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Abstract. It is well known (see [Palmer, K.J.: Exponential dichotomies and transversal homo-
clinic points, J. Differential Equations 55 (1984), 225-256]) that system x0 D A.t/x possesses
exponential dichotomy on RC iff so does perturbed system x0 D .A.t/CB.t//x, where perturb-
ation B.t/ is “small”, that is lim

t!C1
kB.t/k D 0. However, it is also known that corresponding

statement for exponential dichotomy on R fails. In this work we show that under additional
hypothesis of commutativity of A.s/ and B.t/ for all s; t 2 R it can indeed be shown that dicho-
tomy on R is unaffected by “small” perturbations (while “small” now has meaning of “being in
L1.R/ class”). We also provide some examples and particular corollaries of theory to show that
hypotheses are natural and apply to wide range of problems.
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1. INTRODUCTION

Consider the system
x0.t/D A.t/x.t/;

where x.t/ and A.t/ are respectively vector-valued and square-matrix-valued func-
tions defined for t 2 S �R. In subsequent, we will impose conditions onA.t/, so that
any initial value problem x.t0/D x0; t0 2 S has a unique continuous solution that ex-
tends to the whole S . This will allow us to speak of the fundamental matrix ˝ba .A/,
which is a linear map that maps x0 to x.b/, where x.t/ satisfies the aforementioned
system and initial conditions x.a/D x0 (linearity follows from the homogeneity of
a system). Now, the system is said to possess ”exponential dichotomy” on S (or
simply ”dichotomy” in subsequent), if the phase space Rn can be decomposed into
the direct sum of subspaces EC˚E� and for arbitrary xC 2 EC; x� 2 E� and
a;b 2 S the following estimates hold:

k˝b0 .A/x
C
k �Kk˝a0 .A/x

C
k � e� ja�bj; a � b;

k˝b0 .A/x
�
k �Kk˝a0 .A/x

�
k � e� ja�bj; b � a

(1.1)
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for some constants K;  > 0, that do not depend on xC; x�; a; b.

Remark 1. The alternative definition, as given in [3] can be formulated as follows:
there exist projection-operator P and numbers K;  > 0, such that for 8a;b 2 S

k˝a0 .A/P
�
˝b0 .A/

��1
k �Ke�.a�b/; a � b;

k˝a0 .A/.I �P /
�
˝b0 .A/

��1
k �Ke�.b�a/; b � a:

The concept of exponential dichotomy plays an important role both in theory and
applications. For instance in [1], it has been utilized for the development of sufficient
conditions for the existence of mean square bounded solutions to linear stochastic Ito
system. In [6], exponential dichotomy properties have been utilized for the invest-
igation of multi-frequency oscillations and qualitative behavior of solutions of lin-
ear extensions of dynamical systems on torus. Roughness of exponential dichotomy
(that is, its persistence under “small” perturbations) is the main property that allows
to apply this concept to the investigations of a variety of real-world phenomena and
processes. This causes a particular relevance of research in this field.

One of the first monographs entirely devoted to the subject of exponential dicho-
tomy was the book of Coppel [3]. It contains the exposition of how the dichotomy
relates to basic concepts in systems of ODE, such as roughness, Lyapunov functions
and functional analysis aspects. It also encompasses the criteria for dichotomy and
roughness conditions, in particular that exponential dichotomy on any interval J is
not affected when the perturbation B.t/ satisfies kBk1 WD sup

t2J

kB.t/k < ı, where ı

is some fixed constant, depending on function A. From there, this roughness result
was worked upon by numerous researchers. For example, Palmer in [9] has shown
(among other results) that dichotomy on Œt0;C1/ is preserved under perturbation
B.t/ if lim

t!1
kB.t/k D 0. The constant ı mentioned above was sharpened in [8],

where authors also have extended Coppel’s roughness statement to the case when
dichotomy constants K and  (see above) can be different for EC and E�. Be-
sides, in [4], authors tackled the case when A is assumed only locally integrable, not
necessarily continuous or even bounded on J .

