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n
Abstract. Let ( fv,d,c) LD =z+ 3 bkzk *1 be the sequence of partial sums of generalized
k=1

o0
and normalized Struve functions f;, 4 .(z2) =2+ >_ bkzk +1

k=1
v+ (d +2)/2 #0,—1,-2,.... The purpose of the present paper is to determine lower bounds

where by, = % and F :=

for
fo.d.c(@) N (foa.0), @) v.d.c®@) (f.d.c)p@)
m{(fv,d,c),,a)}’”‘{ Fod.c @ }’”‘{(fv,d,c);m% and m{ NG

we give lower bounds for 9 % %} and N { %} , where A[fy 4] is

the Alexander transform of f, 4 ..

} . Furthermore,
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let 4 denote the class of functions f normalized by
o0
f@=z+) a* (1.1)
k=2

which are analytic in the open unit disk U = {z : |z| < 1} and satisfy the usual nor-
malization condition f(0) = f’(0) —1 = 0. Let 8 denote the subclass of + contains
all functions which are univalent in U. Also let $*(«), €(«) and K («) denote the
subclasses of «4 consisting of functions which are, respectively, starlike, convex and
close-to-convex of order & in U (0 < < 1).

The Alexander transform A[f]: U —> C of f is defined by [!],

Alf)z) = OZ @dtzz+2%kzk. (12)
k=2
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We consider the following second-order linear inhomogeneous differential equa-
tion (see, for details [0]):
4(Z /2)v+l

Sw'(@) +dzw' @) + [ea® —vP + (L =dpw() = = s

(1.3)

where ¢,d,v € C.

A particular solution of the differential equation (1.3), which is denoted by
Wy.4,c(2), is called the generalized Struve function of the first kind of order v. In
fact we have the following series representation for the function w,, 4 .(z) :

s (—c)k 7\ 2k+v+1
v,d,c = - Q), 14
Wadic@) kg;)l“(k+3/2)1’(v +k+2£2) () GeO. a9

where I'(z) stands for Euler gamma function. The series in (1.4) permits us to study
the Struve and the modified Struve functions in a unified manner. Each of these
particular cases of the function w, 4 .(z) is worthy of mention here.

e For d = ¢ = 1in (1.4), we get the Struve function Hy(z) defined by (see [ 1]
and [6]):

o (=DF 7\ 2k+v+1
HU(Z)_kX:;)F(k+3/2)F(v+k+3/2) (E) (ze®). (@5

e For d = —c = 1 in (1.4), we get the modified Struve function L, (z) defined by
(see [11] and [6]):

o0
1
Ly(z2)=
v(@) I;) F(k+3/2)T (v+k+3/2)
We now consider the function f;, 4 .(z) defined, in terms of the generalized Struve
function w,, 4 (2), by (see [0]):

(z€C). (1.6)

z 2k+v+1
(5)

d —v+t1
fode@ = VAT w0 (V2)
o NEEofre+ 432

= z+
,; 22K+ (k4 3/2) T (v +k + 4£2)

According to Weierstrass M-test the series in (1.7) converges uniformly for z € U.
By taking

T zewan

3 VIO T+ 3
o 2N (k+3/2) 0w+ k+ 452 =
we see that from the Ratio Test the series Y poo My is convergent. That means the

function f,, 4 .(z) is analytic for z € U. Moreover, f, 4 .(z) satisfies the normaliz-
ation condition f, 4..(0) = f, ;, .(0)—1=0.So that, f, 4 € A.



STRUVE FUNCTIONS 659

By using the Pochhammer (or Appell) symbol, defined in terms of Euler’s gamma
functions, by (M) = I'A+k)/T"(A) = A(A+1)...(A + k — 1), we obtain the fol-
lowing series representation for the function f,, 4 .(z) given by (1.7):

o0
fode@ =2+ bzt (1.8)
k=1
where by = G and F 1= v+ (d +2)/2 #0.-1,-2.....
For further results on this relative f, 4.(z) of the generalized Struve function
Wy.d,c (z), we refer the reader to the recent papers (see, for example, [0, 12, 13]).

In this work, we will examine the ratio of a function of the form (1.8) to its se-
n

quence of partial sums (fy,4.c), (2) = Y brzF™! when the parameters ¢,d, v sat-
k=0

isfy appropriate conditions. We will determine lower bounds for N { G @

mVAﬁax%,m{ﬁgﬁa}’mwnﬁax%’

Sv.d.c(2) }

So.a.c(2) (fv.d.c);(z) Igdc(z)

N { % and N ; %} , where A[f, 4] is the Alexander

transform of f, 4.

