gamma_{rk}(G) + 2k - 1\}.$$

Proof. By considering a vertex of maximum degree and one of its neighbors, it follows from Proposition 6 that $\gamma_{grk}(G) \leq n - \Delta(G) - \delta(G) + 2k$. Hence, it is sufficient to show that $\gamma_{grk}(G) \leq \gamma_{rk}(G) + 2k - 1$. If $n \leq \gamma_{rk}(G) + 2k - 1$, the result is immediate. Let $n > \gamma_{rk}(G) + 2k - 1$ and let f be a $\gamma_{rk}(G)$ -function. Then there exists a vertex u such that $f(u) = \emptyset$. Then u has a neighbor v such that $|f(v)| \geq 1$. Define $g: V(G) \longrightarrow \mathcal{P}(\{1, 2, \dots, k\})$ by $g(u) = g(v) = \{1, 2, \dots, k\}$ and g(x) = f(x) otherwise. Clearly, g is a GkRDF of G and hence $\gamma_{grk}(G) \leq \gamma_{rk}(G) + 2k - 1$. This completes the proof.

Proposition 7. Let $k \ge 2$ be an integer, and let G be a graph of diameter diam $(G) \ge 5$. Then

$$\gamma_{grk}(G) \le \gamma_{rk}(G) + 2k - 2.$$

Proof. If *G* is disconnected, then the result follows from Propositions 1 and 5. Henceforth, we assume that *G* is connected. Let *f* be a $\gamma_{rk}(G)$ -function. Let $v_1v_2...v_d$ be a diametral path in *G*. If $f(v_1) = f(v_d) = \emptyset$, then we have $\bigcup_{x \in N(v_1)} f(x) = \{1, 2, ..., k\}$ and $\bigcup_{x \in N(v_d)} f(x) = \{1, 2, ..., k\}$. Since diam(*G*) ≥ 5, we have $N(v_1) \cap N(v_d) = \emptyset$. It follows that *f* is a GkRDF of *G* and hence $\gamma_{grk}(G) = \gamma_{rk}(G)$. If $f(v_1) \neq \emptyset$ and $f(v_d) \neq \emptyset$, then the function $g: V \longrightarrow \mathcal{P}(\{1, 2, ..., k\})$ defined by $g(v_1) = g(v_d) = \{1, 2, ..., k\}$ and g(x) = f(x) for $x \in V(G) - \{v_1, v_d\}$, is a GkRDF of *G* of weight at most $\omega(f) + 2k - 2$ and so $\gamma_{grk}(G) \leq \gamma_{rk}(G) + 2k - 2$. Now let $f(v_1) = \emptyset$ and $f(v_d) \neq \emptyset$ (the case $f(v_1) \neq \emptyset$ and $f(v_d) = \emptyset$ is similar). Define $g: V \longrightarrow \mathcal{P}(\{1, 2, ..., k\})$ by $g(v_d) = \{1, 2, ..., k\}$ and g(x) = f(x) for $x \in V(G) - \{v_d\}$. Obviously, *g* is a GkRDF of *G* of weight at most $\omega(f) + k - 1$ and so $\gamma_{grk}(G) \leq \gamma_{rk}(G) + k - 1$. This completes the proof. □

Proposition 8. If G is a graph of diameter 3 or 4, then

$$\gamma_{grk}(G) \leq \gamma_{rk}(G) + 2k$$
.

Proof. Let f be a $\gamma_{rk}(G)$ -function, and let u and v be two vertices of G such that $d(u,v)=\operatorname{diam}(G)$. Then the function $g:V\longrightarrow \mathcal{P}(\{1,2,\ldots,k\})$ defined by $g(u)=g(v)=\{1,2,\ldots,k\}$ and g(x)=f(x) for $x\in V(G)-\{u,v\}$, is a GkRDF of G and therefore $\gamma_{grk}(G)\leq \gamma_{rk}(G)+2k$.

Theorem 2. If G is a graph of order $n \ge 4$ with minimum degree $\delta(G)$, then

$$\gamma_{grk}(G) \le \gamma_{rk}(G) + \delta(G) + k - 1.$$

This bound is sharp for stars $K_{1,t}$ $(t \ge 2k-1)$ by Proposition 3.

