Miskolc Mathematical Notes

ON THE EQUATIONS $U_{n}=5 \square$ AND $V_{n}=5 \square$

OLCAY KARAATLI AND REFİK KESKİN

Received 14 September, 2014

Abstract

Let $P \geq 3$ be an integer and let $\left(U_{n}\right)$ and $\left(V_{n}\right)$ denote the generalized Fibonacci and Lucas sequences defined by $U_{0}=0, U_{1}=1 ; V_{0}=2, V_{1}=P$, and $U_{n+1}=P U_{n}-U_{n-1}$, $V_{n+1}=P V_{n}-V_{n-1}$ for $n \geq 1$. The purpose of this study, assuming P is odd, is to determine the values of n such that $V_{n}=5 \square$ and $U_{n}=5 \square$. Moreover, we solve the equations $V_{n}=5 V_{m} \square$ and $U_{n}=5 U_{m} \square$.

2010 Mathematics Subject Classification: 11B37; 11B39; 11B50; 11B99
Keywords: Diophantine equations, Pell equations, generalized Fibonacci and Lucas numbers

1. Introduction

Let P and Q be nonzero integers such that $P^{2}+4 Q \neq 0$. The generalized Fibonacci sequence $\left(U_{n}\right)$ and Lucas sequence $\left(V_{n}\right)$ are given recursively according to the following relations for $n \geq 1$.

$$
U_{0}=0, U_{1}=1, U_{n+1}=P U_{n}+Q U_{n-1}
$$

and

$$
V_{0}=2, V_{1}=P, V_{n+1}=P V_{n}+Q V_{n-1}
$$

Both sequences depend on the initial choice of pair (P, Q), hence we sometimes use $U_{n}(P, Q)$ and $V_{n}(P, Q)$ in order to emphasize their dependence on the parameters $(P, Q) . U_{n}$ and V_{n} are called the nth generalized Fibonacci number and the nth generalized Lucas number, respectively. Furthermore, generalized Fibonacci and Lucas numbers for negative subscripts are defined as

$$
U_{-n}=-(-Q)^{-n} U_{n} \text { and } V_{-n}=(-Q)^{-n} V_{n}(n \geq 1)
$$

respectively. It is well known that

$$
U_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \text { and } V_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=\left(P+\sqrt{P^{2}+4 Q}\right) / 2$ and $\beta=\left(P-\sqrt{P^{2}+4 Q}\right) / 2$, which are the roots of the equation $x^{2}-P x-Q=0$. The above formulas are known as Binet's formulas.

We will assume that $P^{2}+4 Q>0$. Special cases of the sequences $\left(U_{n}\right)$ and $\left(V_{n}\right)$ are known. For example, the generalized Fibonacci sequence $\left(U_{n}(1,1)\right)$ consist of the familiar Fibonacci numbers, whereas its companion, $\left(V_{n}(1,1)\right)$ gives so called Lucas numbers. When $P=2$ and $Q=1,\left(U_{n}\right)=\left(P_{n}\right)$ and $\left(V_{n}\right)=\left(Q_{n}\right)$ are the familiar sequences of Pell and Pell-Lucas numbers. For more information about generalized Fibonacci and Lucas sequences, see [8].
There has been much interest in when the terms of generalized Fibonacci and Lucas sequences are perfect square $(=\square)$ or $k \square$. When P is odd and $Q= \pm 1$, by using elementary arguments, many authors solved the equations $U_{n}=k \square$ and $V_{n}=k \square$ for some specific values of k (see $[2-4,9,10]$). Interested readers can also consult [12] and [6] for a brief history of this subject.
In [6], the authors determined all indices n such that $U_{n}(P, 1)=5 \square$ and $U_{n}(P, 1)=$ $5 U_{m}(P, 1) \square$ under some assumptions on P. When P is odd, the authors solved the equation $V_{n}(P, 1)=5 \square$. Moreover, they showed that the equation $V_{n}(P, 1)=$ $5 V_{m}(P, 1) \square$ has no solutions. In this study, using congruences, with extensive reliance upon the Jacobi symbol, we determine that the five times square terms of the generalized Fibonacci sequence $\left(U_{n}(P, Q)\right)$ for which $P \geq 3$ is odd and $Q=-1$ may occur only for $n=2$ or 3 . We obtain a similar result for the generalized Lucas sequence $\left(V_{n}(P, Q)\right)$. Moreover, when $P \geq 3$ is odd and $Q=-1$, we solve the equations $V_{n}=5 V_{m} \square$ and $U_{n}=5 U_{m} \square$.
In section 2, we give some identities, lemmas, and theorems needed later. Then in section 3, we present our main theorems. Throught this study, $\left(\frac{*}{*}\right)$ will denote the Jacobi symbol. Our method of proof is similar to that presented by Cohn, McDaniel and Ribenboim [2-4, 9].

2. Preliminary facts

From now on, we assume that $Q=-1$. We omit the proofs of the following two lemmas, as they are based a straightforward induction.

Lemma 1. If n is even, then $V_{n} \equiv \pm 2\left(\bmod P^{2}\right)$ and if n is odd, then $V_{n} \equiv \pm n P$ $\left(\bmod P^{2}\right)$.

Lemma 2. If n is even, then $U_{n} \equiv \pm \frac{n}{2} P\left(\bmod P^{2}\right)$ and if n is odd, then $U_{n} \equiv \pm 1$ $\left(\bmod P^{2}\right)$.

