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Abstract. Let R be a semiprime ring with center Z.R/. A mapping F W R ! R is called a
generalized derivation if there exists a derivation d WR!R such that F.xy/D F.x/yCxd.y/
holds for all x;y 2 R. In the present paper, our main object is to study the situations: (1)
F.xy/�F.x/F.y/ 2 Z.R/, (2) F.xy/CF.x/F.y/ 2 Z.R/, (3) F.xy/�F.y/F.x/ 2 Z.R/,
(4) F.xy/CF.y/F.x/ 2Z.R/; for all x;y in some suitable subset of R.
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1. INTRODUCTION

Let R be an associative ring with center Z.R/. For x;y 2 R, Œx;y� denotes the
commutator element xy�yx. We use the notation to define the Engel type polyno-
mial Œx;y�nC1 D ŒŒx;y�n;y� instead of Œx;y;y; : : : ;y� for n � 1 and Œx;y�1 D Œx;y�.
Recall that a ring R is called prime if for any a;b 2R, aRb D .0/ implies that either
a D 0 or b D 0 and is called semiprime if for any a 2 R, aRa D .0/ implies a D 0.
An additive mapping F WR!R is called a generalized derivation ofR if there exists
a derivation d W R! R such that F.xy/D F.x/yCxd.y/ holds for any x;y 2 R.
If d D 0, then F is said to be a left centralizer map of R. For any subset S of R,
rR.S/ denotes the right annihilator of S in R, that is, rR.S/ D fx 2 RjSx D 0g
and lR.S/ denotes the left annihilator of S in R that is, lR.S/ D fx 2 RjxS D 0g.
If rR.S/ D lR.S/, then rR.S/ is called an annihilator ideal of R and is written as
annR.S/.

Let S be a nonempty subset of a ring R. The mapping F W R! R is said to be a
homomorphism ( anti-homomorphism) acting on S if F.xy/D F.x/F.y/ holds for
all x;y 2 S (respectively F.xy/D F.y/F.x/ holds for all x;y 2 S ).
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A series of papers in literature studied the homomorphism or anti-homomorphism
of some specific type of additive mappings in prime and semiprime rings under cer-
tain conditions (see [1–4, 7, 10–12, 14, 15]).

In [4], Bell and Kappe showed that if a derivation d of a prime ring R can act as
homomorphism or anti-homomorphism on a nonzero right ideal of R, then d D 0 on
R. Then Ali, Rehman and Ali in [2] proved a similar result to Lie ideal case. They
proved that if R is a 2-torsion free prime ring, L a nonzero Lie ideal of R such that
u2 2 L for all u 2 L and d acts as a homomorphism or anti-homomorphism on L,
then either d D 0 or L�Z.R/.

On the other hand, the authors developed above results, replacing the derivation d
with a generalized derivationF ofR. In this view, Rehman [14] proved the following:

Let R be a 2-torsion free prime ring and I be a nonzero ideal of R. Suppose
F WR!R is a nonzero generalized derivation with d .

(i) If F acts as a homomorphism on I and if d ¤ 0, then R is commutative.
(ii) If F acts as an anti-homomorphism on I and if d ¤ 0, then R is commutative.
Recently, in [3] Ali and Huang studied the case when a generalized Jordan .˛;ˇ/-

derivation F acts as homomorphism or anti-homomorphism on a square closed Lie
ideal U in prime ring R.

It is natural to investigate the above situations in semiprime rings. Recently, in [7]
the first author of this article has studied the situations, when a generalized derivation
F of a semiprime ringR acts as homomorphism or anti-homomorphism in a nonzero
left ideal of R.

From above results, it is natural to consider the situations, when the generalized
derivations F satisfies the identities: (1) F.xy/�F.x/F.y/ 2 Z.R/, (2) F.xy/C
F.x/F.y/2Z.R/, (3)F.xy/�F.y/F.x/2Z.R/, (4)F.xy/CF.y/F.x/2Z.R/;
for all x;y in some suitable subset of R.

