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Abstract. An ideal I of a commutative ring R is said to be irreducible if it cannot be written
as the intersection of two larger ideals. A proper ideal / of a ring R is said to be strongly
irreducible if for each ideals J, K of R, J N K C I implies that J € [ or K € . In this
paper, we introduce the concepts of 2-irreducible and strongly 2-irreducible ideals which are
generalizations of irreducible and strongly irreducible ideals, respectively. We say that a proper
ideal I of aring R is 2-irreducible if for each ideals J, K and L of R, I = J N K N L implies
thateither / = JNKorl =JNLorl =KNL.Aproperideal I of aring R is called strongly
2-irreducible if for each ideals J, K and L of R, J N KN L C [ implies that either J N K C [
or/JNLCTorKNLCI.
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1. INTRODUCTION

Throughout this paper all rings are commutative with a nonzero identity. Recall
that an ideal I of a commutative ring R is irreducible if I = J N K for ideals J and
K of R implies that either I = J or I = K. A proper ideal I of aring R is said to be
strongly irreducible if for each ideals J, K of R, J N K C [ implies that J € [ or
K C I (see [3], [13]). Obviously a proper ideal I of a ring R is strongly irreducible
if and only if for each x,y € R, RxN Ry € I implies that x e [ or y € I. Itis
easy to see that any strongly irreducible ideal is an irreducible ideal. Now, we recall
some definitions which are the motivation of our work. Badawi in [4] generalized the
concept of prime ideals in a different way. He defined a nonzero proper ideal I of
R to be a 2-absorbing ideal of R if whenever a,b,c € R and abc € I, then ab € [
orac € I or bc € I. Tt is shown that a proper ideal / of R is a 2-absorbing ideal if
and only if whenever 111,13 C I for some ideals /1,15,13 of R, then I11, C I or
I1I3 C 1 or I,13 C 1. In[9], Yousefian Darani and Puczytowski studied the concept
of 2-absorbing commutative semigroups. Anderson and Badawi [2] generalized the
concept of 2-absorbing ideals to n-absorbing ideals. According to their definition,
a proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing) ideal
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if whenever a;---an4+1 € I for ay,...,an+1 € R (resp. [I1---In4+1 € I for ideals
I, I,4+1 of R), then there are n of the a;’s (resp. n of the I;’s) whose product
is in /. Thus a strongly 1-absorbing ideal is just a prime ideal. Clearly a strongly
n-absorbing ideal of R is also an n-absorbing ideal of R. The concept of 2-absorbing
primary ideals, a generalization of primary ideals was introduced and investigated in
[6]. A proper ideal I of a commutative ring R is called a 2-absorbing primary ideal
if whenever a,b,c € R and abc € I, then either ab € I or ac € /T or be € /1.
We refer the readers to [5] for a specific kind of 2-absorbing ideals and to [19], [10],
[11] for the module version of the above definitions. We define an ideal / of a ring
R to be 2-irreducible if whenever I = J N K N L for ideals I, J and K of R, then
either ] =JNKorl =JNLorlI=KnNL. Obviously, any irreducible ideal is a
2-irreducible ideal. Also, we say that a proper ideal / of aring R is called strongly 2-
irreducible if for each ideals J, K and L of R, JN KN L C [ impliesthat JN K C [
or JNL CIor KNL C I. Clearly, any strongly irreducible ideal is a strongly 2-
irreducible ideal. In [8], [7] we can find the notion of 2-irreducible preradicals and
its dual, the notion of co-2-irreducible preradicals. We call a proper ideal / of a ring
R singly strongly 2-irreducible if for each x,y,z € R, Rx N Ry N Rz C I implies
that Rx N Ry €1 or RxN Rz C 1 or RyNRz C 1. Itis trivial that any strongly
2-irreducible ideal is a singly strongly 2-irreducible ideal. A ring R is said to be an
arithmetical ring, if for each ideals I, J and K of R, { + /)N K = (I NK) +
(J N K). This condition is equivalent to the condition that for each ideals I, J and
Kof R, INJ)+ K=+ K)N(J +K), see [15]. In this paper we prove that,
a nonzero ideal I of a principal ideal domain R is 2-irreducible if and only if [ is
strongly 2-irreducible if and only if I is 2-absorbing primary. It is shown that a
proper ideal I of aring R is strongly 2-irreducible if and only if for each x, y,z € R,
(Rx+Ry)N(Rx+ Rz)N(Ry+ Rz) C I implies that (Rx + Ry)N(Rx+ Rz) C I
or (Rx+Ry)N(Ry+Rz) < I or (Rx+ Rz)N(Ry+ Rz) € I. A proper ideal /
of a von Neumann regular ring R is 2-irreducible if and only if I is 2-absorbing if
and only if for every idempotent elements e,ez,e3 of R, ejeze3 € I implies that
either ejep € I orejez € I or ezes € 1. If I is a 2-irreducible ideal of a Noetherian
ring R, then [ is a 2-absorbing primary ideal of R. Let R = R; X R, where R; and
R, are commutative rings with 1 # 0. It is shown that a proper ideal J of R is a
strongly 2-irreducible ideal of R if and only if either J = I; x R, for some strongly
2-irreducible ideal 71 of Ry or J = Rj x I, for some strongly 2-irreducible ideal I
of Ry or J = I; x I for some strongly irreducible ideal 71 of R; and some strongly
irreducible ideal I, of R,. A proper ideal I of a unique factorization domain R is
singly strongly 2-irreducible if and only if p'f1 p1212 e pzk € I, where p;’s are distinct
prime elements of R and n;’s are natural numbers, implies that p;” py* € I, for some
1<rs<k.



