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PERIODIC SOLUTIONS FOR A SYSTEM OF TOTALLY
NONLINEAR DYNAMIC EQUATIONS ON TIME SCALE
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Abstract. Let T be a periodic time scale. We use a reformulated version of Krasnoselskii’s fixed
point theorem to show that the system of nonlinear neutral dynamic equation with delay
x2() = —AOHKC (1)) + (0. x ([t —r))? + G(r.x(t).x(t—r())).t €T,

has periodic solutions on the time scale T.
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1. INTRODUCTION

Motivated by the papers [1—6, 10—12] and the references therein, we consider the
system of dynamic equation

x3(1) =A@ HE (1) +(Q(.x(t —r(O)D)* + G (1.x(0).x(t =r(1))). 1 € T.

(1.1)
where x4 (¢) is n x 1 column vector determined by A-derivative components of x (¢),
A(t) = diag [a1(2),a2(2),...,an(®)], H :R* > R", O : TxR"xR" — R", and
G:TxR"xR* - R".

Ifn=1and (Q(,x(— r(t))))A = c(t)x2(t — r(t)) then equation (1.1) reduces
to the equation considered in [4]. On the other hand, if n = 1 and h(x° (¢t)) = x° (¢),
then equation (1.1) reduces to the equation considered in [11]. Thus, in this paper
we not only generalize the results obtained in [4] and [11] to systems of equations,
but even for n = 1 our results also extends the work of Ardjouni and Djoudi [4] and
Kaufmann and Raffoul [11].

We assume in this work that r : T — R and thatid —r : T — T is strictly increas-
ing so that the function x (¢ — r(¢)) is well defined over T.

Some preliminary material is presented in the next section. In particular, we will
provide some facts about the exponential function on time scale and also state a re-
formulated version of Krasnoselskii’s fixed point theorem. Our main results on the
existence of periodic solutions for equation (1.1) is presented in Section 3.

© 2016 Miskolc University Press
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2. PRELIMINARIES

We begin this section by giving some definitions introduced by Actici et al. in [6]
and Kaufman and Raffoul in [10].

Definition 1. We say that a time scale T is periodic if there exist a p > 0 such
thatif r € T thent £ p € T. For T # R, the smallest positive p is called the period
of the time scale.

For example, the following time scales taken from [10] are periodic.

(1) T =72 _o[2(G —1)h,2ih], h > 0 has period p = 2h.

(2) T = hZ has period p = h.

3) T=R.

@ T={t=k—q™:keZ,me Ny} where, 0 < g < 1 has period p = 1.

As pointed out in [10], all periodic time scales are unbounded above and below.

Definition 2. Let T # R be a periodic time scale with period p. We say that the
function f: T — R is periodic with period T if there exists a natural number n such
that T =np, f(t £ T) = f(¢) forallt € T and T is the smallest number such that
f@x£T)= f(¢). f T =R, we say that f is periodic with period T > 0 if T is the
smallest positive number such that f(t £ T) = f(¢) forallz € T.

As established in [10], if T is a periodic time scale with period p, then o(t &
np) = a(t) £ np. Consequently, the graininess function p satisfies u(t £ np) =
o(txnp)—(t£np)=o0(t)—t = u(t) and so, is a periodic function with period p.

Most of the following definitions, lemmas and theorems can be found in [7, 8].
Our first two theorems concern the composition of two functions. The first theorem
is the chain rule on time scales [7, Theorem 1.93].

Theorem 1 (Chain Rule). Assume v : T — R is strictly increasing and T:=v(T)
is a time scale. Let w : T — R. If vA(¢) and wA(v(¢)) exist for t € T¥, then

(wo I))A = (wj ) v)vA.

In the sequel we will need to differentiate and integrate functions of the form
f(@—r()) = f(v(t)) where, v(t) :=t —r(t). Our second theorem is the substitution
rule [7, Theorem 1.98].