Lemma 3.

$$
3 \left\lvert\, U_{n} \Leftrightarrow\left\{\begin{array}{c}
n \equiv 0(\bmod 2) \text { if } 3 \mid P \\
n \equiv 0(\bmod 3) \text { if } 3 \nmid P .
\end{array}\right.\right.
$$

One can see the proofs of the following two theorems in [5].
Theorem 1. Let $P \geq 3$ be odd. If $V_{n}=k x^{2}$ for some $k \mid P$ with $k>1$, then $n=1$.
Theorem 2. Let $P \geq 3$ be odd. If $U_{n}=k x^{2}$ for some $k \mid P$ with $k>1$, then $n=2$ or $n=6$ and $3 \mid P$.

$$
\text { ON THE EQUATIONS } U_{n}=5 \square \text { AND } V_{n}=5 \square
$$

The proofs of the following two theorems can be found in [11].
Theorem 3. Let $n \in \mathbb{N} \cup\{0\}, m, r \in \mathbb{Z}$ and m be a nonzero integer. Then

$$
\begin{align*}
U_{2 m n+r} & \equiv U_{r}\left(\bmod U_{m}\right) \tag{2.1}\\
V_{2 m n+r} & \equiv V_{r}\left(\bmod U_{m}\right) \tag{2.2}
\end{align*}
$$

Theorem 4. Let $n \in \mathbb{N} \cup\{0\}, m, r \in \mathbb{Z}$. Then

$$
\begin{align*}
U_{2 m n+r} & \equiv(-1)^{n} U_{r}\left(\bmod V_{m}\right) \tag{2.3}\\
V_{2 m n+r} & \equiv(-1)^{n} V_{r}\left(\bmod V_{m}\right) \tag{2.4}
\end{align*}
$$

Now we state the following theorem from [9].
Theorem 5. Let $P \geq 3$ be odd. If $V_{n}=x^{2}$ for some integer x, then $n=1$. If $V_{n}=2 x^{2}$ for some integer x, then $n=3, P=3,27$.

We state the following theorem due to Ribenboim and McDaniel [9].
Theorem 6. Let $P \geq 3$ be odd. If $U_{n}=x^{2}$, then $n=1$ or $n=6$ and $P=3$.
The following theorem can be obtained from Theorem 9 given in [4].
Theorem 7. Let $P \geq 3$ be odd, $m, n>1$ be integers. The equation $U_{n}=2 U_{m} x^{2}$ has no solutions except for the cases $n=6, m=3, P=3,27$.
The following two theorems can be obtained from Theorems 14 and 15 given in [4].
Theorem 8. The equation $V_{n}=V_{m} x^{2}$, where $P \geq 3$, and P is odd, and $n \geq m>0$ has only the trivial solution $n=m$.

Theorem 9. The equation $V_{n}=2 V_{m} x^{2}$, where $P \geq 3$, and P is odd, and $m, n>0$ has no solutions.

Now we give some identities concerning generalized Fibonacci and Lucas numbers:

$$
\begin{gather*}
U_{-n}=-U_{n} \text { and } V_{-n}=V_{n}, \tag{2.5}\\
U_{2 n}=U_{n} V_{n}, \tag{2.6}\\
V_{2 n}=V_{n}^{2}-2, \tag{2.7}\\
V_{3 n}=V_{n}\left(V_{n}^{2}-3\right), \tag{2.8}\\
U_{3 n}=U_{n}\left(\left(P^{2}-4\right) U_{n}^{2}+3\right)=U_{n}\left(V_{n}^{2}-1\right), \tag{2.9}\\
V_{n}^{2}-\left(P^{2}-4\right) U_{n}^{2}=4, \tag{2.10}\\
\text { if } P \text { is odd, then } 2\left|V_{n} \Leftrightarrow 2\right| U_{n} \Leftrightarrow 3 \mid n, \tag{2.11}
\end{gather*}
$$

$$
\begin{gather*}
V_{m}\left|V_{n} \Leftrightarrow m\right| n \text { and } n / m \text { is odd, } \tag{2.12}\\
U_{m}\left|U_{n} \Leftrightarrow m\right| n . \tag{2.13}
\end{gather*}
$$

Let $m=2^{a} k, n=2^{b} l, k$ and l are odd, $a, b \geq 0$, and $d=(m, n)$. Then

$$
\begin{gather*}
\left(U_{m}, V_{n}\right)=\left\{\begin{array}{c}
V_{d} \text { if } a>b, \\
1 \text { or } 2 \text { if } a \leq b . \\
U_{5 n}=U_{n}\left(\left(P^{2}-4\right)^{2} U_{n}^{4}+5\left(P^{2}-4\right) U_{n}^{2}+5\right) .
\end{array} . . \begin{array}{l}
\text {. }
\end{array} .\right. \tag{2.14}
\end{gather*}
$$

If $5 \mid U_{n}$, then from (2.15), we have

$$
\begin{equation*}
U_{5 n}=5 U_{n}(5 a+1) \tag{2.16}
\end{equation*}
$$

for some $a \geq 0$.

$$
\begin{equation*}
V_{5 n}=V_{n}\left(V_{n}^{4}-5 V_{n}^{2}+5\right) \tag{2.17}
\end{equation*}
$$

If $5 \mid P$ and n is odd, then $5 \mid V_{n}$ and therefore from (2.17), it follows that

$$
\begin{equation*}
V_{5 n}=5 V_{n}(5 a+1) \tag{2.18}
\end{equation*}
$$

for some $a \geq 0$.
From Lemma 1 and the identity (2.7), we have

$$
\begin{equation*}
5\left|V_{n} \Leftrightarrow 5\right| P \text { and } n \text { is odd. } \tag{2.19}
\end{equation*}
$$

When P is odd, it is clear that

$$
\begin{equation*}
\left(\frac{-1}{V_{2^{r}}}\right)=-1 \tag{2.20}
\end{equation*}
$$

If P is odd and $r \geq 2$, then $V_{2} \equiv-1\left(\bmod \frac{P^{2}-3}{2}\right)$ and thus

$$
\begin{align*}
& \left(\frac{\left(P^{2}-3\right) / 2}{V_{2} r}\right)=\left(\frac{P^{2}-3}{V_{2^{r}}}\right)=1 . \tag{2.21}\\
& V_{2^{r}} \equiv\left\{\begin{array}{c}
-2(\bmod P), \text { if } r=1, \\
2(\bmod P), \text { if } r \geq 2
\end{array}\right. \tag{2.22}
\end{align*}
$$

If $3 \nmid P$ and P is odd, then $V_{2} \equiv-1(\bmod 3)$ for $r \geq 1$ and therefore

$$
\begin{equation*}
\left(\frac{3}{V_{2^{r}}}\right)=1 . \tag{2.23}
\end{equation*}
$$

