MODULES THAT HAVE A WEAK SUPPLEMENT IN EVERY EXTENSION

EMINE ÖNAL, HAMZA ÇALIŞICI, AND ERGÜL TÜRKMEN

Received 13 November, 2014

Abstract. We say that over an arbitrary ring a module M has the property (WE) (respectively, (WEE)) if M has a weak supplement (respectively, ample weak supplements) in every extension. In this paper, we provide various properties of modules with these properties. We show that a module M has the property (WEE) iff every submodule of M has the property (WE). A ring R is left perfect iff every left R-module has the property (WE) iff every left R-module has the property (WEE). A ring R is semilocal iff every left R-module has a weak supplement in every extension with small radical. We also study modules that have a weak supplement (respectively, ample weak supplements) in every coatomic extension, namely the property (WE) (respectively, (WEE)).

2010 Mathematics Subject Classification: 16D10; 16L30

Keywords: weak supplement, coatomic extension, semilocal ring, left perfect ring

1. INTRODUCTION

Throughout this paper, R is an associative ring with identity and all modules are unital left R-modules, unless otherwise stated. Let M be an R-module. The notation $U \leq M$ means that U is a submodule of M. A submodule U of M is called small in M, denoted as $U \ll M$, if $M \neq U + L$ for every proper submodule L of M. By $\text{Rad}(M)$ we denote the intersection of all maximal submodules of M, equivalently the sum of all small submodules of M (see [14]). A module M is called radical if M has no maximal submodules, that is, $M = \text{Rad}(M)$.

As a proper generalization of direct summands of a module, the notion of supplement submodules is defined. For U, V submodules of a module M, V is called a supplement of U in M if it is minimal with respect to $M = U + V$, equivalently $M = U + V$ and $U \cap V \ll V$. Then, it is natural to introduce a generalization of supplement submodules by [14, Section 19.3.(2)]. A submodule V of M is called a weak supplement of U in M if $U + V = M$ and $U \cap V \ll M$. A module M is called weakly supplemented if every submodule of M has a weak supplement in M (see [9], [14] and [17]). A submodule U of M has ample (weak) supplements in M.
if, whenever $M = U + L$, L contains a (weak) supplement of U in M. Under given definitions, we clearly have the following implication on submodules:

$$\text{direct summand} \implies \text{supplement} \implies \text{weak supplement}$$

Let R be a ring and M be an R-module. An R-module N is called an extension of M provided $M \subseteq N$. A module M is said to be injective if it is a direct summand in its every extension N.

Modules that have a supplement (resp. ample supplements) in every extension, i.e. modules with the property (E) (resp. (EE)), was first introduced by H. Zöschinger in [16], as a generalization of injective modules. The author determined in the same paper the structure of modules with these properties.

Adapting his concepts, we introduce the properties (WE) and (WEE) as a generalization of the properties (E) and (EE) in Section 2. We call a module that has the property (WE) (resp. (WEE)) if it has a weak supplement (resp. ample weak supplements) in every extension. Moreover in this section, we show that a module M has the property (WEE) if and only if every submodule of M has the property (WE). This gives us that every submodule of a module with the property (WEE) is weakly supplemented. We prove that the property (WE) is inherited by direct summands. In Corollary 2, we obtain that if a ring R is left hereditary, then every factor module of an R-module with the property (WE) has the property (WE). Thanks to Lemma 3.3 of Zöschinger’s paper [16], we directly say that over a complete local dedekind domain R, an R-module M has the property (WE) if and only if every left R-module has the property (E). We also give new characterizations of left perfect rings via the modules with the properties (WE) and (WEE).

Let R be a ring and M be an R-module. R. Alizade et al. [1] say a submodule U of M cofinite in M if the factor module $\frac{M}{U}$ is finitely generated. In [5], H. Çalışıcı and E. Türkmen called an extension N of M cofinite extension if M is cofinite in N. Following [5], the authors studied modules that have a supplement (resp. ample supplements) in every cofinite extension, namely the property (CE) (resp. (CEE)), as a generalization of the property (E) (resp. (EE)). In addition, they showed in [5, Theorem 2.12] that a ring R is semiperfect if and only if every left R-module has the property (CE).

In [15], a module M is said to be coatomic if $\text{Rad}(\frac{M}{K}) = \frac{M}{K}$ implies that $K = M$ for some submodule K of M, that is, every radical factor module of M is zero. M is coatomic if and only if every proper submodule of M is contained in a maximal submodule of M. Note that semisimple modules are coatomic.