2-IRREDUCIBLE AND STRONGLY 2-IRREDUCIBLE IDEALS 443

2. BASIC PROPERTIES OF 2-IRREDUCIBLE AND STRONGLY 2-IRREDUCIBLE
IDEALS

It is important to notice that when R is a domain, then R is an arithmetical ring
if and only if R is a Priifer domain. In particular, every Dedekind domain is an
arithmetical domain.

Theorem 1. Let R be a Dedekind domain and I be a nonzero proper ideal of R.
The following conditions are equivalent:

(1) I is a strongly irreducible ideal;

(2) I is an irreducible ideal;

(3) I is a primary ideal;

(4) I = Rp" for some prime (irreducible) element p of R and some natural
number n.

Proof. See [13, Lemma 2.2(3)] and [ 18, p. 130, Exercise 36]. O

We recall from [1] that an integral domain R is called a G CD-domain if any two
nonzero elements of R have a greatest common divisor (GCD), equivalently, any
two nonzero elements of R have a least common multiple (LCM ). Unique factor-
ization domains (UF D’s) are well-known examples of GCD-domains. Let R be a
GCD-domain. The least common multiple of elements x, y of R is denoted by
[x,y]. Notice that for every elements x, y € R, Rx N Ry = R[x, y]. Moreover, for
every elements x, y,z of R, we have [[x, y],z] = [x,[y,z]]. So we denote [[x, y],z]

simply by [x,y,z].

Recall that every principal ideal domain (P D) is a Dedekind domain.

Theorem 2. Let R be a PID and I be a nonzero proper ideal of R. The following
conditions are equivalent:
(1) I is a 2-irreducible ideal;
(2) I is a 2-absorbing primary ideal;
(3) Either I = Rpk for some prime (irreducible) element p of R and some nat-
ural number n, or I = R(p7 p3') for some distinct prime (irreducible) ele-
ments p1, p2 of R and some natural numbers n, m.

Proof. (2)<(3) See [6, Corollary 2.12].
(1)=(3) Assume that | = Ra where 0 # a € R. Leta = pj' p;?--- p;* be a prime
decomposition for a. We show that either k = 1 or k = 2. Suppose that k > 2. By
[14, p. 141, Exercise 5], we have that / = Rpy' N Rp5> N---N Rp,*. Now, since [ is
2-irreducible, there exist 1 <i, j <k such that ] = Rpf” N Rp;?'f, sayi =1, j =2.
Therefore we have I = Rp}' N Rp,> C Rp3>, which is a contradiction.

B)=MIfI = Rpk for some prime element p of R and some natural number 7,
then 7 is irreducible, by Theorem 1, and so [ is 2-irreducible. Therefore, assume
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that I = R(p7 p3') for some distinct prime elements py, p, of R and some natural
numbers n, m. Let I = Ra N Rb N Rc for some elements a, b and ¢ of R. Then
a, b and ¢ divide p} p', and so a = p{' p?, b = pf‘pzﬂz and ¢ = p}' p}? where
o, Bi,vi are some nonnegative integers. On the other hand / = RaN Rb N Rc =
Rla,b,c] = R(pfpg) in which § = max{ay,B1,y1} and ¢ = max{az,B2,y2}. We

can assume without loss of generality that § = o and e = 5. So [ = R(p?‘l pfz) =
O

Ra N Rb. Consequently, [ is 2-irreducible.

A commutative ring R is called a von Neumann regular ring (or an absolutely flat
ring) if for any a € R there exists an x € R with a®>x = a, equivalently, I = I? for
every ideal I of R.

Remark 1. Notice that a commutative ring R is a von Neumann regular ring if and
only if /J = I N J for any ideals I, J of R, by [16, Lemma 1.2]. Therefore over
a commutative von Neumann regular ring the two concepts of strongly 2-irreducible
ideals and of 2-absorbing ideals are coincide.

Theorem 3. Let I be a proper ideal of a ring R. Then the following conditions
are equivalent:
(1) I is strongly 2-irreducible;
(2) For every elements x,y,z of R, (Rx+ Ry)N(Rx+ Rz)N(Ry+ Rz) C I
implies that (Rx + Ry) N(Rx + Rz) €1 or (Rx+ Ry)N(Ry+Rz) C 1
or (Rx+Rz)N(Ry + Rz) C I.