If $3 \mid P$ and P is odd, then $V_{2^{r}} \equiv-1(\bmod 3)$ for $r \geq 2$ and therefore

$$
\begin{equation*}
\left(\frac{3}{V_{2^{r}}}\right)=1 \tag{2.24}
\end{equation*}
$$

Let P be odd. Then

$$
\left(\frac{5}{V_{2^{r}}}\right)=\left\{\begin{array}{c}
-1, \text { if } 5 \mid P \tag{2.25}\\
1, \text { if } P^{2} \equiv 1(\bmod 5) \\
-1, \text { if } P^{2} \equiv-1(\bmod 5)
\end{array}\right.
$$

for every $r \geq 1$.
Most of the properties above are well-known; properties between (2.5)-(2.10) can be found in [8], [9], [10], [2]; properties between (2.11)-(2.14) can be found in [7], [9], [10], [2]. Since the others are fairly easy to prove, we omit their proofs.

The following lemma can be proved by using (2.1).

Lemma 4.

$$
5 \left\lvert\, U_{n} \Leftrightarrow\left\{\begin{array}{c}
2 \mid n, \text { if } 5 \mid P \\
3 \mid n, \text { if } P^{2} \equiv 1(\bmod 5) \\
5 \mid n, \text { if } P^{2} \equiv-1(\bmod 5)
\end{array}\right.\right.
$$

3. MAIN THEOREMS

From now on, we assume that n and m are positive integers, $P \geq 3$, and P is odd.
Theorem 10. The equation $V_{n}=5 x^{2}$ has a solution only if $n=1$.
Proof. Assume that $V_{n}=5 x^{2}$ for some integer x. Since $5 \mid V_{n}$, it follows from (2.19) that $5 \mid P$. This implies by Theorem 1 that $n=1$. This completes the proof.

Theorem 11. There is no integer x such that $V_{n}=5 V_{m} x^{2}$.
Proof. Assume that $V_{n}=5 V_{m} x^{2}$. Then by (2.19), it is seen that $5 \mid P$ and n is odd. Moreover, since $V_{m} \mid V_{n}$, there exists an odd integer t such that $n=m t$ by (2.12). Since n and t are odd and $n=m t, m$ is also odd. Hence, we have from Lemma 1 that

$$
V_{n} \equiv \pm n P\left(\bmod P^{2}\right) \text { and } V_{m} \equiv \pm m P\left(\bmod P^{2}\right)
$$

This implies that

$$
\pm n P \equiv \pm 5 m P x^{2}\left(\bmod P^{2}\right)
$$

i.e.,

$$
n \equiv 5 m x^{2}(\bmod P)
$$

Using the fact that $5 \mid P$, it follows that $5 \mid n$. Firstly, assume that $5 \mid t$. Then $t=5 s$ for some positive odd integer s and therefore $n=m t=5 m s$. By (2.17), we immediately have

$$
V_{n}=V_{5 m s}=V_{m s}\left(V_{m s}^{4}-5 V_{m s}^{2}+5\right)
$$

Since $m s$ is odd and $5 \mid P$, it follows that $5 \mid V_{m s}$ by (2.19) and therefore

$$
\frac{V_{m s}}{V_{m}}\left(\frac{V_{m s}^{4}-5 V_{m s}^{2}+5}{5}\right)=x^{2}
$$

Clearly,

$$
\left(V_{m s} / V_{m},\left(V_{m s}^{4}-5 V_{m s}^{2}+5\right) / 5\right)=1
$$

This implies that

$$
V_{m s}^{4}-5 V_{m s}^{2}+5=5 b^{2}
$$

for some $b \geq 0$. But the integral points on $5 Y^{2}=X^{4}-5 X^{2}+5$ are immediately determined by using MAGMA [1] to be $(X, \pm Y)=(0,1)$, which gives $V_{m s}=0$, which is impossible. Secondly, assume that $5 \nmid t$. Since $n=m t$ and $5 \mid n$, it is seen that $5 \mid m$. Then we can write $m=5^{r} a$ with $5 \nmid a$ and $r \geq 1$. By (2.18), we obtain

$$
V_{m}=V_{5^{r} a}=5 V_{5^{r-1} a}\left(5 a_{1}+1\right)
$$

for some positive integer a_{1}. Thus, we conclude that

$$
V_{m}=V_{5}{ }^{r} a=5^{r} V_{a}\left(5 a_{1}+1\right)\left(5 a_{2}+1\right) \ldots\left(5 a_{r}+1\right)
$$

for some positive integers a_{i} with $1 \leq i \leq r$. Let $A=\left(5 a_{1}+1\right)\left(5 a_{2}+1\right) \ldots\left(5 a_{r}+1\right)$. Thus, we have $V_{m}=5^{r} V_{a} A$, where $5 \nmid A$. In a similar manner, we see that

$$
V_{n}=V_{5 r} a t=5^{r} V_{a t}\left(5 b_{1}+1\right)\left(5 b_{2}+2\right) \ldots\left(5 b_{r}+1\right)
$$

for some positive integers b_{j} with $1 \leq j \leq r$. Thus, we have $V_{n}=5^{r} V_{a t} B$, where $5 \nmid B$. As a consequence, we get

$$
5^{r} V_{a t} B=5 \cdot 5^{r} V_{a} A x^{2},
$$

implying that

$$
V_{a t} B=5 V_{a} A x^{2}
$$

By Lemma 1, it is seen that

$$
\pm a t P B \equiv \pm 5 a P A x^{2}\left(\bmod P^{2}\right)
$$

i.e.,

$$
a t B \equiv 5 a A X^{2}(\bmod P)
$$

Since $5 \mid P$, it follows that $5 \mid a t B$. However, this is impossible since $5 \nmid a, 5 \nmid t$, and $5 \nmid B$. This completes the proof.

