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ON THE EQUATIONS Un D 5� AND Vn D 5�
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Abstract. Let P � 3 be an integer and let .Un/ and .Vn/ denote the generalized Fibonacci and
Lucas sequences defined by U0 D 0;U1 D 1I V0 D 2;V1 D P; and UnC1 D PUn �Un�1;

VnC1 D PVn�Vn�1 for n � 1: The purpose of this study, assuming P is odd, is to determine
the values of n such that Vn D 5� and Un D 5�:Moreover, we solve the equations Vn D 5Vm�
and Un D 5Um�:
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1. INTRODUCTION

Let P and Q be nonzero integers such that P 2C 4Q ¤ 0: The generalized Fibon-
acci sequence .Un/ and Lucas sequence .Vn/ are given recursively according to the
following relations for n� 1:

U0 D 0; U1 D 1; UnC1 D PUnCQUn�1

and

V0 D 2; V1 D P;VnC1 D PVnCQVn�1:

Both sequences depend on the initial choice of pair .P;Q/; hence we sometimes use
Un.P;Q/ and Vn.P;Q/ in order to emphasize their dependence on the parameters
.P;Q/: Un and Vn are called the nth generalized Fibonacci number and the nth gen-
eralized Lucas number, respectively. Furthermore, generalized Fibonacci and Lucas
numbers for negative subscripts are defined as

U�n D�.�Q/
�nUn and V�n D .�Q/

�nVn .n� 1/;

respectively. It is well known that

Un D .˛
n
�ˇn/=.˛�ˇ/ and Vn D ˛

n
Cˇn

where ˛D
�
P C

p
P 2C4Q

�
=2 and ˇD

�
P �

p
P 2C4Q

�
=2;which are the roots

of the equation x2�Px�QD 0: The above formulas are known as Binet’s formulas.
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We will assume that P 2C4Q > 0: Special cases of the sequences .Un/ and .Vn/ are
known. For example, the generalized Fibonacci sequence .Un.1;1// consist of the
familiar Fibonacci numbers, whereas its companion, .Vn.1;1// gives so called Lucas
numbers. When P D 2 and Q D 1; .Un/D .Pn/ and .Vn/D .Qn/ are the familiar
sequences of Pell and Pell-Lucas numbers. For more information about generalized
Fibonacci and Lucas sequences, see [8].
There has been much interest in when the terms of generalized Fibonacci and Lucas
sequences are perfect square(D �) or k�: When P is odd and Q D ˙1; by using
elementary arguments, many authors solved the equations Un D k� and Vn D k�
for some specific values of k (see [2–4, 9, 10]). Interested readers can also consult
[12] and [6] for a brief history of this subject.
In [6], the authors determined all indices n such that Un.P;1/D 5� and Un.P;1/D

5Um.P;1/� under some assumptions on P: When P is odd, the authors solved
the equation Vn.P;1/ D 5�: Moreover, they showed that the equation Vn.P;1/ D

5Vm.P;1/� has no solutions. In this study, using congruences, with extensive reli-
ance upon the Jacobi symbol, we determine that the five times square terms of the
generalized Fibonacci sequence .Un.P;Q// for which P � 3 is odd and Q D �1
may occur only for n D 2 or 3: We obtain a similar result for the generalized Lu-
cas sequence .Vn.P;Q//: Moreover, when P � 3 is odd and Q D �1; we solve the
equations Vn D 5Vm� and Un D 5Um�:
In section 2; we give some identities, lemmas, and theorems needed later. Then in
section 3; we present our main theorems. Throught this study,

�
�
�

�
will denote the

Jacobi symbol. Our method of proof is similar to that presented by Cohn, McDaniel
and Ribenboim [2–4, 9].

2. PRELIMINARY FACTS

From now on, we assume that Q D �1: We omit the proofs of the following two
lemmas, as they are based a straightforward induction.

Lemma 1. If n is even, then Vn �˙2 .mod P
2/ and if n is odd, then Vn �˙nP

.mod P 2/:

Lemma 2. If n is even, then Un�˙
n
2
P .mod P 2/ and if n is odd, then Un�˙1

.mod P 2/:

Lemma 3.
3jUn,

�
n� 0 .mod 2/ if 3jP;
n� 0 .mod 3/ if 3 − P:

One can see the proofs of the following two theorems in [5].