Proof. (1)=(2) There is nothing to prove.
(2)=(1) Suppose that J, K and L are ideals of R such that neither J N K C [
nor JNL C I nor KNL C [. Then there exist elements x, y and z of R such
that x € (JNK)\I and y € (JNL)\I and z € (KN L)\I. On the other hand
(Rx+Ry)N(Rx+Rz)N(Ry +Rz) S (Rx+Ry)C J,(Rx+Ry)N(Rx+Rz)N
(Ry+Rz) S (Rx+ Rz) € Kand (Rx+ Ry)N(Rx+ Rz)N(Ry + Rz) S (Ry +
Rz) € L. Hence (Rx+ Ry)N(Rx + Rz) N (Ry + Rz) C I, and so by hypothesis
either (Rx+Ry)N(Rx+ Rz) Sl or (Rx+ Ry)N(Ry+Rz) S 1 or (Rx+ Rz)N
(Ry + Rz) < I. Therefore, either x € [ or y € I or z € I, which any of these cases
has a contradiction. Consequently / is strongly 2-irreducible. O

Aring R is called a Bézout ring if every finitely generated ideal of R is principal.
As an immediate consequence of Theorem 3 we have the next result:

Corollary 1. Let I be a proper ideal of a Bézout ring R. Then the following
conditions are equivalent:
(1) I is strongly 2-irreducible;
(2) 1 is singly strongly 2-irreducible;

Now we can state the following open problem.
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Problem 1. Let I be a singly strongly 2-irreducible ideal of a ring R. Is I a
strongly 2-irreducible ideal of R?

Proposition 1. Let R be a ring. If I is a strongly 2-irreducible ideal of R, then I
is a 2-irreducible ideal of R.

Proof. Suppose that [ is a strongly 2-irreducible ideal of R. Let J, K and L be
ideals of R suchthat ] = JNKNL. Since JNKNL C I, theneither JNK C [
orJNLCITorKNLCI. Onthe otherhand I CJNK and I € J N L and
I € KN L. Consequently, either ] =JNKorl =JNLorl=KnNL. Therefore
I is 2-irreducible. g

Remark 2. Ttis easy to check that the zero ideal / = {0} of aring R is 2-irreducible
if and only if [ is strongly 2-irreducible.

Proposition 2. Let I be a proper ideal of an arithmetical ring R. The following
conditions are equivalent:
(1) I is a 2-irreducible ideal of R;
(2) 1 is a strongly 2-irreducible ideal of R;
(3) For every ideals Iy ,1> and Iz of R with I C I, I1 NI, N I3 C I implies
that L NI, ClorI1jNIzCTorloaNI3C 1.

Proof. (1)=(2) Assume that J, K and L are ideals of R suchthat JN KN L C
I. Therefore I =1+ (JNKNL)={U+J)N{ +K)N(I + L), since R is an
arithmetical ring. So either I = (I +J)N({U +K)or I = +J)N({{ + L) or
I=({U+K)N( + L), and thus either JNK CTorJNLCTor KNLCI.
Hence [ is a strongly 2-irreducible ideal.

(2)=(3) is clear.

(3)=@2) Let J, K and L be ideals of R suchthat JOKNL C[I.Set Iy :=J +1,
I := K and I3 := L. Since R is an arithmetical ring, then /1 NI, NIz =(J +1)N
KNL=(UNKNL)y+(UNKNL)CI.Henceeither NI, CTorliNI3C ]
or I N I3 € I which imply that either JNK ST or JNLC T or KNLC I,
respectively. Consequently, 7 is a strongly 2-irreducible ideal of R.

(2)=(1) By Proposition 1. g

As an immediate consequence of Theorem 2 and Proposition 2 we have the next
result.

Corollary 2. Let R be a PID and I be a nonzero proper ideal of R. The following
conditions are equivalent:

(1) I is a strongly 2-irreducible ideal;

(2) I is a 2-irreducible ideal;

3) I is a 2-absorbing primary ideal;

(4) Either I = Rpk for some prime (irreducible) element p of R and some nat-
ural number n, or I = R(p} p%') for some distinct prime (irreducible) ele-
ments p1, p2 of R and some natural numbers n, m.
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The following example shows that the concepts of strongly irreducible (irredu-
cible) ideals and of strongly 2-irreducible (2-irreducible) ideals are different in gen-
eral.

Example 1. Consider the ideal 6Z of the ring Z. By Corollary 2, 6Z = (2.3)Z is
a strongly 2-irreducible (a 2-irreducible) ideal of Z. But, Theorem 1 says that 6Z is
not a strongly irreducible (an irreducible) ideal of Z.

It is well known that every von Neumann regular ring is a Bézout ring. By [15, p.
119], every Bézout ring is an arithmetical ring.