Recently, Albas [1] studied the above mentioned identities in prime rings. Albas
proved the following theorems:

Theorem A. Let R be a prime ring with center Z.R/ and I be a nonzero ideal
of R. If R admits a nonzero generalized derivation F of R, with associated deriva-
tion d such that F.xy/�F.x/F.y/ 2 Z.R/ or F.xy/CF.x/F.y/ 2 Z.R/ for all
x;y 2 I , then either R is commutative or F D Iid or F D�Iid , where Iid denotes
the identity map of the ring R.

Theorem B. Let R be a prime ring with center Z.R/ and I be a nonzero ideal
of R. If R admits a nonzero generalized derivation F of R, with associated deriva-
tion d such that F.xy/�F.y/F.x/ 2 Z.R/ or F.xy/CF.y/F.x/ 2 Z.R/ for all
x;y 2 I , then R is commutative.
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In the present paper our main object is to investigate the situations in semiprime
rings.

2. PRELIMINARIES

We shall use following basic identities which will be used frequently: for x;y;´ 2
R,

Œxy;´�D xŒy;´�C Œx;´�y and Œx;y´�D yŒx;´�C Œx;y�´:

We need the following facts which will be used to prove our theorems:

Fact-1. [5, Theorem 3] Let R be a semiprime ring and U a nonzero left ideal of
R. If R admits a derivation d which is nonzero on U and Œd.x/;x� 2 Z.R/ for all
x 2 U , then R contains a nonzero central ideal.

Fact-2. [8, Fact-4]Let R be a semiprime ring, d a nonzero derivation of R such
that xŒŒd.x/;x�;x�D 0 for all x 2R. Then d maps R into its center.

Fact-3. [13, Corollary 2] If R is a semiprime ring and I is an ideal of R, then
I \annR.I /D 0.

Fact-4. [6, Lemma 2] (a) If R is a semiprime ring, the center of a nonzero one-
sided ideal is contained in the center of R; in particular, any commutative one-sided
ideal is contained in the center of R.

(b) If R is a prime ring with a nonzero central ideal, then R must be commutative.

Fact-5. [9, Corollary 2.6] Let R be a prime ring, I a nonzero ideal of R and
F W R! R a nonzero left centralizer map. (1) If F.x/F.y/�F.xy/ 2Z.R/ for all
x;y 2 I , then either R is commutative or F.r/D r for all r 2R. (2) If F.x/F.y/C
F.xy/ 2 Z.R/ for all x;y 2 I , then either R is commutative or F.r/D �r for all
r 2R.

3. MAIN RESULTS

Theorem 1. Let R be a semiprime ring with center Z.R/ and I a nonzero ideal
of R. Let F W R! R be a generalized derivation associated with the derivation
d WR!R. If F.xy/�F.x/F.y/ 2Z.R/ for all x;y 2 I , then one of the following
holds:

(1) R contains a nonzero central ideal;
(2) d.I /D .0/ and F is a left centralizer map on I such that ŒF .x/;x�D 0 for all

x 2 I .

Proof. By our assumption, we have

F.xy/�F.x/F.y/ 2Z.R/ (3.1)
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for all x;y 2 I . Replacing y with y´, where ´ 2 I , we get

F.xy´/�F.x/F.y´/ 2Z.R/ (3.2)

which implies

F.xy/´Cxyd.´/�F.x/fF.y/´Cyd.´/g 2Z.R/ (3.3)

that is
.F.xy/�F.x/F.y//´C .x�F.x//yd.´/ 2Z.R/: (3.4)

