

Miskolc Mathematical Notes Vol. 16 (2015), No. 2, pp. 1055–1062

BEST PROXIMITY POINTS FOR GENERALIZED MULTIVALUED CONTRACTIONS IN METRIC SPACES

ESMAEIL NAZARI

Received 15 September, 2014

Abstract. In the present paper, we prove a best proximity point theorem for multivalued non-self-contractive type mappings which is a generalization of recent best proximity point theorems and some famous fixed point theorems.

2010 Mathematics Subject Classification: 47H10; 47H06

Keywords: best proximity point, fixed point, optimal approximate solution, multivalued mapping

1. INTRODUCTION

Let A, B be nonempty subsets of a metric space (X, d) and $T : A \to B$ be a nonself-mapping. Clearly, the set of fixed points of T can be empty. Therefore, it is of primary importance to seek an element x that in some sense is closest to Tx. That is, if there is no solution to the fixed point equation Tx = x, one tries to determine an approximate solution x subject to the condition that the distance between x and Txis minimal. A classical best approximation theorem was introduced by Fan [4]. It states that if A is a non-empty compact convex subset of a Hausdorff locally convex topological vector space X and $T : A \to X$ is a continuous mapping, Then there exists $x \in A$ such that d(x, Tx) = d(Tx, A). Recently, there have been many subsequent extensions of Fan's theorem, see [7, 8, 12] and references therein. A point $x \in A$ is called a best proximity point for T if distance of x to Tx is equal to the distance of A to B. In fact best proximity point theorems have been studied to find necessary conditions such that the minimization problem,

$$\min_{x \in A} d(x, Tx) \tag{1.1}$$

has at least one solution. Investigation of several variants of contractions for the existence of a best proximity point can be found in [2, 3, 5, 9-11, 13, 14].

In this article, we consider a classes of multivalued non-self-mapping which called (ϕ, θ) contractive mappings and we present some best proximity point theorems for these classes of non-self-mappings in metric spaces.

© 2015 Miskolc University Press

Let A and B be two nonempty subsets of a metric space. We will use the following notations:

$$d(A, B) = \inf\{d(x, y) : x \in A, y \in B\},\$$

$$A_0 = \{x \in A : d(x, y) = d(A, B) \text{ for some } y \in B\},\$$

$$B_0 = \{y \in B : d(x, y) = d(A, B) \text{ for some } y \in A\},\$$

$$D(x, B) = \inf\{d(x, y) : y \in B\}, \quad \forall x \in X,\$$

$$H(A, B) = \max\{\sup_{x \in A} D(x, B), \sup_{y \in B} D(y, A)\}.\$$

Let A and B be nonempty subsets of a metric space (X, d). Assume that $T : A \rightarrow$ 2^{B} is a multivalued non-self-mapping. A point $x \in A$ is said to be a fixed point of T if $x \in Tx$. In case $A \cap B = \emptyset$, the multifunction T has not fixed point. Then D(x,Tx) > 0 for all $x \in A$. Therefore, we can explore to find necessary conditions so that the minimization problem

$$\min_{x \in A} D(x, Tx) \tag{1.2}$$

has at least one solution. Since $D(x, Tx) \ge d(A, B)$ for all $x \in A$, the optimal solution to the problem (1.2) is obtained in some points of A for which the value d(A, B)is attained. A point $x \in A$ is called a best proximity point of a multivalued non-selfmapping T, if D(x, Tx) = d(A, B). We note that if d(A, B) = 0, then we get a fixed point of T.

Definition 1 ([11]). Let (A, B) be a pair of nonempty subsets of a metric space (X,d) with $A_0 \neq \emptyset$. Then the pair (A, B) is said to have the *P*-property iff

$$\begin{cases} d(x_1, y_1) = d(A, B) \\ d(x_2, y_2) = d(A, B) \end{cases} \Rightarrow d(x_1, x_2) = d(y_1, y_2),$$

where $x_1, x_2 \in A$ and $y_1, y_2 \in B$

Definition 2 ([15]). Let (A, B) be a pair of nonempty subsets of a metric space (X,d) with $A_0 \neq \emptyset$. Then the pair (A, B) is said to have the weak P-property iff

$$\begin{cases} d(x_1, y_1) = d(A, B) \\ d(x_2, y_2) = d(A, B) \end{cases} \Rightarrow d(x_1, x_2) \le d(y_1, y_2),$$

where $x_1, x_2 \in A$ and $y_1, y_2 \in B$.