Theorem 12. If $P \geq 3$ is odd, then the equation $U_{n}=5 x^{2}$ has the solution $n=2$ when $5 \mid P$ and $n=3$ when $P^{2} \equiv 1(\bmod 5)$. The equation $U_{n}=5 x^{2}$ has no solutions when $P^{2} \equiv-1(\bmod 5)$.

$$
\text { ON THE EQUATIONS } U_{n}=5 \square \text { AND } V_{n}=5 \square
$$

Proof. Assume that $U_{n}=5 x^{2}$ for some integer x. Now we distinguish three cases. Case I : Let $5 \mid P$. Then by Theorem 2, we see that $n=2$ or $n=6$ and $3 \mid P$. But, it can be easily shown that for the case when $n=6$ and $3 \mid P$, the equation $U_{n}=5 x^{2}$ has no solutions.
Case $I I:$ Let $P^{2} \equiv 1(\bmod 5)$. Since $5 \mid U_{n}$, it follows from Lemma 4 that $3 \mid n$. Hence, $n=3 m$ for some positive integer m. Assume that m is even. Then $m=2 s$ for some positive integer s and therefore $n=6 s$. And so by (2.6), we get $U_{n}=U_{6 s}=$ $U_{3 s} V_{3 s}=5 x^{2}$. Clearly, $\left(U_{3 s}, V_{3 s}\right)=2$ by (2.14) and (2.11). Then either

$$
\begin{equation*}
U_{3 s}=2 a^{2}, V_{3 s}=10 b^{2} \tag{3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{3 s}=10 a^{2}, V_{3 s}=2 b^{2} \tag{3.2}
\end{equation*}
$$

for some positive integers a and b. Assume that (3.1) is satisfied. Since $5 \mid V_{3 s}$, it follows from (2.19) that $5 \mid P$. But this contradicts the fact that $P^{2} \equiv 1(\bmod 5)$. Now assume that (3.2) is satisfied. Then by Theorem 5, we have $3 s=3$ and $P=3,27$. Therefore $s=1$. If $P=3$, then $U_{3}=P^{2}-1=8=10 a^{2}$, which is impossible. If $P=27$, then $U_{3}=P^{2}-1=27^{2}-1=10 a^{2}$, which is also impossible. Now assume that m is odd. Then by (2.9), we get $U_{3 m}=U_{m}\left(\left(P^{2}-4\right) U_{m}+3\right)$. Clearly, $\left(U_{m},\left(P^{2}-4\right) U_{m}^{2}+3\right)=1$ or 3 . Then it follows that $\left(P^{2}-4\right) U_{m}^{2}+3=w a^{2}$ for some $w \in\{1,3,5,15\}$. Since $\left(P^{2}-4\right) U_{m}^{2}+3=V_{2 m}+1$ by (2.7) and (2.10), it is seen that $V_{2 m}+1=w a^{2}$. Assume that $m>1$. Then $m=4 q \pm 1=2^{r} a \pm 1$ with a odd and $r \geq 2$. Thus,

$$
w a^{2}=V_{2 m}+1 \equiv 1-V_{2} \equiv-\left(P^{2}-3\right)\left(\bmod V_{2} r\right)
$$

by (2.4). This shows that

$$
\left(\frac{w}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{P^{2}-3}{V_{2^{r}}}\right)
$$

By using (2.23), (2.24), and (2.25), it can be seen that $\left(\frac{w}{V_{2^{r}}}\right)=1$ for $w=3,5,15$. Moreover, $\left(\frac{-1}{V_{2^{r}}}\right)=-1$ and $\left(\frac{P^{2}-3}{V_{2^{r}}}\right)=1$ by (2.20) and (2.21), respectively. Thus, we get

$$
1=\left(\frac{w}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{P^{2}-3}{V_{2^{r}}}\right)=-1
$$

which is impossible. Therefore $m=1$ and thus $n=3$.
Case III : Let $P^{2} \equiv-1(\bmod 5)$. Since $5 \mid U_{n}$, it follows that $5 \mid n$ by Lemma 4. Thus $n=5 t$ for some positive integer t. Since $P^{2} \equiv-1(\bmod 5)$, it is obvious that $5 \mid P^{2}-$ 4 and therefore there exists a positive integer A such that $P^{2}-4=5 A$. By (2.15), we get $U_{n}=U_{5 t}=U_{t}\left(\left(P^{2}-4\right)^{2} U_{t}^{4}+5\left(P^{2}-4\right) U_{t}^{2}+5\right)$. Substituting $P^{2}-4=5 A$
into the preceding equation gives $U_{n}=U_{5 t}=5 U_{t}\left(5 A^{2} U_{t}^{4}+5 A U_{t}^{2}+1\right)$. Let $B=$ $A^{2} U_{t}^{4}+A U_{t}^{2}$. As a consequence, we have

$$
U_{n}=U_{5 t}=5 U_{t}(5 B+1)=5 x^{2}
$$

implying that

$$
U_{t}(5 B+1)=x^{2}
$$

It can be easily seen that $\left(U_{t}, 5 B+1\right)=1$. This shows that $U_{t}=a^{2}$ and $5 B+1=b^{2}$ for some $a, b>0$. By Theorem 6, we see that the only possible values of t and P in which $U_{t}=a^{2}$ are $t=1$ or $t=6$ and $P=3$. If $t=1$, then $n=5$ and therefore we get $U_{n}=U_{5 t}=U_{5}=P^{4}-3 P^{2}+1=5 x^{2}$. With MAGMA [1], we get $P=2$, which is impossible since P is odd. If $t=6$, then $n=30$. A simple computation shows that there is no integer x such that $U_{30}=5 x^{2}$ for $P=3$.