Let R be a ring and M, N be R-modules. N is called a coatomic extension of M in case $M \subseteq N$ and $\frac{N}{M}$ is coatomic. In [11], B. N. Türkmen studied on modules that have a supplement (resp. ample supplements) in every coatomic extension and termed these modules E^*-modules (resp. EE^*-modules). Since finitely generated modules are coatomic, E^*-modules (resp. EE^*-modules) have the property (CE) (resp. (CEE)).
In Section 3, we also call a module that has the property \((WE^*)\) (resp. \((WEE^*)\)) if it has a weak supplement (resp. ample weak supplements) in every coatomic extension. We prove that over a left \(V\)-ring \(R\), every left \(R\)-module with \((WE^*)\) is injective. In addition, we give also a characterization of semilocal rings via the modules that have a weak supplement in every extension with small radical. Finally, we give an example of modules that have a weak supplement in every extension with small radical but not have the property \((CEE)\).

2. MODULES WITH THE PROPERTIES \((WE)\) AND \((WEE)\)

It is shown in [16, Lemma 1.3.(a)] that direct summands of modules with the property \((E)\) have the property \((E)\). Now we give an analogue of this fact for the modules with the property \((WE)\).

Proposition 1. Let \(M\) be a module. If \(M\) has the property \((WE)\), then every direct summand of \(M\) has the property \((WE)\).

Proof. Let \(M_1\) be a direct summand of \(M\). Then there exists a submodule \(M_2\) of \(M\) such that \(M = M_1 \oplus M_2\). Let \(N\) be any extension of \(M_1\). Let \(N'\) be the external direct sum \(N \oplus M_2\) and \(\delta : M \to N'\) be the canonical embedding. Then \(M \cong \delta(M)\) has the property \((WE)\). Hence, there exists a submodule \(V\) of \(N'\) such that \(N' = \delta(M) + V\) and \(\delta(M) \cap V \ll N'\). By the projection \(\pi : N' \to N\), we have that \(M_1 + \pi(V) = N\). Also since \(\text{Ker}(\pi) \subseteq \delta(M)\), \(\pi(\delta(M) \cap V) = \pi(\delta(M)) \cap \pi(V) = M_1 \cap \pi(V) \ll N\). Hence \(\pi(V)\) is a weak supplement of \(M_1\) in \(N\). □

Proposition 2. A module \(M\) has the property \((WEE)\) if and only if every submodule of \(M\) has the property \((WE)\).

Proof. Suppose that every submodule of \(M\) has the property \((WE)\). For any extension \(N\) of \(M\), let \(N = M + K\) for some submodule \(K\) of \(N\). Since \(M \cap K\) has the property \((WE)\), there exists a submodule \(L\) of \(K\) such that \((M \cap K) + L = K\) and \((M \cap K) \cap L = M \cap L \ll K\). Note that \(N = M + K = M + ((M \cap K) + L) = M + L\). It follows that \(L\) is a weak supplement of \(M\) in \(N\).

Conversely, let \(M\) be a module with the property \((WEE)\) and \(M_1\) be any submodule of \(M\). For any extension \(N\) of \(M_1\), let \(F = \frac{M \oplus N}{H}\), where the submodule \(H\) is the set of all elements \((m',-m')\) of \(M \oplus N\) with \(m' \in M_1\) and let \(\gamma : M \to F\) via \(\gamma(m) = (m,0) + H\), \(\psi : N \to F\) via \(\psi(n) = (0,n) + H\) for all \(m \in M, n \in N\). For inclusion homomorphisms \(\iota_1 : M_1 \to N\) and \(\iota_2 : M_1 \to M\), we can draw the following pushout:

\[
\begin{array}{c}
M_1 \xrightarrow{\iota_1} N \\
\downarrow \iota_2 \\
M \xrightarrow{\gamma} F
\end{array}
\]
It is clear that $F = \text{Im}(\gamma) + \text{Im}(\psi)$. Since γ is monomorphism, by assumption, $\text{Im}(\gamma)$ has the property (WEE). It means that $\text{Im}(\gamma)$ has a weak supplement V in F such that $V \leq \text{Im}(\psi)$, i.e. $F = \text{Im}(\gamma) + V$ and $\text{Im}(\gamma) \cap V \ll F$. Then we obtain that $N = \psi^{-1}(\text{Im}(\gamma)) + \psi^{-1}(V) = M_1 + \psi^{-1}(V)$ and $M_1 \cap \psi^{-1}(V) \ll N$. Hence $\psi^{-1}(V)$ is a weak supplement of M_1 in N.