Corollary 3. Let I be a proper ideal of a von Neumann regular ring R. The
following conditions are equivalent:
(1) I is a 2-absorbing ideal of R;
(2) I is a 2-irreducible ideal of R;
(3) 1 is a strongly 2-irreducible ideal of R;
4) I is a singly strongly 2-irreducible of R;
(5) For every idempotent elements ey, ep,e3 of R, eyexes € I implies that either
e1ep € 1 orei1es c 1 or epes € 1.

Proof. (1)< (3) By Remark 1.
(2)<(3) By Proposition 2.
(3)&(4) By Corollary 1.
(1)=(5) is evident.
(5)=(3) The proof follows from Theorem 3 and the fact that any finitely generated
ideal of a von Neumann regular ring R is generated by an idempotent element.  [J

Proposition 3. Let 11, I, be strongly irreducible ideals of a ring R. Then 1 N I
is a strongly 2-irreducible ideal of R.

Proof. Strightforward. U

Theorem 4. Let R be a Noetherian ring. If I is a 2-irreducible ideal of R, then
either I is irreducible or I is the intersection of exactly two irreducible ideals. The
converse is true when R is also arithmetical.

Proof. Assume that [ is 2-irreducible. By [20, Proposition 4.33], I can be written
as a finite irredundant irreducible decomposition I = I, N I N---N I.. We show that
either k =1 or k = 2. If k > 3, then since [ is 2-irreducible, I = I; N I; for some
1<i,j <k,sayi =1and j = 2. Therefore I, N I» C I3, which is a contradiction.
For the second atatement, let R be arithmetical, and I be the intersection of two irre-
ducible ideals. Since R is arithmetical, every irreducible ideal is strongly irreducible,
[13, Lemma 2.2(3)]. Now, apply Proposition 3 to see that / is strongly 2-irreducible,
and so [ is 2-irreducible. O

Corollary 4. Let R be a Noetherian ring and I be a proper ideal of R. If I is
2-irreducible, then I is a 2-absorbing primary ideal of R.
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Proof. Assume that [ is 2-irreducible. By the fact that every irreducible ideal of a
Noetherian ring is primary and regarding Theorem 4, we have either / is a primary
ideal or is the intersection of two primary ideals. It is clear that every primary ideal
is 2-absorbing primary, also the intersection of two primary ideals is a 2-absorbing
primary ideal, by [0, Theorem 2.4]. O

Proposition 4. Let R be a ring, and let Py, Py and P3 be pairwise comaximal
prime ideals of R. Then Py P, P3 is not a 2-irreducible ideal.

Proof. The proof is easy. U

Corollary 5. If R is a ring such that every proper ideal of R is 2-irreducible, then
R has at most two maximal ideals.

Theorem 5. Let I be a radical ideal of a ring R, i.e., I = </I. The following
conditions are equivalent:
(1) 1 is strongly 2-irreducible;
(2) I is 2-absorbing;
(3) 1 is 2-absorbing primary;
(4) 1 is either a prime ideal of R or is an intersection of exactly two prime ideals

of R.

Proof. (1)=(2) Assume that [ is strongly 2-irreducible. Let J, K and L be ideals
of R such that JKL CI. Then JNKNL CA/JNKNL C I =1. So, either
JNKCITorJNLZTorKNLCI.HenceeitherJKCIorJLCIorKLCI.
Consequently 7 is 2-absorbing.

(2)<(3) is obvious.

(2)=(4) If I is a 2-absorbing ideal, then either VIisa prime ideal or is an inter-
section of exactly two prime ideals, [4, Theorem 2.4]. Now, we prove the claim by
assumption that / = /1.

(4)=(1) By Proposition 3. ]

Theorem 6. Let f : R — S be a surjective homomorphism of commutative rings,
and let I be an ideal of R containing Ker(f). Then,

(1) If I is a strongly 2-irreducible ideal of R, then 1€ is a strongly 2-irreducible
ideal of S.
(2) 1 is a 2-irreducible ideal of R if and only if 1€ is a 2-irreducible ideal of S.

Proof. Since f is surjective, J¢¢ = J for every ideal J of S. Moreover, (K N
L)¢ = KN L¢ and K¢ = K for every ideals K, L of R which contain Ker(f).
(1) Suppose that [ is a strongly 2-irreducible ideal of R. If /¢ = S, then [ = [¢“ =R,
which is a contradiction. Let J1, J> and J3 be ideals of S such that J;NJoNJ3 C €.
Therefore Jf NJ5y NJ§ C 1 = 1. So, either Jf NJ5 S 1 or JfNJ5 I or
Jy N J5 € 1. Without loss of generality, we may assume that J{ NJ5 € I. So,
JiNJy=(J1NJ)¢ C I Hence I°€ is strongly 2-irreducible.
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(2) The necessity is similar to part (1). Conversely, let /¢ be a strongly 2-irreducible
ideal of S, and let I;, I> and I3 be ideals of R such that / = I1 NI, N I3. Then
1¢ =1y NI NI5. Hence, either 1¢ =I{ N5 or I1¢ =1{NI§or1¢=15NI5.
We may assume that /¢ = I{ N I5. Therefore, I = 1°¢ = I{°NI5¢ =11 N5,
Consequently, / is strongly 2-irreducible. ([l

Corollary 6. Let f : R — S be a surjective homomorphism of commutative rings.
There is a one-to-one correspondence between the 2-irreducible ideals of R which
contain Ker(f) and 2-irreducible ideals of S.