Theorem 2 (Substitution). Assume v : T — R is strictly increasing and T:= v(T)
is a time scale. If f : T — R is an rd-continuous function and v is differentiable with
rd-continuous derivative, then for a,b € T,

b v(b)
/ Pt (@) Ar = / Crev o s

(a
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A function p : T — R is said to be regressive provided 1 + wu(¢) p(t) # 0 for all
t € T*. The set of all regressive rd-continuous functions f : T — R is denoted by R
while the set R is givenby RT ={f e R: 1+ u(t) f(t)>0forallt € T}.

Let p € R and u(t) # 0 for all ¢ € T. The exponential function on T is defined
by

eplt.5) = exp [ —Low(1+n()p() 42).

It is well known that if p € RT, then ep(t,s) >0 for all t € T. Also, the expo-
nential function y(f) = ep(t,s) is the solution to the initial value problem y4 =
p()y, y(s) = 1. Other properties of the exponential function are given in the fol-
lowing lemma, [7, Theorem 2.36].
Lemma 1. Let p,q € R. Then
(i) eo(t,s) =1landep(t,t)=1;
(ii) ep(a(t),s) = (1 + (1) p(1))ep(t,s); o
e 1 _ _ V4 t .
(ii1) o) = eepl(f,s) where, ©p(t) = ST OVIOL
(iv) ep(t,s) = QD eop(s,1);
(V) ep(t7s)e£(sar) = ep(hr);
: 1 —__r®
o) (Gem)” = e
Lemma 2 ([6]). If p € R, then

t
0<ep(t,s) < exp(/ p(u)Au),Vt € T.
N
Corollary 1 ([6]). If p € RT and p(t) <0 forall s € T with s <t we have
t
0<ep(t,s) < exp(/ pu)Au) <1,VteT.
N

Lastly in this section, we state Krasnoselskii-Burton’s fixed point theorem (see [9])
which is employed in establishing our results.

Theorem 3 (Krasnoselskii-Burton). Let M be a bounded convex non-empty subset
of a Banach space (S, ||.||). Suppose that A, B map M into M and that

(1) forallx,y e M= Ax+ By ¢ M,
(1) A is continuous and AM is contained in a compact subset of M,
(iii) B is a large contraction.

Then thereis a z € M with z = Az + Bz.

3. EXISTENCE OF PERIODIC SOLUTIONS

LetT >0, T € T be fixedand if T # R, T = np for some n € N. By the notation
[a,b] we mean
[a,b]={teT:a<t<b}
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unless otherwise specified. The intervals [a,b), (a, b], and (a, b) are defined similarly.
Define Pt ={p € C(T,R") : ¢(t + T) = ¢(¢)}. Then Pr is a Banach space when
it is endowed with the usual linear structure as well as the norm

n
Il =" Ixjlo. for x = (x1.x2.....xn) € Pr,
j=1
where
|xjlo= sup |x(@)|,j=1,..n.
t€[0,T]
Also, define the set

. L .
M={¢ePr :||¢|| < Lwith|pjlo <—, j =1,2,...n.},

S

where L is a positive constant.
We next state the following lemma which will be used in subsequent sections.

Lemma 3 ([10]). Let x € Pr. Then |x;’|0 exists and |xJ‘7|o = |xj]o.
In this paper we assume that /1, is continuous, a; € R 1 is continuous, a i(t)>0
forallt € T and
aj(t+T)=aj1), (id—r)(t+T)=(id—r)(t), (3.D

where, id is the identity function on T. We also require that ¢;(¢,x) and g; (,x,y)
are continuous and periodic in ¢ and Lipschitz continuous in x and y. That is,

qj(t+T,x) =q;(t.x), g +T,x,y) =g, x,y), (3.2)
and there are positive constants Eq, E», E3 such that
lqj (t,x) —q;(t,y)| < E1]lx —ylo, for x,y € R, (3.3)

and
gj(t,x,y)—g;(t,z,w)| < E2|x —z|o + E3]y —wlo, forx,y,z,w e R. (3.4
For our next lemma we consider the neutral dynamic equation
A
xA(t) = —a; (Oh; (x(0(0) + (¢; (1. x(t =1 (1))
+gj(t.x(),x@t—r@))).t €T, j =12,..,n. (3.5)

