
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 16 (2015), No. 2, pp. 965–977 DOI: 10.18514/MMN.2015.1421

CONSIMILARITY OF COMMUTATIVE QUATERNION
MATRICES
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Abstract. In this paper, the consimilarity of complex matrices is generalized for commutative
quaternion matrices. In this regard, the coneigenvalue and coneigenvector for commutative qua-
ternion matrices are defined. Also, the existence of solution to the some commutative quaternion
matrix equations is characterized and solutions of these matrix equations are derived by means
of real representations of commutative quaternion matrices.
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1. INTRODUCTION

In the middle of 19th century, Sir William Hamilton defined the set of real quaternions
which are denoted by [3]

KD fq D q0Cq1iCq2j Ck´ Iqs 2 R; s D 0;1;2;3g

where

i2 D j 2 D k2 D�1; ij D�j i D k; ik D�ki D�j; jk D�kj D i:

There are many applications of these quaternions. One of them is also about matrix
theory. The study of the real quaternion matrices began in the first half of the 20th
century, [13]. So, Baker discussed right eigenvalues of the real quaternion matrices
with a topological approach in [1]. On the other hand, Huang and So introduced left
eigenvalues of real quaternion matrices [6]. After that Huang discussed the consim-
ilarity of the real quaternion matrices and obtained the Jordan canonical form of the
real quaternion matrices under consimilarity [5]. Jiang and Wei studied the real qua-
ternion matrix equation X �AeXB D C by means of real representation of the real
quaternion matrices, [8]. Also, Jiang and Ling studied the problem of solution of the
quaternion matrix equation AeX �XB D C via real representation of a quaternions
matrix [7].
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After Hamilton had discovered the real quaternions, Segre defined the set of com-
mutative quaternions, [11]. Commutative quaternions are decomposable into two
complex variables [2]. The set of commutative quaternions is 4-dimensional like
set of quaternions. But this set contains zero-divisor and isotropic elements. There
are a lot of works associate with commutative quaternions. Catoni et al. gave a
brief survey on commutative quaternions [2]. They introduced functions of commut-
ative quaternionic variables and obtained generalized Cauchy-Riemann conditions.
Geometrical introduction of commutative quaternions were considered by Severi in
association with functions of two complex variable [12]. Differential properties of
commutative quaternion functions were studied by Scorza-Drogoni [10]. Also, Kosal
and Tosun considered commutative quaternion matrices. Moreover, they investigated
commutative quaternion matrices using properties of complex matrices [9].

2. ALGEBRAIC PROPERTIES OF COMMUTATIVE QUATERNIONS

A set of commutative quaternions is denoted by [2]

HD fq D tCxiCyj C´k W t;x;y;´ 2 R and i;j;k … Rg

where

i2 D k2 D�1; j 2 D 1; ij D j i D k; ik D ki D�j; jk D kj D i:

There exist three kinds of conjugate of q D tCxiCyj C´k,

q D t �xiCyj �´k; eq D tCxi �yj �´k; eq D t �xi �yj C´k
and the norm is defined by

kqk4 D q:q :eq:eq
D

h
.tCy/2C .xC´/2

ih
.t �y/2C .x�´/2

i
:

Multiplication of any commutative quaternions q D tCxiCyj C´k and q1 D t1C
x1iCy1j C´1k are defined in the following ways,

qq1 D .t t1�xx1Cyy1�´´1/C .xt1C tx1C´y1Cy´1/ i

C.ty1Cyt1�x´1�´x1/j C .´t1C t´1Cxy1Cyx1/k
:

It is nearby to identify a commutative quaternion q 2H with a real vector q 2 R4:
Such an identification is denoted by

q D tCxiCyj C´k Š qD

0BB@
t

x

y

´

1CCA :
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Then multiplication of q and q1 can be shown by using ordinary matrix multiplication

qq1 D q1q Š Lqq1 D

0BB@
t �x y �´

x t ´ y

y �´ t �x

´ y x t

1CCA :
0BB@
t1
x1
y1
´1

1CCA
where Lq is called the fundamental matrix of q.