Definition 3. We say that $\varphi : [0, \infty] \to [0, \infty]$ is a (c)-comparison function if and only if the following conditions hold:

(i) φ is a nondecreasing function,
(ii) for any t > 0, Σ_{n=0}[∞] φⁿ(t) is a convergent series.

1056

In what follows, we will denote:

$$\Theta = \{\theta : [0, +\infty)^4 \to [0, +\infty) :$$

 θ is continuous and $\theta(t_1, t_2, t_3, t_4) = 0 \Leftrightarrow t_1 t_2 t_3 t_4 = 0\}$

Example 1. The following functions belong to Θ : (1) $\theta(t_1, t_2, t_3, t_4) = L \min\{t_1, t_2, t_3, t_4\}, L > 0$ (2) $\theta(t_1, t_2, t_3, t_4) = t_1 t_2 t_3 t_4,$ (3) $\theta(t_1, t_2, t_3, t_4) = \ln(1 + t_1 t_2 t_3 t_4),$ (4) $\theta(t_1, t_2, t_3, t_4) = \exp(t_1 t_2 t_3 t_4) - 1.$

The notion of almost (φ, θ) -contraction for single valued non-self mapping was introduced by Bessem Samet as follows.

Definition 4 ([10]). A mapping $T : A \to B$ is said to be an almost (φ, θ) -contraction if and only if there exist $\varphi \in \Phi$ and $\theta \in \Theta$ such that, for all $x, y \in A$,

$$d(Tx,Ty) \le \varphi\Big(d(x,y)\Big) + \theta\Big(d(y,Tx) - d(A,B), d(x,Ty) - d(A,B), d(x,Tx) - d(A,B), d(y,Ty) - d(A,B)\Big)$$

He proved the following result.

Theorem 1 ([10]). Let A and B be closed subsets of a complete metric space (X,d) such that A_0 is nonempty. Suppose that $T : A \to B$ satisfies the following conditions: (i) T is an almost (φ, θ) -contraction,

(*ii*) $T(A_0) \subseteq B_0$,

(iii) the pair (A, B) has the P-property.

Then, there exists a unique element $x^* \in A$ such that

$$d(x^*, Tx^*) = d(A, B)$$

Moreover, for any fixed element $x_0 \in A_0$ *, any iterative sequence* $\{x_n\}$ *satisfying*

$$d(x_{n+1}, Tx_n) = d(A, B)$$

converges to x^* .

Now, in the following we defined the notion of (φ, θ) - contraction for multivalued mappings.

Definition 5. A mapping $T : A \to 2^B$ is said to be an almost (φ, θ) -contraction if and only if there exist $\varphi \in \Phi$ and $\theta \in \Theta$ such that, for all $x, y \in A$,

``

$$H(Tx,Ty) \le \varphi(d(x,y)) + \theta(D(y,Tx) - d(A,B), D(x,Ty))$$
$$-d(A,B), D(x,Tx) - d(A,B), D(y,Ty) - d(A,B))$$

2. MAIN RESULTS

Our first main result is the following theorem.

Theorem 2. Let A and B be closed subsets of a complete metric space (X,d) such that $A_0 \neq \emptyset$ and the pair (A, B) satisfies the weak P-property. Suppose that $T : A \rightarrow 2^B$ be a multi-valued almost (φ, θ) -contraction non-self mapping. If T(x) is bounded and closed in B for all $x \in A$, and $T(x_0) \subseteq B_0$ for each $x_0 \in A_0$, then T has a best proximity point in A.

Proof. Select $x_0 \in A_0$ and $y_0 \in Tx_0 \subseteq B_0$. By the definition of the set B_0 , we can fined an element x_1 in A_0 such that $d(x_1, y_0) = d(A, B)$. If $y_0 \in Tx_1$, then $d(A, B) \leq D(x_1, Tx_1) \leq d(x_1, y_0) = d(A, B)$, therefore $D(x_1, Tx_1) = d(A, B)$ and x_1 is a best proximity point of T. If $y_0 \notin Tx_1$ and q > 1 be given. Then

$$0 < d(y_0, Tx_1) \le H(Tx_0, Tx_1) < qH(Tx_0, Tx_1).$$

Hence, there exists $y_1 \in Tx_1$ such that

$$0 < d(y_0, y_1) < qH(Tx_0, Tx_1) \le q\varphi\Big(d(x_0, x_1)\Big) + q\theta\Big(D(x_1, Tx_0) - d(A, B), D(x_0, Tx_1) - d(A, B), D(x_0, Tx_0) - d(A, B), D(x_1, Tx_1) - d(A, B)\Big)$$