For various interesting developments concerning partial sums of analytic univalent
functions, the reader may be (for examples) refered to the works of Brickman et al.
[2], Lin and Owa [3], Orhan and Giines [4], Orhan and Yagmur [5], Owa et.al [7],
Sheil-Small [8], Silverman [9], Silvia [10].

Lemma 1. If the parameters d,v e R,c e Cand F:=v+ (d +2)/2 #
0,—1,—2,... then the function
fv,d,c U —C

given by (1.8) satisfies the following inequalities:
(i) If F > 1<l then

{fv,d,c(z)‘f&c_'cl (zeW,
(ii) If F > 1l then
) 12F + |c|
fv,d,c(Z))fm,__—_ch (zeW,
(iii) If F > 1L then
12F —|c|
|A[fv,d,c](z)‘§r2|c| (zeU).
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Proof. (i) If we use the well-known triangle inequality:
|21+ 22| <|z1] +|z2]

and the inequalities (3/2);, > (3/ 2)k, (Fg > F*. (k € N) we obtain
o (—c/F | < |— C/4|
L Gmm, " Z
el o (el Y\ _ 6F |
1+¥Z(6F) T 6F—|c|’ (F>F)'

(ii) Suppose that F > |C| , by using well-known triangle inequality and the inequalit-
ies: (%)k > 3(k:rl), (F) > Fk, (k € N), we get

}fv,d,c(z)‘ =

(k+1D)(— c/4)
1
i ,; (/2 (P

12F + |c| ]
_— F>—
3(4F —|c)) 4
(iii) In order to prove the part (iii) of Lemma 1, we make use of the well-known

triangle inequality and the inequalities

(k+1)(3/2); =23/, (F)r = F*, (ke N).

/ 4lel (el !
fv,d,c(z)‘ 51+§4_Z(F) (1.9)

We thus find

o0

e |
L rneneme |

- et (e

12F —|c| c]
_ F>—1].
12F =2 |c| 6

|A[fv,d,c](z)‘ =

lc]
i ; 2(3/2)F (4F)¥

O
2. MAIN RESULTS
Theorem 1. If the parameters d,v € R, ce Cand, F=v+(d +2)/2 #
0,—1,-2,... are so constrained that F > % then
. 6F —2
m fv,d,c(z) Z |c| (Z c u)’ (2.1)
(fo.de), (@) F—|c|
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and

N

(fud.c)y (z)} il P 22)

o ,d,c (z) 6F
Proof. Firstly, we know that for z € U the image domains of the functions z —

((ffv’Td'C)) (z) and 7 +—> ((f” A C) ) (z) do not contain the origin. Because

fv,d,c(z) _ 1+Zzo=1kak
(fodic), (@) 14+ fy bi2k

=1+..,

and so
(fv,d,c)n (2) _ 1+ Zzzl kak
fv,d,c(z) 1 +tho=1bkzk

It means that the functions f,, 4 . and ( f,,4,c), does not vanish for z € U.
Now, we consider from part (i) of Lemma 1 that

1+Z|bk|_6F L

=1+....

which is equivalent to

6F — |¢| =
|bx] <1
g =

_ _(=c/F
where bk = m

We may write

6F —lcl | foae@  6F=2|c|
|c| (fv,d,c)n (2) 6F —|c|
L+ D k=1 bz + 6Flc_llc| YRl b

T+ w(2)
1—w(z)
So that,
6F—
_ |c||c| Zliozn-l-l brz
w(z) = noop ok 6F—|c| x~oo b7k
2420 k=1 bt + 20 kmns 1 k2
and 6F—e]
6F—|c
> ket 1bx
w(z)| < el

6F—
2250 oy il = S5 bk
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Now |w(z)| <1 if and only if

6F —|c| = "
el o lbel =2-2) Ik,

which is equivalent to

" 6F —|c| —
E |br| + ] E |br| < 1. (2.3)
k=1

k=n+1
It suffices to show that the left hand side of (2.3) is bounded above by
6f —le| > %=1 bk |, which is equivalent to

6F -2
|C|Z|b 1> 0.

lc]

To prove the result (2.2), we write

6F | (fo.de), (&) 6F—|c|

|C| fv,d,c(z) 6F

L+ >k bz — 6F|c||c| Y Rens1h
1+Zk=1bkzk

1+ w(2)

C1-w(2)

where
|c| Zk—n+1 |bk |

6F—2 =
2250y il — S5 R 1
The last inequality is equivalent to

z 6F —|c| —
> lbel+ i > bkl =1 (2.4)
k=1

k=n+1

lw(z)| <

Since the left hand side of (2.4) is bounded above by 6F|C_||C| > %=1 |bk|, the proof is
completed. O

Theorem 2. If the parameters d,v € R, ce Cand, F=v+(d +2)/2 #

7|C|

0,—1,-2,... are so constrained that F > then

R vdc(z) > 12F—7|c|
(fode), (@) — 3(4F=c)

