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Abstract. In this paper, we prove some Tauberian remainder theorems for Cesaro summability
method of noninteger order o > —1.
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1. INTRODUCTION

Let A% be defined by the generating function (1—x)@1 = 3o o A%x",
(Jx| < 1), where @ > —1. For a real sequence u = (1), the Cesaro means of the
sequence (u,) of noninteger order « are defined by

1 _
a,go‘)(u) =1 ZA%_]I-MJ'.

We say that a sequence (u#5) is (C,«) summable to a finite number s, where o > —1
if

lim U,E“)(u) =y, (1.1)
n—>0o0

and we write u, — s (C,«). We denote the backward difference of (1), by Au, =
Up —Up—1, With Aug = ug. We define 1, (u) = ndu, (n =0,1,2,..) and indicate
r,(,"‘) (1) as (C,«) mean of (7, (u)).

Note that if taking « = k where k is a nonnegative integer, then we obtain the
(C, k) summability method and for o = 0, the (C, 0) summability is ordinary conver-
gence.

The (C,«) summability method is regular, more generally, if a sequence (u) is
(C,a) summable to s, where @ > —1 and 8 > « for «, 8, then (u,) is also (C,B)
summable to s. However, the converse is not always true. The converse of this
statement is valid under some conditions called Tauberian conditions. Any theorem
which states that convergence of a sequence follows from a summability method and
some Tauberian condition(s) is said to be a Tauberian theorem. Recently, a number
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of authors such as Estrada and Vindas [4, 5], Natarajan [15], Canak et al. [2], Erdem
and Canak [3], Canak and Erdem [ 1] have investigated Tauberian theorems for several
summability methods.

For a sequence (uy) and for each integer m > 1,

(nA)mun = nA((nA)m—1un), (1.2)

where (nA)ouy = uy and (nA)1u, = nAuy,.
For o > —1, the identity

I,E"‘)(u) = nAa,(l“) (u) (1.3)
was proved by Kogbetliantz [9]. Note that r,S") (u) =ty (u).
The identity
1
U,E“)(u) —a,g“"'l)(u) = mt,ga+1)(u) (1.4)

is used in the various steps of proofs (see [10]).
Canak et al. [2] represent the identity

nATEt! = (@ + 1)(z2 — @11, (1.5)
for o > —1.
Erdem and Canak [3] prove that for « > —1 and any integer k > 1
k
At w) = 3 (=11 AP (@ A+ (), (1.6)
j=1
where Al(cj)(oz) = a](cj_l)(a) + a](cj)(oz), a](co)(oz) =0 and
a () =1K ;, (a+i) 3 (@+1)(@+1)...(a+1_1).

JH1stita,...,tj1 <k
r<s= ity <t
2. TAUBERIAN REMAINDER THEOREMS

Let A = (A,,) be a nondecreasing sequence of positive numbers such that A, — oc.
A sequence (uy) is called bounded with the rapidity (A,) (in short A-bounded) if

An(up —s) = O(1),

with lim u,; =s. Let
n—>0o0

mh = {u=(up)| lim u, =5 and A,(u,—s)= 0(1)}. 2.1
n—>oo
A sequence (up) is called A-bounded by the (C, ) method of summability if
An(0yP () —s5) = O(1), 2.2)

with lim aé“)(u) = 5. Shortly, we write u € ((C,«),m*).
n—o0
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G. Kangro [7] introduced the concepts of Tauberian remainder theorems using
summability with given rapidity A. G. Kangro [8] and Tammeraid [16, 7] proved
some Tauberian remainder theorems for several summability method, such as Riesz,
Cesaro, Holder and Euler-Knopp methods. Recently, various authors have represen-
ted some Tauberian remainder theorems (see [12, 13]). In [18], Tammeraid proved
some Tauberian remainder theorems in which the (C, @) summability method is used.
Tauberian remainder theorems have also been studied by many authors via the Four-
ier integral method. [6, 11]

Meronen and Tammeraid [14] proved the following Tauberian remainder theor-
ems:

Theorem 1. Let the condition
Aty ) = 0(1)
be satisfied. If u € ((C,1),m?), then u € m*.
Theorem 2. Let the conditions
AnTn(u) = O(1),
Ann ATV () = 0(1)

be satisfied. If u € ((C, 1),m%), then u € m*.

The main purpose of this paper is to prove several Tauberian remainder theorems
for Cesaro summability method of noninteger order ¢ > —1. Our main theorems
improve Theorem 1 and Theorem 2 given by Meronen and Tammeraid [14].