Theorem 1 ([9]). If q and q1 are commutative quaternions and �1; �2 are real
numbers, then the following identities hold:

1/ q D q1 , Lq D Lq1

2/ LqCq1
D LqCLq1

3/ L�1qC�2q1
D �1LqC�2Lq1

4/ T race
�
Lq
�
D qCq CeqCeq D 4t; kqk D �det

�
Lq
�� 1

4 :

Theorem 2 ([9]). Every commutative quaternion can be represented by a 2x2
matrix with complex entries.

Proof. Let q D tCxiCyj C´k 2H; then every commutative quaternion can be
uniquely expressed as q D c1C c2j where c1 D t C xi; c2 D yC ´i are complex
numbers. The linear map 'q WH!H is defined by 'q.p/D qp for all p 2H: This
map is bijective and

'q.1/D c1C c2j

'q.j /D c2C c1j

with this transformation, the commutative quaternions can be seen as subsets of the
matrix ring M2 .C/ ; the set of 2x2 matrices

ND

��
c1 c2
c2 c1

�
W c1; c2 2C

�
:

Then, H and N are essentially same. �

Definition 1. Two commutative quaternions q and q1 are said to be consimilar
if there exists a commutative quaternion p; kpk ¤ 0 such that pqp�1 D q1I this is
written as q c�q1:

Theorem 3. For three commutative quaternion q; q1; q2 2H; the following state-
ments hold:
Reflexive: q c�q:
Symmetric: if q c�q1; then q1

c
�q;

Transitive: if q c�q1; q1
c
�q2; then q c�q2:
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Proof. Reflexive 1q 1�1 D q trivially, for q 2 H: So, consimilarity is reflexive.
Symmetric: Let pqp�1 D q1: As p is nonsingular, we have�

p
��1

q1p D
�
p
��1

pqp�1p D q:

So, consimilarity is symmetric.
Transitive: Let p1 qp�11 D q1 and p2 q1p�12 D q2: Then

q2 D p2p1 qp
�1
1 p�12

D .p2p1/q .p2p1/
�1:

So, consimilarity is transitive. �

Then,
c
� is an equivalence relation on commutative quaternions. Obviously the con-

similar commutative quaternions have the same norm.

3. CONSIMILARITY OF COMMUTATIVE QUATERNION MATRICES

The set of all m�n commutative quaternion matrices, which is denoted by Hm�n,
with ordinary matrix addition and multiplication is a ring with unit. ForAD

�
aij
�
m�n
2

Hm�n; the matricesAD
�
aij
�
m�n

; eAD �faij �m�n andeAD �faij �m�n are conjugates
of A and AT is transpose matrix of A.

Theorem 4 ([9]). For any A 2Hm�n and B 2Hn�s; the followings are satisfied:

i.
�
A
�T
D
�
AT

�
;
�eA�DB

�
AT

�
;
�eA�T DB

�
AT

�
;

ii..AB/T D BTAT ;
iii. If A;B 2Hn�n are nonsingular, then .AB/�1 D B�1A�1;

iv.
�
AB

�
D AB ;

�
eAB

�
DeAeB ; �eAB�DeAeB:

Definition 2. A matrix A 2Hn�n is said to be similar to a matrix B 2Hn�n if
there exists a nonsingular matrix P 2Hn�n such that P�1AP D B: The relation, A
is similar to B , is denoted A� B: � is an equivalence relation on Hn�n.

Definition 3. A matrix A 2Hn�n is said to be consimilar a matrix B 2Hn�n if
there exists a nonsingular matrix P 2Hn�n such that PAP�1 D B: The relation, A
is consimilar to B , is denoted A c

�B:
c
� is an equivalence relation on Hn�n.

