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Abstract. The object of the present paper is to prove the existence of a generalized quasi Einstein
spacetime, briefly G.QE/4, by constructing a non-trivial Lorentzian metric and to study such
spacetime. First, we prove that every W2-Ricci pseudosymmetric G.QE/4 is an N.k/-quasi
Einstein spacetime which can be considered as a model of perfect fluid, in general relativity.
Then, we consider Ricci symmetric G.QE/4 and we prove that in such spacetime satisfying
Einstein’s field equations, the energy density and the isotropic pressure are constants. As a
consequence of this result, the expansion scalar and the acceleration vector vanish and also the
possible local cosmological structures of this spacetime obeying Einstein’s field equations are of
Petrov I, D or O.
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1. INTRODUCTION

The notion of quasi-Einstein manifold was introduced by Chaki and Maity [3]. A
non-flat n-dimensional Riemannian manifold .Mn;g/, .n > 3/ is said to be quasi-
Einstein manifold if its Ricci tensor of type .0;2/ is not identically zero and satisfies
the condition

S.X;Y /D ag.X;Y /CbA.X/A.Y / (1.1)

where for all vector fields X ,

g.X;U /D A.X/; g.U;U /D 1 (1.2)

i.e., A is a non-zero associated 1-form, metrically equivalent to the unit vector field
U and a;b are associated non-zero scalar functions. The vector field U is usually
called the generator of the manifold. An n-dimensional manifold of this kind is de-
noted by .QE/n. Obviously, if b D 0, then this manifold reduces to an Einstein
manifold. From the above definition, it follows that every Einstein manifold is quasi-
Einstein. In particular, every Ricci-flat manifold (e.g. Schwarzschild spacetime) is
quasi-Einstein.
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Quasi Einstein manifolds arose during the study of exact solutions of Einstein’s
field equations as well as during considerations of quasi-umbilical hypersurfaces of
semi-Euclidean spaces. For instance, the Robertson-Walker spacetimes are quasi
Einstein manifolds. Also, quasi Einstein manifolds can be taken as a model of perfect
fluid spacetime in general relativity, [6]. Thus quasi Einstein manifolds are very
important in general relativity and cosmology. These manifolds have been studied by
several authors, such as M.C. Chaki [3], U.C. De and G. C. Ghosh [6] and S. Guha
[8]. Also, A.A. Shaikh, Y.H. Kim and S.K. Hui [17] have been studied on Lorentzian
quasi Einstein spacetimes. Many authors have been generalized the notion of quasi
Einstein manifolds, in different ways such as nearly quasi Einstein manifolds [5],
generalized quasi Einstein manifolds [2], N.k/-quasi Einstein manifolds [4, 20] and
so on.

In 2001, Chaki [2] introduced the notion of generalized quasi Einstein manifold.
An n-dimensional .n > 3/ Riemannian manifold .Mn;g/ is said to be generalized
quasi Einstein manifold if its Ricci tensor of type .0;2/ is not identically zero and
satisfies the condition

S.X;Y /D ag.X;Y /CbA.X/A.Y /C cŒA.X/B.Y /CA.Y /B.X/� (1.3)

where a; b; c are real valued, non-zero scalar functions of which b ¤ 0, c ¤ 0, A
and B are non-zero 1-forms such that

g.X;U /D A.X/ ; g.X;V /D B.X/ ; g.U;V /D 0 (1.4)

for all X;Y 2 �.M/. Also, U and V are two unit vector fields perpendicular to each
other. Similarly, a, b and c are called associated scalars, A and B are called asso-
ciated 1-forms and U and V are generators of the manifold. Such an n-dimensional
manifold has been denoted by G.QE/n. If c D 0, then (1.3) takes the form (1.1)
and so the manifold reduces to a .QE/n. Thus a quasi Einstein manifold is a spe-
cial case of a generalized quasi Einstein manifold. If b D c D 0, then the manifold
becomes an Einstein manifold. Hence, in a G.QE/n, we may assume that the asso-
ciated scalar functions a and b are nowhere zero, but c can be any smooth function
on the manifold, even constant zero.