Corollary 1. Every submodule of a module with the property (WEE) is weakly supplemented.

Lemma 1. Every simple submodule S of a module M is either a direct summand of M or small in M.

Proof. Suppose that S is not small in M, then there exists a proper submodule K of M such that $S + K = M$. Since S is simple and $K \not= M$, $S \cap K = 0$. Thus $M = S \oplus K$.

Let R be a ring and M be an R-module. M is called *local* if the sum of all proper submodules of M is a proper submodule of M. R is called a *local ring* if R (or RR) is a local module.

Proposition 3. Local modules have the property (WE).

Proof. Let S be a module and N be any extension of S. If S is small in N, N is a weak supplement of S in N. Suppose that S is not small in N. Then there is a proper submodule S' of N such that $S + S' = N$. From Lemma 1, if S is simple, S' is a direct summand of N. If S is local, $S' \cap S'$ is small in S. In both cases, S' is a weak supplement of S in N.

Let M be a module and U be a submodule of M. If the factor module M/U has the property (WE), M does not need to have the property (WE). For example, for the ring $R = \mathbb{Z}$, the R-module $M = \mathbb{Z}/2\mathbb{Z}$ has a weak supplement in every extension because it is simple. But $2\mathbb{Z}$ does not have a weak supplement in its extension \mathbb{Z}. Now we show that the statement mentioned above is true under a special condition.

Proposition 4. Let M be a module and U be a submodule of M. If $U \ll M$ and the factor module M/U has the property (WE), M has the property (WE).

Proof. Let N be any extension of M. Since M/U has the property (WE), there exists a submodule V of N such that $M/V = N/U$ and $M \cap V \ll N/U$. Note that $M + V = N$. Suppose that $M \cap V + S = N$ for a submodule S of N. Then we obtain $M \cap U + S \cap U = N$. Since $M \cap U \ll N/U$, we have that $S \cap U = N/U$. By hypothesis, it follows that $N = S + U = S$. Hence $M \cap V \ll N$.

For a module M, we will denote by $\text{Soc}(M)$ the sum of all simple submodules of M. Note that $\text{Soc}(M)$ is the largest semisimple submodule of M.
Remark 1. Let M be a finitely generated semisimple module. Then M is artinian. Since artinian modules have the property (E), it has the property (WE). Note that here the condition "finitely generated" is necessary. For example, consider the left \mathbb{Z}-module $M = \prod_{p \in \Omega} \mathbb{Z}/p\mathbb{Z}$, where Ω is the set of all prime numbers. Then, the semisimple module $\text{Soc}(M) = \bigoplus_{p \in \Omega} \mathbb{Z}/p\mathbb{Z}$. By [3, Lemma 2.9], there exists a submodule N of M such that $N_{\text{Soc}(M)} \cong \mathbb{Q}$. If $\text{Soc}(M)$ has a weak supplement K in N, we have $N = \text{Soc}(M) \oplus K$ since $\text{Rad}(M) = 0$. Therefore, K is injective and so $K = \text{Rad}(K) \subseteq \text{Rad}(M) = 0$, a contradiction.

In [7] a ring R is said to be a left V-ring if every simple left R-module is injective. It is well known that a ring R is a left V-ring if and only if $\text{Rad}(M) = 0$ for every left R-module M. A ring R is called left hereditary if every left ideal of R is projective. R is a left hereditary ring if and only if every factor module of an injective left R-module is injective [14, Section 39.16].

The next example shows that every factor module of a module with the property (WE) does not need to have the property (WE). Firstly we need the following lemma.

Lemma 2. Let R be a left V-ring. An R-module M has the property (WE) if and only if M is injective.

Proof. Let M has the property (WE) and N be any extension of M. Then M has a weak supplement V in N. We have $M + V = N$, $M \cap V \ll N$. Hence $M \cap V \subseteq \text{Rad}(N)$. Since $\text{Rad}(N) = 0$, we have $N = M \oplus V$.