Theorem 13. Let $P \geq 3$ and $m>1$. The equation $U_{n}=5 U_{m} x^{2}$ has no solutions in any of the following cases:
(i) : $P^{2} \equiv-1(\bmod 5)$;
(ii) : P is odd and $5 \mid P$;
(iii) : $P^{2} \equiv 1(\bmod 5), n$ is odd, and P is odd;
$(i v): P^{2} \equiv 1(\bmod 5), n$ is even, and P is odd.
Proof. Assume that $U_{n}=5 U_{m} x^{2}$ for some $x>0$. Since $U_{m} \mid U_{n}$, it follows that $m \mid n$ by (2.13). Thus, $n=m t$ for some $t>0$. Since $n \neq m$, we have $t>1$.
Case I : Let $P^{2} \equiv-1(\bmod 5)$. It is obvious that $5 \mid P^{2}-4$. On the other hand, since $5 \mid U_{n}$, it follows that $5 \mid n$ by Lemma 4. Dividing the proof into two subcases, we have Subcase (i): Assume that $5 \mid t$. Then $t=5 s$ for some $s>0$ and therefore $n=m t=$ $5 m s$. By (2.15), we obtain

$$
\begin{equation*}
U_{n}=U_{5 m s}=U_{m s}\left(\left(P^{2}-4\right)^{2} U_{m s}^{4}+5\left(P^{2}-4\right) U_{m s}^{2}+5\right)=5 U_{m} x^{2} \tag{3.3}
\end{equation*}
$$

Since $5 \mid P^{2}-4$, it is seen that $5 \mid\left(P^{2}-4\right)^{2} U_{m s}^{4}+5\left(P^{2}-4\right) U_{m s}^{2}+5$. Also, we have $\left(P^{2}-4\right)^{2} U_{m s}^{4}+5\left(P^{2}-4\right) U_{m s}^{2}+5=V_{m s}^{4}-3 V_{m s}^{2}+1$ by (2.10). Rearranging the equation (3.3), we readily obtain

$$
x^{2}=\left(U_{m s} / U_{m}\right)\left(\left(V_{m s}^{4}-3 V_{m s}^{2}+1\right) / 5\right)
$$

where $\left(U_{m s} / U_{m},\left(V_{m s}^{4}-3 V_{m s}^{2}+1\right) / 5\right)=1$. Hence, $V_{m s}^{4}-3 V_{m s}^{2}+1=5 b^{2}$ for some
$b>0$. But the integral points on $5 Y^{2}=X^{4}-3 X^{2}+1$ are immediately determined by using MAGMA [1] to be $(\pm X, \pm Y)=(2,1)$, which gives $V_{m s}=2$, implying that $m s=0$, which is impossible.
Subcase ($i i$) : Assume that $5 \nmid t$. Since $5 \mid n$, it follows that $5 \mid m$. Then we can write $m=5^{r} a$ with $5 \nmid a$ and $r \geq 1$. By (2.16), it is sen that $U_{m}=U_{5^{r} a}=5 U_{5^{r-1} a}\left(5 a_{1}+\right.$ 1) for some positive integer a_{1}. Thus, we conclude that $U_{m}=U_{5} r a=5^{r} U_{a}\left(5 a_{1}+\right.$ 1) $\left(5 a_{2}+1\right) \ldots\left(5 a_{r}+1\right)$ for some positive integers a_{i} with $1 \leq i \leq r$. Let $A=\left(5 a_{1}+\right.$

1) $\left(5 a_{2}+1\right) \ldots\left(5 a_{r}+1\right)$. Then, we have $U_{m}=5^{r} U_{a} A$, where $5 \nmid A$. In a similar manner, we get $U_{n}=U_{5^{r}}$ at $=5^{r} U_{a t}\left(5 b_{1}+1\right)\left(5 b_{2}+1\right) \ldots\left(5 b_{r}+1\right)$ for some positive integers b_{i} with $1 \leq i \leq r$. Let $B=\left(5 b_{1}+1\right)\left(5 b_{2}+1\right) \ldots\left(5 b_{r}+1\right)$. Hence, we have $U_{n}=5^{r} U_{a t} B$, where $5 \nmid B$. As a consequence, we get

$$
5^{r} U_{a t} B=5 \cdot 5^{r} U_{a} A x^{2}
$$

i.e.,

$$
U_{a t} B=5 U_{a} A x^{2}
$$

Since $5 \nmid B$, it follows that $5 \mid U_{a t}$, implying that $5 \mid$ at by Lemma 4. This contradicts the fact that $5 \nmid a$ and $5 \nmid t$. This concludes the proof of the case when $P^{2} \equiv-1$ (mod 5).
Case $I I$: Let P be odd and $5 \mid P$. Since $5 \mid U_{n}$, it is seen from Lemma 4 that n is even. On the other hand, we have $n=m t$. So, we first assume that t is even. Then $t=2 s$ for some $s>0$. By (2.6), we get $U_{n}=U_{2 m s}=U_{m s} V_{m s}=5 U_{m} x^{2}$, implying that $\left(U_{m s} / U_{m}\right) V_{m s}=5 x^{2}$. Clearly, $d=\left(U_{m s} / U_{m}, V_{m s}\right)=1$ or 2 by (2.14). If $d=1$, then

$$
\begin{equation*}
U_{m s}=U_{m} a^{2}, V_{m s}=5 b^{2} \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m s}=5 U_{m} a^{2}, V_{m s}=b^{2} \tag{3.5}
\end{equation*}
$$

for some $a, b>0$. If (3.4) holds, then the only possible value of $m s$ in which $V_{m s}=$ $5 b^{2}$ is 1 by Theorem 1 , which contradicts the fact that $m>1$. If (3.5) holds, then by Theorem 5 , we have $m s=1$, which is impossible since $m>1$.
If $d=2$, then

$$
\begin{equation*}
U_{m s}=2 U_{m} a^{2}, V_{m s}=10 b^{2} \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m s}=10 U_{m} a^{2}, V_{m s}=2 b^{2} \tag{3.7}
\end{equation*}
$$