Proof. If G is disconnected, then the result follows from Propositions 1 and 5. Therefore we assume that G is connected. Let u be a vertex of minimum degree $\delta(G)$, f be a $\gamma_{rk}(G)$ -function and $B = \{x \in N(u) \mid f(x) = \emptyset\}$.

If $f(u) = \emptyset$, then $\bigcup_{v \in N(u) - B} f(v) = \{1, 2, \dots, k\}$. Then obviously the function $g: V(G) \longrightarrow \mathcal{P}(\{1, 2, \dots, k\})$ defined by $g(u) = \{1, 2, \dots, k\}, g(x) = \{1\}$ if $x \in B$ and g(z) = f(z) otherwise, is a GkRDF of G with weight at most $\gamma_{rk}(G) + \delta(G) + k - 1$ and hence $\gamma_{grk}(G) \le \gamma_{rk}(G) + \delta(G) + k - 1$.

Let $|f(u)| \ge 1$. Define $g: V(G) \longrightarrow \mathcal{P}(\{1,2,\ldots,k\})$ by $g(u) = \{1,2,\ldots,k\}$, $g(v) = \{1\}$ if $v \in B$ and g(z) = f(z) for each $z \in V(G) - (B \cup \{u\})$. It is clear that g is a GkRDF of G with weight at most $\gamma_{rk}(G) + \delta(G) + k - 1$ and hence $\gamma_{grk}(G) \le \gamma_{rk}(G) + \delta(G) + k - 1$. This completes the proof.

4. Global rainbow domination numbers of trees

According to Theorem 2, for any tree T of order $n \ge 4$ we have

$$\gamma_{gr2}(T) \le \gamma_{r2}(T) + 2. \tag{4.1}$$

In this section we characterize all extremal trees attaining equality in (4.1). We begin with some lemmas giving some sufficient conditions for a tree to have global 2-rainbow domination number less than $\gamma_{r2}(T) + 2$. As a special case, Corollary 1 and Proposition 3 imply the next results.

Corollary 5. For any tree T with diam $(T) \ge 7$, $\gamma_{gr2}(T) = \gamma_{r2}(T)$.

Corollary 6. If T is a star of order $n \ge 4$, then $\gamma_{gr2}(T) = \gamma_{r2}(T) + 2$.

Lemma 1. Let T be a tree. If T has two strong support vertices, then $\gamma_{gr2}(T) \le \gamma_{r2}(T) + 1$.

Proof. Let u and v be two strong support vertices of T and let f be a $\gamma_{r2}(T)$ -function. Obviously we may assume that $f(u) = f(v) = \{1, 2\}$. Since T is a tree, u and v have at most one common neighbor. If u and v have no common neighbor, then clearly f is a G2RDF of T and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. If u and v has a common neighbor, say w, then the function g defined by $g(w) = f(w) \cup \{1\}$ and g(x) = f(x) otherwise, is a G2RDF of T of weight at most $\gamma_{r2}(T) + 1$ and the result follows. \square

Lemma 2. Let T be a tree. If diam(T) = 6, then $\gamma_{gr2}(T) = \gamma_{r2}(T)$.

Proof. Let $P=v_1v_2...v_7$ be a diametral path of T and let f be a $\gamma_{r2}(T)$ -function. Root T at v_1 . If v_2 and v_6 are strong support vertices, then f is a $\gamma_{gr2}(T)$ -function since v_2 and v_6 have no common neighbor. Hence $\gamma_{gr2}(T)=\gamma_{r2}(T)$. Assume, without loss of generality, that $\deg(v_2)=2$. By Theorem E, we may assume $f(v_1)=\{1\}$ and $2\in f(v_3)$. If v_6 is a strong support vertex, then we can assume $f(v_6)=\{1,2\}$ and clearly f is a G2RDF of T implying that $\gamma_{gr2}(T)=\gamma_{r2}(T)$. Henceforth, we assume $\deg(v_6)=2$. By Theorem E, we may assume $f(v_7)=\{1\}$ and $f(v_7)=\{1\}$ and $f(v_7)=\{1\}$ and $f(v_7)=\{1\}$ and $f(v_7)=\{2\}$, $f(v_7)=\{2\}$ if $f(v_7)=\{2\}$ and $f(v_7)=\{1\}$ and $f(v_7)=\{1\}$ and $f(v_7)=\{2\}$, $f(v_7)=\{2\}$ if $f(v_7)=\{2\}$ and $f(v_7)=\{1\}$ and $f(v_7)=\{2\}$. This completes the proof.

