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Abstract. We study ideals that resemble ´-ideals in commutative rings with identity. For each
positive integer n, we say an ideal of a commutative ringA is a ´n-ideal in case it has the property
that if a and b belong to the same maximal ideals of A, and an 2 I , then bn is also in I . The
set of all ´n-ideals of A is denoted by Zn.A/. This gives an ascending chain Z.A/ � Z2.A/ �
Z3.A/ � �� � of collections of ideals, starting with the collection of ´-ideals. We give examples
of when the chain becomes stationary, and when it ascends without stop, with each collection
properly contained in its successor. The assignment A 7! Zn.A/ is shown to be the object part
of a functor Rngop

z ! Set, where Rngz denotes the category of commutative rings with ring
homomorphisms that contract ´-ideals to ´-ideals. When the objects are restricted to rings with
zero Jacobson radical, the restricted functor reflects epimorphisms, but not monomorphisms.
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1. INTRODUCTION

Throughout the paper all rings are commutative with identity. The notion of ´-
ideal was first studied by Kohls [12] in the rings C.X/ of real-valued continuous
functions on a Tychonoff space X . Although he defined these ideals topologically, in
terms of zero-sets, he showed that they can be characterized algebraically. As is well
documented in the classical text of Gillman and Jerison [7], ´-ideals have proved to
be a powerful tool in the study of both algebraic properties of function rings, and
topological properties of Tychonoff spaces.

In 1980 and 1981, ´-ideals were introduced in the context of Riesz spaces by
Huijsman and de Pagter (see [8], [9] and [5]). They showed that in the Riesz space
C.X/ the ´-ideals, as they defined them, were precisely those of Kohls. It was Mason
[15] who initiated the study of ´-ideals in arbitrary commutative rings with identity.
In [14], Larson studies instances where the sum of ´-ideals (and other types of ideals)
are ´-ideals, as is the case in rings of continuous functions.

The authors were supported by the National Research Foundation of South Africa via a grant with
Grant No. 93514.
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In this paper we tweak slightly Mason’s definition of ´-ideal by considering powers
of elements. We thus obtain, for each positive integer n, a generalization of ´-ideals.
The resulting ideals we call ´n-ideals. For any ring A, we denote the set of ´n-
ideals of A by Zn.A/. It turns out that, for every positive integer n, Zn.A/ � ZnC1

(Lemma 1), which then leads to the ascending chain

Z.A/� Z2.A/� Z3.A/� �� � ;

which we call the ´-tower of A. There are instances where the ´-tower becomes
stationary (Examples 1, 2, 3, and 4), and instances where it does not (Example 5).
If the ´-tower ofA becomes stationary, we sayA is a ´-terminating ring. Lying above
all the collections Zn.A/ is the collection Zrad.A/ of what are called

p
´-ideals in [2].

These are ideals I for which the radical of I is a ´-ideal. We say A is radically ´-

covered if
1S
nD1

Zn.A/D Zrad.A/. Although there are Noetherian rings which are not

´-terminating (for instance the ring of integers, as shown in Example 5), we prove in
Theorem 1 that every Noetherian ring is radically ´-covered.

Turning to products, we show that the direct product of finitely many rings is ´-
terminating if and only if each factor is ´-terminating (Theorem 2), and the direct
product of finitely many rings is radically ´-covered if and only if each factor is
radically ´-covered (Proposition 2).

In the last section we show that, for each positive integer n, the assignment A 7!
Zn.A/ is the object part of a functor Rngop

z ! Set, where Rngz denotes the category
of commutative rings with ring homomorphisms that contract ´-ideals to ´-ideals.
The functor sends a morphism � in Rngop

z to %�1, where % is the ring homomorph-
ism determining � . We show (Theorem 3) that the restriction of this functor to the
subcategory of Rngzop whose objects are the rings with zero Jacobson radical reflects
epimorphisms. We give an example to show that it does not reflect monomorphisms.