for some $a, b>0$. Suppose (3.6) holds. Then by Theorem 7, we get $m s=6, m=3$, $P=3,27$. There is no integer b such that $V_{6}=10 b^{2}$ for the case when $P=3$ or 27. Suppose (3.7) holds. Then by Theorem 7, the only possible values of $m s$ and P in which $V_{m s}=2 b^{2}$ are $m s=3$ and $P=3,27$. Since $m>1$, it follows that $m=3$ and therefore we obtain $U_{3}=10 U_{3} a^{2}$, which is impossible.
Now assume that t is odd. Since $n=m t$ and n is even, it follows that m is even. Hence, we have $U_{n} \equiv \pm(n / 2) P\left(\bmod P^{2}\right)$ and $U_{m} \equiv \pm(m / 2) P\left(\bmod P^{2}\right)$ by Lemma 2. This shows that $\pm \frac{n}{2} P \equiv \pm 5 \frac{m}{2} P x^{2}\left(\bmod P^{2}\right)$, i.e., $\frac{n}{2} \equiv 5 \frac{m}{2} x^{2}(\bmod$ $P)$. Since $5 \mid P$, it is seen that $5 \mid n$. Dividing remainder of the proof into two subcases, we have
Subcase (i) : Let $5 \mid t$. Then $t=5 s$ for some $s>0$ and therefore $n=m t=5 m s$. By (2.15), we obtain

$$
\begin{equation*}
U_{n}=U_{5 m s}=U_{m s}\left(\left(P^{2}-4\right)^{2} U_{m s}^{4}+5\left(P^{2}-4\right) U_{m s}^{2}+5\right) \tag{3.8}
\end{equation*}
$$

Since $m s$ is even and $5 \mid P$, it is seen that $5 \mid U_{m s}$ by Lemma 4. Also, we have ($P^{2}-$ $4)^{2} U_{m s}^{4}+5\left(P^{2}-4\right) U_{m s}^{2}+5=V_{m s}^{4}-3 V_{m s}^{2}+1$ by (2.10). Hence, rearranging the equation (3.8) gives

$$
x^{2}=\left(U_{m s} / U_{m}\right)\left(\left(V_{m s}^{4}-3 V_{m s}^{2}+1\right) / 5\right)
$$

where $\left(\left(U_{m s} / U_{m}\right),\left(V_{m s}^{4}-3 V_{m s}^{2}+1\right) / 5\right)=1$. This implies that $V_{m s}^{4}-3 V_{m s}^{2}+1=$ $5 b^{2}$ for some $b>0$. But the integral points on $5 Y^{2}=X^{4}-3 X^{2}+1$ are immediately determined by using MAGMA [1] to be $(\pm X, \pm Y)=(2,1)$, which gives $V_{m s}=2$, implying that $m s=0$, which is impossible.
Subcase (ii) : Let $5 \nmid t$. Since $5 \mid n$, it follows that $5 \mid m$. Then we can write $m=$ $5^{r} a$ with $5 \nmid a$ and $r \geq 1$. By (2.16), it is sen that $U_{m}=U_{5^{r} a}=5 U_{5^{r-1} a}\left(5 a_{1}+1\right)$ for some positive integer a_{1}. Thus, we conclude that $U_{m}=U_{5} r a=5^{r} U_{a}\left(5 a_{1}+\right.$ 1) $\left(5 a_{2}+1\right) \ldots\left(5 a_{r}+1\right)$ for some positive integers a_{i} with $1 \leq i \leq r$. Let $A=\left(5 a_{1}+\right.$ 1) $\left(5 a_{2}+1\right) \ldots\left(5 a_{r}+1\right)$. Then, we have $U_{m}=5^{r} U_{a} A$, where $5 \nmid A$. In a way similar, we get $U_{n}=U_{5^{r} a t}=5^{r} U_{a t}\left(5 b_{1}+1\right)\left(5 b_{2}+1\right) \ldots\left(5 b_{r}+1\right)$ for some positive integers b_{i} with $1 \leq i \leq r$. Let $B=\left(5 b_{1}+1\right)\left(5 b_{2}+1\right) \ldots\left(5 b_{r}+1\right)$. Hence, we have $U_{n}=$ $5^{r} U_{a t} B$, where $5 \nmid B$. Substituting the new values of U_{n} and U_{m} into $U_{n}=5 U_{m} x^{2}$ gives

$$
5^{r} U_{a t} B=5 \cdot 5^{r} U_{a} A x^{2}
$$

i.e.,

$$
U_{a t} B=5 U_{a} A x^{2}
$$

On the other hand, since a is even and at is even, it follows from Lemma 2 that $U_{a t} \equiv \pm \frac{a t}{2} P\left(\bmod P^{2}\right)$ and $U_{a} \equiv \pm \frac{a}{2} P\left(\bmod P^{2}\right)$. Hence, we have

$$
\pm \frac{a t}{2} P B \equiv \pm 5 \frac{a}{2} P A x^{2}\left(\bmod P^{2}\right)
$$

implying that

$$
\frac{a t}{2} B \equiv 5 \frac{a}{2} A x^{2}\left(\bmod P^{2}\right)
$$

Since $5 \mid P$, it follows that $5 \left\lvert\, \frac{a t}{2} B\right.$, which shows that $5 \mid$ at B. This contradicts the fact that $5 \nmid a, 5 \nmid b$, and $5 \nmid B$. This concludes the proof for the case when $5 \mid P$.
Case III : Let $P^{2} \equiv 1(\bmod 5), n$ is odd, and P is odd. Then, both m and t are odd. Since $5 \mid U_{n}$, it follows immediately from Lemma 4 that $3 \mid n$. Using the fact that $n=m t$, we have
Subcase (i) : Assume that $3 \mid m$. Since t is odd, we can write $t=4 q \pm 1$ for some $q>0$. If $t=4 q+1$, then $t=2 \cdot 2^{r} a+1$ with a odd and $r>0$. And so by (2.3), we get $U_{n}=U_{m t}=U_{2 \cdot 2^{r} a m+m} \equiv-U_{m}\left(\bmod V_{2^{r}}\right)$, implying that $5 U_{m} x^{2} \equiv-U_{m}$ $\left(\bmod V_{2^{r}}\right)$. Since $\left(U_{m}, V_{2^{r}}\right)=1$ by (2.14), it follows that $5 x^{2} \equiv-1\left(\bmod V_{2^{r}}\right)$, which is impossible since $\left(\frac{5}{V_{2^{r}}}\right)=1$ by (2.25) and $\left(\frac{-1}{V_{2^{r}}}\right)=-1$ by (2.20). If $t=4 q-1$, then by (2.1), we get $U_{n}=U_{m(4 q-1)}=U_{2 \cdot 2 m q-m} \equiv-U_{m}\left(\bmod U_{2 m}\right)$. This shows that $5 U_{m} x^{2} \equiv-U_{m}\left(\bmod U_{2 m}\right)$, implying that $5 x^{2} \equiv-1\left(\bmod V_{m}\right)$ by