Lemma 3. Let T be a tree. If diam(T) = 5, then $\gamma_{gr2}(T) \le \gamma_{r2}(T) + 1$.

Proof. Let $P = v_1 v_2 \dots v_6$ be a diametral path of T, and let f be a $\gamma_{r2}(T)$ -function. If v_2 and v_5 are strong support vertices, then f is a $\gamma_{gr2}(T)$ -function and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. Assume, without loss of generality, that all support vertices adjacent to v_4 have degree 2. By Theorem E, we may assume $f(v_6) = \{1\}$ and $2 \in f(v_4)$. Then the function g defined by $g(v_3) = f(v_3) \cup \{1\}$ and g(x) = f(x) otherwise, is a G2RDF of T of weight at most $\gamma_{r2}(T) + 1$ that implies $\gamma_{gr2}(T) \leq \gamma_{r2}(T) + 1$.

A *subdivision* of an edge uv is obtained by removing the edge uv, adding a new vertex w, and adding edges uw and wv. The *subdivision graph* S(G) is the graph obtained from G by subdividing each edge of G. The subdivision star $S(K_{1,t})$ for $t \ge 2$, is called a *healthy spider*. A *wounded spider* S_t is the graph formed by subdividing at most t-1 of the edges of a star $K_{1,t}$ for $t \ge 2$. The *center of a spider*, is the center of the star whose subdivision produced the spider.

Definition 1. For $1 \le i \le 2$, let \mathcal{B}_i be the family of trees T defined as follows and let $\mathcal{B} = \bigcup_{i=1}^2 \mathcal{B}_i$.

 \mathcal{B}_1 : T is a spider S_t for some $t \geq 2$ with exception of stars, wounded spiders S_t ($t \geq 3$) with exactly one wounded leg or wounded spiders S_t ($t \geq 3$) with at least four healthy legs.

 \mathcal{B}_2 : T is obtained from stars $K_{1,r_1}, K_{1,r_2}, \ldots, K_{1,r_j}$ where $r_k \geq 3$ for $1 \leq k \leq j$, with centers y_1, y_2, \ldots, y_j $(j \geq 2)$ by adding a new vertex x and joining x to all vertices y_j and adding at most one pendant edge at x.

Lemma 4. Let T be a tree. If diam(T) = 4, then $\gamma_{gr2}(T) \le \gamma_{r2}(T) + 1$ and equality holds if and only if $T \in \mathcal{B}$.

Proof. Let diam(T) = 4 and let $P = v_1 v_2 v_3 v_4 v_5$ be a diametral path of T. Let f be a $\gamma_{r,2}(T)$ -function. Consider the following cases.

Case 1. $deg(v_2) = 3$.

Suppose u, v_1 are the leaves adjacent to v_2 . Then we can assume that $f(v_2) = \{1, 2\}$. If $\deg(v_4) \geq 3$, then we may assume $f(v_4) = \{1, 2\}$ and if $\deg(v_4) = 2$ then by Theorem E we can assume $f(v_5) = \{1\}$ and $2 \in f(v_3)$. Define $g: V(T) \to \mathcal{P}(\{1, 2\})$ by $g(v_1) = \{1\}, g(u) = \{2\}, g(v_2) = \emptyset$ and g(x) = f(x) otherwise. Obviously g is a G2RDF of T of weight $\gamma_{r_2}(T)$ and hence $\gamma_{g_{r_2}}(T) = \gamma_{r_2}(T)$.

By Case 1, we may assume that all support vertices adjacent to v_3 have degree different from 3.

Case 2. $deg(v_2) > 3$.

Then $f(v_2) = \{1,2\}$. If $\deg(v_4) = 2$, then by Theorem E we may assume $f(v_5) = \{1\}$ and $2 \in f(v_3)$, and clearly f is a G2RDF of T and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. So we assume that each support vertex adjacent to v_3 has degree at least 4. If v_3 is a strong support vertex, then $f(v_3) = \{1,2\}$ and clearly f is a G2RDF of T and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. Let v_3 be not a strong support vertex. Then $T \in \mathcal{B}_2$ and T has at most two $\gamma_{r2}(T)$ -functions which none of them is G2RDF of T and hence $\gamma_{gr2}(T) \geq \gamma_{r2}(T) + 1$. On the other hand, the function g defined by $g(v_3) = \{1\}$ and g(x) = f(x) otherwise is a G2RDF of T of weight $\gamma_{r2}(T) + 1$ implying that $\gamma_{gr2}(T) = \gamma_{r2}(T) + 1$.