Theorem 1. Let P � 3 be odd. If VnD kx
2 for some kjP with k > 1; then nD 1:

Theorem 2. Let P � 3 be odd. If Un D kx
2 for some kjP with k > 1; then nD 2

or nD 6 and 3jP:
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The proofs of the following two theorems can be found in [11].

Theorem 3. Let n 2N[f0g ; m;r 2Z and m be a nonzero integer. Then

U2mnCr � Ur .mod Um/; (2.1)

V2mnCr � Vr .mod Um/: (2.2)

Theorem 4. Let n 2N[f0g ; m;r 2Z: Then

U2mnCr � .�1/
nUr .mod Vm/; (2.3)

V2mnCr � .�1/
nVr .mod Vm/: (2.4)

Now we state the following theorem from [9].

Theorem 5. Let P � 3 be odd. If Vn D x
2 for some integer x; then n D 1: If

Vn D 2x
2 for some integer x; then nD 3; P D 3;27:

We state the following theorem due to Ribenboim and McDaniel [9].

Theorem 6. Let P � 3 be odd. If Un D x
2; then nD 1 or nD 6 and P D 3:

The following theorem can be obtained from Theorem 9 given in [4].

Theorem 7. Let P � 3 be odd, m;n > 1 be integers. The equation Un D 2Umx
2

has no solutions except for the cases nD 6; mD 3; P D 3;27:

The following two theorems can be obtained from Theorems 14 and 15 given in [4].

Theorem 8. The equation VnD Vmx
2; where P � 3; and P is odd, and n�m>0

has only the trivial solution nDm:

Theorem 9. The equation VnD 2Vmx
2; where P � 3; and P is odd, andm;n> 0

has no solutions.

Now we give some identities concerning generalized Fibonacci and Lucas numbers:

U�n D�Un and V�n D Vn; (2.5)

U2n D UnVn; (2.6)

V2n D V
2

n �2; (2.7)
V3n D Vn.V

2
n �3/; (2.8)

U3n D Un

�
.P 2
�4/U 2

n C3
�
D Un.V

2
n �1/; (2.9)

V 2
n �

�
P 2
�4
�
U 2

n D 4; (2.10)
if P is odd, then 2jVn, 2jUn, 3jn; (2.11)
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VmjVn,mjn and n=m is odd, (2.12)

UmjUn,mjn: (2.13)
Let mD 2ak; nD 2bl; k and l are odd, a;b � 0; and d D .m;n/: Then

.Um;Vn/D

�
Vd if a > b;
1 or 2 if a � b: (2.14)

U5n D Un

�
.P 2
�4/2U 4

n C5.P
2
�4/U 2

n C5
�
: (2.15)

If 5jUn; then from (2.15), we have

U5n D 5Un.5aC1/ (2.16)
for some a � 0:

V5n D Vn.V
4

n �5V
2

n C5/: (2.17)
If 5jP and n is odd, then 5jVn and therefore from (2.17), it follows that

V5n D 5Vn.5aC1/; (2.18)
for some a � 0:
From Lemma 1 and the identity (2.7), we have

5jVn, 5jP and n is odd. (2.19)
When P is odd, it is clear that �

�1

V2r

�
D�1: (2.20)

If P is odd and r � 2; then V2r ��1
�
mod P 2�3

2

�
and thus�

.P 2�3/=2

V2r

�
D

�
P 2�3

V2r

�
D 1: (2.21)

V2r �

�
�2 .mod P /; if r D 1;
2 .mod P /; if r � 2: (2.22)

If 3 − P and P is odd, then V2r ��1 .mod 3/ for r � 1 and therefore�
3

V2r

�
D 1: (2.23)

If 3jP and P is odd, then V2r ��1 .mod 3/ for r � 2 and therefore�
3

V2r

�
D 1: (2.24)
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Let P be odd. Then

�
5

V2r

�
D

8<:
�1; if 5jP;

1; if P 2 � 1 .mod 5/;

�1; if P 2 ��1.mod 5/;

(2.25)

for every r � 1:
Most of the properties above are well–known; properties between (2.5)–(2.10) can
be found in [8], [9], [10], [2]; properties between (2.11)–(2.14) can be found in [7],
[9], [10], [2]. Since the others are fairly easy to prove, we omit their proofs.

The following lemma can be proved by using (2.1).

Lemma 4.

5jUn,

8<:
2jn; if 5jP;

3jn; if P 2 � 1 .mod 5/;

5jn; if P 2 ��1 .mod 5/:

3. MAIN THEOREMS

From now on, we assume that n and m are positive integers, P � 3; and P is odd.