Recall that a ring R is called a Laskerian ring if every proper ideal of R has a
primary decomposition. Noetherian rings are some examples of Laskerian rings.

Let S be a multiplicatively closed subset of aring R. In the next theorem, consider
the natural homomorphism f : R — S~!R defined by f(x) = x/1.

Theorem 7. Let I be a proper ideal of a ring R and S be a multiplicatively closed
setin R.

(1) If I is a strongly 2-irreducible ideal of ST'R, then I€ is a strongly 2-
irreducible ideal of R.

(2) If I is a primary strongly 2-irreducible ideal of R such that I NS = &, then
1€ is a strongly 2-irreducible ideal of S™'R.

(3) If I is a primary ideal of R such that 1€ is a strongly 2-irreducible ideal of
SR, then I is a strongly 2-irreducible ideal of R.

(4) If R’ is afaithfully flat extension ring of R and if I R is a strongly 2-irreducible
ideal of R', then I is a strongly 2-irreducible ideal of R.

(5) If I is strongly 2-irreducible and H is an ideal of R such that H C I, then
1/H is a strongly 2-irreducible ideal of R/H.

(6) If R is a Laskerian ring, then every strongly 2-irreducible ideal is either a
primary ideal or is the intersection of two primary ideals.

Proof. (1) Assume that / is a strongly 2-irreducible ideal of S~'R. Let J, K and
L be ideals of R suchthat JNKNL C I€. Then J N K¢ NL¢ C [°€ =]. Hence
either J°NK® CTorJNL¢C I or K¢NL®C I since [ is strongly 2-irreducible.
Therefore either JNK C /€ or JNL CI¢€or KNL C I€. Consequently /€ is a
strongly 2-irreducible ideal of R.
(2) Suppose that / is a primary strongly 2-irreducible ideal such that / NS = &. Let
J, K and L be ideals of ST! R such that J N K N L C 1. Since I is a primary ideal,
then J°NKNLCC ¢ =] ThusJNK ClTorJ°NL CTorK‘NL¢C].
Hence JNK CI¢orJNLCI¢orKNL CIEC.
(3) Let I be a primary ideal of R, and let /¢ be a strongly 2-irreducible ideal of S™! R.
By part (1), 7¢€ is strongly 2-irreducible. Since [ is primary, we have /¢¢ = I, and
thus we are done.
(4)Let J, K and L beideals of R suchthat JAKNL CI. Thus JRENKR'NLR' =
(JNKNL)R' CIR,by[l2, Lemma 9.9]. Since I R’ is strongly 2-irreducible, then
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either JRRENKR' C IR or JRRNLR' C IR or KR'NLR' C IR'. Without loss of
generality, assume that JR'N KR’ C IR’. So, (JR'FNR)N(KR'NR)C IR’ NR.
Hence J N K C I, by [17, Theorem 4.74]. Consequently [/ is strongly 2-irreducible.
(5) Let J, K and L be ideals of R containing H such that (J/H)N(K/H)N
(L/H)CI/H. Hence J N KN L C I. Therefore, either JNK C 1 or JNL C
ITorKNL <. Thus, (J/H)YN(K/H)<I/H or (J/HYN(L/H) < I/H or
(K/H)N(L/H) < I/H. Consequently, I/H is strongly 2-irreducible.

(6) Let I be a strongly 2-irreducible ideal and N7_, Q; be a primary decomposition
of I. Since N?_, Q; C I, then there are 1 < r,s <n such that 9, N Qs C [ =
m?lei gQers- U

Let S be a multiplicatively closed subset of a ring R. Set
C :={I°| I isanideal of Rg}.

Corollary 7. Let R be a ring and S be a multiplicatively closed subset of R. Then
there is a one-to-one correspondence between the strongly 2-irreducible ideals of Rg
and strongly 2-irreducible ideals of R contained in C which do not meet S.

Proof. 1If I is a strongly 2-irreducible ideal of Rg, then evidently /¢ # R, [€ € C
and by Theorem 7(1), /€ is a strongly 2-irreducible ideal of R. Conversely, let / be a
strongly 2-irreducible ideal of R, INS =Fand I € C. Since INS =3, I¢ # Rg.
Let JOKNL C 1€ where J, K and L are ideals of Rg. Then J° NK°NL =(J N
KnNL)Cr¢. Nowsince I € C,then I¢¢=1.So J NKNL CI.Hence, either
JNKECTorJNLECTorKSNLE CI. Then,either JNK =(JNK)¢CI°
orJNL=(NL)Y*<I®or KNL = (KNL) < [° Consequently, /¢ is a
strongly 2-irreducible ideal of Rg. U

Let n be a natural number. We say that [ is an n-primary ideal of aring R if I is
the intersection of n primary ideals of R.