By Cases 1 and 2, we may assume that all support vertices adjacent to v_3 have degree 2. Thus T is a spider of diameter 4. If T is a wounded spiders S_t ($t \ge 3$) with exactly one wounded leg, then the function g that assigns \varnothing to all support vertices

of T with exception of the center of spider, $\{1\}$ to the center of spider and the leaf adjacent to the center of spider, and $\{2\}$ to the other leaves, is a G2RDF of T of weight $\gamma_{r2}(T)$ implying that $\gamma_{gr2}(T) = \gamma_{r2}(T)$. Now T is a wounded spider S_t ($t \geq 3$) with at least four healthy legs. Suppose x is the center of T and u_1, u_2, u_3, u_4 are leaves at distance two from x. Then the function g that assigns $\{1,2\}$ to x, \emptyset to all support vertices of T, $\{1\}$ to u_1, u_2 , and $\{2\}$ to the other leaves, is a G2RDF of T of weight $\gamma_{r2}(T)$ implying that $\gamma_{gr2}(T) = \gamma_{r2}(T)$. Finally let T be a spider that is not a wounded spider S_t ($t \geq 3$) with exactly one wounded leg or a wounded spider S_t ($t \geq 3$) with at least four healthy legs, that is $T \in \mathcal{B}_1$. It is easy to see that in this case $\gamma_{gr2}(T) = \gamma_{r2}(T) + 1$ and the proof is complete.

For $p, q \ge 1$, a double star DS(p,q) is a tree with exactly two vertices that are not leaves, with one adjacent to p leaves and the other to q leaves.

Lemma 5. Let T be a tree. If $\operatorname{diam}(T) = 3$, then $\gamma_{gr2}(T) \le \gamma_{r2}(T) + 1$ and equality holds if and only if T = DS(p,q) with $q \ge p = 1$.

Proof. Let diam(T)=3. Then T is a double star DS(p,q) with $q\geq p\geq 1$. Let u,v be the vertices of T of degree p and q, respectively. If $p\geq 2$, then u,v are strong support vertices with no common neighbor and it follows from the proof of Lemma 1 that $\gamma_{gr2}(T)=\gamma_{r2}(T)$. Henceforth, assume p=1. If q=1, then $T=P_4$ and clearly $\gamma_{gr2}(T)=\gamma_{r2}(T)+1$. Let $q\geq 2$ and u' be the leaf adjacent to u. Then T has exactly two $\gamma_{r2}(T)$ -functions f_i (i=1,2) defined by $f_i(v)=\{1,2\}$, $f_i(u')=\{i\}$ and $f_i(x)=\varnothing$ otherwise. Obviously, none of f_1 or f_2 is not a G2RDF of T and also the function g defined by $g(u)=\{1\}$ and $g(x)=f_1(x)$ for $x\in V(T)-\{u\}$ is a G2RDF of T that yields $\gamma_{gr2}(T)\geq \gamma_{r2}(T)+1$.

The next theorem is an immediate consequence of (4.1), Corollaries 5, 6 and Lemmas 2, 3, 4, 5.

Theorem 3. Let T be a tree of order $n \ge 4$. Then $\gamma_{gr2}(T) = \gamma_{r2}(T) + 2$ if and only if T is the star $K_{1,t}$ for some $t \ge 3$.

ACKNOWLEDGEMENT

The authors would like to thank anonymous referees for their remarks and suggestions that helped improve the manuscript.

REFERENCES

- [1] J. Amjadi, A. Bahremandpour, S. M. Sheikholeslami, and L. Volkmann, "The rainbow domination number of a digraph," *Kragujevac J. Math.*, vol. 37, no. 2, pp. 257–268, 2013.
- [2] J. Amjadi, N. Mohammadi, S. M. Sheikholeslami, and L. Volkmann, "The k-rainbow bondage number of a digraph," *Discuss. Math. Graph Theory*, vol. 35, no. 2, pp. 261–270, 2015, doi: 10.7151/dmgt.1797.
- [3] S. Arumugam, K. Karuppasamy, and I. S. Hamid, "Fractional global domination in graphs," *Discuss. Math. Graph Theory*, vol. 30, no. 1, pp. 33–44, 2010, doi: 10.7151/dmgt.1474.