Although in this work we confine ourselves to the finite-dimensional setting, one
can easily introduce the corresponding exponential dichotomy theory to the case of
operators on Banach spaces with many results and proofs carrying through. Then
it is fruitful to study the preservation of dichotomy under “small” (in some sense)
perturbations in this new generalised setting. Anyhow, we refer the interested reader
to [2, 5, 10] and references therein.

In this work we show that under additional hypothesis of commutativity of A.s/
and B.t/ for all s; t 2 R it can indeed be shown that dichotomy on R is unaffected by
“small” perturbations (while “small” now has meaning of “being in L1.R/ class”).
We also provide some examples and particular corollaries of theory to show that
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hypotheses are natural and apply to wide range of problems. Some comparison with
previously known results will follow.

The rest of the paper is organized as follows: In Section 2 we state our main result,
Section 3 is devoted to its proof. In Section 4 we have collected some corollaries and
examples to highlight how our result relates to the previously known ones. Finally,
the last section concludes with a short discussion of a further work.

2. RESULTS

In subsequent, all matrix functions will be assumed to be continuous. In particular,
continuity assumption will let us immediately assume that Cauchy problem for every
ODE system x0 D A.t/x has a unique solution on R for any initial conditions.

Theorem 1. Assume that for the two systems

x0 D A.t/x.t/ (2.1)

and
x0 D .A.t/CB.t//x.t/ (2.2)

the following two conditions hold:
(1) For any t; s 2 R matrices A.s/ and B.t/ commute;

(2) B.t/ 2 L1.R/\C.R/, that is
1R
�1

kB.s/k ds <1.

Then, (2.2) has exponential dichotomy on R if (2.1) does.

Remark 2. The hypothesis of the theorem 1 about the commutativity (the first
condition) holds in particular if 8t; B.t/ 2

T
s2R

Zgln.A.s//, where Zgln.A/ denotes

the (Lie algebra) centralizer of A. If furthermore A.t/ � A, this condition can be
simply rewritten as 8t; B.t/ 2Zgln.A/.

3. PROOFS

Proof of Theorem 1. The desired result will follow from two lemmas, which we
shall state now and prove later. It should be noted that the lemmas have weaker
hypothesis than that of the theorem, and are useful results on their own.

Lemma 1. Let A.t/ and B.t/ be continuous (not necessary bounded matrices-
valued functions on R). Assume further that for every s; t 2 R A.s/ and B.t/ com-
mute. Then, for the system x0 D B.t/x, every Cauchy problem has a unique solution
on R, in other words, the fundamental matrix (we shall denote it by XB.t/) is well-
defined on R and for arbitrary t; s 2 R, A.t/ and XB.s/ commute.

Lemma 2. LetB.t/ be continuous matrix-valued function, such thatB.t/2L1.R/.
Then, the fundamental matrix XB.t/ of x0 D B.t/x is well-defined on R, and both
kXB.t/k and kX�1B .t/k are uniformly bounded in t 2 R.
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Assuming these two for the moment, let us see how the proof of the theorem can
be obtained from them. Consider the system x0 D B.t/x, whose fundamental matrix
(existing by Lemma 2) we shall denote by XB.t/. Let us make the variable change
x DXB.t/´. Then, we have

BXB´CXB´
0
D .XB´/

0
D x0 D .ACB/XB´

Now, as by Lemma 1 A and XB commute, we have

XB´
0
DXBA´

thus ´ is the solution to ´0 D A´, hence the fundamental matrix of x0 D .ACB/x
has the structure

XACB DXBXA:

Now, from [3] we know, that the exponential dichotomy on R can be defined as the
existence of projection operator P and numbers ;K > 0, such that 8s; t 2R we have

kX.t/PX�1.s/k �Ke�.t�s/; s � t;

kX.t/.I �P /X�1.s/k �K�.s�t/; t � s:

We shall show, that this estimation remains the same for perturbed system 2.2 with
the same P and  , but perhaps different K . Indeed, we shall have

kXACB.t/PX
�1
ACB.s/k D kXB.t/XA.s/PX

�1
A .t/X�1B .t/k �

� kXB.t/k � kXA.s/PX
�1
A .t/k � kX�1B .t/k � KC 2„ƒ‚…

DW QK

e�.t�s/:

The second inequality is worked out in the same way, so it just remains to prove the
lemmas stated above. �

Proof of Lemma 2. The existence of fundamental matrix follows immediately from
the continuity assumption on B.t/. The uniform boundedness of kXB.t/k follows
from [12, Corollary 3.24] (which states that if the system x0 D Cx with C con-
stant is uniformly stable and B.t/ 2 L1.R\C.R/, then x0 D .C CB.t//x is stable
as well; in our case we take obviously stable system x0 D 0 � x as x0 D Cx). We
shall denote the upper bound obtained for XB.t/ by M . It is sufficient to show that
kX�1B .t/k �M . Let us fix � 2 R. X�1B .�/ can be characterized as X�1B .�/x.�/ D

x.0/, where x is the solution to x0 D B.t/x or as X�1.�/y.0/ D y.��/, where
y0 D QBy and QB.t/ WD B.t C �/. Thus, it’s enough to show that the norm of X QB is
uniformly bounded by M as well. The latter, however, follows from the proof of
[12, Corollary 3.24], as the upper bound obtained there really depends only on the
1R
�1

k QB.s/k ds D
1R
�1

kB.s/k ds. �

Proof of Lemma 1. We shall employ the theory of Magnus expansion, described in
[7]. For convenience, we collect the properties we need in the following proposition
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Proposition (Magnus Expansion, see [7]). Assume that we have a system x0 D

B.t/x with continuous B.t/ and fundamental matrix X.t/. Assume further that for
some T we have ˇ̌̌̌

ˇ̌
TZ
0

kB.s/k ds

ˇ̌̌̌
ˇ̌< �

then, on t 2 Œ0;T / X.t/ D exp.˝.t//, where ˝.t/ D
1P
kD1

˝k.t/ and ˝k.t/ is an

integral of commutators of increasing length, such as

˝1.t/D

tZ
0

B.t1/dt1;

˝2.t/D
1

2

tZ
0

dt1

t1Z
0

dt2 ŒB.t1/;B.t2/� ;

˝3.t/D
1

6

tZ
0

dt1

t1Z
0

dt2

t2Z
0

dt3

�
ŒB.t1/; ŒB.t2/;B.t3/��C ŒB.t3/; ŒB.t2/;B.t1/��

�
;

˝4.t/D
1

12

tZ
0

dt1

t1Z
0

dt2

t2Z
0

dt3

t3Z
0

dt4

�
ŒŒŒB1;B2� ;B3� ;B4�

C ŒB1; ŒŒB2;B3� ;B4��C ŒB1; ŒB2; ŒB3;B4���C ŒB2; ŒB3; ŒB4;B1���
�

Having this, we shall fix � 2 R and show that for any t 2 R,

ŒA.�/;XB.t/�D 0;

where Œ�; �� denotes the Lie bracket. As for t D 0 the equality holds (as X.0/ D I
commutes with all matrices), it is enough to show that the set where equality holds
is both open and closed. As both A, X and Lie bracket are continuous, closedness
follows and it remains thus to show, that if ŒA.�/;X.t0/�D 0, then equality also holds
on a small neighborhood of t0.