Conversely, let M be injective and N be any extension of M. Then there exists a submodule K of N such that $N = M \oplus K$. Hence K is a weak supplement of M in N. □

Example 1. Let R be the product of the family $\{F_i\}_{i \in I}$, where each F_i is a field for an infinite index set I. The ring R is a commutative Von Neumann regular but not hereditary [10, Example 2.15]. Then by [14, Section 23.5], R is a left V-ring. R is injective from [8, Corollary, 3.11.B]. By Lemma 2, the left R-module RR has the property (WE). Since R is not hereditary, there is at least one factor module of R which is not injective. This factor module does not have the property (WE) by using Lemma 2.

Next we prove that under proper conditions a factor module of a module with the property (WE) has the property (WE).

Proposition 5. Let $K \subseteq M \subseteq L$ be modules with L/K injective. If M has the property (WE), then M/K has the property (WE).

Proof. Let N be any extension of M/K. Since L/K is injective, by [10, Lemma 2.16] we have the following commutative diagram with exact rows:
Since h is monomorphism and M has the property (WE), $M \cong Im(h)$ has a weak supplement V in P, that is, $Im(h) + V = P$ and $Im(h) \cap V \ll P$. We claim that $g(V)$ is a weak supplement of $\frac{M}{K}$ in N.

Corollary 2. If R is a left hereditary ring and M is an R-module with the property (WE), then every factor module of M has the property (WE).

If a module M has a supplement in its injective envelope, M need not to have a weak supplement in every extension. For example, for the ring $R = \mathbb{Z}$, the R-module $M = 2\mathbb{Z}$ has a supplement in its injective envelope \mathbb{Q}. But $M = 2\mathbb{Z}$ does not have a weak supplement in its extension \mathbb{Z}. Now we prove that over a local Dedekind domain, a module M has a supplement in its injective envelope if and only if M has a weak supplement in every extension.

Lemma 3. Let R be a local Dedekind domain and M be an R-module. The following statements are equivalent:

1. M has a supplement in its injective envelope.
2. M has the property (WE).
3. M is an E^*-module.

Proof. It is clear by [16, Lemma 3.3]. □

Proposition 6. Let R be a complete local Dedekind domain and M be an R-module. M has the property (WE) if and only if M has the property (E).

Proof. Let M has the property (WE) and N be any extension of M. Since M has the property (WE), there exists a submodule X of N such that $M + X = N$, $M \cap X \ll N$. By [16, Section 3, Corollary 5], there exists a supplement V of M in N with $V \subset X$. Hence M has the property (E). □

Proposition 7. Let R be a non-local Dedekind domain and M be a semisimple R-module. Then, the following three statements are equivalent:

1. M has the property (WE).
2. M has the property (E).
3. M is of the form $K \oplus \prod_p A_p$, where K is injective and A_p is a bounded p-primary module for every prime element $p \in R$.

\begin{center}
\begin{tikzcd}
0 \arrow{r} & K \arrow{r}{\sigma} \arrow{d}{id} & M \arrow{r}{h} \arrow{d}{f} & M/K \arrow{r} \arrow{d}{g} & 0 \\
0 \arrow{r} & K \arrow{r}{p} & P \arrow{r}{g} & N \arrow{r} & 0
\end{tikzcd}
\end{center}
Proof. (1) \iff (2) It follows from [12, Proposition 2.1].
(2) \iff (3) By [16, Theorem 5.6].

It is known from [14, Section 43.9] that a ring R is left perfect if and only if every left R-module has the property (E). The next theorem gives new characterizations of left perfect rings via their modules which have the property (WE).

Theorem 1. For a ring R the following statements are equivalent:

1. R is left perfect.
2. Every left R-module is weakly supplemented.
3. Every left R-module has the property (WE).
4. $R^{(b)}$ is weakly supplemented.
5. $R^{(b)}$ has the property (WEE).
6. Every left R-module has the property (WEE).

Proof. (1) \iff (2) \iff (4) is clear from [4, Theorem 1]. (3) \Rightarrow (6) and (5) \Rightarrow (4) follow from Proposition 2. (1) \Rightarrow (3) follows from [14, Section 43.9]. (6) \Rightarrow (5) is clear.

The following definitions are given in the paper [6], and we recall them for the convenience of the reader:

By a **valuation ring** (also called a **chain ring**) we mean a commutative ring R whose ideals are totally ordered by inclusion. Equivalently, if $a, b \in R$, then either $a \in Rb$ or $b \in Ra$. A valuation ring that is a domain will be called a **valuation domain**. A valuation ring R is called **maximal** if R is linearly compact, i.e., every family of cosets $\{a_i + L_i | i \in I\}$ with the finite intersection property has a non-empty intersection. Since linearly compact modules have ample supplements in every extension, a maximal ring R has the property (WEE).