Theorem 10. The equation Vn D 5x
2 has a solution only if nD 1:

Proof. Assume that Vn D 5x
2 for some integer x: Since 5jVn; it follows from

(2.19) that 5jP: This implies by Theorem 1 that nD 1: This completes the proof. �

Theorem 11. There is no integer x such that Vn D 5Vmx
2:

Proof. Assume that Vn D 5Vmx
2: Then by (2.19), it is seen that 5jP and n is odd.

Moreover, since VmjVn; there exists an odd integer t such that n D mt by (2.12).
Since n and t are odd and n D mt; m is also odd. Hence, we have from Lemma 1
that

Vn �˙nP .mod P 2/ and Vm �˙mP .mod P 2/:

This implies that
˙nP �˙5mPx2 .mod P 2/;

i.e.,
n� 5mx2 .mod P /:

Using the fact that 5jP; it follows that 5jn: Firstly, assume that 5jt: Then t D 5s for
some positive odd integer s and therefore nDmt D 5ms: By (2.17), we immediately
have

Vn D V5ms D Vms.V
4

ms �5V
2

msC5/:
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Since ms is odd and 5jP; it follows that 5jVms by (2.19) and therefore

Vms

Vm

�
V 4

ms �5V
2

msC5

5

�
D x2:

Clearly, �
Vms=Vm; .V

4
ms �5V

2
msC5/=5

�
D 1:

This implies that

V 4
ms �5V

2
msC5D 5b

2

for some b � 0: But the integral points on 5Y 2 D X4 � 5X2C 5 are immediately
determined by using MAGMA [1] to be .X;˙Y / D .0;1/; which gives Vms D 0;

which is impossible. Secondly, assume that 5 − t: Since n D mt and 5jn; it is seen
that 5jm: Then we can write mD 5ra with 5 − a and r � 1: By (2.18), we obtain

Vm D V5r a D 5V5r�1a.5a1C1/

for some positive integer a1: Thus, we conclude that

Vm D V5r a D 5
rVa.5a1C1/.5a2C1/:::.5arC1/

for some positive integers ai with 1� i � r: Let AD .5a1C1/.5a2C1/:::.5arC1/:

Thus, we have Vm D 5
rVaA; where 5 − A: In a similar manner, we see that

Vn D V5r at D 5
rVat .5b1C1/.5b2C2/:::.5brC1/

for some positive integers bj with 1 � j � r: Thus, we have Vn D 5
rVatB; where

5 − B: As a consequence, we get

5rVatB D 5 �5
rVaAx

2;

implying that

VatB D 5VaAx
2:

By Lemma 1, it is seen that

˙atPB �˙5aPAx2 .mod P 2/;

i.e.,
atB � 5aAX2 .mod P /:

Since 5jP; it follows that 5jatB: However, this is impossible since 5 − a; 5 − t; and
5 − B: This completes the proof. �

Theorem 12. If P � 3 is odd, then the equation Un D 5x
2 has the solution nD 2

when 5jP and nD 3 when P 2� 1 .mod 5/: The equationUnD 5x
2 has no solutions

when P 2 ��1 .mod 5/:



ON THE EQUATIONS Un D 5� AND Vn D 5� 931

Proof. Assume that UnD 5x
2 for some integer x:Now we distinguish three cases.

Case I W Let 5jP: Then by Theorem 2, we see that nD 2 or nD 6 and 3jP: But, it
can be easily shown that for the case when n D 6 and 3jP; the equation Un D 5x

2

has no solutions.
Case II W Let P 2 � 1 .mod 5/: Since 5jUn; it follows from Lemma 4 that 3jn:
Hence, nD 3m for some positive integer m: Assume that m is even. Then mD 2s
for some positive integer s and therefore nD 6s:And so by (2.6), we get UnDU6s D

U3sV3s D 5x
2: Clearly, .U3s;V3s/D 2 by (2.14) and (2.11). Then either

U3s D 2a
2; V3s D 10b

2 (3.1)

or
U3s D 10a

2; V3s D 2b
2 (3.2)

for some positive integers a and b: Assume that (3.1) is satisfied. Since 5jV3s; it
follows from (2.19) that 5jP: But this contradicts the fact that P 2 � 1.mod5/: Now
assume that (3.2) is satisfied. Then by Theorem 5, we have 3s D 3 and P D 3;27:
Therefore s D 1: If P D 3; then U3 D P