Clearly if A 2 Cn�n, then AD A Thus, if A 2 Cn�n is consimilar to B 2 Cn�n as
complex matrices, A is consimilar to B as commutative quaternion matrices. Then,
consimilarity relation in Hn�n is a natural extension of complex consimilarity in
Cn�n (for complex consimilarity see reference [4]).
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Definition 4. Let A 2Hn�n; � 2H: If there exists 0¤ x 2Hn�1 such that

Ax D x�

then � is called a coneigenvalues of A and x is called a coneigenvector of A associate
with �: The set of all coneigenvalues is defined as

� D
˚
� 2H W Ax D x�; for some x ¤ 0

	
:

Recall that if x 2Hn�1.x ¤ 0/, and � 2H satisfying Ax D x�, we call x an eigen-
vector of A, while � is an eigenvalue of A.

Theorem 5. If A 2Hn�n is consimilar to B 2Hn�n then, coneigenvalues of A
and B are the same.

Proof. Let A c
�B: Then, there exists a nonsingular matrix P 2 Hn�n such that

B D PAP�1: Let � 2H be a coneigenvalue for the matrix A; then we can find a
matrix x 2Hn�1 such that Ax D x�; x ¤ 0: Let y D Px: Then By D PAP�1y D
PAP�1Px D PAx D Px�D y�: �

Theorem 6. Let A 2Hn�n; then � is coneigenvalue of A if and only if for any
0¤ kˇk ; ˇ�ˇ�1 is a coneigenvalue of A:

Proof. From Ax D x�; we get A
�
xˇ�1

�
D x

�
ˇ
��1�

ˇ
�
�ˇ�1: �

Definition 5 ([9]). Let AD A0CA1j 2Hn�n where As 2 Cn�n; s D 0;1: The
2n�2n matrix �

A0 A1
A1 A0

�
is called the complex adjoint matrix of A and denoted by �A.

It is nearby to identify a commutative quaternion matrix A 2Hn�n with a complex
matrix A 2C2n�n: By theŠ symbol, we will denote

AD A0CA1j Š AD
�
A0
A1

�
2C

2n�n

:

Then, the multiplication of A 2Hn�n and B 2Hn�n can be represented by an or-
dinary matrix product AB Š �.A/ B:

Theorem 7. Let A;B 2Hn�n; the followings are satisfied:
i. �.In/D I2n;
ii. �.ACB/D �.A/C�.B/;
iii. �.AB/D �.A/�.B/;
iv. If A is nonsingular, then .�.A//�1 D �

�
A�1

�
:
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Theorem 8. For every A 2Hn�n;

� .A/\CD � .�.A//

is the set of coneigenvalues of �.A/: where

� .�.A//D f� 2C W �.A/y D y�; for some y ¤ 0g ;

Proof. Let A D A0CA1j 2Hn�n where As 2 Cn�n; s D 0;1 and � 2 C be a
coneigenvalue of A: Therefore there exists 0¤ x 2Hn�1 such that Ax D x�: This
implies

.A0CA1j /.x0Cx1j /D .x0Cx1j /�;

.Ax0CA1x1/D x0� and .A0x1CA1x0/D x1�:

Using these equations, we can write�
A0 A1
A1 A0

��
x0
x1

�
D

�
x0
x1

�
�:

Therefore, the complex coneigenvalue of the commutative quaternion matrix A is
equal to the coneigenvalue of the adjoint matrix �.A/ that is

� .A/\CD � .�.A// :

�

4. REAL REPRESENTATION OF COMMUTATIVE QUATERNION MATRICES

Let AD A0CA1iCA2j CA3k 2Hm�n where As 2 Rm�n; s D 0;1;2;3: We will
define the linear transformation �A .X/D AX: We can write

�A .1/D A0CA1iCA2j CA3k

�A .i/D A1�A0iCA3j �A2k

�A .j /D A2CA3iCA0j CA1k

�A .k/D A3�A2iCA1j �A0k:

Then, we obtain

�A D

0BB@
A0 A1 A2 A3
A1 �A0 A3 �A2
A2 A3 A0 A1
A3 �A2 A1 �A0

1CCA 2 R4m�4n:

Here �A is called the representation of A corresponding to the linear transformation
�A .X/D AX:
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It is nearby to identify a commutative quaternion matrixA2Hm�n with a real matrix
A 2 R4m�n: By theŠ symbol,we will denote

AD A0CA1iCA2j CA3k Š AD

0BB@
A0
A1
A2
A3

1CCA 2 R
4m�n

:

Then, multiplication of A 2Hm�n and B 2Hn�k can be represented by an ordinary
matrix product AB Š �AB:

Theorem 9. For commutative quaternion matrix A, the following identities are
satisfied:
i. If A 2Hm�n; then

.1Pm/
�1�A.