Proposition 5. Let R be a ring. Then the following conditions are equivalent:
(1) Every n-primary ideal of R is a strongly 2-irreducible ideal;
(2) For any prime ideal P of R, every n-primary ideal of Rp is a strongly 2-
irreducible ideal;
(3) For any maximal ideal m of R, every n-primary ideal of R, is a strongly
2-irreducible ideal.

Proof. (1)=(2) Let I be an n-primary ideal of Rp. We know that /€ is an n-
primary ideal of R, I° N (R\P) =@, [€ € C and, by the assumption, /€ is a strongly
2-irreducible ideal of R. Now, by Corollary 7, I = (I€)p is a strongly 2-irreducible
ideal of Rp.

(2)=(3) is clear.
(3)=(1) Let I be an n-primary ideal of R and let m be a maximal ideal of R con-
taining I . Then, I, is an n-primary ideal of R, and so, by our assumption, I, is
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a strongly 2-irreducible ideal of R,,. Now by Theorem 10(1), (I,,)¢ is a strongly
2-irreducible ideal of R, and since [ is an n-primary ideal of R, (/)¢ = I, that is,
I is a strongly 2-irreducible ideal of R. O

Theorem 8. Let R = R X Ry, where Ry and R are rings with 1 # 0. Let J be
a proper ideal of R. Then the following conditions are equivalent:
(1) J is a strongly 2-irreducible ideal of R;
(2) Either J = I x Ry for some strongly 2-irreducible ideal I of Ry or J =
R x I for some strongly 2-irreducible ideal Iy of Ry or J = I x I for
some strongly irreducible ideal I of Ry and some strongly irreducible ideal
12 Of Rz.

Proof. (1)=(2) Assume that J is a strongly 2-irreducible ideal of R. Then J =
Iy x I, for some ideal /; of Ry and some ideal I, of R5. Suppose that I, = R5. Since
J is aproperideal of R, I} # R. Let R’ = {M+Rz' Then J' = {M+Rz is a strongly
2-irreducible ideal of R’ by Theorem 7(5). Since R’ is ring-isomorphic to R; and
Iy ~ J', I is a strongly 2-irreducible ideal of R;. Suppose that /1 = R;. Since J
is a proper ideal of R, Iy # R,. By a similar argument as in the previous case, I
is a strongly 2-irreducible ideal of R,. Hence assume that /; # R and I, # R».
Suppose that /; is not a strongly irreducible ideal of Ry. Then there are x, y € R;
such that Ryx N Ryy C Iy but neither x € /1 nor y € I1. Notice that (Rix X Ry) N
(R1 x{0}))N(R1y X Ry) = (R1x N Ry1y)x {0} C J, but neither (R1x x Ry) N (R X
{0}) = Ryx x{0} C J nor (Rix X Ry)N(R1y X Ry) =(RixNR1y)x Ry C J nor
(R1 x{0}) N(R1y x Ry) = R1y x{0} € J, which is a contradiction. Thus /; is a
strongly irreducible ideal of R;. Suppose that /> is not a strongly irreducible ideal of
R,. Then there are z, w € R, such that R,z N Row C I, but neither z € I, nor w €
I». Notice that (R x R2z2) N ({0} x R2)N(R1 x Roaw) = {0} x (RzN Row) C J, but
neither (R X R2z) N ({0} x Ry) = {0} x Rpz € J,nor (R1 X R22) N (R X Rryw) =
R1x(R2zN Row) C J nor ({0} x R2) N (R1 x Row) = {0} x Row C J, whichis a
contradiction. Thus /5 is a strongly irreducible ideal of R5.
2)=() If J = I1 x R, for some strongly 2-irreducible ideal /1 of Ry or J = R; x I»
for some strongly 2-irreducible ideal /5 of R5, then it is clear that J is a strongly 2-
irreducible ideal of R. Hence assume that J = I x I for some strongly irreducible
ideal I1 of R; and some strongly irreducible ideal I of R». Then [/ 1’ =11 X Ry and
I} = Ry x I, are strongly irreducible ideals of R. Hence I{ N[, =11 xI, = J isa
strongly 2-irreducible ideal of R by Proposition 3. U

Theorem 9. Let R = Ry X Ry X+ X Ry, where 2 <n < oo, and R1,R3,...,R,
are rings with 1 # 0. Let J be a proper ideal of R. Then the following conditions are
equivalent:

(1) J is a strongly 2-irreducible ideal of R.
(2) Either J = x}_,I; such that for some k € {1,2,...,n}, Iy is a strongly 2-
irreducible ideal of Ry, and I; = Ry for everyt € {1,2,....n}\{k} or J =
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x%_ 11y such that for some k,m € {1,2,...,n}, I is a strongly irreducible
ideal of Ry, I, is a strongly irreducible ideal of Ry, and I; = Ry for every
te{l,2,...,n}\{k,m}.