$$
\text { ON THE EQUATIONS } U_{n}=5 \square \text { AND } V_{n}=5 \square
$$

(2.6). Since $3 \mid m$, it is seen by (2.12) that $V_{3} \mid V_{m}$. Hence, we obtain $5 x^{2} \equiv-1(\bmod$ $\left.V_{3}\right)$, i.e., $5 x^{2} \equiv-1\left(\bmod P^{2}-3\right)$. But this is impossible since

$$
\left(\frac{5}{\left(P^{2}-3\right) / 2}\right)=\left(\frac{\left(P^{2}-3\right) / 2}{5}\right)=\left(\frac{-1}{5}\right)=1
$$

and

$$
\left(\frac{-1}{\left(P^{2}-3\right) / 2}\right)=(-1)^{\frac{P^{2}-5}{4}}=-1
$$

Subcase ($i i$) : Assume that $3 \nmid m$. Since $n=m t$ and $3 \mid n$, it follows that $3 \mid t$ and therefore $t=3 s$ for some $s>0$. Then by (2.9), we get

$$
U_{n}=U_{3 m s}=U_{m s}\left(\left(P^{2}-4\right) U_{m s}^{2}+3\right)=5 U_{m} x^{2}
$$

implying that

$$
\left(U_{m s} / U_{m}\right)\left(\left(P^{2}-4\right) U_{m s}^{2}+3\right)=5 x^{2}
$$

Clearly,

$$
d=\left(U_{m s} / U_{m},\left(\left(P^{2}-4\right) U_{m s}^{2}+3\right)=1 \text { or } 3\right.
$$

If $d=1$, then either

$$
\begin{equation*}
U_{m s}=U_{m} a^{2},\left(P^{2}-4\right) U_{m s}^{2}+3=5 b^{2} \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m s}=5 U_{m} a^{2},\left(P^{2}-4\right) U_{m s}^{2}+3=b^{2} \tag{3.10}
\end{equation*}
$$

for some $a, b>0$. Suppose (3.9) holds. Then by (2.10), we get $V_{m s}^{2}-1=5 b^{2}$ and this gives by (2.7) that $V_{2 m s}=5 b^{2}-1$. Since $m s>1$ is odd, $m s=4 q \pm 1$ for some $q>0$. Thus $m s=2 \cdot 2^{r} a \pm 1$ with a odd and $r>0$. By using (2.4), we get $5 b^{2}-1=V_{2 m s} \equiv-V_{ \pm 2} \equiv-V_{2}\left(\bmod V_{2^{r}}\right)$. This shows that $5 b^{2}-1 \equiv-\left(P^{2}-2\right)$ $\left(\bmod V_{2^{r}}\right)$, implying that $5 b^{2} \equiv-\left(P^{2}-3\right)\left(\bmod V_{2^{r}}\right)$. By using (2.20), (2.25), and (2.21), it is seen that

$$
1=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{5}{V_{2^{r}}}\right)\left(\frac{P^{2}-3}{V_{2^{r}}}\right)=-1
$$

a contradiction. Suppose (3.10) holds. It can be easily seen by combining two equations that $b^{2} \equiv 3(\bmod 5)$, which is impossible.
If $d=3$, then either

$$
\begin{equation*}
U_{m s}=3 U_{m} a^{2},\left(P^{2}-4\right) U_{m s}^{2}+3=15 b^{2} \tag{3.11}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m s}=15 U_{m} a^{2},\left(P^{2}-4\right) U_{m s}^{2}+3=3 b^{2} \tag{3.12}
\end{equation*}
$$

for some $a, b>0$. If we combine two equations given in (3.11), then we readily obtain $b^{2} \equiv 2(\bmod 3)$, which is impossible. Suppose (3.12) holds. Then by (2.10), we get $V_{m s}^{2}-1=3 b^{2}$ and this gives by (2.7) that $V_{2 m s}=3 b^{2}-1$. Since $m s>1$ is odd, $m s=4 q \pm 1$ for some $q>0$. Thus $m s=2 \cdot 2^{r} a \pm 1$ with a odd and $r>0$. By using (2.4), we get $3 b^{2}-1=V_{2 m s} \equiv-V_{ \pm 2} \equiv-V_{2}\left(\bmod V_{2^{r}}\right)$. This shows that
$3 b^{2}-1 \equiv-\left(P^{2}-2\right)\left(\bmod V_{2} r\right)$, implying that $3 b^{2} \equiv-\left(P^{2}-3\right)\left(\bmod V_{2^{r}}\right)$. By (2.23), (2.24), (2.20), and (2.21), it is seen that

$$
1=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{3}{V_{2^{r}}}\right)\left(\frac{P^{2}-3}{V_{2^{r}}}\right)=-1
$$

a contradiction.
Case $I V:$ Let $P^{2} \equiv 1(\bmod 5), n$ is even, and P is odd. Since $n=m t$, we divide the proof into two subcases:
Subcase (i) : Assume that t is even. Then $t=2 s$ for some $s>0$. Hence, we immediately have $U_{n} / U_{m}=U_{2 m s} / U_{m}=\left(U_{m s} / U_{m}\right) V_{m s}=5 x^{2}$. Clearly, $d=\left(U_{m s} / U_{m}, V_{m s}\right)=1$ or 2 by (2.14). If $d=1$, then

$$
\begin{equation*}
U_{m s}=U_{m} a^{2}, V_{m s}=5 b^{2} \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m s}=5 U_{m} a^{2}, V_{m s}=b^{2} \tag{3.14}
\end{equation*}
$$

for some $a, b>0$. Suppose (3.13) is satisfied. Since $5 \mid V_{m s}$, it follows from (2.19) that $5 \mid P$, which contradicts the fact that $P^{2} \equiv 1(\bmod 5)$. Now suppose (3.14) is satisfied. By Theorem 5, the only possible value of $m s$ in which $V_{m s}=b^{2}$ is 1 , which is impossible since $m>1$.
If $d=2$, then

