GENERALIZED DERIVATIONS ACTING AS HOMOMORPHISM OR ANTI-HOMOMORPHISM WITH CENTRAL VALUES IN SEMIPRIME RINGS

B. DHARA, S. KAR, AND K. G. PRADHAN

Received 21 January, 2015

Abstract. Let R be a semiprime ring with center $Z(R)$. A mapping $F : R \rightarrow R$ is called a generalized derivation if there exists a derivation $d : R \rightarrow R$ such that $F(xy) = F(x)y + xd(y)$ holds for all $x, y \in R$. In the present paper, our main object is to study the situations: (1) $F(xy) - F(x)F(y) \in Z(R)$, (2) $F(xy) + F(x)F(y) \in Z(R)$, (3) $F(xy) - F(y)F(x) \in Z(R)$, (4) $F(xy) - F(y)F(x) \in Z(R)$; for all x, y in some suitable subset of R.

2010 Mathematics Subject Classification: 16W25; 16R50; 16N60

Keywords: semiprime ring, derivation, generalized derivation

1. INTRODUCTION

Let R be an associative ring with center $Z(R)$. For $x, y \in R$, $[x, y]$ denotes the commutator element $xy - yx$. We use the notation to define the Engel type polynomials $[x, y]_{n+1} = [[x, y]_n, y]$ instead of $[x, y, y, \ldots, y]$ for $n \geq 1$ and $[x, y]_1 = [x, y]$. Recall that a ring R is called prime if for any $a, b \in R$, $aRb = (0)$ implies that either $a = 0$ or $b = 0$ and is called semiprime if for any $a \in R$, $aRa = (0)$ implies $a = 0$. An additive mapping $F : R \rightarrow R$ is called a generalized derivation of R if there exists a derivation $d : R \rightarrow R$ such that $F(xy) = F(x)y + xd(y)$ holds for any $x, y \in R$. If $d = 0$, then F is said to be a left centralizer map of R. For any subset S of R, $r_R(S)$ denotes the right annihilator of S in R, that is, $r_R(S) = \{x \in R | Rx = 0\}$ and $l_R(S)$ denotes the left annihilator of S in R that is, $l_R(S) = \{x \in R | xS = 0\}$. If $r_R(S) = l_R(S)$, then $r_R(S)$ is called an annihilator ideal of R and is written as $ann_R(S)$.

Let S be a nonempty subset of a ring R. The mapping $F : R \rightarrow R$ is said to be a homomorphism (anti-homomorphism) acting on S if $F(xy) = F(x)F(y)$ holds for all $x, y \in S$ (respectively $F(xy) = F(y)F(x)$ holds for all $x, y \in S$).
A series of papers in literature studied the homomorphism or anti-homomorphism of some specific type of additive mappings in prime and semiprime rings under certain conditions (see [1–4, 7, 10–12, 14, 15]).

In [4], Bell and Kappe showed that if a derivation \(d \) of a prime ring \(R \) can act as homomorphism or anti-homomorphism on a nonzero right ideal of \(R \), then \(d = 0 \) on \(R \). Then Ali, Rehman and Ali in [2] proved a similar result to Lie ideal case. They proved that if \(R \) is a 2-torsion free prime ring, \(L \) a nonzero Lie ideal of \(R \) such that \(u^2 \in L \) for all \(u \in L \) and \(d \) acts as a homomorphism or anti-homomorphism on \(L \), then either \(d = 0 \) or \(L \subseteq Z(R) \).

On the other hand, the authors developed above results, replacing the derivation \(d \) with a generalized derivation \(F \) of \(R \). In this view, Rehman [14] proved the following:

Let \(R \) be a 2-torsion free prime ring and \(I \) be a nonzero ideal of \(R \). Suppose \(F : R \to R \) is a nonzero generalized derivation with \(d \).

(i) If \(F \) acts as a homomorphism on \(I \) and if \(d \neq 0 \), then \(R \) is commutative.