Commuting both sides with ´, we get

Œ.F .xy/�F.x/F.y//´C .x�F.x//yd.´/;´�D 0 (3.5)

for all x;y;´ 2 I . By using (3.1), above relation yields

Œ.x�F.x//yd.´/;´�D 0 (3.6)

for all x;y;´ 2 I . Now we put x D x´, and then obtain that

Œ.x´�F.x/´�xd.´//yd.´/;´�D 0 (3.7)

which is
Œ.x�F.x//´yd.´/;´�� Œxd.´/yd.´/;´�D 0 (3.8)

for all x;y;´ 2 I . In (3.6), replacing y with ´y, we get

Œ.x�F.x//´yd.´/;´�D 0 (3.9)

for all x;y;´ 2 I . Using (3.9), (3.8) implies

Œxd.´/yd.´/;´�D 0 (3.10)

for all x;y;´ 2 I . Now we put x D d.´/x in (3.10), and then we see that

0D Œd.´/xd.´/yd.´/;´�D d.´/Œxd.´/yd.´/;´�C Œd.´/;´�xd.´/yd.´/ (3.11)

for all x;y;´ 2 I . As an application of (3.10), (3.11) reduces to

Œd.´/;´�xd.´/yd.´/D 0 (3.12)

for all x;y;´ 2 I . Replacing x with x´ and y with ´y respectively in (3.12), we get

Œd.´/;´�x´d.´/yd.´/D 0 (3.13)

and
Œd.´/;´�xd.´/´yd.´/D 0 (3.14)

for all x;y;´ 2 I . Subtracting one from another yields

Œd.´/;´�xŒd.´/;´�yd.´/D 0 (3.15)

for all x;y;´ 2 I . Replacing y with y´ in (3.15) and right multiplying (3.15) by ´
respectively and then subtracting one from another yields

Œd.´/;´�xŒd.´/;´�yŒd.´/;´�D 0 (3.16)
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for all x;y;´ 2 I , which implies .I Œd.´/;´�/3 D .0/ for all ´ 2 I . Since R is
semiprime, it contains no nonzero nilpotent left ideal, implying I Œd.´/;´�D .0/ for
all ´ 2 I . Thus, Œd.´/;´� 2 AnnR.I / for all ´ 2 I . Since I is an ideal, we conclude
that Œd.´/;´� 2 I for all ´ 2 I . This implies that Œd.´/;´� 2 I \AnnR.I / for all
´ 2 I . In view of Fact-3, Œd.´/;´�D 0 for all ´ 2 I . Further, if d is derivation such
that d.I /¤ .0/, then by Fact-1, R contains a nonzero central ideal.

Let d.I /D .0/. Then F.xy/D F.x/yCxd.y/D F.x/y for all x;y 2 I , i.e., F
is a left centralizer map on I . Then by our hypothesis, we have

F.x/.y�F.y// 2Z.R/ (3.17)

for all x;y 2 I . Replacing y with yu, where u 2 I , we get

F.x/.y�F.y//u 2Z.R/ (3.18)

for all x;y;u 2 I . Commuting both sides with v, where v 2 I , we get

F.x/.y�F.y//uv�vF.x/.y�F.y//uD 0: (3.19)

By using (3.18), it reduces to

vF.x/.y�F.y//u 2Z.R/ (3.20)

for all u;v;x;y 2 I . We choose x;y 2 I such that a D F.x/.y�F.y//¤ 0. Then
from above, we have IaI � Z.R/, that is, R contains a central ideal. If this ideal is
zero ideal, then

I.F.x/.y�F.y///D .0/

for all x;y 2 I . Replacing x with x´, ´ 2 I , this gives

I.F.x/´.y�F.y///D .0/

for all x;y;´ 2 I . Thus F.x/´.y�F.y// 2 I \annR.I /D .0/ for all x;y;´ 2 I .
This gives

ŒF .x/;x�´.y�F.y//D 0

for all x;y;´ 2 I . Putting y D y2 and ´D ´y respectively and then subtracting one
from another, we get

ŒF .x/;x�´ŒF.y/;y�D 0

for all x;y;´ 2 I . Since I is an ideal of R, it follows that .ŒF .x/;x�I /2 D .0/
for all x 2 I . Since semiprime ring contains no nonzero nilpotent ideal, we have
ŒF .x/;x�I D .0/ for all x 2 I . Thus by Fact-3, ŒF .x/;x� 2 I \annR.I /D .0/ for
all x 2 I . Thereby, the proof is completed. �

Theorem 2. Let R be a semiprime ring with center Z.R/ and I a nonzero ideal
of R. Let F W R! R be a generalized derivation associated with the derivation
d WR!R. If F.xy/CF.x/F.y/ 2Z.R/ for all x;y 2 I , then one of the following
holds:

(1) R contains a nonzero central ideal;
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(2) d.I /D .0/ and F is a left centralizer map on I such that ŒF .x/;x�D 0 for all
x 2 I .