It is sufficient to show that A.�/ commutes with QX.s/ WD X.t0C s/X�1.t0/ for
small s. Now, QX can be realized as a fundamental matrix of x0 D QB.t/x, where
QB.t/DB.tC t0/. Thus, without loss of generality we may assume that t0 D 0. Now,

on the small neighborhood of 0 the hypothesis of Proposition is satisfied, hence we
may apply Magnus expansion.
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Now, if A and B commute with C , then so do A˙B , AB and ŒA;B�. Also, if

B.t/ commutes with A for all t , then so does
bR
a

B.s/ ds. Thus, we see that every

˝k.t/ commutes with A.�/, as former is the integral of commutators of B . Finally,
as Lie bracket is continuous, we also have that ˝.t/ commutes with A.�/ whenever
well-defined, and so does X.t/D exp.˝.t//D

P1
nD0

˝n.t/
nŠ

. �

4. COROLLARIES AND EXAMPLES

We recall the often used in analysis space of test functions, called Schwartz space.
These are characterized as�

f 2 C1.R/
ˇ̌
8˛;ˇ 2Z; sup

x

ˇ̌̌
x˛Dˇf .x/

ˇ̌̌
<1

�
:

The definition can be simply adapted to matrix-valued functions. Schwartz space is
easily shown to be strictly bigger than the more often used space of C1.R/ functions
with compact support. As it is a well-known fact that Schwartz functions are L1.R/,
we have the following.

Corollary 1. Let x0DA.t/x.t/ be the system with an exponential dichotomy on R,
B.t/ be the matrix valued Schwartz function, such that 8s; t 2 R A.t/ and B.s/ com-
mute. Then the perturbed system x0 D .A.t/CB.t//x.t/ also possesses exponential
dichotomy.

As Schwartz functions are so commonly encountered nowadays in analysis, we
hope this corollary to be of some interest and use.

Another way to produce interesting corollaries may be on contrary, to strengthen
commutativity hypothesis of Theorem 1. In this direction the following may be of
interest

Corollary 2. If x0D cx is system with exponential dichotomy, where c is a (scalar)
constant (that is the same as require Rec ¤ 0) , then for any matrix-valued L1.R/
function B.t/ perturbed system has also dichotomy.

It should be noted that this corollary is not a direct corollary of well-known result
[12, Corollary 3.21]. Indeed, that result states that asymptotical stability is unaffected
by o.1/-perturbations (that is, such that lim

t!˙1
kB.t/k D 0), while previous corollary

states that it is unaffected by L1.R/ perturbations (indeed, for x0 D cx exponen-
tial dichotomy is the same as forward/backward asymptotic stability). As neither of
classes o.1/ and L1.R/ is not a subset of other, last corollary is no direct implication
of [12, Corollary 3.21].

To conclude, we shall demonstrate one example, illustrating how in some partic-
ular cases our derived results allow to make more precise conclusions on dichotomy
behaviour and persistence than the original results of Palmer in [9] or Coppel in [3].
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Example 1. Consider the two-dimensional system�
Px

Py

�
D

�
1 1

0 �1

��
x

y

�
:

The eigenvalues of the matrix are real, so system has a dichotomy on R. Now, perturb
it to get �

Px

Py

�
D

"
1CP.t/e�t

2

1C .P �Q/.t/e�t
2

=2

0 �1CQ.t/e�t
2

#�
x

y

�
;

where P.t/ and Q.t/ are arbitrary polynomials in t .
Note, that both the original matrix

�
1 1
0 �1

�
and perturbation we’ve appliedh

P.t/ .P�Q/.t/=2
0 Q.t/

i
e�t

2

commute. Then, our theorem shows that perturbed system
still possess the dichotomy on R (as we’ve perturbed by Schwartz function, see
above), while Palmer’s theorem only allows one to conclude that the dichotomy on
˙R is preserved. Neither Coppel’s classical result from [3], nor any of the latter de-
velopments ([4,8]) cannot be applied for generalP andQ, as any of them requires the
supremum-norm kB.t/k1 of perturbation be not bigger than some particular value,
while evidently by adjusting P and Q latter can be made arbitrarily big.

5. FURTHER WORK

The theorem we have proven together with its corollaries listed can be possibly
extended to other classes of differential equations, whenever the concept of exponen-
tial dichotomy is of relevance to them. In particular new results and corresponding
proof techniques could be applied to the investigations of the existence of invariant
toroidal manifolds of multi-frequency systems, for which the exponential dichotomy
plays an essential role (see [6, 11] for details).
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