(ii) If \(F \) acts as an anti-homomorphism on \(I \) and if \(d \neq 0 \), then \(R \) is commutative.

Recently, in [3] Ali and Huang studied the case when a generalized Jordan \((\alpha, \beta)\)-derivation \(F \) acts as homomorphism or anti-homomorphism on a square closed Lie ideal \(U \) in prime ring \(R \).

It is natural to investigate the above situations in semiprime rings. Recently, in [7] the first author of this article has studied the situations, when a generalized derivation \(F \) of a semiprime ring \(R \) acts as homomorphism or anti-homomorphism in a nonzero left ideal of \(R \).

From above results, it is natural to consider the situations, when the generalized derivations \(F \) satisfies the identities: (1) \(F(xy) - F(x)F(y) \in Z(R) \), (2) \(F(xy) + F(x)F(y) \in Z(R) \), (3) \(F(xy) - F(y)F(x) \in Z(R) \), (4) \(F(xy) + F(y)F(x) \in Z(R) \); for all \(x, y \) in some suitable subset of \(R \).

Recently, Albas [1] studied the above mentioned identities in prime rings. Albas proved the following theorems:

Theorem A. Let \(R \) be a prime ring with center \(Z(R) \) and \(I \) be a nonzero ideal of \(R \). If \(R \) admits a nonzero generalized derivation \(F \) of \(R \), with associated derivation \(d \) such that \(F(xy) - F(x)F(y) \in Z(R) \) or \(F(xy) + F(x)F(y) \in Z(R) \) for all \(x, y \in I \), then either \(R \) is commutative or \(F = I_{id} \) or \(F = -I_{id} \), where \(I_{id} \) denotes the identity map of the ring \(R \).

Theorem B. Let \(R \) be a prime ring with center \(Z(R) \) and \(I \) be a nonzero ideal of \(R \). If \(R \) admits a nonzero generalized derivation \(F \) of \(R \), with associated derivation \(d \) such that \(F(xy) - F(y)F(x) \in Z(R) \) or \(F(xy) + F(y)F(x) \in Z(R) \) for all \(x, y \in I \), then \(R \) is commutative.
In the present paper our main object is to investigate the situations in semiprime rings.

2. PRELIMINARIES

We shall use following basic identities which will be used frequently: for \(x, y, z \in R \),
\[
[xy, z] = x[y, z] + [x, z]y \quad \text{and} \quad [x, yz] = y[x, z] + [x, y]z.
\]
We need the following facts which will be used to prove our theorems:

Fact-1. [5, Theorem 3] Let \(R \) be a semiprime ring and \(U \) a nonzero left ideal of \(R \). If \(R \) admits a derivation \(d \) which is nonzero on \(U \) and \([d(x), x] \in Z(R) \) for all \(x \in U \), then \(R \) contains a nonzero central ideal.

Fact-2. [8, Fact-4] Let \(R \) be a semiprime ring, \(d \) a nonzero derivation of \(R \) such that \(x[\{d(x), x\}, x] = 0 \) for all \(x \in R \). Then \(d \) maps \(R \) into its center.

Fact-3. [13, Corollary 2] If \(R \) is a semiprime ring and \(I \) is an ideal of \(R \), then \(I \cap \text{ann}_R(I) = 0 \).

Fact-4. [6, Lemma 2] (a) If \(R \) is a semiprime ring, the center of a nonzero one-sided ideal is contained in the center of \(R \); in particular, any commutative one-sided ideal is contained in the center of \(R \).

(b) If \(R \) is a prime ring with a nonzero central ideal, then \(R \) must be commutative.