Since $D(x_1, Tx_0) = d(A, B)$, we have

$$0 < d(y_0, y_1) < q\varphi\Big(d(x_0, x_1)\Big) + q\theta\Big(0, D(x_0, Tx_1) - d(A, B),$$

$$D(x_0, Tx_0) - d(A, B), D(x_1, Tx_1) - d(A, B)\Big)$$
(2.1)

$$= q\varphi\Big(d(x_0, x_1)\Big).$$

One the other hand since $y_1 \in Tx_1 \subseteq B_0$, there exists $x_2 \in A_0$ such that $d(x_2, y_1) = d(A, B)$. By using the weak P-property of (A, B) we obtain $d(x_2, x_1) \leq d(y_0, y_1)$. Now, put $t_0 = d(x_0, x_1)$, then $t_0 > 0$ and by (2.1) we have $d(x_1, x_2) < q\varphi(t_0)$. Since

$$\varphi$$
 is strictly increasing, $\varphi(d(x_1, x_2)) < \varphi(q\varphi(t_0))$. Set $q_1 = \frac{\varphi(q\varphi(t_0))}{\varphi(d(x_1, x_2))} > 1$. If

 $y_1 \in Tx_2$ then x_2 is a best proximity point of T. suppose that $y_1 \notin Tx_2$, then $0 \leq d(y_1, Tx_2) \leq H(Tx_1, Tx_2) \leq aH(Tx_1, Tx_2)$

$$0 < d(y_1, Tx_2) \le H(Tx_1, Tx_2) < qH(Tx_1, Tx_2)$$

1058

Therefore, there exits $y_2 \in T x_2$ such that

$$0 < d(y_2, y_1) < q_1 H(Tx_2, Tx_1)$$

$$\leq q_1 \varphi \Big(d(x_1, x_2) \Big) + q_1 \theta \Big(D(x_2, Tx_1) - d(A, B), D(x_1, Tx_2) - d(A, B), D(x_1, Tx_1) - d(A, B), D(x_2, Tx_2) - d(A, B) \Big)$$

Since $D(x_2, Tx_1) = d(A, B)$, we have

$$0 < d(y_2, y_1) < q_1 \varphi \Big(d(x_1, x_2) \Big) + q_1 \theta \Big(0, D(x_1, Tx_2) - d(A, B), D(x_1, Tx_1) \\ - d(A, B), D(x_2, Tx_2) - d(A, B) \Big) \\ = q_1 \varphi \Big(d(x_1, x_2) \Big) = \varphi \Big(q \varphi(t_0) \Big).$$
(2.2)

Again, since $y_2 \in Tx_2 \subseteq B_0$, there exist $x_3 \in A_0$ such that $d(x_3, y_2) = d(A, B)$. By using the weak P-property of (A, B) we obtain $d(x_3, x_2) \leq d(y_2, y_1)$. Since φ is in strictly increasing by using (2.2) we have $\varphi(d(x_3, x_2)) < \varphi^2(q\varphi(t_0))$. Set

 $q_2 = \frac{\varphi^2(q\varphi(t_0))}{\varphi(d(x_3, x_2))} > 1. \text{ If } y_2 \in Tx_3 \text{ then } x_3 \text{ is a best proximity point of } T. \text{ Suppose that } y_2 \notin Tx_3 \text{ then we have,}$

$$0 < d(y_2, Tx_3) \le H(Tx_2, Tx_3) < q_2 H(Tx_2, Tx_3).$$

Then there is $y_3 \in Tx_3$ such that

$$0 < d(y_3, y_2) < q_2 H(Tx_3, Tx_2) \le q_2 \varphi \Big(d(x_3, x_2) \Big)$$

+ $q_2 \theta \Big(D(x_3, Tx_2) - d(A, B), d(x_2, Tx_3) - d(A, B), D(x_3, Tx_3)$
- $d(A, B), D(x_2, Tx_2) - d(A, B) \Big)$

Since $D(x_3, Tx_2) = d(A, B)$ we have

$$0 < d(y_3, y_2) < \varphi \Big(d(x_3, x_2) \Big) + q_2 \theta \Big(0, d(x_2, Tx_3) - d(A, B), D(x_3, Tx_3) - d(A, B), D(x_2, Tx_2) - d(A, B) \Big)$$
$$= q_2 \varphi \Big(d(x_3, x_2) \Big) = \varphi^2 (q\varphi(t_0))$$

By continuing this process, for each $n \in N$, we can find a sequences $\{x_n\}$ and $\{y_n\}$ in A_0 and B_0 respectively, such that, (1) $y_n \in Tx_n \subseteq B_0$, (2) $d(x_{n+1}, y_n) = d(A, B)$