$$
\begin{equation*}
U_{m s}=2 U_{m} a^{2}, V_{m s}=10 b^{2} \tag{3.15}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m s}=10 U_{m} a^{2}, V_{m s}=2 b^{2} \tag{3.16}
\end{equation*}
$$

for some $a, b>0$. Obviously, (3.15) is not satisfied because of the same reason given above for (3.13). If (3.16) holds, then it is seen by Theorem 5 that the only possible values of $m s$ and P in which $V_{m s}=2 b^{2}$ are $m s=3$ and $P=3,27$. But this is impossible since $P^{2} \equiv 1(\bmod 5)$.
Subcase (ii) : Assume that t is odd. Since $t>1$, we can write $t=4 q+1$ for some $q>0$ or $t=4 q+3$ for some $q \geq 0$. On the other hand, since n is even and $n=m t$, it follows that m is even. Therefore we can write $m=2^{r} a$ with a odd and $r>0$. Assume that $t=4 q+1$. Then $n=m t=4 q m+m=2 \cdot 2^{r+k} b+m$ with b odd. Hence, we get

$$
5 U_{m} x^{2}=U_{n}=U_{2 \cdot 2^{r+k} b+m} \equiv-U_{m}\left(\bmod V_{2^{r+k}}\right)
$$

by (2.3). Since $\left(U_{m}, V_{2} r+k\right)=\left(U_{2^{r} a}, V_{2^{r+k}}\right)=1$ by (2.14), it follows that

$$
5 x^{2} \equiv-1\left(\bmod V_{2^{r+k}}\right)
$$

This is impossible. Because $\left(\frac{5}{V_{2^{r+k}}}\right)=1$ and $\left(\frac{-1}{V_{2^{r+k}}}\right)=-1$ by (2.25) and (2.20), respectively. Now assume that $t=4 q+3$. Then we have $n=m t=4 q m+3 m$. And so by (2.1), we get

$$
5 U_{m} x^{2}=U_{n}=U_{4 q m+3 m} \equiv U_{3 m}\left(\bmod U_{2 m}\right)
$$

$$
\text { ON THE EQUATIONS } U_{n}=5 \square \text { AND } V_{n}=5 \square
$$

By using (2.6) and (2.9), we readily obtain

$$
5 x^{2} \equiv V_{m}^{2}-1\left(\bmod V_{m}\right)
$$

which implies that

$$
5 x^{2} \equiv-1\left(\bmod V_{m}\right)
$$

Using the fact that $m=2^{r} a$ with a odd, we have

$$
5 x^{2} \equiv-1\left(\bmod V_{2^{r}}\right)
$$

implying that

$$
5 x^{2} \equiv-1\left(\bmod V_{2} r\right)
$$

by (2.12). But this is impossible since $\left(\frac{5}{V_{2^{r}}}\right)=1$ and $\left(\frac{-1}{V_{2^{r}}}\right)=-1$ by (2.25) and (2.20), respectively. This completes the proof.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful suggestions and comments which improved significantly the presentation of the paper. This work was supported by the Research Fund of Sakarya University (Project number. 2013-50-02-022).

REFERENCES

[1] W. Bosma, J. Cannon, and C. Playoust, "The Magma algebra system. I: The user language," J. Symbolic Comput, vol. 24, no. 3-4, pp. 235-265, 1997, doi: 10.1006/jsco.1996.0125.
[2] J. H. E. Cohn, "Eight Diophantine equations," Proc. London Math. Soc., vol. 16, no. 3, pp. 153166, 1966, doi: $10.1112 / \mathrm{plms} / \mathrm{s} 3-16.1 .153$.
[3] J. H. E. Cohn, "Five Diophantine equations," Math. Scand., vol. 21, pp. 61-70, 1967.
[4] J. H. E. Cohn, "Squares in some recurrent sequences," Pacific J. Math., vol. 41, pp. 631-646, 1972, doi: 10.2140/pjm.1972.41.631.
[5] R. Keskin, "Generalized Fibonacci and Lucas numbes of the form $w x^{2}$ and $w x^{2} \mp 1, "$ Bull. Korean Math. Soc., vol. 51, no. 4, pp. 1041-1054, 2014.
[6] R. Keskin and O. Karaatli, "Generalized Fibonacci and Lucas numbers of the form $5 x^{2}$," Int. J. Number Theory, vol. 11, no. 3, pp. 931-944, 2015, doi: 10.1142/S1793042115500517.
[7] W. L. McDaniel, "The g.c.d. in lucas sequences and lehmer number sequences," Fibonacci Quart., vol. 29, pp. 24-29, 1991.
[8] P. Ribenboim, My numbers, My friends, Popular lectures on number theory. New York: Springer, 2000.
[9] P. Ribenboim and W. L. McDaniel, "The square terms in Lucas sequences," J. Number Theory, vol. 58, pp. 104-123, 1996, doi: 10.1006/jnth.1996.0068.
[10] P. Ribenboim and W. L. McDaniel, "On lucas sequences terms of the form $k x^{2}$," in: Number Theory (Turku, 1999), Walter de Gruyter, Berlin, pp. 293-303, 2001.
[11] Z. Șiar and R. Keskin, "Some new identities concerning generalized Fibonacci and Lucas numbers," Hacet. J. Math. Stat., vol. 42, no. 3, pp. 211-222, 2013, doi: 10.1112/S0025579313000193.
[12] Z. Siar and R. Keskin, "The square terms in generalized Lucas sequences," Mathematika, vol. 60, pp. 85-100, 2014.

Authors' addresses

Olcay Karaatlı

Sakarya University, Faculty of Arts and Sciences, Department of Mathematics, Sakarya, Turkey
E-mail address: okaraatli@sakarya.edu.tr

Refik Keskin

Sakarya University, Faculty of Arts and Sciences, Department of Mathematics, Sakarya, Turkey
E-mail address: rkeskin@sakarya.edu.tr