Proof. If we replace F with �F and d with �d in Theorem 1, we conclude that
.�F /.xy/� .�F /.x/.�F /.y/ 2Z.R/ for all x;y 2 I , implies Œ.�d/.x/;x�D 0 for
all x 2 I , that is, F.xy/CF.x/F.y/ 2 Z.R/ for all x;y 2 I , implies Œd.x/;x�D 0
for all x 2 I . Hence conclusion follows by Theorem 1. �

The following corollary is immediate consequences of the Theorem 1 and The-
orem 2 by using Fact-4 and Fact-5.

Corollary 1. Let R be a prime ring with center Z.R/ and F WR!R be a gener-
alized derivation associated with the derivation d WR!R.

(1) If R satisfies F.xy/CF.x/F.y/ 2 Z.R/, then either R is commutative or
F.x/D�x for all x 2R.

(2) If R satisfies F.xy/�F.x/F.y/ 2 Z.R/, then either R is commutative or
F.x/D x for all x 2R.

Theorem 3. Let R be a semiprime ring with center Z.R/. Let F W R! R be
a generalized derivation associated with the derivation d W R ! R. If F.xy/�
F.y/F.x/ 2Z.R/ for all x;y 2R, then one of the following holds: (1) R contains a
nonzero central ideal; (2) F is a left centralizer map of R such that F WR!Z.R/.

Proof. By hypothesis, we have

F.xy/�F.y/F.x/ 2Z.R/ (3.21)

for all x;y 2R. Putting x D x´, we have

F.x´y/�F.y/.F.x/´Cxd.´// 2Z.R/ (3.22)

which gives

F.x/´yCxd.´y/�F.y/F.x/´�F.y/xd.´/ 2Z.R/: (3.23)

Commuting both sides with ´, we have

ŒF .x/´y�F.y/F.x/´�F.y/xd.´/Cxd.´y/;´�D 0 (3.24)

that is

ŒF .x/´y;´�� ŒF .y/F.x/;´�´� ŒF .y/xd.´/�xd.´y/;´�D 0 (3.25)

for all x;y;´ 2 R. From (3.21), we can write that ŒF .xy/�F.y/F.x/;´� D 0 for
all x;y;´ 2 R, that is, ŒF .xy/;´� D ŒF .y/F.x/;´� for all x;y;´ 2 R. Thus (3.25)
reduces to

ŒF .x/´y;´�� ŒF .xy/;´�´� ŒF .y/xd.´/�xd.´y/;´�D 0 (3.26)

for all x;y;´ 2R. Putting y D ´2 in (3.26), we have

ŒF .x/´3;´�� ŒF .x/´2
Cxd.´2/;´�´� Œ.F .´/´C´d.´//xd.´/�xd.´3/;´�D 0

(3.27)
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that is,
ŒF .´/´xd.´/C´d.´/xd.´/�xd.´3/Cxd.´2/´;´�D 0 (3.28)

for all x;´ 2R. Putting x D ´x in (3.26), we have

Œ.F .´/xC´d.x//´y;´�� ŒF .´/xyC´d.xy/;´�´� ŒF .y/´xd.´/�´xd.´y/;´�D 0

(3.29)
that is,

ŒF .´/x´y;´�� ŒF .´/xy;´�´�

ŒF .y/´xd.´/�´xd.´y/�´d.x/´yC´d.xy/´;´�D 0 (3.30)

for all x;y;´ 2R. Assuming y D ´, we have

ŒF .´/´xd.´/�´xd.´2/�´d.x/´2
C´d.x´/´;´�D 0 (3.31)