(3) $d(y_{n+1}, y_n) \leq \varphi^n \left(q \varphi(t_0) \right).$

Since (A, B) satisfies the weak p-property, we conclude that

$$d(x_n, x_{n+1}) \le d(y_{n-1}, y_n) \qquad \forall n \in N$$

we now have

$$d(x_n, x_{n+1}) \le d(y_{n-1}, y_n) \le \varphi^{n-1} \left(q\varphi(t_0) \right)$$

Let m > n. Then

$$d(x_n, x_m) \le \sum_{i=n}^{m-1} d(x_i, x_{i+1}) \le \sum_{i=n}^{m-1} \varphi^{i-1} \Big(q \varphi(t_0) \Big)$$

and so $\{x_n\}$ is a Cauchy sequence in A. Hence, there exists $x^* \in A$ such that $x_n \to x^*$. Similarly, by using (3) we can show that the sequence $\{y_n\}$ in B is Cauchy and hence is convergent. Suppose that $y_n \to y^*$. By the relation $d(x_{n+1}, y_n) = d(A, B)$, for all $n \in N$, we conclude that $d(x^*, y^*) = d(A, B)$. Now we show that $y^* \in Tx^*$. Since $y_n \in Tx_n$, we obtain

$$\lim_{n \to \infty} D(y_n, Tx^*) \le \lim_{n \to \infty} H(Tx_n, Tx^*) \le \lim_{n \to \infty} \left[\varphi \Big(d(x_n, x^*) \Big) + \theta \Big(D(x^*, Tx_n) - d(A, B), D(x_n, Tx^*) - d(A, B), D(x_n, Tx_n) - d(A, B), D(x^*, Tx^*) - d(A, B) \Big) \right] = 0 + \theta \Big(\lim_{n \to \infty} d(x^*, y_n) - d(A, B), \lim_{n \to \infty} (D(x_n, Tx^*) - d(A, B)), \lim_{n \to \infty} (D(x_n, Tx_n) - d(A, B)), D(x^*, Tx^*) - d(A, B) \Big) = 0 + \theta \Big(0, \lim_{n \to \infty} (D(x_n, Tx^*) - d(A, B)), D(x^*, Tx^*) - d(A, B) \Big) = 0.$$

Thus, we have

$$\lim_{n \to \infty} D(y_n, Tx^*) = 0$$

Hence $D(y^*, Tx^*) = 0$. Since Tx^* is closed, We conclude that $y^* \in Tx^*$. Now we have,

$$d(A, B) \le D(x^*, Tx^*) \le d(x^*, y^*) = d(A, B),$$

which implies that $D(x^*, Tx^*) = d(A, B)$, that is $x^* \in A$ is a best proximity point of *T*. This completes the proof of theorem.

1060

Taking $\varphi(t) = \alpha t$ we have the following result which an extension of theorem 2.1 in [1].

Corollary 1. Let (A, B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that $A_0 \neq \emptyset$ and (A, B) satisfies the weak P-property. Let $T : A \rightarrow 2^B$ be a multivalued non-self-mapping, for which there exist a constant $\alpha \in [0, 1)$ and $\theta \in \Theta$ such that for all $x, y \in X$

$$H(Tx,Ty) \le \alpha d(x,y) + \theta \Big(D(y,Tx) - d(A,B), D(x,Ty) \\ - d(A,B), D(x,Tx) - d(A,B), D(y,Ty) - d(A,B) \Big)$$

Suppose also that T(x) is bounded and closed in B for all $x \in A$, and $T(x_0) \subseteq B_0$ for each $x_0 \in A_0$, then T has a best proximity point in A.

Example 2. Let $X = \Re$ with the usual metric. Suppose $A := \{0,3,6,9\}$ and $B := \{-1,2,5,8\}$. Then, A and B are nonempty and closed subsets of X and $A_0 = A$ and $B_0 = B$. We note that, d(A, B) = 1. It is easy to show that the pair (A, B) has the weak P-property. Let $T : A \to 2^B$ ba a mapping defined by $T0 = \{8\}$ and $Tx = \{5,8\}$, if $x \neq 0$. Consider the functions $\theta(t_1, t_2, t_3, t_4) = t_1 t_2 t_3 t_4$ and $\varphi(t) = \frac{t}{2}$ for all $t \ge 0$. Then T is (φ, θ) - multivalued contraction. Thus T has a best proximity point Note that x = 6 and x = 9 are best proximity point of T. It is interesting to note that the non-self mapping T is not a non-self contraction.

Taking B = A in Theorem 2, we obtain the following result.