The following example shows that a ring with the property (WEE) need not be left perfect, in general.

Example 2. Let R be the localization ring $\mathbb{Z}_{(p)}$ of the ring \mathbb{Z} of integers at a prime ideal $p\mathbb{Z} \neq 0$. Then, the completion of $\mathbb{Z}_{(p)}$, the ring $J_{(p)}$ of p-adic integers, is a maximal valuation domain which is not field. Hence, $J_{(p)}$ has the property (WEE) but not perfect.

3. Modules with the properties (WE^*) and (WEE^*)

In this section, we study on modules with the property (WE^*) (resp. (WEE^*)), which have a weak supplement (resp. ample weak supplements) in every coatomic extension, as a generalization of modules with the property (WE) (resp. (WEE)). We prove that over a left V-ring R, every left R-module with the property (WE^*) is injective.

Proposition 8. Let M be a module. If M has the property (WE^*), then every direct summand of M has the property (WE^*).
Proof. Let M_1 be a direct summand of M and N be a coatomic extension of M_1. Then there exists a submodule M_2 of M such that $M = M_1 \oplus M_2$. Let N' be the external direct sum $N \oplus M_2$ and $\varphi : M \to N'$ be the canonical embedding. Then $M \cong \varphi(M)$ has the property $\langle WE^* \rangle$. Note that $\frac{N}{M_1} \cong \frac{N \oplus M_2}{\varphi(M)} = \frac{N'}{\varphi(M)}$ is coatomic. Since $\varphi(M)$ has the property $\langle WE^* \rangle$, there exists a submodule V of N' such that $N' = \varphi(M) + V$ and $\varphi(M) \cap V \ll N$. For the projection $\phi : N' \to N$, we have that $M_1 + \phi(V) = N$. Also since $\text{Ker} \phi \subseteq \varphi(M)$, $\phi(\varphi(M) \cap V) \subseteq \phi(\varphi(M)) \cap \phi(V) = M_1 \cap \phi(V) \ll \phi(N') = N$. Hence $\phi(V)$ is a weak supplement of M_1 in N. □

Proposition 9. A module M has the property $\langle WE^* \rangle$ if and only if every submodule of M has the property $\langle WE^* \rangle$.

Proof. Assume that every submodule of M has the property $\langle WE^* \rangle$. For a coatomic extension N of M, let $N = M + V$ for some submodule V of N. Then $\frac{N}{M} \cong \frac{V}{M \cap V}$ is coatomic and so V is a coatomic extension of $M \cap V$. Since $M \cap V$ has the property $\langle WE^* \rangle$, there exists a submodule K of V such that $V = M \cap V + K$ and $M \cap K \ll V$. Note that $N = M + V = M + (M \cap V + K) = M + K$. It follows that K is a weak supplement of M in N.

Conversely, let M be a module with the property $\langle WE^* \rangle$ and let M_1 be any submodule of M. For a coatomic extension N of M_1, let $S = \frac{M \oplus N}{L}$, where the submodule L is the set of all elements (m', m) of $M \oplus N$ with $m' \in M_1$ and let $f : M \to S$ via $f(m) = (m, 0) + L$, $g : N \to S$ via $g(n) = (0, n) + L$ for all $m \in M, n \in N$. For the inclusion homomorphisms $\tau_1 : M_1 \to N$ and $\tau_2 : M_1 \to M$, we can draw the following pushout:

$$
\begin{array}{ccc}
M_1 & \xrightarrow{\tau_1} & N \\
\downarrow{\tau_2} & & \downarrow{g} \\
M & \xrightarrow{f} & S
\end{array}
$$

It is clear that $S = \text{Im}(f) + \text{Im}(g)$. Now we define $\theta : S \to \frac{N}{M}$ by $\theta((m, n) + L) = n + M_1$ for all $(m, n) + L \in S$. Note that θ is an epimorphism and $\text{Ker} \theta = \text{Im}(f)$. It follows that $\frac{N}{M} \cong \frac{S}{\text{Im}(f)}$ is coatomic. Since f is monomorphism, by assumption, $\text{Im}(f)$ has the property $\langle WE^* \rangle$. Then it follows immediately that $\text{Im}(f)$ has a weak supplement V in S such that $V \subseteq \text{Im}(g)$, i.e. $S = \text{Im}(f) + V$ and $\text{Im}(f) \cap V \ll S$. Then we obtain that $N = g^{-1}(\text{Im}(f)) + g^{-1}(V) = M_1 + g^{-1}(V)$ and $M_1 \cap g^{-1}(V) \ll N$. Hence $g^{-1}(V)$ is a weak supplement of M_1 in N. □