1Pn/D �A
; Q�1m �AQn D��A;

R�1m �ARn D �A; S�1m �ASn D��AI

where

1Pm D

0BB@
Im 0 0 0

0 �Im 0 0

0 0 Im 0

0 0 0 �Im

1CCA ; Qm D

0BB@
0 �Im 0 0

Im 0 0 0

0 0 0 �Im
0 0 Im 0

1CCA ;

Rm D

0BB@
0 0 Im 0

0 0 0 Im
Im 0 0 0

0 Im 0 0

1CCA ; Sm D

0BB@
0 0 0 �Im
0 0 Im 0

0 �Im 0 0

Im 0 0 0

1CCA ;
(4.1)

ii. If A;B 2Hm�n then �ACB D �AC�B ;
iii. If A 2Hm�n; B 2Hn�r ; in that case �AB D �A.1Pn/�B D �A�B.

1Pr/;

iv. If A 2 Hm�m; then A is nonsingular if and only if �A is nonsingular and
.�A/

�1 D .1Pm/�A�1.1Pm/;

v. If A 2Hm�m
S ;

�eA D "1�1�A"1
�eA D "2�1�A"2

where "1 D

0BB@
Im 0 0 0

0 Im 0 0

0 0 �Im 0

0 0 0 �Im

1CCA ; "2 D

0BB@
Im 0 0 0

0 �Im 0 0

0 0 �Im 0

0 0 0 Im

1CCA ;
vi. If A 2Hm�m

S ;

� .A/\CD � .�A/
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where � .�A/D f� 2C W �Ay D �y; for some y ¤ 0g ; is the set of all eigenvalues
of �A:

Proof. By direct calculation, i., iii. and v. can be easily shown. For now we will
prove ii., iv. and vi.
ii. Let AD A0CA1i CA2j CA3k; B D B0CB1i CB2j CB3k 2Hm�n where
As;Bs 2 Rm�n; s D 0;1;2;3: Then, we have

�ACB D

0BB@
A0CB0 A1CB1 A2CB2 A3CB3
A1CB1 �A0�B0 A3CB3 �A2�B2
A2CB2 A3CB3 A0CB0 A1CB1
A3CB3 �A2�B2 A1CB1 �A0�B0

1CCA
D

0BB@
A0 A1 A2 A3
A1 �A0 A3 �A2
A2 A3 A0 A1
A3 �A2 A1 �A0

1CCAC
0BB@
B0 B1 B2 B3
B1 �B0 B3 �B2
B2 B3 B0 B1
B3 �B2 B1 �B0

1CCA
D �AC�B

iv. Suppose that A 2Hm�m is nonsingular, From AA�1 D I4, we have

�AA�1 D �A
1Pm�A�1 D �I4

and
�A
1Pm�A�1

1Pm D I4m:

Then, �A is nonsingular and .�A/�1 D 1Pm�A�1
1Pm:

vi. Let AD A0CA1iCA2j CA3k 2Hm�m where As 2 Rm�m; s D 0;1;2;3 and
� 2C be a coneigenvalue of A: Therefore, there exists a nonzero column vector x 2
Hm�1 so thatAxD x�: Then, we can write �A xD x�: Then complex coneigenvalue
of commutative quaternion matrix A is equivalent to the eigenvalue of �A that is

� .A/\CD � .�A/ :

�

5. THE COMMUTATIVE QUATERNION MATRIX EQUATION X �AXB D C

In this part, we take into consideration the commutative quaternion matrix equation