Let fei W i D 1;2; � � � ;ng be an orthonormal frame field at any point of the manifold.
Then, setting X D Y D ei in (1.3) and taking summation over i ; .1 � i � n/, we
obtain

r D anCb (1.5)
where r is the curvature function of the manifold.

Let R denote the Riemannian curvature tensor of M . The k-nullity distribution
N.k/ [19] of a Riemannian manifold M is defined by

N.k/ W p!Np.k/Dn
Z 2 Tp.M/ WR.X;Y /Z D kŒg.Y;Z/X �g.X;Z/Y �I 8X;Y 2 Tp.M/

o
(1.6)



ON RICCI SYMMETRIC GENERALIZEDQQUASI EINSTEIN SPACETIMES 855

where k is some smooth function. In a quasi Einstein manifoldM , if the generator U
belongs to some k-nullity distribution N.k/, then M said to be N.k/-quasi Einstein
manifold [20]. Özgür and Triphati [13] proved that in an n-dimensional N.k/-quasi
Einstein manifold, k D aCb

n�1
.

A spacetime is a time oriented, 4-dimensional manifold .M 4;g/ with Lorentz
metric whose signature .C;C;C;�/. A Lorentzian 4-dimensional manifold is said to
be generalized quasi Einstein spacetime with generator U as the unit timelike vector
field if its Ricci tensor of type .0;2/ is not identically zero and satisfies the equation
(1.3), where again a; b; c are real valued, non-zero scalar functions of which b ¤ 0,
c ¤ 0, A and B are non-zero 1-forms such that V being the heat flux vector field
orthogonal to the velocity vector field U . That is, for all X , we have

g.X;U /D A.X/; g.X;V /D B.X/; g.U;U /D�1; g.V;V /D 1; g.U;V /D 0

(1.7)
The energy momentum tensor for a perfect fluid spacetime [12] is given by

T .X;Y /D .�Cp/A.X/A.Y /Cpg.X;Y / (1.8)

together with g.X;U /DA.X/, A.U /D�1,for allX;Y . Here, � and p are respect-
ively the energy density and isotropic pressure and U is the unit timelike velocity
vector field. For a fluid matter distribution, the energy momentum tensor is given by
Ellis [7] and Landau and Lifschitz [11] as

T .X;Y /D .�Cp/A.X/A.Y /Cpg.X;Y /CA.X/B.Y /CA.Y /B.X/ (1.9)

for allX;Y 2TM where g.X;U /DA.X/, A.U /D�1, g.X;V /DB.V /, B.V />
0, g.U;V /D 0, � and p are respectively the energy density and isotropic pressure,
U is the velocity vector field orthogonal to the heat conduction vector field V .

Ricci tensor controls the geometry of spacetime whereas energy momentum tensor
T signifies the physical aspects of spacetime and in general relativity they are related
by Einstein’s field equations [12]

S.X;Y /�
r

2
g.X;Y /C�g.X;Y /D kT .X;Y /

for all vector fields X;Y where S is the Ricci tensor of type .0;2/, r is the scalar
curvature, � is the cosmological constant and k is the gravitational constant. Ein-
stein’s field equation implies that the energy momentum tensor is a symmetric .0;2/-
tensor with divergence zero [12].

This paper is organized as follows:
After introduction, in Section 2, we prove the existence of a generalized quasi

Einstein spacetime, brieflyG.QE/4, by constructing a non-trivial Lorentzian metric.
In Section 3, we prove that everyW2-Ricci pseudosymmetricG.QE/4 is anN.a�b

3
/-

quasi Einstein spacetime which can be considered as a model of perfect fluid, in
general relativity. In Section 4, a Ricci symmetric G.QE/4 has been considered and
a detailed study on this spacetime has been made. We prove that in such spacetime
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satisfying Einstein’s field equations, the energy density and the isotropic pressure are
constants. Moreover, the expansion scalar and the acceleration vector vanish, also the
possible local cosmological structures of this spacetime obeying the Einstein’s field
equation are of Petrov I, D or O.