Corollary 2. Let (X,d) be a complete metric space, and A be a nonempty and closed subset of X. Let $T : A \to 2^A$ be an almost (φ, θ) -contraction self-mapping. Then T has a fixed point $x \in A$.

Taking $\varphi(t) = \alpha t$ and $\theta(t_1, t_2, t_3, t_4) = L \min\{t_1, t_2, t_3, t_4\}$, we obtain from Corollary 2 the following result which is a generalization of Nadler fixed point theorem [6].

Corollary 3. Let (X, d) be a complete metric space, and A be a nonempty closed subset of X. Let $T : A \to 2^A$ be a mapping such that there exist $\alpha \in [0, 1)$ and L > 0 such that, for all $x, y \in A$,

 $H(Tx,Ty) \le \alpha d(x,y) + L\min\{D(y,Tx), D(x,Ty), D(x,Tx), D(y,Ty)\}$

Then T has a unique fixed point $x \in A$.

ACKNOWLEDGEMENT

The authors are grateful to the referees for their helpful suggestions contributing to the improvement of the paper.

REFERENCES

- A. Abkar and M. Gabeleh, "The existence of best proximity points for multivalued nonselfmappings," *RACSAM*, vol. 107, no. 2, pp. 319–325, 2013, doi: 10.1007/s13398-012-0074-6.
- [2] A. Abkar and M. Gabeleh, "A note on some best proximity point theorems proved under pproperty," *abstract Appl. Anal*, vol. Article ID 189567, 2013.
- [3] A. A. Eldred and P. Veeramani, "Existence and convergence of best proximity points," J. Math. Anal. Appl, vol. 323, no. 2, pp. 1001–1006, 2006, doi: 10.1016/j.jmaa.2005.10.081.
- [4] K. Fan, "Extensions of two fixed point theorems of F.E. Browder," Math. Z, vol. 112, no. 3, pp. 234–240, 1969.
- [5] W. A. Kirk, S. Reich, and P. Veeramani, "Proximinal retracts and best proximity pair theorems," *Numer. Funct. Anal. Optim*, vol. 24, no. 7-8, pp. 851–862, 2003, doi: 10.1081/NFA-120026380.
- [6] S. B. J. Nadler, "Multivalued contraction mappinsg," Pac. J. Math, vol. 30, no. 2, pp. 475–488, 1969, doi: 10.2140/pjm.1969.30.475.
- [7] J. B. Prolla, "Fixed point theorems for set valued mappings and existence of best approximations," *Numer. Funct. Anal. Optim.*, vol. 5, no. 4, pp. 449–455, 2010.
- [8] S. Reich, "Approximate selections, best approximations, fixed points and invariant sets," J.Math. Anal. Appl, vol. 62, no. 1, pp. 104–113, 1978, doi: 10.1016/0022-247X(78)90222-6.
- [9] S. Sadiq Basha, "Extensions of banach-s contraction principle," *Numer. Funct. Anal. Optim*, vol. 31, no. 5, pp. 569–576, 2010, doi: 10.1080/01630563.2010.485713.
- [10] B. Samet, "Some results on best proximity points," J. Optim. Theory Appl., vol. 159, no. 1, pp. 281–291, 2013, doi: 10.1007/s10957-013-0269-9.
- [11] V. Sankar Raj, "A best proximity point theorem for weakly contractive non-self-mappings," Nonlinear Anal., vol. 74, no. 14, pp. 4804–4808, 2011, doi: 10.1016/j.na.2011.04.052.
- [12] V. M. Seghal and S. P. Singh, "A generalization of multifunctions of Fans best approximation theorem," *Proc. Amer.Math. Soc*, vol. 102, no. 3, pp. 534–537, 1988.
- [13] N. Shahzad, S. Sadiq Basha, and R. Jeyaraj, "Common best proximity points: global optimal solutions," J. Optim. Theory Appl, vol. 148, no. 148, pp. 69–78, 2011, doi: 10.1007/s10957-010-9745-7.
- [14] T. Suzuki, M. Kikkawa, and C. Vetro, "The existence of best proximity points in metric spaces with the property UC," *Nonlinear Anal.*, vol. 71, no. 7, pp. 2918–2926, 2009, doi: 10.1016/j.na.2009.01.173.
- [15] J. Zhang, Y. Su, and Q. Cheng, "A note on a best proximity point theorem for Geraghtycontractions," *Fixed Point Theory and Applications*, vol. article 83, 2013, doi: 10.1186/1687-1812-2013-83.

Author's address

Esmaeil Nazari

Department of Mathematics, Tafresh University, Tafresh, Iran *E-mail address:* nazari.esmaeil@gmail.com