X �AXB D C (5.1)

via the real representation, where A 2Hm�m; B 2Hn�n and C 2Hm�n:We define
the real representation matrix equation of the matrix equation (5.1) by

Y ��AY �B D �C : (5.2)

Proposition 1. The equation (5.1) has a solution if and only if the equation (5.2)
has a solution Y D �X :
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Theorem 10. LetA2Hm�m; B 2Hn�n and C 2Hm�n: Then the equation (5.1)
has a solutionX 2Hm�n if and only if the equation (5.2) has a solution Y 2R4m�4n,
in which case, if Y is a solution to (5.2), then the matrix:

X D
1

16
.Im iIm j Im kIm/

�
Y �Q�1m YQnCR

�1
m Y Rn�S

�1
m Y Sn

�0BB@
In
iIn
j In
kIn

1CCA
(5.3)

is a solution to (5.1).

Proof. We show that if the real matrix

Y D

0BB@
Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

1CCA ; Yab 2 Rm�n; a;b D 1;2;3;4

is a solution to (5.2), then the matrix represented in (5.3) is a solution to (5.1). Since
Q�1m YQn D�Y; R

�1
m Y Rn D Y; S�1m Y Sn D�Y; we have

�Q�1m YQn��A
�
�Q�1m YQn

�
�B D �C

R�1m Y Rn��A
�
R�1m Y Rn

�
�B D �C

�S�1m Y Sn��A
�
�S�1m Y Sn

�
�B D �C :

(5.4)

The last equation shows that if Y is a solution to (5.2), then �Q�1m YQn; R
�1
m Y Rn

and �S�1m Y Sn are also solutions to (5.2). Thus the undermentioned real matrix:

Y 0 D
1

4

�
Y �Q�1m �AQnCR

�1
m �ARn� S

�1
m �ASn

�
(5.5)

is a solution to (5.2). After calculation , we easily obtain

Y 0 D

0BB@
Y 00 Y 01 Y 02 Y 03
Y 01 �Y

0
0 Y 03 �Y

0
2

Y 02 Y 03 Y 00 Y 01
Y 03 �Y

0
2 Y 01 �Y

0
0

1CCA ; (5.6)

where

Y 00 D
1
4
.Y11�Y22CY33�Y44/ ; Y

0
1 D

1
4
.Y12CY21CY34CY43/ ;

Y 02 D
1
4
.Y13�Y24CY31�Y42/ ; Y

0
3 D

1
4
.Y14CY23CY32CY41/ :

(5.7)
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From (5.7), we formulate a matrix as follows:

X D Y 00CY
0
1iCY

0
2j CY

0
3k D

1

4
.Im iIm j Im kIm/Y

0

0BB@
Im
iIm
j Im
kIm

1CCA :
Clearly the real representation of the commutative quaternion matrix X is Y 0: By
Proposition (1), X is a solution to equation (5.1).

�

Example 1. Solve matrix equation

X �

�
1 i

i j

�
X

�
1 0

0 0

�
D

�
2i �j 1Cj

�1C iCk iCj

�
by using its real representation.

Real representation of given equation is

�X �

0BBB@
1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0
0 1 �1 0 0 0 0 0
1 0 0 0 0 0 0 �1
0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0
0 0 0 0 0 1 �1 0
0 0 0 �1 1 0 0 0

1CCCA�X
0BBB@

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 �1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 0

1CCCA

D

0BBB@
0 1 2 0 �1 1 0 0
�1 0 1 1 0 1 1 0
2 0 0 �1 0 0 1 �1
1 1 1 0 1 0 0 �1
�1 1 0 0 0 1 2 0
0 1 1 0 �1 0 1 1
0 0 1 �1 2 0 0 �1
1 0 0 �1 1 1 1 0

1CCCA:
If we solve this equation, we have

�X D

0BBB@
0 1 1 0 0 1 0 0
0 0 0 1 0 1 1 0
1 0 0 �1 0 0 0 �1
0 1 0 0 1 0 0 �1
0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 0 0 �1 1 0 0 �1
1 0 0 �1 0 1 0 0