Proof. We use induction on n. Assume that n = 2. Then the result is valid by
Theorem 8. Thus let 3 < n < oo and assume that the result is valid when K = R; x
-+ X Ry —1. We prove the result when R = K X R;,. By Theorem 8, J is a strongly 2-
irreducible ideal of R if and only if either J/ = L x R, for some strongly 2-irreducible
ideal L of K or J = K x L, for some strongly 2-irreducible ideal L, of R, or
J = L x L, for some strongly irreducible ideal L of K and some strongly irreducible
ideal L, of R,. Observe that a proper ideal Q of K is a strongly irreducible ideal of
K if and only if Q = x;‘;%lt such that for some k € {1,2,...,n — 1}, I} is a strongly
irreducible ideal of Ry, and I; = R; forevery t € {1,2,...,n —1}\{k}. Thus the claim
is now verified. 0

Lemma 1. Let R be a GCD-domain and I be a proper ideal of R. The following
conditions are equivalent:

(1) 1 is a singly strongly 2-irreducible ideal;
(2) For every elements x,y,Z € R, [x,y,z] € I implies that [x,y] € I or[x,z] €
lor|yz]el.

Proof. Since for every elements x, y of R we have Rx N Ry = R[x, y], there is
nothing to prove. g

Now we study singly strongly 2-irreducible ideals of a UFD.

Theorem 10. Let R be a UFD, and let I be a proper ideal of R. Then the
following conditions hold:

(1) 1 is singly strongly 2-irreducible if and only if for each elements x,y,z of R,
[x,v,z] € I implies that either [x,y] € [ or[x,z] €l or[y,z] €.

(2) I is singly strongly 2-irreducible if and only ifp;”pgz---pzk € I, where
pi’s are distinct prime elements of R and n;’s are natural numbers, implies
that p!" pys € I, for some 1 <r,s <k.

(3) If I is a nonzero principal ideal, then I is singly strongly 2-irreducible if
and only if the generator of I is a prime power or the product of two prime
powers.

(4) Every singly strongly 2-irreducible ideal is a 2-absorbing primary ideal.

Proof. (1) By Lemma 1.
(2) Suppose that I is singly strongly 2-irreducible and p'l“ pgz ka € I in which
pi’s are distinct prime elements of R and n;’s are natural numbers. Then
[P} ,pgz,...,pzk] = p'lﬂpgz---pzk € I. Hence by part (1), there are 1 <r,s <k

ny

such that [p)'", pi*l € 1, ie., pi py* €.
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For the converse, let [x, y,z] € I for some x,y,z € R\{0}. Assume that x, y and z
have prime decompositions as below,

X = p‘flpgzpqulﬁlquqé;?’

— V1,72 Yk ,.61..02 ]
y_pl p2 .pk rl r2 ...ruu’

_ &1 & ekt A1 Ao Ag/ 1 2 Ky’ K1 K2 Ky
Z_pl p2 .--pk/ ql q2 ..-qs/ rl r2 .--ru/ Sl S2 -.-sv s
in which0 <k’ <k,0<s' <sand 0 <u’ <u. Therefore,
Vis @k +1 0k P1 02 ps
-.-qs/

[X.y.2] = p\' Py P Py PR a4

Bs/ 41 Bs..01..00 Oy Suwi1 8, ki k2
qs/+1 n.-qs rl r2 -;nru/ ru/+1 ;n-ru Sl S2 .

where v; = max{o;,y;. &} forevery 1 <i <k'; wj = max{a;,y;} for every k' <
Jj <k;pi =max{Bi,Ai}forevery 1 <i <s';0; =max{8;,u;}forevery 1 <i <u’.
By part (2), we have twenty one cases. For example we investigate the following two
cases. The other cases can be verified in a similar way.

Case 1. Forsome 1 <i,j <k’, p;)ip;'/ €l.Ifv; =a; andv; = «;, then clearly x € /

o

i‘p}/j | [x,y] and thus [x,y] € [. If

K
st €1,

andso [x,y] € [. If v; = @; and v; = y;, then p
vi =«o; and v; = ¢, then p?"pj‘/ | [x,z] and thus [x,z] € I.

Case 2. Let p;”'p;uj €l;forsome 1 <i<k'andk’'+1=<j <k. Forv, = q,
wj =a; wehave x € I and so [x,y] € I. For v; = ¢;, w; = y; we have [y,z] € I.
Consequently [ is singly strongly 2-irreducible, by part (1).

(3) Suppose that I = Ra for some nonzero element a € R. Assume that [ is singly
strongly 2-irreducible. Let a = pi' p3?--- p;* be a prime decomposition for a such
that k > 2. By part (2) we have that p;'” py* € I for some 1 < r,s < k. Therefore
I = R(p;y" ps*).