2. EXISTENCE OF A GENERALIZED QUASI EINSTEIN SPACETIME

The physical motivation for studying various types of spacetime models in cosmo-
logy is to obtain the information of different phases in the evolution of the universe,
which may be classified into three phases, namely, the initial phase, the intermediate
phase and the final phase. The initial phase is just after the Big Bang when the effects
of both viscosity and heat flux were quite pronounced. The intermediate phase is that
when the effect of viscosity was no longer significant but the heat flux was still not
negligible. The final phase, which extends to the present state of the universe when
both the effects of viscosity and heat flux have become negligible and the matter
content of the universe may be assumed to be perfect fluid. The study of .QE/4 is
important because such spacetime represents the third phase in the evolution of the
universe. In addition to this, the importance of G.QE/4 lies in the fact that such a 4-
dimensional semi-Riemannian manifold is related to the study of general relativistic
fluid spacetime admitting heat flux represents the intermediate phase in the evolution
of the universe, [16]. Thus, in this section, we prove the existence of a generalized
quasi Einstein spacetime with non-zero and non-constant scalar curvature by con-
structing a new Lorentzian metric.

We consider a Lorentzian metric g on the 4-dimensional real number space R4 by

ds2 D gijdx
idxj D .x4/2.dx1/2C .e2x

4

/Œ.dx2/2C .dx3/2�� .dx4/2 (2.1)

where 1
2
< x4 < 1 and x1;x2;x3;x4 are the standard coordinates of R4. Then the

only non vanishing components of the Christoffel symbols, the curvature tensor and
the Ricci tensor are obtained as follows:

� 114 D
1

.x4/
; � 411 D .x

4/; � 224 D �
3
34 D 1; �

4
22 D �

4
33 D e

2.x4/ (2.2)

R1221 DR1331 D�e
2.x4/.x4/; (2.3)

R2332 D�e
4.x4/; R2442 DR3443 D e

2.x4/ (2.4)

R11 D�2.x
4/; R22 DR33 D�e

2.x4/ Œ1C2.x
4/�

.x4/
; R44 D 2 (2.5)

and the components which can be obtained from these by symmetry properties. Also
it can be shown that the scalar curvature is given by

r D�2Œ
2

.x4/
C3� (2.6)

which is non-zero and non-constant.



ON RICCI SYMMETRIC GENERALIZEDQQUASI EINSTEIN SPACETIMES 857

In terms of local coordinate system, let us define associated scalar functions as

aD�2�
1

.x4/
; b D�2; c D

p
2.x4/�1

.x4/
(2.7)

and the 1-forms

Ai .x/D

8̂̂<̂
:̂
.x4/

q
2.x4/�1

2.1�.x4//
if i D 1

0 if i D 2;3
�1p

2.1�.x4//
if i D 4

(2.8)

and

Bi .x/D

8̂̂<̂
:̂

.x4/p
2.1�.x4//

if i D 1

0 if i D 2;3

�

q
2.x4/�1

2.1�.x4//
if i D 4

(2.9)

Then, we can show that

(1) R11 D ag11CbA1A1C2cA1B1
(2) R22 D ag22CbA2A2C2cA2B2
(3) R33 D ag33CbA3A3C2cA3B3
(4) R44 D ag44CbA4A4C2cA4B4

Since all the cases other than .1/-.4/ are trivial, we obtain

Rij D agij CbAiAj C c.AiBj CAjBi / ; for i;j D 1;2;3;4 (2.10)

Moreover, we find

gijAiAj D�1 ; g
ijBiBj D 1 ; and g

ijAiBj D 0 (2.11)

and so

r D 4a�b D�2Œ
2

.x4/
C3� (2.12)

Therefore, we can say that the manifold under consideration is a generalized quasi
Einstein spacetime with non-zero and non-constant scalar curvature. Hence we can
state that:

Theorem 1. LetM 4 D f.x1;x2;x3;x4/ 2 R4 W 1
2
< x4 < 1g be an open subset of

R4 endowed with the Lorentzian metric given by

ds2 D gijdx
idxj D .x4/2.dx1/2C .e2x

4

/Œ.dx2/2C .dx3/2�� .dx4/2

where x1;x2;x3;x4 are the standard coordinates of R4. Then .M 4;g/ is a gen-
eralized quasi Einstein spacetime with non-zero and non-constant scalar curvature
r D�2Œ 2