for all x;´ 2R. Subtracting (3.31) from (3.28), we get

Œ´d.´/xd.´/�xd.´3/Cxd.´2/´C´xd.´2/C´d.x/´2
�´d.x´/´;´�D 0 (3.32)

for all x;´ 2R. This reduces to

Œ´d.´/xd.´/;´�C Œ�xd.´3/Cxd.´2/´C´xd.´2/�´xd.´/´;´�D 0 (3.33)

for all x;´ 2R. Now putting x D ´x in (3.33), we get

Œ´d.´/´xd.´/;´�C´Œ�xd.´3/Cxd.´2/´C´xd.´2/�´xd.´/´;´�D 0 (3.34)

for all x;´ 2 R. Left multiplying (3.33) by ´ and then subtracting from (3.34), we
get

Œ´Œd.´/;´�xd.´/;´�D 0 (3.35)
for all x;´ 2R. Again putting x D x´ in above relation, we get

Œ´Œd.´/;´�x´d.´/;´�D 0 (3.36)

for all x;´ 2R. Now right multiplying (3.35) by ´ and then subtracting from (3.36),
we obtain

Œ´Œd.´/;´�xŒd.´/;´�;´�D 0 (3.37)
and hence

Œ´Œd.´/;´�x´Œd.´/;´�;´�D 0 (3.38)
for all x;´ 2R. This implies

´Œd.´/;´�x´Œd.´/;´�´�´2Œd.´/;´�x´Œd.´/;´�D 0 (3.39)

for all x;´ 2R. In (3.39), replacing x with x´Œd.´/;´�u, we obtain

´Œd.´/;´�x´Œd.´/;´�u´Œd.´/;´�´�´2Œd.´/;´�x´Œd.´/;´�u´Œd.´/;´�D 0 (3.40)

for all x;u;´ 2R. Using (3.39), (3.40) gives

´Œd.´/;´�x´2Œd.´/;´�u´Œd.´/;´��´Œd.´/;´�x´Œd.´/;´�´u´Œd.´/;´�D 0 (3.41)
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that is
´Œd.´/;´�xŒ´Œd.´/;´�;´�u´Œd.´/;´�D 0 (3.42)

for all x;u;´ 2 R. This implies Œ´Œd.´/;´�;´�xŒ´Œd.´/;´�;´�uŒ´Œd.´/;´�;´�D 0 for
all x;u;´2R, which is .RŒ´Œd.´/;´�;´�/3D .0/ for all ´2R. SinceR is semiprime,
we conclude that RŒ´Œd.´/;´�;´�D .0/ for all ´ 2 R. Hence, ´ŒŒd.´/;´�;´�D 0 for
all ´ 2 R. Then by Fact-2, either d.R/D .0/ or d.R/ � Z.R/. If d.R/¤ .0/, then
the second case implies Œd.x/;x� D 0 for all x 2 R. Hence in view of Fact-1, R
contains a nonzero central ideal.

Let d.R/D .0/. Then F.xy/D F.x/yCxd.y/D F.x/y for all x;y 2R, i.e., F
is a left centralizer map of R. Then by our hypothesis, we have

F.x/y�F.y/F.x/ 2Z.R/ (3.43)

for all x;y 2R. Replacing y with yu, where u 2R, we get

F.x/yu�F.y/uF.x/ 2Z.R/ (3.44)

that is
.F.x/y�F.y/F.x//uCF.y/ŒF.x/;u� 2Z.R/ (3.45)

for all x;y;u 2R. Commuting both sides with u, we get

Œ.F .x/y�F.y/F.x//u;u�C ŒF .y/ŒF.x/;u�;u�D 0 (3.46)

for all x;y;u 2R. Since F.x/y�F.y/F.x/ 2Z.R/ for all x;y 2R, we have from
(3.46) that