1CCCA :
Then,

X D
1

4

�
I2 iI2 j I2 kI2

�
�X

0BB@
I2
iI2
j I2
kI2

1CCAD � i 1Cj

k iCj

�
:
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6. APPENDIX A. COMMUTATIVE QUATERNION MATRIX EQUATION

X �A QXB D C

Let

�A D

0BB@
A0 �A1 �A2 A3
A1 A0 �A3 �A2
A2 �A3 �A0 A1
A3 A2 �A1 �A0

1CCA 2 R4m�4n;

Then �A is called a real representation of A corresponding to the linear transforma-
tion LA .X/D AeX: For A 2Hm�n and B 2Hn�r the following equalities are easy
to confirm.

i.
�
2Pm

��1
�A
�
2Pm

�
D �eA; Q�1m �AQn D �A; (6.1)

R�1m �ARn D��A; S
�1
m �ASn D��A; (6.2)

ii. �AB D �A
�
2Pn

�
�B D �A�eB �2Pr� ;

where Q;R;S are given by equation (4.1) and

�
2Pm

�
D

0BB@
Im 0 0 0

0 Im 0 0

0 0 �Im 0

0 0 0 �Im

1CCA :
Now, we investigate the solution of the matrix equation

X �AeXB D C (6.3)
by its real representation, where A 2 Hm�m ; B 2 Hn�n and C 2 Hm�n: We first
define the real representation matrix equation (6.3) by

Y ��AY �B D �C : (6.4)

In the same manner, we have Y D �X :

Theorem 11. LetA2Hm�m; B 2Hn�n and C 2Hm�n: Then the equation (6.3)
has a solutionX 2Hm�n if and only if the equation (6.4) has a solution Y 2R4m�4n,
in which case, if Y is a solution to (6.4), then the matrix:

X (6.5)

D
1

16
.Im iIm j Im kIm/

�
Y CQ�1m YQn�R

�1
m Y Rn�S

�1
m Y Sn

�0BB@
Im
�iIm
�j Im
kIm

1CCA
is a solution to (6.3).
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Proof. The proof is a routine process as was performed in Theorem 10. �

7. APPENDIX B. COMMUTATIVE QUATERNION MATRIX EQUATION

X �A QXB D C

In the same manner,

'A D

0BB@
A0 A1 �A2 �A3
A1 �A0 �A3 A2
A2 A3 �A0 �A1
A3 �A2 �A1 A0

1CCA 2 R4m�4n

is called real representation ofA corresponding to the linear transformationLA .X/D
AeX:
For A 2Hm�n and B 2Hn�r the following equalities are easy to confirm.

i.
�
3Pm

��1
'A
�
3Pm

�
D �eA ; Q�1m 'AQn D�'A;

R�1m 'ARn D�'A; S
�1
m 'ASn D 'A;

ii. 'AB D 'A
�
3Pn

�
'B D 'A'eB �3Pr� ;

where Q;R;S are given by equation (4.1) and

�
3Pm

�
D

0BB@
Im 0 0 0

0 �Im 0 0

0 0 �Im 0

0 0 0 Im

1CCA :
Now, we define the real representation matrix equation of the matrix equation

X �AeXB D C (7.1)

by

Y �'AY 'B D 'C (7.2)
where Y D 'X :

Theorem 12. LetA2Hm�m; B 2Hn�n and C 2Hm�n: Then the equation (7.1)
has a solutionX 2Hm�n if and only if the equation (7.2) has a solution Y 2R4m�4n

, in which case, if Y is a solution to (7.2), then the matrix:

X (7.3)

D
1

16
.Im iIm j Im kIm/

�
Y �Q�1m YQn�R

�1
m Y RnCS

�1
m Y Sn

�0BB@
Im
�iIm
�j Im
kIm

1CCA



CONSIMILARITY OF COMMUTATIVE QUATERNION MATRICES 977

is a solution to (7.1) .

Proof. The proof is a routine process as was performed in Theorem 10. �
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