2. PRELIMINARIES AND NOTATION

Let us reiterate that by the term “ring” we mean a commutative ring with identity.
We do not insist that our ideals be proper, so the whole ring will be considered as an
ideal. On the other hand though, as is tradition, every prime ideal (and hence every
maximal ideal) is a proper ideal. One of the consequences of insisting that our rings
have identity is that if A and B are rings, then every ideal of the direct product A�B
is of the form I �J , for some ideals I and J of A and B respectively. It is of course
possible for rings A and B which do not have identity to have the property that every
ideal of A�B is of the form I �J , for some ideals I and J of A and B respectively
(see [1, Proposition 1]).

For any a 2 A, we denote by M.a/ the set of all maximal ideals of A containing
a. An ideal I of a ring A is a ´-ideal if, for any a;b 2 A, M.a/ �M.b/ and b 2 I
imply a 2 I . The containment in this definition can be replaced with an equality. The
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Jacobson radical of A will be denoted by Jac.A/. A ring is reduced if 0 is its only
nilpotent element. If �WA!B is a ring homomorphism, and I is an ideal of B , then
the ideal ��1ŒI � is called the contraction of I .

We shall have occasion to refer to f -rings. Our reference for these rings is [18].
Recall that an ideal I of an f -ring is an `-ideal if whenever jaj � jbj and b 2 I , then
a 2 I . An f -ring A is 1-convex if for any u;v 2 A such that 0 � u � v, there is a
w 2 A such that uD vw. In [13, Theorem 2.4], Larson proves that in a reduced 1-
convex f -ring every ideal is an `-ideal. An f -ring A has bounded inversion if every
a 2 A with a � 1 is invertible. For reduced f -rings, this holds precisely when every
maximal ideal in A is an `-ideal.

3. A TOWER OF ´-LIKE IDEALS

We start by defining the ideals that will form the main study in this paper.

Definition 1. Let n be a positive integer. An ideal I of a ring A is a ´n-ideal if,
for any a;b 2 A,

M.a/�M.b/ and bn 2 I H) an 2 I:

We denote by Zn.A/ the set of all ´n-ideals of A. In particular, Z.A/ denotes the set
of all ´-ideals of A.

It is clear that every ´-ideal is a ´n-ideal for every n 2 N, so that, indeed, these
ideals generalize ´-ideals in a natural way. They can also be characterized similarly
to ´-ideals in terms of intersections of maximal ideals. Let us expatiate. Let A be a
ring, a be an element of A, and n be a positive integer. We set

M.a/D
\

M.a/ and M n.a/D fxn j x 2M.a/gI

with the convention that if a is contained in no maximal ideal, thenM n.a/DA. It is
clear that M n.a/�M.a/ for every n. The proofs of the following characterizations
are fairly routine.

Proposition 1. Let A be a ring, and n be a positive integer. The following are
equivalent for an ideal I of A.

(1) I is a ´n-ideal.
(2) For any a;b 2 A, if M.a/DM.b/ and bn 2 I , then an 2 I .
(3) For any a 2 I , M n.a/� I .

Remark 1. In [15, Theorem 1.2], Mason proves that a ring A is von Neumann
regular if and only if every ideal ofA is a ´-ideal. Generalizing von Neumann regular
rings, McCoy [16] defines a ring A (not necessarily commutative) to be �-regular if,
for every a 2 A, there exists an element x 2 A and a positive integer n (depending
on a) such that anxan D an. If, however, there is a fixed positive integer m such
that for every a 2 A there exists x 2 A for which am D amxam, then he says A is
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m-regular. Now, going back to the commutative case, if m is a positive integer and
every principal ideal of A is a ´m-ideal, then A is m-regular. For, given any a 2 A,
the principal ideal ha2mi is a ´m-ideal containing .a2/m. Since M.a/DM.a2/, it
follows that am 2 ha2mi, which implies am D a2mx, for some x 2 A, showing that
A is m-regular.

The following lemma records some elementary observations regarding ´n-ideals.
Recall that the radical of an ideal I of a ring A is the ideal

p
I D fa 2 A j an 2 I for some n 2Ng:

An ideal I is called a radical ideal if I D
p
I . The set of radical ideals of A will be

denoted by Rad.A/. Following [2], we say I is a
p
´-ideal in case

p
I is a ´-ideal.

We define the set

Zrad.A/D fI � A j I is a
p
´-idealg:

It is easy to see that every ´-ideal is a radical ideal, so that Rad.A/\Z.A/D Z.A/.