Fact-5. [9, Corollary 2.6] Let \(R \) be a prime ring, \(I \) a nonzero ideal of \(R \) and \(F : R \to R \) a nonzero left centralizer map. (1) If \(F(x)F(y) = F(xy) \in Z(R) \) for all \(x, y \in I \), then either \(R \) is commutative or \(F(r) = r \) for all \(r \in R \). (2) If \(F(x)F(y) + F(xy) \in Z(R) \) for all \(x, y \in I \), then either \(R \) is commutative or \(F(r) = -r \) for all \(r \in R \).

3. MAIN RESULTS

Theorem 1. Let \(R \) be a semiprime ring with center \(Z(R) \) and \(I \) a nonzero ideal of \(R \). Let \(F : R \to R \) be a generalized derivation associated with the derivation \(d : R \to R \). If \(F(xy) - F(x)F(y) \in Z(R) \) for all \(x, y \in I \), then one of the following holds:

1. \(R \) contains a nonzero central ideal;
2. \(d(I) = (0) \) and \(F \) is a left centralizer map on \(I \) such that \([F(x), x] = 0 \) for all \(x \in I \).

Proof. By our assumption, we have
\[
F(xy) - F(x)F(y) \in Z(R) \quad (3.1)
\]
for all \(x, y \in I \). Replacing \(y \) with \(yz \), where \(z \in I \), we get
\[
F(xy)z - F(x)F(yz) \in Z(R)
\] (3.2)
which implies
\[
F(xy)z + yzd(z) - F(x)\{F(y)z + yd(z)\} \in Z(R)
\] (3.3)
that is
\[
(F(xy) - F(x)F(y))z + (x - F(x))yd(z) \in Z(R).
\] (3.4)
Commuting both sides with \(z \), we get
\[
[(F(xy) - F(x)F(y))z + (x - F(x))yd(z), z] = 0
\] (3.5)
for all \(x, y, z \in I \). By using (3.1), above relation yields
\[
[(x - F(x))yd(z), z] = 0
\] (3.6)
for all \(x, y, z \in I \). Now we put \(x = xz \), and then obtain that
\[
[(xz - F(x)z - xd(z))yd(z), z] = 0
\] (3.7)
which is
\[
[(x - F(x))z yd(z), z] - [xd(z)yd(z), z] = 0
\] (3.8)
for all \(x, y, z \in I \). In (3.6), replacing \(y \) with \(yz \), we get
\[
[(x - F(x))zyd(z), z] = 0
\] (3.9)
for all \(x, y, z \in I \). Using (3.9), (3.8) implies
\[
[xd(z)yd(z), z] = 0
\] (3.10)
for all \(x, y, z \in I \). Now we put \(x = d(z)x \) in (3.10), and then we see that
\[
0 = [d(z)xd(z)yd(z), z] = d(z)[zd(z)yd(z), z] + [d(z), z]xd(z)yd(z)
\] (3.11)
for all \(x, y, z \in I \). As an application of (3.10), (3.11) reduces to
\[
[d(z), z]xd(z)yd(z) = 0
\] (3.12)
for all \(x, y, z \in I \). Replacing \(x \) with \(xz \) and \(y \) with \(yz \) respectively in (3.12), we get
\[
[d(z), z]xzbd(z)yd(z) = 0
\] (3.13)
and
\[
[d(z), z]xd(z)zd(yd(z)) = 0
\] (3.14)
for all \(x, y, z \in I \). Subtracting one from another yields
\[
[d(z), z]xd(z)yd(z) = 0
\] (3.15)
for all \(x, y, z \in I \). Replacing \(y \) with \(yz \) in (3.15) and right multiplying (3.15) by \(z \) respectively and then subtracting one from another yields
\[
[d(z), z]zd(z)y[d(z), z] = 0
\] (3.16)
for all \(x, y, z \in I\), which implies \((I[d(z), z])^3 = (0)\) for all \(z \in I\). Since \(R\) is semiprime, it contains no nonzero nilpotent left ideal, implying \(I[d(z), z] = (0)\) for all \(z \in I\). Thus, \([d(z), z] \in Ann_R(I)\) for all \(z \in I\). Since \(I\) is an ideal, we conclude that \([d(z), z] \in I\) for all \(z \in I\). This implies that \([d(z), z] \in I \cap Ann_R(I)\) for all \(z \in I\). In view of Fact-3, \([d(z), z] = 0\) for all \(z \in I\). Further, if \(d\) is derivation such that \(d(I) \neq (0)\), then by Fact-1, \(R\) contains a nonzero central ideal.