2 � 1 D 8 D 10a2; which is impossible.
If P D 27; then U3 D P

2 � 1 D 272 � 1 D 10a2; which is also impossible. Now
assume that m is odd. Then by (2.9), we get U3m D Um

�
.P 2�4/UmC3

�
: Clearly,�

Um; .P
2�4/U 2

mC3
�
D 1 or 3: Then it follows that .P 2 � 4/U 2

mC 3 D wa
2 for

some w 2 f1;3;5;15g : Since .P 2� 4/U 2
mC 3 D V2mC 1 by (2.7) and (2.10), it is

seen that V2mC 1D wa
2: Assume that m > 1: Then mD 4q˙ 1D 2ra˙ 1 with a

odd and r � 2: Thus,

wa2
D V2mC1� 1�V2 ��.P

2
�3/ .mod V2r /

by (2.4). This shows that �
w

V2r

�
D

�
�1

V2r

��
P 2�3

V2r

�
:

By using (2.23), (2.24), and (2.25), it can be seen that
�
w

V2r

�
D 1 for w D 3;5;15:

Moreover,
�
�1

V2r

�
D�1 and

�
P 2�3

V2r

�
D 1 by (2.20) and (2.21), respectively. Thus,

we get

1D

�
w

V2r

�
D

�
�1

V2r

��
P 2�3

V2r

�
D�1;

which is impossible. Therefore mD 1 and thus nD 3:
Case III W Let P 2��1 .mod 5/: Since 5jUn; it follows that 5jn by Lemma 4. Thus
nD 5t for some positive integer t: Since P 2��1 .mod 5/; it is obvious that 5jP 2�

4 and therefore there exists a positive integer A such that P 2�4D 5A: By (2.15), we
get Un D U5t D Ut

�
.P 2�4/2U 4

t C5.P
2�4/U 2

t C5
�
: Substituting P 2� 4 D 5A
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into the preceding equation gives Un D U5t D 5Ut

�
5A2U 4

t C5AU
2
t C1

�
: Let B D

A2U 4
t CAU

2
t : As a consequence, we have

Un D U5t D 5Ut .5BC1/D 5x
2;

implying that
Ut .5BC1/D x

2:

It can be easily seen that .Ut ;5BC1/D 1: This shows that Ut D a
2 and 5BC1D b2

for some a;b > 0: By Theorem 6, we see that the only possible values of t and P
in which Ut D a

2 are t D 1 or t D 6 and P D 3: If t D 1; then nD 5 and therefore
we get Un D U5t D U5 D P

4�3P 2C1D 5x2: With MAGMA [1], we get P D 2;
which is impossible since P is odd. If t D 6; then n D 30: A simple computation
shows that there is no integer x such that U30 D 5x

2 for P D 3: �

Theorem 13. Let P � 3 and m> 1: The equation Un D 5Umx
2 has no solutions

in any of the following cases:

.i/ W P 2 ��1 .mod 5/I

.i i/ W P is odd and 5jP I

.i i i/ W P 2 � 1 .mod 5/; n is odd, and P is odd;

.iv/ W P 2 � 1 .mod 5/; n is even, and P is odd.

Proof. Assume that Un D 5Umx
2 for some x > 0: Since UmjUn; it follows that

mjn by (2.13). Thus, nDmt for some t > 0: Since n¤m; we have t > 1:
Case I W Let P 2��1 .mod 5/: It is obvious that 5jP 2�4: On the other hand, since
5jUn; it follows that 5jn by Lemma 4. Dividing the proof into two subcases, we have
Subcase .i/ W Assume that 5jt: Then t D 5s for some s > 0 and therefore nDmt D
5ms: By (2.15), we obtain

Un D U5ms D Ums

�
.P 2
�4/2U 4

msC5.P
2
�4/U 2

msC5
�
D 5Umx

2: (3.3)

Since 5jP 2�4; it is seen that 5j.P 2�4/2U 4
msC5.P

2�4/U 2
msC5. Also, we have

.P 2� 4/2U 4
msC 5.P

2� 4/U 2
msC 5 D V

4
ms � 3V

2
msC 1 by (2.10). Rearranging the

equation (3.3), we readily obtain

x2
D .Ums=Um/

��
V 4

ms �3V
2

msC1
�
=5
�
;

where
�
Ums=Um;