Recall from [2] a module M is called cofinitely weak supplemented if every cofinite submodule of M has a weak supplement in M. It is clear from Proposition 9 that if a module M has the property $\langle WE^* \rangle$, then every maximal submodule of M has a weak supplement in M, equivalently M is cofinitely weak supplemented by [2, Theorem 2.16].
In [13], a module M is called weakly radical supplemented (namely wrs-module) if every submodule U of M with $\text{Rad}(M) \subseteq U$ has a weak supplement in M. A module M is called semilocal if $\frac{M}{\text{Rad}(M)}$ is semisimple. A ring R is semilocal if the left R-module R is semilocal.

Corollary 3. Let R be a semilocal ring and M be an R-module. If M has the property (WE^*), then M is wrs-module.

Proof. Let U be a submodule of M with $\text{Rad}(M) \subseteq U$. Since R is semilocal ring, it follows from [9, Theorem 3.5] that $\frac{M}{U}$ is semisimple as a factor module of the semisimple module $\frac{M}{\text{Rad}(M)}$. Hence $\frac{M}{U}$ is coatomic. By assumption and Proposition 9, U has a weak supplement in M. Hence M is a wrs-module. □

Proposition 10. Over a left V-ring R, every left R-module with (WE^*) is injective.

Proof. Let M be an R-module with (WE^*). Let N be any extension of M. Suppose that $\text{Rad}(N) = K$ for a submodule K of N. Since R is a left V-ring, $\text{Rad}(N) = 0$. Then it immediately follows that $N = K$. Hence N is coatomic. Then, by assumption, M has a weak supplement V in N, i.e. $N = M + V$ and $M \cap V \ll N$. Since R is a left V-ring, we obtain that $M \cap V \subseteq \text{Rad}(N) = 0$. This completes the proof. □

The next result can be directly obtained from Proposition 10 and Lemma 2.

Corollary 4. Let R be a left V-ring and M be an R-module. The following statements are equivalent:

1. M has the property (WE).
2. M has the property (WE^*).
3. M is injective.

Now we shall give a characterization for semilocal rings via the modules that have a weak supplement in every extension with small radical.

Theorem 2. For any ring R the following statements are equivalent:

1. R is semilocal.
2. Every left R-module with small radical is weakly supplemented.
3. Every left R-module has a weak supplement in every extension with small radical.

Proof. (1) \Rightarrow (2) follows from [9, Theorem 3.5].

(2) \Rightarrow (3) Let M be a left R-module and N be an extension of M with small radical. By hypothesis, M has a weak supplement in N. Conversely, let M be an R-module with small radical and U be a submodule of M. By assumption, U has a weak supplement in M. □
Finally, we give an example of modules that have a weak supplement in every extension with small radical but not have the property (CEE).

Example 3. (see [14, Section 42.13, Exercise 4]). Let R be the following subring of the rational numbers:

$$R = \{ \frac{m}{n} | m, n \in \mathbb{Z}, (m, n) = 1, 2 \text{ and } 3 \text{ are not divisors of } n \}$$

Since $\frac{R}{\text{Rad}(R)}$ is semisimple, the left R-module RR is a module which has a weak supplement in every extension with small radical by Theorem 2. Whereas, since R is not semiperfect, RR does not have the property (CEE) by [5, Theorem 2.12].

ACKNOWLEDGEMENT

The authors would like to thank the referee for many valuable suggestions and comments in the revision of this paper.

REFERENCES

Authors’ addresses

Emine Önal
Ahi Evran University, Faculty of Art and Science, Department of Mathematics, Bağbaşı/Kırşehir, Turkey
E-mail address: emine.onal@ahievran.edu.tr

Hamza Çalışçı
Ondokuz Mayis University, Faculty of Education, Department of Mathematics, Kurupelit/Atakum, Turkey
E-mail address: hcalisici@omu.edu.tr

Ergül Türkmen
Amasya University, Faculty of Art and Science, Department of Mathematics, İpekköy/Amasya, Turkey
E-mail address: ergulturkmen@hotmail.com