3. A LEMMA
We require the following lemma to be used in the proofs of main theorems.

Lemma 1. Let o > —1. For any integer k > 2,

(At () = B1,1—at® () — B1,10{ (u) + B1,16% D (u)
k
+ Z (Bj,j_la,g"‘"'j_z) (u) —2Bj’j_%0,$“+j_1)(u) + Bj,jo,g"""j)(u)) ,
j=2
where Byj = (@+m) @+ (=1)"t1 4" @) and AP (@) = aV ™V (@) +a (@),
al(co) (@) =0and

a(@)=1K ;| (a+i) 3 (@+r)(@+1)...(@+t—1).
JH1=tita,....tj1 =k
r<s=t <Is
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Proof. From identity (1.6), we have

k
(A w) = 3D AL @nar D w)
j=1

k
= A,(cl)(a)nAr,S““)(u) + Z(—I)J‘HA,(cj)(a)nAt,E“ﬂ)(u).
j=2
It follows from identity (1.5) that

At ) = (@ + 1AL (@) (@@ () — 2D ()

k
+ 3 @+ HED AL (@@ D ) = 10D ).
j=2
By identity (1.4), we can write the above equation as

(A @) = (@ + DAL @7 ) — (@ + 1240 @) (01 00 — 0 D)

k
+ 3@+ HEDH AL @) (@ + = DO D @) —o*H D))
j=2

—(@+)E VW o w))).
Therefore,
(nA)e5, ) ()
= (a+ DAP @7 ) — (@ + 1?4V @02 ) + (@ + 124 (@)0 @D ()
k
+Y (@+pe+j =D AP @ 2 )
j=2
— @+ )+ j =D)AL @0 D @)
— @+ DD AP @0 V) + @+ DT AP @0 D w)).
Hence, we have
(n Az O )
= (@+ DA (@7 @) — @+ D> AP @0 () + @+ DA (@)D (w)
k
+ 3 (@t e+ j = DDA @o D)
Jj=2
— @+ /)a+2j = DD AL @0 D )
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+ @+ P AP @0 D w))
Taking (o +m) (o + l)(—l)m"'lA](cm) (o) = By, 1, we obtain

(n At () = By 1—at(® ) — B1,10® (u) + B1,15%T D (u)

k
+ Z (Bj,j—lU,ga—H_z) (u) —ZBJ- j_%a’ga—i-j—l)(u) + Bj,jarsa+j)(u)) ‘
j=2
Thus, we conclude that Lemma 1 is true for each integer k > 2. O

4. MAIN RESULTS

In the main theorems, we prove some Tauberian remainder theorems to recover A-
bounded by the (C, o) summability of a sequence out of A-bounded by the (C,x + )
summability for j = 1,2 and any integer j = k, and some suitable conditions. In
special cases of main theorems, we obtain some classical type Tauberian remainder
theorems for the (C, 1) summability method.

Theorem 3. Let the conditions
Ann AT () = 0(1), .1
and
I\ () = 0(1) 4.2)
be satisfied for « > —1. Ifu € (C,a + 1),m*), then u € ((C, ), m*).
Proof. From identity (1.5), we have
Ann ATOTD () = Ay (e + D) (P () — @D (u))
= An(a+ 1) () — Ap (@ 4+ DD ().
From identity (1.4), we obtain
Ann AT () = L (@ + DT ) = dn (@ + 120 (u) — @D (w)).
Rewritten the above equation, we have
In(@+ 120 ) = 5) = Ane + D20V () —s5)
+ An(a + 1)r,£“) (u)— )LnnAr,S""H)(u).
Using (4.1) and (4.2), we get
An(@+ 120D w)—s) = 0(1)+ 0(1) + 0(1) = 0(1).
Therefore, A, (0,5“)(14) —s) = O(1). That means u € ((C,«),m*). O

Notice that taking o = 0, we obtain Theorem 2.
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Proposition 1. Let the conditions

An(nA)27 42 () = 0(1), (4.3)
At ® ) = 0(1), (4.4)

and
An (02T () —s5) = 0(1) (4.5)

be satisfied for « > —1. Ifu € (C,a + 1),m*), then u € ((C, ), m*).
Proof. Taking k = 2 in Lemma 1, we have
An(18)25 D () = 2n (@ + 2@+ 1) (7 ()~ 7D (w))
— e +2? (7 D) - ()
= An(@+2)(@+ DY) = Ay (@ +2) (@ + D@D W)
—An(@+2°7 T ) + A (@ +2)° 7D ().
From identity (1.4), we get
An(nA)27\ ) (u)
= An(@+2) (@ + D7\ ) — An(e+2) (e + 1) ((a +1)(0 (u) — a,&a+1>(u)))
~An(@+2? ((@+ Do ()~ 0 D))
+hn(@+2)? (@ +20 ) —0 W)
= (@ +2) (@ + DT ) = Ap (@ + )2 (@ +2)0 (u)
+ An(@+ D@ +2)0 TV ) = Ay (@ +2)% (@ + 1)o@ (u)
+ (@ +2) @+ Dol @) + An(e +2)°0 D ) = An (e +2)°62 12 (1)
= (@ +2) (@ 4+ DT ) — Ap (@ + (e +2) 2 + 3)a@ (u)
+ (@423 + @422 @+ 1) + (@ + 1)@ +2)5 %D ()
—An(@42)30 D).
Rewritten the above equation, we have
An (o + 1) (a +2) a4 3) (6 (u) —s)
= An AT () 4+ Ap (@ +2) (@ + DT W) + A (@ +2)% + (@ +2)% (@ + 1)
+(@+D* @ 42) =)@V W) = A, (@ +2)% —5)a@ D (u).
Using (4.3), (4.4) and (4.5), we get
An (@4 1)(@+2)2a+3)(0\? ) —s) = O(1) + O(1) + O(1) = O(1).
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Therefore, A, (o,ga)(u) —s) = O(1). That means u € ((C,a),m*). O