�
V 4

ms �3V
2

msC1
�
=5
�
D 1:Hence, V 4

ms�3V
2

msC1D 5b
2 for some

b > 0: But the integral points on 5Y 2 D X4�3X2C1 are immediately determined
by using MAGMA [1] to be .˙X;˙Y /D .2;1/; which gives Vms D 2; implying that
ms D 0; which is impossible.
Subcase .i i/ W Assume that 5 − t: Since 5jn; it follows that 5jm: Then we can write
mD 5ra with 5 − a and r � 1: By (2.16), it is sen that UmDU5r a D 5U5r�1a.5a1C

1/ for some positive integer a1: Thus, we conclude that Um D U5r a D 5
rUa.5a1C

1/.5a2C1/:::.5arC1/ for some positive integers ai with 1� i � r: Let AD .5a1C
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1/.5a2C 1/:::.5ar C 1/: Then, we have Um D 5
rUaA; where 5 − A: In a similar

manner, we getUnDU5r at D 5
rUat .5b1C1/.5b2C1/:::.5brC1/ for some positive

integers bi with 1 � i � r: Let B D .5b1C1/.5b2C1/:::.5br C1/: Hence, we have
Un D 5

rUatB; where 5 − B: As a consequence, we get

5rUatB D 5 �5
rUaAx

2

i.e.,
UatB D 5UaAx

2:

Since 5 − B; it follows that 5jUat ; implying that 5jat by Lemma 4. This contradicts
the fact that 5 − a and 5 − t: This concludes the proof of the case when P 2 � �1

.mod 5/:

Case II W Let P be odd and 5jP: Since 5jUn; it is seen from Lemma 4 that n is even.
On the other hand, we have nDmt: So, we first assume that t is even. Then t D 2s
for some s > 0: By (2.6), we get Un D U2ms D UmsVms D 5Umx

2; implying that
.Ums=Um/Vms D 5x

2: Clearly, d D .Ums=Um;Vms/D 1 or 2 by (2.14). If d D 1;
then

Ums D Uma
2; Vms D 5b

2 (3.4)

or
Ums D 5Uma

2; Vms D b
2 (3.5)

for some a;b > 0: If (3.4) holds, then the only possible value of ms in which Vms D

5b2 is 1 by Theorem 1, which contradicts the fact that m> 1: If (3.5) holds, then by
Theorem 5, we have ms D 1; which is impossible since m> 1:
If d D 2; then

Ums D 2Uma
2; Vms D 10b

2 (3.6)

or
Ums D 10Uma

2; Vms D 2b
2 (3.7)

for some a;b > 0: Suppose (3.6) holds. Then by Theorem 7, we get ms D 6; mD 3;
P D 3;27. There is no integer b such that V6 D 10b

2 for the case when P D 3 or 27.
Suppose (3.7) holds. Then by Theorem 7, the only possible values of ms and P in
which Vms D 2b

2 are ms D 3 and P D 3;27: Since m> 1; it follows that mD 3 and
therefore we obtain U3 D 10U3a

2; which is impossible.
Now assume that t is odd. Since n D mt and n is even, it follows that m is even.
Hence, we have Un � ˙.n=2/P.mod P 2/ and Um � ˙.m=2/P .mod P 2/ by
Lemma 2. This shows that ˙n

2
P � ˙5m

2
Px2 .mod P 2/; i.e., n

2
� 5m

2
x2 .mod

P /: Since 5jP; it is seen that 5jn: Dividing remainder of the proof into two subcases,
we have
Subcase .i/ W Let 5jt: Then t D 5s for some s > 0 and therefore nDmt D 5ms: By
(2.15), we obtain

Un D U5ms D Ums

�
.P 2
�4/2U 4

msC5.P
2
�4/U 2

msC5
�
: (3.8)
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Since ms is even and 5jP; it is seen that 5jUms by Lemma 4. Also, we have .P 2�

4/2U 4
msC 5.P

2� 4/U 2
msC 5 D V

4
ms � 3V

2
msC 1 by (2.10). Hence, rearranging the

equation (3.8) gives

x2
D .Ums=Um/.