Let \(d(I) = (0)\). Then \(F(xy) = F(x)y + xd(y) = F(x)y\) for all \(x, y \in I\), i.e., \(F\) is a left centralizer map on \(I\). Then by our hypothesis, we have

\[
F(x)(y - F(y)) \in Z(R) \tag{3.17}
\]

for all \(x, y \in I\). Replacing \(y\) with \(yu\), where \(u \in I\), we get

\[
F(x)(y - F(y))u \in Z(R) \tag{3.18}
\]

for all \(x, y, u \in I\). Commuting both sides with \(v\), where \(v \in I\), we get

\[
F(x)(y - F(y))uv - vF(x)(y - F(y))u = 0. \tag{3.19}
\]

By using (3.18), it reduces to

\[
vF(x)(y - F(y))u \in Z(R) \tag{3.20}
\]

for all \(u, v, x, y \in I\). We choose \(x, y \in I\) such that \(a = F(x)(y - F(y)) \neq 0\). Then from above, we have \(I \cap I \subseteq Z(R)\), that is, \(R\) contains a central ideal. If this ideal is zero ideal, then

\[
I(F(x)(y - F(y))) = (0)
\]

for all \(x, y \in I\). Replacing \(x\) with \(xz, z \in I\), this gives

\[
I(F(x)z(y - F(y))) = (0)
\]

for all \(x, y, z \in I\). Thus \(F(x)z(y - F(y)) \in I \cap Ann_R(I) = (0)\) for all \(x, y, z \in I\). This gives

\[
[F(x), x]z(y - F(y)) = 0
\]

for all \(x, y, z \in I\). Putting \(y = y^2\) and \(z = zy\) respectively and then subtracting one from another, we get

\[
[F(x), x]z[F(y), y] = 0
\]

for all \(x, y, z \in I\). Since \(I\) is an ideal of \(R\), it follows that \((F(x), x)^2 = (0)\) for all \(x \in I\). Since semiprime ring contains no nonzero nilpotent ideal, we have \([F(x), x]I = (0)\) for all \(x \in I\). Thus by Fact-3, \([F(x), x] \in I \cap Ann_R(I) = (0)\) for all \(x \in I\). Thereby, the proof is completed. \(\square\)

Theorem 2. Let \(R\) be a semiprime ring with center \(Z(R)\) and \(I\) a nonzero ideal of \(R\). Let \(F : R \to R\) be a generalized derivation associated with the derivation \(d : R \to R\). If \(F(xy) + F(x)F(y) \in Z(R)\) for all \(x, y \in I\), then one of the following holds:

1. \(R\) contains a nonzero central ideal;
(2) \(d(I) = (0) \) and \(F \) is a left centralizer map on \(I \) such that \([F(x), x] = 0\) for all \(x \in I \).

Proof. If we replace \(F \) with \(-F\) and \(d \) with \(-d\) in Theorem 1, we conclude that
\[(-F)(xy) - (-F)(x)(-F)(y) \in Z(R) \]
for all \(x, y \in I \), implies \([(-d)(x), x] = 0\) for all \(x \in I \), that is, \(F(xy) + F(x)F(y) \in Z(R) \) for all \(x, y \in I \), implies \([d(x), x] = 0\) for all \(x \in I \). Hence conclusion follows by Theorem 1. \(\square\)

The following corollary is immediate consequences of the Theorem 1 and Theorem 2 by using Fact-4 and Fact-5.