Lemma 4. Suppose (3.1), (3.2) hold. If x € P, then x is a solution of equation
(3.5) if and only if,

x(t) = qj (t,x(t —r (@) + (1—eoq,; (t,t = T)) ™
t
<[ [0 Ok e -6 66 6.x6-re) 66
t—T

+gj (s,x(s),x(s —r(s)))]eeaj (t,5) As.
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Proof. Let x € Pr be a solution of (3.5). First we write (3.5) as

{x(t)—q;(t.x(t —g())}? = —aj (){x7 (1) —q7 (t.x(t =7 (1))}
+a;(@)[x (@) —h;(x(0()))]
—a; (t)q]q(t,x(t —r(t))) +g; (l,x(t),x(t —r(t))).

Multiply both sides by eq; (z,0) and then integrate from ¢ — 7" to ¢ to obtain
! A
/ T[eaj (5,0){x(s) —qj (s.x(s —r(s)))}]” As
t_

B ft_T (4, )1x7 (5) = hj (x @ ()] —a;(5)gF (5.5 =7 (5)))

+8(5.x(5). X (s =7 (s))) Jea; (5.0) As.

Consequently, we have
ea; (1,0)(¥(0) =g (1.6 =1 (1)) )

—eq, (1 —T,O)(X(I—T)—q]'(t—T,x(t—T—r(t_T))))
= /;_T[aj () [x7(s) = hj(x(a ()] —a;(s)q] (5. x(s—7r(s)))

+gj (s,x(s),x(s —r(s)))]eaj (s,0) As.

After making use of (3.1), (3.2) and x € Pr, we divide both sides of the above equa-
tion by eg; (¢,0) to obtain

x(t) =q;(t.x(—r () + (1—egq, (1.1 — T))_1
x /t iT (4 )1x7 (5) = hj (x @ ()] = (5)gF (5.5 = (s))
+gj (s,x(s),x(s — r(s)))]eeaj (,5) As.
Since each step is reversible, the converse follows. This completes the proof. O
Let p(1,t —T) = diag [p1.p2..... pu] Where p; = (1 —egq, (t.1 — T))_1 for j =

1,2,...,n. Also, we let u(t,s) = diag [egq, (t.5),....e0aq, (t,5)].
Define the mapping F : P — Pt by

(Fo)0) = 01t =) + 0.t =T) [ pie.)

[A6)e° )~ H@@ )]~ A($) 07 (s.0(s = 8(5) + G 5.9(5). 05 ~ g (s))) | As.
3.7
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We express equation (3.7) as
(Fo)(1) = (Be)(1) + (Ap)(1)
where, A, B are given by
t
(BO0) =p01=T) [ p(t.940 ")~ Hpo N 5. G3)

and

(Ap)(1) = Q(t.p(t — (1))
t
+p(t.t=T) /t_TM(f,S)[ —A() Q% (s,0(s — g (5))) + G (s.0(s). (s — g(S)))} As.

(3.9)
In the rest of the section we require the following conditions.
L L
E1—+1g;(.0)[o < a— (3.10)
n n
L L L
Ey—+ E>— +g;(2,0,0)|0 = —ya; (1), (3.11)
n n n
and
JQa+y) <1, (3.12)

where «, y, L and J are constants with J > 3.

Lemma 5. Suppose (3.1)-(3.4) and (3.10)—~(3.12) hold. Then A: M — M, as
defined by (3.9), is continuous in the supremum norm and maps M into a compact

subset of M.
Proof. We first show that A : M — M. Evaluate (3.9) at¢t + 7.
(Ap)(t+T)=Q(t+ T.p(t + T —g(t +T)))

t+T
bt +T.0) /t e+ T.9)[ = A7 (5,06 () (.13)

+G(5.0(5).0(s =1 (s))) | As.
With u = s — T and using conditions (3.1) — (3.2) we obtain
(A9}t +T) = O (1.9t =r(t) +p(t + T.1)
x/;T,u(t+T,u +T)[—A(u—l—T)Qa(u—T,<p(u—T—r(u—T)))