(zelU), (2.5)
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and

N

(zelU). (2.6)

/
(fvdc) (2) - 12F —3|c|
vdc(z)  12F 4+ |c|
Proof. Similar to in the proof of Theorem | we know that for z € U the image

domains of the functions z +—> ((]{”"”C), ) (z) and 7z +— ((f” )y ) (z) do not
v.d.c)p v d.c

contain the origin. Because

v, d C(Z) _ 1 +Zzo=1(k+ 1)kak
(fv,d,c)n (Z) 1+ ZZ=1(k + l)bkzk

=14..,

and
(fodc)n @) _ 1+ 30 G+ Dbt
vdc(z) 1+Z]C;o=1(k+1)bk2.k

So that the functions f; , and (fv,d,c); does not vanish for z € U.
By using part (ii) of Lemma 1 we observe that

=14...

12F + ||
14+ (k+D]bg| < ————
Z 3(4F—|cl)
which is equivalent to
3(4F —|c]) =
N k+ 1) b <1,
i kDb <
k=1
here by, — _Ce/®~
WREIC Ok = G2 (P

Now, we write
3@F—eh) [ foac®  12F=7)c|
4lel [(fu,d,c);(z)_3(4F—|c|)}
L+ ke (k4 Dbt + 30%;IM) Y kznt1(k+ Dbez*
143k + Dby z*

T+ w(2)
T l-w(2)’

where
F
3(4 |C||C|) Zk thl(k + 1) |br| -1

lw(z)] < <
2230 (e 1) by = 2GRS0 (k4 1) [
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The last inequality is equivalent to

3GF ~leD > (k+ Dbl <1 (2.7)

4|C| k=n+1

> (ke + 1) |by| +

k=1
It suffices to show that the left hand side of (2.7) is bounded above by

W > e (k + 1) |bg|, which is equivalent to

12F =7c|

4 Z(k+1)|b | > 0.

k=1

To prove the result (2.6), we write

12F +|c| |:(fv,d,c):, (z) 3(4F- ICI)}

4|c| fv"d,c(z) 12F + |c|
T+ w(2)
1—w(z)’
where
k= k|

<
2250y (k1) b | = 25 Y20 (k4 1) by |

The last inequality is equivalent to

c
Z(k+1)|b |+—( oy || D Z (k+1)|b| < 1. (2.8)
k=1 ¢ k=n+1
Since the left hand side of (2.8) is bounded above by W > re (k+1)|bg|, the
proof is completed. 0

Theorem 3. [f the parameters d,v e R,c € Cand, F=v+(d +2)/2 #

0,—1,-2,... are so constrained that F > %, then

Al fv,d.c)(2) 12F =3 ]c|
! . = U, 2.9
(A[fv,d,c])n(z)$ =22 ©<W (2.9)
and
(A[fv,d,c])n (Z) - 12F—2|c|
! Alfpacl@) | = 12F—|c| (zeW. (2.10)

where Al fy 4.c] is the Alexander transform of f, 4 c.
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Proof. We prove only (2.9), which is similar in spirit to the proof of Theorem 1.
The proof of (2.10) follows the pattern of that in (2.2).
We consider from part (iii) of Lemma 1 that

o0
bk] _ 12F —|c|
1 < ,
+k2—:1k+1 = 12F—2|c|

which is equivalent to

12F — 2|c|Z b |
k+1— L

— _c/d*
where bk = m

We may write

12F—2|C| A[fv,d,c](z) . 12F—3|C|
lc] (Alfv.d.el), (@) 12F=2]c|

12F 2|c| bx _k
1+3 %= 1k+1Z + > ken+1 %417

1+ %= 1k+1Zk

T+ w(z)
1—w(z)’
where
12F=2|c| k

e Zk =n+1 k~|_1Z

_ Z 1brl — 12F— 2\c|2 |bx |
k=1Fk+1 c] k= n+1k

The last inequality is equ1valent to

lw(z)| =

<l1.

o0

k|bﬁ|1 + 12F|:|2|C| ]Jb—fll < 2.11)
k=1 k=n+1
It suffices to show that the left hand side of (2.11) is bounded above by
12F6_|2|C| Z;Céil ,lcb—_"fll, which is equivalent to
12F -2 ICI Z 73S
k + 1 -
n

2.1. Struve functions

Choosing d = ¢ =1, in (1.3) or (1.4), we obtain the Struve function H,(z) of the
first kind of order v defined by (1.5). Let J, : U —> C be defined by

Ho(@) = fon1(z) =2°Val(p+3/2z" 7 Hy(V7).
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We observe that
H_1/2(2) Vasiny/z, Hya(z) =2(1 —cos /z),