Corollary 1. Let \(R \) be a prime ring with center \(Z(R) \) and \(F : R \to R \) be a generalized derivation associated with the derivation \(d : R \to R \).
(1) If \(R \) satisfies \(F(xy) + F(x)F(y) \in Z(R) \), then either \(R \) is commutative or \(F(x) = x \) for all \(x \in R \).
(2) If \(R \) satisfies \(F(xy) - F(x)F(y) \in Z(R) \), then either \(R \) is commutative or \(F(x) = x \) for all \(x \in R \).

Theorem 3. Let \(R \) be a semiprime ring with center \(Z(R) \). Let \(F : R \to R \) be a generalized derivation associated with the derivation \(d : R \to R \). If \(F(xy) - F(y)F(x) \in Z(R) \) for all \(x, y \in R \), then one of the following holds: (1) \(R \) contains a nonzero central ideal; (2) \(F \) is a left centralizer map of \(R \) such that \(F : R \to Z(R) \).

Proof. By hypothesis, we have
\[F(xy) - F(y)F(x) \in Z(R) \quad (3.21) \]
for all \(x, y \in R \). Putting \(x = xz \), we have
\[F(xz) - F(x)(x)(z) + xd(z) \in Z(R) \quad (3.22) \]
which gives
\[F(x)y + xd(z)y - F(y)F(x)z - F(y)xd(z) \in Z(R). \quad (3.23) \]
Commuting both sides with \(z \), we have
\[[F(x)y - F(y)F(x)z - F(y)xd(z) + xd(z)y, z] = 0 \quad (3.24) \]
that is
\[[F(x)y, z] - [F(y)F(x), z]z - [F(y)xd(z) - xd(z)y], z = 0 \quad (3.25) \]
for all \(x, y, z \in R \). From (3.21), we can write that \([F(xy) - F(y)F(x), z] = 0\) for all \(x, y, z \in R \), that is, \([F(xy), z] = [F(y)F(x), z] \) for all \(x, y, z \in R \). Thus (3.25) reduces to
\[[F(xy), z] - [F(y)F(x), z]z - [F(y)xd(z) - xd(z)y], z = 0 \quad (3.26) \]
for all \(x, y, z \in R \). Putting \(y = z^2 \) in (3.26), we have
\[[F(x)z^3, z] - [F(x)z^2 + xd(z^2), z]z - [(F(z)c)zd(z)]zd(z) - xd(z^3), z] = 0 \quad (3.27) \]
that is,
\[
[F(z)zd(z) + zd(z)zd(z) - zd(z^3) + zd(z^2)z, z] = 0
\] (3.28)
for all \(x, z \in R \). Putting \(x = xz \) in (3.26), we have
\[
[(F(z)x + zd(x))z, z] - [F(z)xy + zd(xy), z] - [F(y)zd(z) - zd(z), z] = 0
\] (3.29)
that is,
\[
[F(z)xyz, z] - [F(z)xy, z] - [F(y)zd(z) - zd(z), z] = 0
\] (3.30)
for all \(x, y, z \in R \). Assuming \(y = z \), we have
\[
[F(z)zd(z) - zd(x)z^2 - zd(xz)z, z] = 0
\] (3.31)
for all \(x, z \in R \). Subtracting (3.31) from (3.28), we get
\[
[zd(z)zd(z) - xd(z^3) + zd(z^2)z + zd(z^2) - zd(xz)z, z] = 0
\] (3.32)
for all \(x, z \in R \). This reduces to
\[
[zd(z)zd(z), z] + [-xd(z^3) + zd(z^2) + zd(z^2) - zd(xz)z, z] = 0
\] (3.33)
for all \(x, z \in R \). Left multiplying (3.33) by \(z \) and then subtracting from (3.34), we get
\[
[z[d(z), z]zd(z), z] = 0
\] (3.35)
for all \(x, z \in R \). Again putting \(x = xz \) in (3.33), we get
\[
[z[d(z), z]xz[d(z), z] = 0
\] (3.36)
for all \(x, z \in R \). Now right multiplying (3.35) by \(z \) and then subtracting from (3.36), we obtain
\[
[z[d(z), z]x[d(z), z], z] = 0
\] (3.37)
and hence
\[
[z[d(z), z]xz[d(z), z] = 0
\] (3.38)
for all \(x, z \in R \). This implies
\[
z[d(z), z]xz[d(z), z] - z^2[d(z), z]xz[d(z), z] = 0
\] (3.39)
for all \(x, z \in R \). In (3.39), replacing \(x \) with \(xz[d(z), z], z \) and \(u \), we obtain
\[
z[d(z), z]xz[d(z), z] - z^2[d(z), z]xz[d(z), z] = 0
\] (3.40)
for all \(x, u, z \in R \). Using (3.39), (3.40) gives
\[
z[d(z), z]xz^2[d(z), z]uz[d(z), z] - z[d(z), z]xz[d(z), z]uz[d(z), z] = 0
\] (3.41)
that is
\[z[d(z), z]x[z[d(z), z], z]uz[d(z), z] = 0 \]
for all \(x, u, z \in R \). This implies \([z[d(z), z], z]x[z[d(z), z], z]u[z[d(z), z], z] = 0\) for all \(x, u, z \in R \), which is \((R[z[d(z), z], z])^3 = 0\) for all \(z \in R \). Since \(R \) is semiprime, we conclude that \(R[z[d(z), z], z] = 0 \) for all \(z \in R \). Hence, \(z[(d(z), z), z] = 0 \) for all \(z \in R \). Then by Fact-2, either \(d(R) = (0) \) or \(d(R) \subseteq Z(R) \). If \(d(R) \neq (0) \), then the second case implies \([d(x), x] = 0\) for all \(x \in R \). Hence in view of Fact-1, \(R \) contains a nonzero central ideal.