+G(s.pu—T).p(u—T —r(u— T)))] Au.
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But we have that egg; (t + T, u +T) = egq; (t,u) thus, u(t + T,u +T) = u(t,u).
Moreover, egq, (t + T,t) = egq, (t,t —T) and so p(t + T,t) = p(¢t,t —T). Thus
(3.13) becomes

(Ap)(t +T) = Q(t. ¢t =r()) +p(t,1 = T)
t
< [ e[ = 46007 (gt =)

+ G (u, o), p(u —r(u)))] Au
= (Ap)(»).
Note that in view of (3.3) and (3.4) we have that
g (t. )| = 1g; (t.x) —q; (1,0) + ¢, (¢,0)|
< lq;(z.x) =q; (2,0)[ +q; (z,0)]
< E1lx|o+1g;(z,0)]o-
Similarly,

lgj(t.x,y)| =|g;(t.x,y)—g;(,0,0)+ g;(¢,0,0)]
<|gj(t.x,y)—g;(t,0,0)| +|g;(.0,0)]
< Ex|x|o+ E3|ylo+1g;(,0,0)]o.

Thus, for any ¢ € M we have

n

I(Ap)l| =" sup [(4;0)(0)]

j=1 t€l0,T]
But
(A0)O] = |a (1.0 —g(1D) + (1= eoa, (.1~ T)) "

t
< [ [~ (06 =r ) + £ (5.96).906 =) |eu, 0.5 25
<10y (0t =)+ (1= 1 =T) 7 [ =) lg7 (2965 =r(67)

+ g7 (5, 0(5).0(s = (s)))|eea, (t,5) As

L -1
< E1—+1¢;(1.0)lo + (1 —eeq; (1.1 =T))
! L L
x| GHE H1ai 6. 0l0) + (B2 + E3) ) +181(5.0.0)lo)esa, (.9) As
t_

< a% + (1—egalt,t — T))_1
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d L L
X / [a— + y—]a(s)eea (t,5) As
t—=T:- N n

L L
=QRat+y)—=—.

n— nJ

Thus,
n
L L
Ap)|| <Y —<—=<L,
APl =)= =5 <

Jj=1
showing that A maps M into itself. To see that A is continuous, let ¢, € M and
define

-1
n:= sup |(1—e9aj(t,t—T)) , 0:= sup |a;(t)l,
t€[0,T] 1€[0,T]

yi= sup eoq,(tu), A= sup |(q;(t.x(t).x(t—r()))*].

uelt—T.,t] t€l0,T]
a:= sup |g;(t,0), B:= sup |g;(z,0,0)|. (3.14)
tef0,T] t€f0,T]

Given ¢ > 0, take 6 = ¢/nM with M = E1 +ny T(0 E1 + E> + E3) where, E,
E» and E3 are given in (3.3) and (3.4) such that ||¢ — ¥ || < §. Using (3.9) we get

n

|Ap—Ay| =" sup [(4;0)(1)—(A;9)()]-

j=1 lG[O,T]
But,
T
A= Ayply = Exlo—vlotny [ [« Exlo=plo+ (B2 + Enlp— vl au
<Mlp—1lo.
Thus,

|Ap— Ay | <nMlo—vy| <e.

This proves that A is continuous.
We next show that A is compact. Consider the sequence of periodic functions
{¢n} C M. Thus as before we have that

[A(en)ll < L.

showing that the sequence {A¢,} is uniformly bounded. Now, it can be easily
checked that

(Ao () = (¢) (€. @n(0). 0nt —r ()" —a; (0)qF (1.9t —r (1))
+gj (L (1), n(t —r (1)) —a; (t){(l —eoalt,t=T)) ™"



DYNAMIC EQUATIONS ON TIME SCALE 679

t
x [T a6 (suns=r5D) + &) (590510005 = r(5) eat.5) As)
t—T

= (4 (C@n(0) @ut —r ) —a; (g7 (t.9n (¢ — (1))
+8 (L. n (. 0nt —r(0)) —a; O { (1 —eoa(t.t =) !

t
x /t [ a6a7 (5.on s =r60) + 8 (590 s —r(s)) |esa(t.5) As

45t 0n(t = r O} +; ()45 1.0 —r ().