�
V 4

ms �3V
2

msC1
�
=5/;

where
�
.Ums=Um/ ;

�
V 4

ms �3V
2

msC1
�
=5
�
D 1: This implies that V 4

ms �3V
2

msC1D

5b2 for some b > 0: But the integral points on 5Y 2DX4�3X2C1 are immediately
determined by using MAGMA [1] to be .˙X;˙Y /D .2;1/; which gives Vms D 2;

implying that ms D 0; which is impossible.
Subcase .i i/ W Let 5 − t: Since 5jn; it follows that 5jm: Then we can write m D
5ra with 5 − a and r � 1: By (2.16), it is sen that Um D U5r a D 5U5r�1a.5a1C 1/

for some positive integer a1: Thus, we conclude that Um D U5r a D 5
rUa.5a1C

1/.5a2C1/:::.5arC1/ for some positive integers ai with 1� i � r: Let AD .5a1C

1/.5a2C1/:::.5arC1/: Then, we have UmD 5
rUaA; where 5 −A: In a way similar,

we get UnDU5r at D 5
rUat .5b1C1/.5b2C1/:::.5brC1/ for some positive integers

bi with 1 � i � r: Let B D .5b1C 1/.5b2C 1/:::.5br C 1/: Hence, we have Un D

5rUatB; where 5 − B: Substituting the new values of Un and Um into Un D 5Umx
2

gives
5rUatB D 5 �5

rUaAx
2

i.e.,
UatB D 5UaAx

2:

On the other hand, since a is even and at is even, it follows from Lemma 2 that
Uat �˙

at
2
P .mod P 2/ and Ua �˙

a
2
P .mod P 2/: Hence, we have

˙
at

2
PB �˙5

a

2
PAx2 .mod P 2/;

implying that
at

2
B � 5

a

2
Ax2 .mod P 2/:

Since 5jP; it follows that 5jat
2
B; which shows that 5jatB: This contradicts the fact

that 5 − a; 5 − b; and 5 − B: This concludes the proof for the case when 5jP:
Case III W Let P 2 � 1 .mod 5/; n is odd, and P is odd. Then, both m and t are
odd. Since 5jUn; it follows immediately from Lemma 4 that 3jn: Using the fact that
nDmt; we have
Subcase .i/ W Assume that 3jm: Since t is odd, we can write t D 4q˙ 1 for some
q > 0: If t D 4qC 1; then t D 2 � 2raC 1 with a odd and r > 0: And so by (2.3),
we get Un D Umt D U2�2r amCm ��Um .mod V2r /; implying that 5Umx

2 ��Um

.mod V2r /: Since .Um;V2r / D 1 by (2.14), it follows that 5x2 � �1 .mod V2r /;

which is impossible since
�
5

V2r

�
D 1 by (2.25) and

�
�1

V2r

�
D �1 by (2.20). If

t D 4q�1; then by (2.1), we get Un D Um.4q�1/ D U2�2mq�m ��Um .mod U2m/:

This shows that 5Umx
2 ��Um .mod U2m/; implying that 5x2 ��1 .mod Vm/ by
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(2.6). Since 3jm; it is seen by (2.12) that V3jVm: Hence, we obtain 5x2 ��1 .mod

V3/; i.e., 5x2 ��1 .mod P 2�3/: But this is impossible since�
5

.P 2�3/=2

�
D

�
.P 2�3/=2

5

�
D

�
�1

5

�
D 1

and �
�1

.P 2�3/=2

�
D .�1/

P 2�5
4 D�1:

Subcase .i i/ W Assume that 3 − m: Since n D mt and 3jn; it follows that 3jt and
therefore t D 3s for some s > 0: Then by (2.9), we get

Un D U3ms D Ums

�
.P 2
�4/U 2

msC3
�
D 5Umx

2;

implying that
.Ums=Um/

�
.P 2
�4/U 2

msC3
�
D 5x2:

Clearly,
d D .Ums=Um;

�
.P 2
�4/U 2

msC3
�
D 1 or 3:

If d D 1; then either

Ums D Uma
2; .P 2

�4/U 2
msC3D 5b

2 (3.9)

or
Ums D 5Uma

2; .P 2
�4/U 2

msC3D b
2 (3.10)

for some a;b > 0: Suppose (3.9) holds. Then by (2.10), we get V 2
ms � 1D 5b

2 and
this gives by (2.7) that V2ms D 5b

2 � 1: Since ms > 1 is odd, ms D 4q˙ 1 for
some q > 0: Thus ms D 2 � 2ra˙ 1 with a odd and r > 0: By using (2.4), we get
5b2�1D V2ms ��V˙2 ��V2 .mod V2r /: This shows that 5b2�1��.P 2�2/