B 2\ (sinyz  cosyz
Ha2(2) = 4(1+Z) 8( N )

In particular, the results of Theorems 1-3 become:

Corollary 1. The following assertions hold true:
(i) Ifv> =1, then

JHy(2) 6v+7
m{ (Ho)n (z)} Zeors CEW (2.12)
and
(%U)n (Z) 6v + 8
% Hy(2) } = 6v+9 (zelW). (2.13)

(i) If v > =5 then

Hy(2) 12v+11
{ (Jf{;),,(z)} “Tw+1s (zeW, (2.14)
and
(%), () 120 +15
{ H}(2) = 12v+19 (@elU). (2.15)
(iii) If v > —%, then
AlFHy] (2) 120+ 15
%{ (A[H]), (z)} = 20+ 16 (zelW), (2.16)
and
| (A[Hy]), (2) 12v+16
m{ AlHy](2) } STt 17 @eW. (2.17)

Remark 1. For v = 1/2 we have #;/,(z) = 2(1 —cos \/z) and (361/2)0 (z) =z.
From (2.12) and (2.13) we obtain

1— 5
m{M} > TR 045455 (€ W), (2.18)
Z

and

—

Z 1
R ——7 > — ~1.8333 ). 2.19
{l—cosﬁ} -6 (zel) (2.19)
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Furthermore we have J{,,(z) = VAR ( 1/2) (z) = 1= ¢z, so from (2.14)

N
and (2.15) we obtain
i Sm‘/_ > " 0,809 (z € U), (2.20)
1— Ez 21
and
1_ 1
N =0,84 (zeU). 2.21
{ Sm[ } (zeW (2.21)

2.2. Modified Struve functions

Taking d = 1 and ¢ = —1, in (1.3) or (1.4), we get the modified Struve function
Ly (2) of the first kind of order v defined by (1.6). Let the function £, : U —> C be
defined by

20(2) = fo1-1(2) = 2 VAT (0 +3/2)27 7 Ly(V2).

The properties of the function &£, are the same like for the function #,, because in
this case we have |c¢| = 1. More precisely, we have the following results.

Corollary 2. The following assertions are true:
(i) If v>—1, then

£v(2) 6v +7
sﬁ{ (Lv)n (Z)} = 6v +8 (zeW. (2.22)
d
an %{ i (Z)} 2 Gy G (2.23)
( Ly(z) ) T 6v+9 < : .
(ii) If v > =5~ L then
L) £, 120411
(&), (z)} “vgs @S (2.24)
and ( )
£3), (@) 12v+ 15
Ly (2) ; = 120+ 19 (zeW. (2.25)

(iii) If v > —3, then

o A[L](2) 120+ 15
m;(/l[cfv])n(z)}zlzv+16 (zelU). (2.26)
" (A[£y])y (2) 12v+ 16
vi)n & v+
m{ AlEy](2) }2121)4—17 (zelW. (2.27)
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Remark 2. If we take v = 1/2 we have £ /5(z) = 2(cosh \/z — 1) and for n = 0,
we get (£1/2), (z) = z. so, from (2.22) and (2.23) we obtain

hz—-1 5
m{%} > 2~ 045455 (ze ), (2.28)
z
and
R < - U 18333 (z €W (2.29)
“leoshz-1f T 6 - ' ‘

Furthermore we have fﬁ/z(Z) — sinh/2 and (fl/z)l (z)=1+ éz, so from (2.24)
and (2.25) we get

inh |
%" % > 17 0,809 (zeu). (2.30)
\/Z(I-FEZ) 21
and
VZ(1+iz)| _ 21
§ - 2 > — = 4 . 2 1
%{ smhyz (=25 08 el @.31)

3. ILLUSTRATIVE EXAMPLES AND IMAGE DOMAINS

In this section, we present four illustrative examples along with the geometrical
descriptions of the image domains of the unit disk by the ratio of Struve (modified
Struve) function to its sequence of partial sums or the ratio of its sequence of partial
sums to the function which we considered in our remarks in Section 2.

Example 1. The image domain of the unit disk under the function fi(z) = #
(z € W) is shown in Figure 1.

0.1+

01 0 01 02 03 04 hﬁ

-0.14

FIGURE 1.
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Example 2. The image domain of the unit disk under the function f>(z) = m,
(z € W) is shown in Figure 2.
0.5
03 0 05 1 13 o
-054
FIGURE 2.
Example 3. The image domain of the unit disk under the function f3(z) = mhzﬂ,
(z € U) is shown in Figure 3.
0.1
01 0 01 02 03 04 oTﬁ
-01
FIGURE 3.
Example 4. The image domain of the unit disk under the function f4(z) = coshzﬁ’

(z € W) is shown in Figure 4.

0.5 4

-0.54
FIGURE 4.
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