.x4/
C3�.
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3. SOME PROPERTIES OF GENERALIZED QUASI EINSTEIN SPACETIMES

In 1970, G. P. Pokhariyal and R. S. Mishra [15] were introduced the new tensor
called W2-curvature tensor and studied its properties. According to them, an W2-
curvature tensor on a manifold .M n;g/, .n > 3/ is defined by

W2.X;Y /Z DR.X;Y /Z�
1

n�1
Œg.Y;Z/QX �g.X;Z/QY � (3.1)

where R is the curvature tensor and Q denotes the Ricci operator defined by
g.QX;Y / D S.X;Y /, for all X;Y . Note that for all X;Y;Z;W 2 TM , the W2
curvature tensor satisfies the following symmetry properties:

� W2.X;Y;Z;W /D�W2.Y;X;Z;W /

� W2.X;Y;Z;W /¤�W2.X;Y;W;Z/

Let feig be an orthonormal basis of the tangent space at each point of the manifold
where 16 i 6 n. Now, from (3.1), we have

nX
iD1

W2.Y;ei ; ei ;U /D 0 (3.2)

In this section, a comprehensive study of W2-curvature tensor has been made on
G.QE/4. Firstly, we consider a generalized quasi Einstein spacetime satisfying the
condition W2 �S D LSQ.g;S/ where LS is a certain function on the set US D fx 2
M W S ¤ r

n
g at xg and Q.g;S/ is the Tachibana tensor of the metric tensor and

the Ricci tensor. Recall that this spacetime is said to be W2-Ricci pseudosymmetric
G.QE/4. Then for all X;Y;Z 2 X.M 4/;

S.W2.X;Y /Z;W /CS.Z;W2.X;Y /W / (3.3)

DLS

h
g.Y;Z/S.X;W /�g.X;Z/S.Y;W /Cg.Y;W /S.Z;X/�g.X;W /S.Y;Z/

i
Combining (1.3) and (3.3), we get

� .
a

3
CLS /Œg.Y;Z/S.X;W /�g.X;Z/S.Y;W /Cg.Y;W /S.X;Z/

�g.X;W /S.Y;Z/�CbŒA.W2.X;Y /Z/A.W /CA.Z/A.W2.X;Y /W /�

C cŒA.W2.X;Y /Z/B.W /CA.W /B.W2.X;Y /Z/CA.Z/B.W2.X;Y /W /

CA.W2.X;Y /W /B.Z/�D 0 (3.4)

Putting Z D U and W D V in (3.4), we get

� .
a

3
CLS /ŒA.Y /S.X;V /�A.X/S.Y;V /CB.Y /S.X;U /�B.X/S.Y;U /�

�bW2.X;Y;V;U /C cŒW2.X;Y;U;U /�W2.X;Y;V;V /�D 0 (3.5)

In a generalized quasi Einstein spacetime, from (1.7) we have

S.X;U /D .a�b/A.X/� cB.X/; S.X;V /D aB.X/C cA.X/ (3.6)
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In view of (3.6) and (3.1), (3.5) yields

bR.X;Y;U;V /D b.
2a�b

3
CLS /ŒA.Y /B.X/�A.X/B.Y /� (3.7)

Since b ¤ 0, we obtain

R.X;Y;U;V /D .
2a�b

3
CLS /ŒA.Y /B.X/�A.X/B.Y /� (3.8)

Contracting (3.4) over X and W , we get

� .
a

3
CLS /Œrg.Y;Z/�4S.Y;Z/�CbW2.U;Y;Z;U /

C cŒW2.V;Y;Z;U /CW2.U;Y;Z;V /�D 0 (3.9)

Putting Z D U in (3.9), we get

� .
a

3
CLS /ŒrA.Y /�4S.Y;U /�CbW2.U;Y;U;U /

C cŒW2.V;Y;U;U /�W2.U;Y;U;V /�D 0 (3.10)

In view of (3.6) and (3.1), (3.10) yieldsh
�3b.

a

3
CLS /C

c2

3

i
A.Y /

C

h
�4c.

a

3
CLS /C

bc

3
C c.

2a�b

3
CLS /�

ac

3

i
B.Y /D 0 (3.11)

Putting Y D U in (3.11), we get:

LS D
�3abC c2

9b
(3.12)

Putting Y D V in (3.11), we get:

c.aC3LS /D 0 (3.13)

Then, c D 0 or LS D �a3 . If c D 0, then by (3.12), as b ¤ 0, we get LS D �a3 .
Otherwise, if b D 0, then the spacetimes reduces to an Einstein manifold. On the
other hand, if c ¤ 0, then LS D �a3 . Then by (3.12), again c must be zero.