Let \(d(R) = (0) \). Then \(F(xy) = F(x)y + xd(y) = F(x)y \) for all \(x, y \in R \), i.e., \(F \) is a left centralizer map of \(R \). Then by our hypothesis, we have
\[F(xy) - F(y)F(x) \in Z(R) \]
for all \(x, y \in R \). Replacing \(y \) with \(uu \), where \(u \in R \), we get
\[F(xy)u - F(y)uF(x) \in Z(R) \]
that is
\[(F(xy) - F(y)F(x))u + F(y)[F(x), u] \in Z(R) \]
for all \(x, y, u \in R \). Commuting both sides with \(u \), we get
\[[(F(xy) - F(y)F(x))u, u] + [F(y), F(x), u] = 0 \]
for all \(x, y, u \in R \). Since \(F(xy) - F(y)F(x) \in Z(R) \) for all \(x, y \in R \), we have from (3.46) that
\[[F(y), F(x), u] = 0 \]
for all \(x, y, u \in R \). We put \(y = yr \) in above and get
\[[F(y)r, F(x), u] = 0 \]
for all \(x, y, u, r \in R \). Now putting \(y = yu \) in above, we have
\[[F(y)ur, F(x), u] = 0 \]
for all \(x, y, u, r \in R \). Left multiplying (3.48) by \(u \), we get
\[u[F(y)r, F(x), u] = 0 \]
for all \(x, y, u, r \in R \). Subtracting (3.50) from (3.49), we obtain that
\[[[F(y), u]r, F(x), u] = 0 \]
for all \(x, y, u, r \in R \). In particular, above relation yields
\[[[F(x), u]r, F(x), u] = 0 \]
that is
\[[F(x), u]r[F(x), u] - u[F(x), u]r[F(x), u] = 0 \]
for all \(x, u, r \in R \). In (3.53), replacing \(r \) with \(r[F(x), u]v \) we get
\[[F(x), u]r[F(x), u]v[F(x), u] - u[F(x), u]r[F(x), u]v[F(x), u] = 0. \]
By using (3.53), (3.54) becomes
\[[F(x), u]u[F(x), u]v[F(x), u] - [F(x), u]r[F(x), u]uv[F(x), u] = 0, \] (3.55)
which is
\[[F(x), u]r[F(x), u]uv[F(x), u] = 0 \] (3.56)
for all \(x, r, u, v \in R \). Replacing \(v \) with \(vu \) in (3.56) and right multiplying (3.56) by \(u \) respectively and then subtracting one from another, we have
\[[F(x), u]r[F(x), u]uv[F(x), u] = 0. \] (3.57)
Similarly, just from above relation, we can write
\[[F(x), u]r[F(x), u]uv[F(x), u] = 0. \] (3.58)
Thus \([F(x), u]u[F(x), u]u[F(x), u] = 0 \) for all \(x, u \in R \). Since \(R \) is semiprime, \(R \) contains no nonzero nilpotent ideals. Hence \([F(x), u]u[F(x), u]u[F(x), u] = 0 \) for all \(x, u \in R \). Then by Fact-1, we conclude that either \([F(x), u] = 0 \) for all \(x, u \in R \), then \(F \) maps \(R \) into its center. Thus we obtain our all conclusions. □