ŒF .y/ŒF.x/;u�;u�D 0 (3.47)
for all x;y;u 2R. We put y D yr in above and get

ŒF .y/rŒF.x/;u�;u�D 0 (3.48)

for all x;y;u;r 2R. Now putting y D yu in above, we have

ŒF .y/urŒF.x/;u�;u�D 0 (3.49)

for all x;y;u;r 2R. Left multiplying (3.48) by u, we get

ŒuF.y/rŒF.x/;u�;u�D 0 (3.50)

for all x;y;u;r 2R. Subtracting (3.50) from (3.49), we obtain that

ŒŒF .y/;u�rŒF.x/;u�;u�D 0 (3.51)

for all x;y;u;r 2R. In particular, above relation yields

ŒŒF .x/;u�rŒF.x/;u�;u�D 0 (3.52)

that is
ŒF .x/;u�rŒF.x/;u�u�uŒF.x/;u�rŒF.x/;u�D 0 (3.53)

for all x;u;r 2R. In (3.53), replacing r with rŒF.x/;u�v we get

ŒF .x/;u�rŒF.x/;u�vŒF.x/;u�u�uŒF.x/;u�rŒF.x/;u�vŒF.x/;u�D 0: (3.54)
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By using (3.53), (3.54) becomes

ŒF .x/;u�ruŒF.x/;u�vŒF.x/;u�� ŒF .x/;u�rŒF.x/;u�uvŒF.x/;u�D 0; (3.55)

which is
ŒF .x/;u�rŒŒF .x/;u�;u�vŒF.x/;u�D 0 (3.56)

for all x;r;u;v 2R. Replacing v with vu in (3.56) and right multiplying (3.56) by u
respectively and then subtracting one from another, we have

ŒF .x/;u�rŒŒF .x/;u�;u�vŒŒF .x/;u�;u�D 0: (3.57)

Similarly, just from above relation, we can write

ŒŒF .x/;u�;u�rŒŒF .x/;u�;u�vŒŒF .x/;u�;u�D 0: (3.58)

Thus .ŒŒF .x/;u�;u�R/3 D .0/ for all x;u 2 R. Since R is semiprime, R contains no
nonzero nilpotent ideals. Hence ŒŒF .x/;u�;u�R D .0/ and so ŒŒF .x/;u�;u� D 0 for
all x;u 2 R. Then by Fact-1, we conclude that either ŒF .x/;u�D 0 for all x;u 2 R
or R contains a nonzero central ideal. If ŒF .x/;u�D 0 for all x;u 2 R, then F maps
R into its center. Thus we obtain our all conclusions. �

Theorem 4. Let R be a semiprime ring with center Z.R/. Let F W R! R be
a generalized derivation associated with the derivation d W R ! R. If F.xy/C
F.y/F.x/ 2Z.R/ for all x;y 2R, then one of the following holds: (1) R contains a
nonzero central ideal; (2) F is a left centralizer map of R such that F WR!Z.R/.

Proof. If we replace F with �F and d with �d in Theorem 3, we conclude that
.�F /.xy/� .�F /.y/.�F /.x/ 2 Z.R/ for all x;y 2 R implies xŒ.�d/.x/;x�2 D 0
for all x 2 I , that is, F.xy/C F.y/F.x/ 2 Z.R/ for all x;y 2 R, implies
xŒd.x/;x�2 D 0 for all x 2R. Hence the conclusion follows by Theorem 3. �

We conclude our paper with the following example which shows that the above
theorems do not hold for arbitrary rings.

Example: Consider the ring R D
��

a b

0 0

�
ja;b 2Z

�
. Obviously, R is not

semiprime, because
�
0 1

0 0

�
R

�
0 1

0 0

�
D .0/:

We define maps F;d W R! R by F
�
a b

0 0

�
D

�
a 0

0 0

�
and d

�
a b

0 0

�
D�

0 �b

0 0

�
. Then F is a generalized derivation of R associated with the derivation

d of R. For I D R, we have that F.xy/�F.x/F.y/ 2 Z.R/ for all x;y 2 I and
F.xy/�F.y/F.x/ 2 Z.R/ for all x;y 2 I . Since d.R/ ¤ .0/ and R contains no

nonzero central ideal for Z.R/ D
��

0 0

0 0

��
, the semiprimeness hypothesis in

Theorem 1 and Theorem 3 is not superfluous.
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