Thus, in each case c D 0 and LS D �a3 . That is, the spacetime reduces to a quasi
Einstein spacetime and also by (3.8),

R.X;Y /U D .
a�b

3
/ŒA.Y /X �A.X/Y � (3.14)

which means that the generator vector field U belongs to .a�b
3
/-nullity distribution.

Therefore, this manifold becomes an N.a�b
3
/-quasi Einstein spacetime. Hence, we

can state the following theorem:
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Theorem 2. Every W2-Ricci pseudosymmetric generalized quasi Einstein space-
time (i.e. satisfying the conditionW2 �S DLSQ.g;S/ for some certain function LS )
is an N.a�b

3
/-quasi Einstein spacetime where LS D �a3 .

Similarly, if we consider W2-Ricci semisymmetric generalized quasi Einstein
spacetime (i.e. satisfying the condition W2 �S D 0), from above we obtain c D 0
and LS D �a3 D 0. Hence, in this case the Ricci tensor can be written as

S.X;Y /D bA.X/A.Y / (3.15)

Also, contracting (3.15) over X and Y , we obtain r D�b. Thus, we get

S.X;Y /D�rA.X/A.Y / (3.16)

where r is the scalar curvature of the spacetime. Such a spacetime is said to be special
quasi Einstein spacetime.

Theorem 3. EveryW2-Ricci semisymmetric generalized quasi Einstein spacetime
(i.e. satisfying the condition W2 �S D 0) is a special quasi Einstein spacetime.

Combining (3.16) and Einstein’s field equations [12]

S.X;Y /�
r

2
g.X;Y /C�g.X;Y /D kT .X;Y / (3.17)

we obtain the energy-momentum tensor of this spacetime as follows:

T .X;Y /D
2�� r

2k
g.X;Y /�

r

k
A.X/A.Y / (3.18)

which means that this spacetime can be considered as model of perfect fluid space-
time. Hence we can state that the following:

Corollary 1. Every generalized quasi Einstein spacetime satisfying the condition
W2 �S D 0 can be considered as model of perfect fluid spacetime, in general relativity.

Now, we consider a fluid spacetime admitting heat flux with the energy momentum
tensor of the form (1.9) and satisfying Einstein’s field equations with cosmological
constant. In this case, the Ricci tensor can be expressed as

S.X;Y /D
�
kpC

r

2
��

�
g.X;Y /

Ck.�Cp/A.X/A.Y /CkŒA.X/B.Y /CA.Y /B.X/� (3.19)

for all vector fields X;Y where r is the scalar curvature, k is the gravitational con-
stant, T is the energy momentum tensor of type .0;2/ and � and p are the matter
density and pressure of the fluid, respectively. Letting

aD
r

2
Ckp��; b D k.�Cp/; c D k (3.20)

we get the following result:
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Theorem 4. A fluid spacetime admitting heat flux with the energy-momentum
tensor of the form (1.9) and satisfying Einstein’s field equations with cosmological
constant is a generalized quasi Einstein spacetime.

Now, we consider quasi Einstein spacetime satisfying Einstein’s field equations
and we assume that the matter distribution of this spacetime is a fluid with the basic
vector field. Then comparing the equations (1.1) and (3.19), we get�
a�

r

2
�kpC�

�
g.X;Y /CŒb�k.�Cp/�A.X/A.Y /D kŒA.X/B.Y /CA.Y /B.X/�

(3.21)
Putting Y D U in (3.21), we get�

a�
r

2
�kpC��bCk.�Cp/

�
A.X/D�kB.X/ (3.22)

Putting X D U in (3.22) and as B.U /D 0, we get

a�
r

2
�kpC��bCk.�Cp/D 0 (3.23)

In view of (3.23), as k ¤ 0, (3.22) yields B.X/D 0, for all vector field X . Hence we
obtain:

Theorem 5. In a quasi Einstein spacetime satisfying Einstein’s field equations
with cosmological constant, if the matter distribution is fluid with the basic vector
field of the spacetime, then this spacetime can not admit heat flux.