Theorem 4. Let \(R \) be a semiprime ring with center \(Z(R) \). Let \(F : R \to R \) be a generalized derivation associated with the derivation \(d : R \to R \). If \(F(xy) + F(y)F(x) \in Z(R) \) for all \(x, y \in R \), then one of the following holds: (1) \(R \) contains a nonzero central ideal; (2) \(F \) is a left centralizer map of \(R \) such that \(F : R \to Z(R) \).

Proof. If we replace \(F \) with \(-F \) and \(d \) with \(-d \) in Theorem 3, we conclude that \((F(xy) - F(y)(-F)(x)) \in Z(R) \) for all \(x, y \in R \) implies \(x[(d)(x), x]_2 = 0 \) for all \(x \in I \), that is, \(F(xy) + F(y)F(x) \in Z(R) \) for all \(x, y \in R \), implies \(x[d(x), x]_2 = 0 \) for all \(x \in R \). Hence the conclusion follows by Theorem 3. □

We conclude our paper with the following example which shows that the above theorems do not hold for arbitrary rings.

Example: Consider the ring \(R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} | a, b \in \mathbb{Z} \right\} \). Obviously, \(R \) is not semiprime, because \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} R \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = (0) \).

We define maps \(F, d : R \to R \) by \(F \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \) and \(d \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -b \\ 0 & 0 \end{pmatrix} \). Then \(F \) is a generalized derivation of \(R \) associated with the derivation \(d \) of \(R \). For \(I = R \), we have that \(F(xy) - F(x)F(y) \in Z(R) \) for all \(x, y \in I \) and \(F(xy) - F(y)F(x) \in Z(R) \) for all \(x, y \in I \). Since \(d(R) \neq (0) \) and \(R \) contains no nonzero central ideal for \(Z(R) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \), the semiprimeness hypothesis in Theorem 1 and Theorem 3 is not superfluous.
ACKNOWLEDGEMENT

The authors are thankful to referee for his/her very careful reading of the paper and providing very helpful suggestions and some misprints.

REFERENCES

Authors’ addresses

B. Dhara
Belda College, Department of Mathematics, Paschim Medinipur, Belda, 721424, INDIA
E-mail address: basu_dhara@yahoo.com
S. Kar
Jadavpur University, Department of Mathematics, Kolkata, 700032, INDIA
E-mail address: karsukhendu@yahoo.co.in

K. G. Pradhan
Belda College, Department of Mathematics, Paschim Medinipur, Belda 721424, INDIA
E-mail address: kgp.math@gmail.com