Now, we represent a Tauberian remainder theorem which generalizes Theorem 3
and Proposition 1.

Theorem 4. Let the conditions

An(n AT () = 0(1), (4.6)
At ® ) = 0(1), 4.7

and .
M@ ) —s)=0() for 2<j<k 4.8)

be satisfied for « > —1. Ifu € (C,a + 1),m*), then u € ((C, ), m*).
Proof. From Lemma 1 we have

An(nA)k‘E}g‘H'k)(u) = Bl,l—aknr,g"‘)(u)—B1,1kn0,§°‘)(u) + Bl,lkna,g"‘ﬂ)(u)

k
+ Ay Z (Bj,j_10,$“+j_2) (u)— ZBj,j_%o,g“Jrj_l)(u) + Bj,jo,ga+j)(u)) ,
j=2
Rewritten the above equation, we have
Bi12n (0, () —5)
= Bi1-atn 0y () = An (1) 50 () + Bridn (07D () —5)

k k
+An Y Bij—10 TR =) = An Y 2B, ;1 (0,0 TV ) —s)
Jj=2 Jj=2

+kni3j, J @ @) —s).
j=2

Using (4.6), (4.7) and (4.8), we get

Bi,1An (0 (u) —5) = O(1) + O(1) + O(1) + O(1) + O(1) + O(1) = O(1).
Therefore, A, (a,ga)(u) —s) = O(1). That means u € ((C,a),m*). 0

Theorem 5. Let the condition

Mt D) =0(1) for 0<j<k-1, (4.9)

be satisfied for @ > —1. Ifu € ((C,a + k), m*), then u € ((C,a), m*).

Proof. Suppose that u € ((C,a +k),m*). Taking j =k —1 in (4.9), it follows
from the idendity

o) = (@ + k) (0 TP ) — o TP (w))
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that we obtain
An (@ 4+ k) (0 @FD ) —5) = 1, 7@ () + A (e + k) (02K (u) —5)
= 0(1)+ 0(1) = 0(1)

then we obtain A, (O',Ea+k_1) —

s) = O(1). Hence, that means
ue (Coa+k—1),m").
From identity (1.4), we have
oD ) = (0 + k=D D ) — oD W),
Taking j = k —2 in (4.9), we obtain
An(a 4k — 1) (@@ 2 () —5)
= 2at@R D ) 4 A @+ k=D (0@ D) —5) = 0(1)+ 0(1) = 0(1)

Therefore we have
ue ((C,a+k—2),mh).
Continuing in this way, we obtain that

ue ((C,a+1),mh).
Taking j = 0 in (4.9), we obtain 1, 7%V = O(1). From identity (1.4), we have
@+ 105 ) =) = tati V@) + @+ D (0T @) —9)
=0(1)+0()=0()
This completes the proof. U
Theorem 6. Let the condition
An(nA); 72T D) = 0(1) for 0<j <k, (4.10)
be satisfied for « > —1. Ifu € (C,a + k), m*), then u € ((C,ct), m*).
Proof. By identity (1.6) for k = 1, it follows
Ann AT () = A (e + D () — 7TV ()
= An(a+ 1) () — Ap (@ 4+ DD ).
Taking j =0 and j = 1in (4.10), we obtain
At ) = 0(1)
From identity (1.6) for k = 2, we get
An (1 A)2 704D () = Al +2) (@ + 1) (7 @0) — @D

—hn(@+2)? (80w =7 ) ).
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Taking j =0 and j = 2 in (4.10), we obtain
At D) = 0(1)
Continuing in this way, by Lemma 1, we obtain

An (AT @) = (@ + DAL @A (8 00) = 7D ()
k
2 e+ DA @)@ D @) — 7D ().
j=2
Taking j = 0 and j = k in (4.10), we obtain
At ) = 0(1).
The conditions in Theorem 5 hold, the proof is completed. U
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