Remark 1. This means that such spacetime describes a universe which has already
attained thermal equilibrium.

On the other hand, in a generalized quasi Einstein spacetime satisfying Einstein’s
field equations with cosmological constant, if the matter distribution is a perfect fluid,
then comparing the equations (1.3) and (3.19), we get cD 0, which is a contradiction.
Hence we can state the following:

Theorem 6. There exists no generalized quasi Einstein spacetime satisfying Ein-
stein’s field equations with cosmological constant whose matter content is perfect
fluid.

In the sequel, we shall determine some physical properties of W2-flat spacetime
satisfying Einstein’s field equations with cosmological constant. That is, in this
spacetime, the W2-curvature tensor vanishes. Then by (3.1), we have

R.X;Y;Z;W /D
1

3
Œg.Y;Z/S.X;W /�g.X;Z/S.Y;W /� (3.24)

Contracting (3.24) over X and W , we get

S.Y;Z/D
r

4
g.Y;Z/ (3.25)

which gives the scalar curvature r is constant.
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By virtue of (3.25), (3.24) yields

R.X;Y;Z;W /D
r

12
Œg.Y;Z/g.X;W /�g.X;Z/g.Y;W /� (3.26)

which also shows that W2-flat spacetimes are of constant curvature. From (3.26), we
have

R.X;Y /Z D
r

12
Œg.Y;Z/X �g.X;Z/Y � (3.27)

Let U? denote the 3-dimensional distribution in an W2-flat spacetime orthogonal
to U . Then for all X;Y;Z 2 U?, the equation (3.27) holds. Moreover, for every
X 2 U?, we obtain

R.X;U /U D
r

12
X (3.28)

According to H. Karchar [9], a Lorentzian manifold is called infinitesimally spatially
isotropic relative to timelike unit vector field U if its curvature tensor R satisfies the
relations

R.X;Y /Z D l Œg.Y;Z/X �g.X;Z/Y �I 8X;Y;Z 2 U? (3.29)

and
R.X;U /U DmX I 8X 2 U? (3.30)

where l;m are real valued function on the manifold. Hence, (3.27) and (3.28) lead to
following result:

Theorem 7. EveryW2-flat spacetime satisfying Einstein’s field equations with the
velocity vector field U is infinitesimally spatially isotropic relative to timelike unit
vector field U .

The geometrical symmetries of a spacetime are expressed through the equation

L�A�2˝AD 0 (3.31)

where A represents a geometrical or physical quantity, L� denotes the Lie derivative
with respect to a vector field � and ˝ is a scalar, [10].

One of the most simple and widely used example is the metric inheritance sym-
metry for which AD gij in (3.31). That is,

.L�g/.X;Y /D 2˝g.X;Y / (3.32)

In this case, � is the Killing vector field if˝ D 0 and is the conformal Killing vector
field if ˝ is a scalar function.

Afterwards of this section, the existence of Killing and conformal Killing vector
fields has been established. By Einstein’s field equations (3.17) and (3.25) we obtain

.��
r

4
/g.X;Y /D kT .X;Y / (3.33)
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Taking the Lie derivative of both sides of (3.33) and remembering that the scalar
curvature r is constant, we get

.��
r

4
/.L�g/.X;Y /D k.L�T /.X;Y / (3.34)

Now, if � is conformal Killing vector field, from (3.34) and (3.32), we get

2.��
r

4
/˝g.X;Y /D k.L�T /.X;Y / (3.35)

where ˝ is a scalar function. In a W2 flat spacetime satisfying Einstien’s field equa-
tion with cosmological constant, from (3.33) and (3.35), as k ¤ 0 we get

.L�T /.X;Y /D 2˝T .X;Y / (3.36)

It follows from (3.31) that the energy momentum tensor has the symmetry inheritance
property.