- [4] M. Atapour, S. Norouzian, and S. M. Sheikholeslami, "Global minus domination in graphs," *Trans. Comb.*, vol. 3, no. 2, pp. 35–44, 2014.
- [5] M. Atapour, S. M. Sheikholeslami, and L. Volkmann, "Global Roman domination in trees," *Graphs Combin.*, vol. 31, no. 4, pp. 813–825, 2015, doi: 0.1007/s00373-014-1415-3.
- [6] B. Brešar and T. K. Šumenjak, "On the 2-rainbow domination in graphs," *Discrete Appl. Math.*, vol. 155, no. 17, pp. 2394–2400, 2007, doi: 10.1016/j.dam.2007.07.018.
- [7] R. C. Brigham and R. D. Dutton, "Factor domination in graphs," *Discrete Math.*, vol. 86, no. 1, pp. 127–136, 1990, doi: 10.1016/0012-365X(90)90355-L.
- [8] G. J. Chang, J. Wu, and X. Zhu, "Rainbow domination on trees," *Discrete Appl. Math.*, vol. 158, no. 1, pp. 8–12, 2010, doi: 10.1016/j.dam.2009.08.010.
- [9] N. Dehgardi, S. M. Sheikholeslami, and L. Volkmann, "The rainbow domination subdivision numbers of graphs," *Mat. Vesnik*, vol. 67, no. 2, pp. 102–114, 2015.
- [10] D. Delic and C. Wang, "The global connected domination in graphs," Ars Combin., vol. 114, pp. 105–110, 2014.
- [11] M. Falahat, S. M. Sheikholeslami, and L. Volkmann, "New bounds on the rainbow domination subdivision number," *Filomat*, vol. 28, no. 3, pp. 615–622, 2014, doi: 0.2298/FIL1403615F.
- [12] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Fundamentals of domination in graphs*. New York: Marcel Dekker, Inc., 1998.
- [13] V. R. Kulli and B. Janakiram, "The total global domination number of a graph," *India J. Pure Appl. Math.*, vol. 27, pp. 537–542, 1996.
- [14] D. Meierling, S. M. Sheikholeslami, and L. Volkmann, "Nordhaus-Gaddum bounds on the krainbow domatic number of a graph," *Applied Math. Lett.*, vol. 24, no. 10, pp. 1758–1761, 2011, doi: 10.1016/j.aml.2011.04.046.
- [15] E. Sampathkumar, "The global domination number of a graph," *J. Math. Phys. Sci.*, vol. 23, no. 5, pp. 377–385, 1989.
- [16] S. M. Sheikholeslami and L. Volkmann, "The k-rainbow domatic number of a graph," *Discuss. Math. Graph Theory*, vol. 32, no. 1, pp. 129–140, 2012, doi: 10.7151/dmgt.1591.
- [17] S. M. Sheikholeslami and L. Volkmann, "The k-rainbow domination and domatic numbers of digraphs," Kyungpook Math. J., vol. 56, no. 1, pp. 69–81, 2016.
- [18] C. Tong, X. Lin, Y. Yang, and M. Luo, "2-rainbow domination of generalized petersen graphs p (n, 2)," *Discrete Appl. Math.*, vol. 157, no. 8, pp. 1932–1937, 2009, doi: 10.1016/j.dam.2009.01.020.
- [19] D. B. West, Introduction to graph theory. Prentice hall Upper Saddle River, 2001.
- [20] V. Zverovich and A. Poghosyan, "On Roman, global and restrained domination in graphs," *Graphs Combin.*, vol. 27, no. 5, pp. 755–768, 2011, doi: 10.1007/s00373-010-0992-z.

Authors' addresses

J. Amjadi

Azarbaijan Shahid Madani University, Department of Mathematics, Tabriz, I.R. Iran *E-mail address*: j-amjadi@azaruniv.edu

S.M. Sheikholeslami

Azarbaijan Shahid Madani University, Department of Mathematics, Tabriz, I.R. Iran *E-mail address*: s.m.sheikholeslami@azaruniv.edu

L. Volkmann

RWTH Aachen University, Lehrstuhl II für Mathematik, 52056, Aachen, Germany *E-mail address:* volkm@math2.rwth-aachen.de