.mod V2r /; implying that 5b2��.P 2�3/ .mod V2r /: By using (2.20), (2.25), and
(2.21), it is seen that

1D

�
�1

V2r

��
5

V2r

��
P 2�3

V2r

�
D�1;

a contradiction. Suppose (3.10) holds. It can be easily seen by combining two equa-
tions that b2 � 3 .mod 5/; which is impossible.
If d D 3; then either

Ums D 3Uma
2; .P 2

�4/U 2
msC3D 15b

2 (3.11)

or
Ums D 15Uma

2; .P 2
�4/U 2

msC3D 3b
2 (3.12)

for some a;b > 0: If we combine two equations given in (3.11), then we readily
obtain b2 � 2 .mod 3/; which is impossible. Suppose (3.12) holds. Then by (2.10),
we get V 2

ms � 1 D 3b
2 and this gives by (2.7) that V2ms D 3b

2� 1: Since ms > 1
is odd, ms D 4q˙ 1 for some q > 0: Thus ms D 2 � 2ra˙ 1 with a odd and r > 0:
By using (2.4), we get 3b2�1D V2ms ��V˙2 ��V2 .mod V2r /: This shows that
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3b2� 1 � �.P 2� 2/ .mod V2r /; implying that 3b2 � �.P 2� 3/ .mod V2r /: By
(2.23), (2.24), (2.20), and (2.21), it is seen that

1D

�
�1

V2r

��
3

V2r

��
P 2�3

V2r

�
D�1;

a contradiction.
Case IV W Let P 2 � 1 .mod 5/; n is even, and P is odd. Since nDmt; we divide
the proof into two subcases:
Subcase .i/ W Assume that t is even. Then t D 2s for some s > 0: Hence, we imme-
diately have Un=Um D U2ms=Um D .Ums=Um/Vms D 5x

2: Clearly,
d D .Ums=Um;Vms/D 1 or 2 by (2.14). If d D 1; then

Ums D Uma
2; Vms D 5b

2 (3.13)

or
Ums D 5Uma

2; Vms D b
2 (3.14)

for some a;b > 0: Suppose (3.13) is satisfied. Since 5jVms; it follows from (2.19)
that 5jP; which contradicts the fact that P 2 � 1 .mod 5/: Now suppose (3.14) is
satisfied. By Theorem 5, the only possible value of ms in which Vms D b

2 is 1;
which is impossible since m> 1:
If d D 2; then

Ums D 2Uma
2; Vms D 10b

2 (3.15)
or

Ums D 10Uma
2; Vms D 2b

2 (3.16)
for some a;b > 0: Obviously, (3.15) is not satisfied because of the same reason given
above for (3.13). If (3.16) holds, then it is seen by Theorem 5 that the only possible
values of ms and P in which Vms D 2b

2 are ms D 3 and P D 3;27: But this is
impossible since P 2 � 1 .mod 5/:

Subcase .i i/ W Assume that t is odd. Since t > 1, we can write t D 4qC1 for some
q > 0 or t D 4qC3 for some q � 0. On the other hand, since n is even and nDmt;
it follows that m is even. Therefore we can write m D 2ra with a odd and r > 0:
Assume that t D 4qC 1: Then n D mt D 4qmCm D 2 � 2rCkbCm with b odd.
Hence, we get

5Umx
2
D Un D U2�2rCkbCm ��Um .mod V2rCk /

by (2.3). Since .Um;V2rCk /D .U2r a;V2rCk /D 1 by (2.14), it follows that

5x2
��1 .mod V2rCk /:

This is impossible. Because
�

5

V2rCk

�
D 1 and

�
�1

V2rCk

�
D�1 by (2.25) and (2.20),

respectively. Now assume that t D 4qC3: Then we have nDmt D 4qmC3m: And
so by (2.1), we get

5Umx
2
D Un D U4qmC3m � U3m .mod U2m/:
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By using (2.6) and (2.9), we readily obtain

5x2
� V 2

m�1 .mod Vm/;

which implies that
5x2
��1.mod Vm/:

Using the fact that mD 2ra with a odd, we have

5x2
��1 .mod V2r a/;

implying that
5x2
��1 .mod V2r /

by (2.12). But this is impossible since
�
5

V2r

�
D 1 and

�
�1

V2r

�
D �1 by (2.25) and

(2.20), respectively. This completes the proof. �
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