Conversely, if (3.36) holds, then by (3.33) and (3.34), as �;k and r are constant,
(3.32) holds for some scalar function˝. Thus � is the conformal Killing vector field.
If we take ˝ D 0, then from (3.35) and (3.36), a necessary and sufficient condition
for � to be a Killing vector field is that Lie derivative of the energy momentum tensor
with respect to � be zero. Hence we can state that:

Theorem 8. An W2-flat spacetime satisfying Einstein’s field equations with cos-
mological constant admits:

(1) a conformal Killing vector field if and only if the energy momentum tensor
has the symmetry inheritance property.

(2) a Killing vector field � if and only if Lie derivative of the energy momentum
tensor with respect to � vanishes.

4. RICCI SYMMETRIC GENERALIZED QUASI EINSTEIN SPACETIMES

In this section, a Ricci symmetric generalized quasi Einstein spacetime has been
considered. Then, in this spacetime, the Ricci tensor of S satisfies rS D 0 where r
denotes the Riemannian connection. It follows from (1.3), we have

.rZS/.X;Y /Dda.Z/g.X;Y /Cdb.Z/A.X/A.Y /CbŒ.rZA/.X/A.Y /

CA.X/.rZA/.Y /�Cdc.Z/ŒA.X/B.Y /CA.Y /B.X/�

C cŒ.rZA/.X/B.Y /CA.X/.rZB/.Y /

C .rZA/.Y /B.X/CA.Y /.rZB/.X/�D 0 (4.1)

Putting X D Y D U in (4.1), we get

�da.Z/Cdb.Z/�2c.rZB/.U /D 0 (4.2)

and again putting X D Y D V in (4.1), we get

da.Z/C2c.rZA/.V /D 0 (4.3)
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Since the generators U and V are mutually orthogonal, g.U;V / D 0 and so
Z.g.U;V //D g.rZU;V /Cg.U;rZV /D 0. This yields,

.rZB/.U /D�.rZA/.V / (4.4)

Substracting (4.3) from (4.2) and using the last relation, we obtain

d.b�2a/.Z/D 0; 8Z (4.5)

which means that b�2a is a constant.
Moreover, contracting (4.1) over X and Y , it follows from (4.4) that we obtain

d.4a�b/.Z/D 0; 8Z (4.6)

and so 4a� b is also a constant. From these results, we conclude that the scalar
functions a and b are constants. Then, the equation (4.3) yields c.rZA/.V / D 0.
Thus, we have either c D 0 or .rZA/.V /D 0. If c D 0, then by (4.1), we get

bŒ.rZA/.X/A.Y /CA.X/.rZA/.Y /�D 0 (4.7)

In this case, b must be different than zero. Otherwise, b D c D 0 which is a contra-
diction. Thus, we get

.rZA/.X/A.Y /CA.X/.rZA/.Y /D 0 (4.8)

Putting X D U in (4.8), we obtain

.rZA/.Y /D 0; 8Y;Z (4.9)

On the other hand, if c ¤ 0, then we have .rZA/.V /D 0. Using the last relation and
putting X D U , Y D V in (4.1), we obtain

d.c/.Z/D 0; 8Z (4.10)

and so c is constant. Then, putting X D V in (4.1) and using .rZA/.V /D 0, we get
c.rZA/.Y /D 0. Since in this case c ¤ 0, again we obtain (4.9).

Hence, in each case .rZA/.Y /D g.rZU;Y /D 0; for all Y;Z. That is, rZU D 0,
for allZ which implies that the generator vector fieldU is parallel. Moreover, putting
Z D U in the last eqution, we get

rUU D 0 (4.11)

Thus, the integral curves of U are geodesics. Hence we can state that:

Theorem 9. In a Ricci symmetric generalized quasi Einstein spacetime, generator
vector field U is parallel and the integral curves of U are geodesics.

By virtue of the above theorem, the Riemannian curvature tensor satisfies

R.X;Y /U DrXrYU �rYrXU �rŒX;Y �U D 0 (4.12)

for all X;Y . Contacting (4.12), in a Ricci symmetric G.QE/4, we obtain

S.X;U /D .a�b/A.X/� cB.X/D 0 (4.13)
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Putting X D U and X D V in (4.13), we get a D b and c D 0, respectively. Hence
the Ricci tensor can be written as in the following form:

S.X;Y /D aŒg.X;Y /CA.X/A.Y /� (4.14)

This leads to the following theorem:

Theorem 10. Every Ricci symmetric generalized quasi Einstein spacetime is a
quasi Einstein spacetime whose associated scalar functions are constant and equal.