Conversely, if a is a prime power, then [ is strongly irreducible ideal, by [3, Theorem
2.2(3)]. Hence [ is singly strongly 2-irreducible. Let I = R(p”¢®) for some prime
elements p, g of R. Assume that for some distinct prime elements ¢1,¢2,...,qk
of R and natural numbers my.ma,....mg, q7 'qy >---qp* € I = R(p"q*). Then
P q° | qi"lq;'lz qZ“‘ Hence there exists 1 <i < k such that p = ¢g; and r < m;,
also there exists 1 < j < k such that ¢ = ¢; and s < m;. Then, since p"¢q* € I, we
have q;" "q;nj € I. Now, by part (2), [ is singly strongly 2-irreducible.

(4) Let I be singly strongly 2-irreducible and xyz € I for some x,y,z € R\{0}.
Consider the following prime decompositions,

ar Bi B2 . Bs

— %1 02
X=P1 Dy P 491 9427 45>

_ V172 Yk .01 .82 8
Yy =Dy Py P Ty T

_ . E1 &2 &t A1, A2 Agr i1 2 My K1 K2 K
Z=Pp1 Dy D 41 427 gy Ty Ty ety ST Sy 8y,

in which 0 <k’ <k,0<s" <sand 0 <u’ <u. By these representations we have,
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ai+yr1ter ax+y2t+ez o tyrrters 1tV 41

XYZ = P Pr "'pk/ pk/+1
ar+vik , BitA1 Ba+in By Ay Byt B,
A L R R
S1+p1 2+ Sty St 8y K1 K K
R o o R o R A IR ATl

Now, apply part (2). We investigate some cases that can be happened, the other
cases similarly lead us to the claim that 7 is 2-absorbing primary. First, assume for

.. o;+y;+e;
some 1 <i,j <k, pf"ﬂ/’ tei pj’ YiTE ¢ I. Choose a natural number n such

that n > max{%, %} With this choice we have (n + 1)e; > o; + i + &;

and (n +1)e; > oj +y; +¢j, so pl(nH)e’ p](.nH)Sj €l. Thenz"tlel,soze

J/I. The other one case; assume that for some 1 <i <k’ and k' +1 < Jj <k,
pi tyite p?j 7/ ¢ . Choose a natural number 1 such that n > max{%té J:E’ 2y,
With this choice we have (n +1)y; > o; +y; +& and (n + 1)y; > + Yis thus

pl(”H)y’ (" +1Y ¢ I Then y**t1 e I s0 y € V/I. Assume that pa’+y’ e, for

some k' + 1 <i <k and some 1 < j <v. Let n be a natural number Where n> y’ ,
1
@ +D% ¢ | which shows that xz € \/_

5j
Suppose that for some s’ +1 <i <sandu’+1=<j <u,q; ’rj’ € I. Then, clearly

xyel. O

Corollary 8. Let R be a UFD.

(1) Every principal ideal of R is a singly strongly 2-irreducible ideal if and only
if it is a 2-absorbing primary ideal.

(2) Every singly strongly 2- irreducible ideal of R can be generated by a set of
elements of the forms p" and pl pJ " in which D.Di,pj are some prime
elements of R and n,n;,n; are some natural numbers.

(3) Every 2-absorbing ideal of R is a singly strongly 2-irreducible ideal.

then (n + 1)o; > o; + y;. Hence p(n+1)a’

Proof. (1) Suppose that [ is singly strongly 2-irreducible ideal. By Theorem
10(4), I is a 2-absorbing primary ideal. Conversely, let / be a nonzero 2-absorbing
primary ideal. Let / = Ra, where 0 % a € I. Assume that a = p{' p32--- p;* be
a prime decomposition for a. If k > 2, then since p{'py*---p* € I and I is a
2-absorbing primary ideal, there exist a natural number n, and integers 1 <i,j <k

nn;

such that p; p]nnj €l,sayi =1and j = 2. Therefore p3 | p{"! p;"? which is a
contradiction. Therefore k = 1 or 2, thatis I = an1 or [ = R(p1 p22) respect-
ively. Hence by Theorem 10(3), I is singly strongly 2-irreducible.

(2) Let X be a generator set for a singly strongly 2-irreducible ideal of 7, and let x be

a nonzero element of X. Assume that x = pi'' p3?--- p;* be a prime decomposition
for x such that k > 2. By Theorem 10(2), for some 1 <i, j <k, we have pl pj el,
and then Rx C R pl ‘D ; Y. Consequently, / can be generated by a set of elements
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of the forms p” and p." p;lj .
(3) is a direct consequence of Theorem 10(2). ]

The following example shows that in part (1) of Corollary 8 the condition that /
is principal is necessary. Moreover, the converse of part (2) of this corollary need not
be true.

Example 2. Let F be afieldand R = F[x, y,z], where x, y and z are independent
indeterminates. We know that R is a UFD. Suppose that I = (x,y2,z2). Since

(x,y2%,z2) = (x,y,z) is a maximal ideal of R, I is a primary ideal and so is a 2-
absorbing primary ideal. Notice that (x +y +2z)yz € I, but neither (x +y +2z)y €/
nor (x+y—+2z)z € I nor yz € I. Consequently, [ is not singly strongly 2-irreducible,
by Theorem 10(2).
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