(Ajon) (1) = (4 (1. on (1) on(t —r(1)))))*
—aj (1) (Aj9n)’ (O) —a; (g7 (t.on (0 — (1))
+ g (1, 0n (1), @u (t — (1)) +a; (0)q; (£, @n (1 — (1))

Consequently,

L L L
[(Ajpn)2 (1) < AtoL+20(Ev—+0o)+ Ea—+ E3-"+p

for all n.
Thus,

n
L L L
I(Agn)4[1 = 3" (A +0L+20(E1~ +a) + Ex-l + Es- + ) = F.
j=1

That is ||(Agn)?2]|| < F, for some positive constant F. Thus the sequence {A¢,}
is uniformly bounded and equi-continuous. The Arzela-Ascoli theorem implies that
there is a subsequence {A¢y, } which converges uniformly to a continuous 7 -periodic
function ¢*. Thus A is compact. O

We next state the following proposition (see [1]), in which the following assump-
tions are made on the function 4 : R — R.

(H1) h is continuous on U; = [—/,[] and differentiable on Uj.
(H2) h is strictly increasing on Uj.
(H3) sup,ey, hA(s) < 1.

Proposition 1 ([1]). Let h be a function satisfying (H1)— (H 3). Then the mapping
h(p)(t) = () —h(e(t)) is a large contraction on the set M.

The next result gives a relationship between the mappings b; and B in the sense of
large contraction.

Lemma 6. Ifby is a large contraction on M, then so is the mapping B.
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Proof. 1f by is a large contraction on M, then for x,y € M, with x # y, we have
[bjx —b;y || < |x — y|o. Then it follows from the equality

aj(u)ea; (t +T.0(u)) = [eaa, (t + T.u)] %,
where Ay indicates the delta derivative with respect to s that
+T €0a; (t+T,0(u))

[ —eou, (11 + Y () 5 Cx () — by (v ()| Au

|Bjx(t)— By (1) sft

lx—lo +T
< [—eaq (.11 T) aj(u)eggq,; (t +T,0(u))Au
- a;\*» t
= |x—=ylo-

Thus,

n

IBx—Byll=>" sup |Bjx(t)—B;y()|
jzlte[o,T]

n
<Y lx=ylo=Ilx—yl

=1
One may also show in a similar way that
IBx — Byl <&|lx—yll
holds if we know the existence of a0 < § < 1, such that for all € > 0
[x.y €M, [[x =yl = €] = [Bx—By| <8llx—y].
The proof is complete. U

Lemma 7. Suppose (3.1)-(3.4), and (3.10)-(3.12) hold. Suppose also that

J—1)L
max(|f)j(_L)|’ |hj(L)|) = %

For B, A defined by (3.8) and (3.9), if ¢, € M are arbitrary, then
Ap+ By : M — M.

Proof. Let ¢,¢ € M be arbitrary. Using the definition of B and the result of
Lemma 5 we obtain

14; (@) + B (W)l < lg; (£, 0t —r(1)))]
t
+ (1 —eea_; (t7t _T))_I/ ‘ _aj(s)‘ ‘CI;T(S,(/’(S—V(S)))}
t—T
+gj (5, 9(5), 0(s =1 (s))) |eeq, (t.5) As

4T on,. (t + T,
+ max <|f)j(—L)|,|fJi(L)|)[t je_;;a‘(z taju;;

aj(u)Au
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L J-1)L L
<—4—=—.
— Jn Jn n

Thus,

n

@)+ B <Y " =L

]j=

This completes the proof. U

Theorem 4. Suppose (3.1)-(3.4) and (3.10)-(3.12) hold. Suppose further that the
hypotheses of Lemma 5, Lemma 6 and Lemma 7 hold. Then equation (1.1) has a
periodic solution in the subset M.

Proof. By Lemma 5, A: M — M is completely continuous. By Lemma 7, Ap +
By € M whenever ¢,y € M. Moreover, B : M — M is a large contraction by
Lemma 6. Thus all the hypotheses of Theorem 3 are satisfied. Thus, there exists a
fixed point ¢ € M such that ¢ = Ap 4+ By. Hence (1.1) has a T— periodic solution.
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