Combining Einstein’s field equations (3.17) and (4.14), in a Ricci symmetric gen-
eralized quasi Einstein spacetime satisfying Einstein’s field equations with cosmolo-
gical constant, the energy momentum tensor can be written as in the following form

T .X;Y /D
2��a

2k
g.X;Y /C

a

k
A.X/A.Y / (4.15)

Thus, this spacetime can be considered as a model of perfect fluid spacetime, in
general relativity. Since the velocity vector field U of this spacetime is parallel and
the associated scalar a is constant, the energy momentum tensor given by (4.15) is of
Codazzi type (even covariantly constant). Hence we can state that:

Theorem 11. In a Ricci symmetric generalized quasi Einstein spacetime satisfying
Einstein’s field equations with cosmological constant, the energy momentum tensor
is of Codazzi type.

From the equations (3.19), (3.20) and Theorem (10), we get

� D
3a�2�

2k
; p D

2��a

2k
(4.16)

Additionally, since a is constant, � and p are constants. Therefore, we can state that:

Theorem 12. In a Ricci symmetric generalized quasi Einstein spacetime satisfy-
ing Einstein’s field equations with cosmological constant, the energy density and the
isotropic pressure are constants.

If we assume � > 0 and p > 0, from the equation (4.16), we have

a

2
< � <

3a

2
(4.17)

so we obtain:

Corollary 2. In a Ricci symmetric generalized quasi Einstein spacetime satisfying
Einstein’s field equations with cosmological constant �, if the isotropic pressure and
energy density are positive, then � satisfies the relation a

2
< � < 3a

2
.

Further, we have the energy and force equations for a perfect fluid [12], as follows:

U� D g.grad�;U /D�.�Cp/divU (4.18)
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and

.�Cp/.rUU/D�grad?p D�gradp�g.gradp;U /U

D�gradp� .Up/U (4.19)

where the spatial pressure gradient grad?p is the component of gradp orthogonal
to U . From Theorem (12), in a Ricci symmetric generalized quasi Einstein spacetime
satisfying Einstein’s field equations, both � and p are constants. Then by (4.18) and
(4.19), we obtain

U� D�.�Cp/divU D 0 and .�Cp/.rUU/D 0 (4.20)

Since �Cp ¤ 0, we have

divU D 0 and rUU D 0 (4.21)

Remark 2. �Cp D 0 means that the matter contents of the spacetime satisfy the
vacuum like equation of state.

It is known that divU represents the expansion scalar and rUU represents the ac-
celeration vector. Thus in view of (4.21), both of them vanish. This leads to following
result:

Theorem 13. In a Ricci symmetric generalized quasi Einstein spacetime obey-
ing Einstein’s field equation with (or without) cosmological constant, the expansion
scalar and the acceleration vector vanish.

Shaikh et. al. [18] proved that in a perfect fluid quasi-Einstein spacetime with
Codazzi type energy momentum tensor, the fluid has vanishing vorticity and vanish-
ing shear. Combining this argument, Theorem (10) and Theorem (11), we get the
following result:

Theorem 14. In a Ricci symmetric generalized quasi Einstein spacetime obeying
the Einstein’s field equations, the vorticity and shear tensors vanish.

According to Petrov classification [14] a spacetime can be divided into six types
denoted by I, II, III, D, N and O. A. Barnes [1] has been proved that if a perfect
fluid spacetime is shear-free, vorticity-free and the velocity vector field of the fluid
is hypersurface orthogonal and the energy density is constant over a hypersurface
orthogonal to the velocity vector field, then the possible local cosmological structure
of the spacetime are of Petrov type I, D or O. Thus by using the Theorem (12) and
Theorem (14), we can state the following:

Theorem 15. The possible local cosmological structures of a Ricci symmetric gen-
eralized quasi Einstein spacetime obeying the Einstein’s field equation are of Petrov
I, D or O.
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