Lemma 1. LetA be a ring, and n be a positive integer. Then we have the following.

(1) Zn.A/� ZnC1.A/.
(2) Zn.A/� Zrad.A/.
(3) Rad.A/\Zn.A/D Z.A/.

Proof. (1) Let I 2 Zn.A/. Consider any a;b 2A with M.a/DM.b/ and bnC1 2
I . Since 2n�nC1, we have .b2/nD b2n 2 I . Putting cD b2, we see that a and c are
elements of A such that M.a/DM.c/ and cn 2 I . Since I 2 Zn.A/, it follows that
an 2 I , hence anC1 2 I . Therefore I 2 ZnC1.A/, showing that Zn.A/� ZnC1.A/.

(2) Let I 2 Zn.A/. Consider any a;b 2 A such that M.a/DM.b/ and b 2
p
I .

Pick m 2 N such that bm 2 I . Then .bm/n 2 I . Since M.a/ DM.bm/ and I 2
Zn.A/, it follows that an 2 I . But this implies a 2

p
I ; so

p
I is a ´-ideal. Thus,

I 2 Zrad.A/, which establishes the desired inclusion.
(3) Since every ´-ideal is radical, it suffices to show that Rad.A/\Zn.A/� Z.A/.

So let I be a radical ´n-ideal. Consider any a;b 2 A such that M.a/ DM.b/ and
b 2 I . Then bn 2 I , which implies an 2 I since I is a ´n-ideal, by hypothesis. But
I is also a radical ideal, so a 2 I , which shows that I is a ´-ideal. �

Emanating from part (1) of the preceding lemma, we have the ascending chain

Z.A/� Z2.A/� Z3.A/� �� � � Zn.A/� ZnC1.A/� �� �

of collections of ideals of A. We call it the ´-tower of A. For brevity, we write

Z1.A/D

1[
nD1

Zn.A/;
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and observe that Z1.A/� Zrad.A/. We say an ideal of A is a higher order ´-ideal if
it belongs to Z1.A/. If there is a positive integer k such that

Zk.A/D ZkC1.A/D ZkC2.A/D �� � ;

we say the ´-tower terminates.
Modifying the proof of [7, Theorem 14.7], Mason [15] proves that any prime ideal

that is minimal over a ´-ideal is itself a ´-ideal. Now, observe that if P is a prime
ideal that is minimal over I , then P is also minimal over

p
I . Combining this with

Mason’s result, we deduce from Lemma 1 the following corollary.

Corollary 1. A prime ideal that is minimal over a higher order ´-ideal is a ´-ideal.

We give a name to rings with terminating ´-towers.

Definition 2. A ring A is ´-terminating in case its ´-tower terminates.

Here are examples of ´-terminating rings, and of non-´-terminating rings.

Example 1. Every von Neumann regular ring is ´-terminating. This is so because,
as remarked above, a ring is von Neumann regular if and only if every ideal in it is a
´-ideal.

Example 2. In [17, Corollary 2.5], Mulero proves that an ideal of any C.X/ is a
´-ideal if and only if its radical is a ´-ideal. Consequently, if I 2 Zrad.C.X//, so that
p
I is a ´-ideal, then I 2 Z.C.X//. Thus, in view of Lemma 1,

Z.C.X//D Z2.C.X//D Z3.C.X//D �� � D Zrad.C.X//;

which shows that every C.X/ is a ´-terminating ring; and, in fact, that the ´-tower
terminates at its base.

Example 3. This example gives a class of ´-terminating rings which contains prop-
erly the class of the rings C.X/. We will not recall the required background, and refer
the interested reader to [3]. In [6], a ring A for which Zrad.A/ D Z.A/ is called ´-
good. It is then shown in Lemma 3.4 of that paper that RL, the ring of real-valued
continuous functions on a completely regular frameL, is ´-good. Therefore each RL

is ´-terminating. This then covers the C.X/ case since every C.X/ is isomorphic to
some RL. It also transcends the C.X/ case because there are frames L for which
RL is not isomorphic to any C.X/ (see [3]). It is apposite to remark here that the
rings RL are, up to isomorphism, precisely the homomorphic images of the rings
C.X/ under `-ring homomorphisms. See [4] for details.

In the example that follows we say a reduced f -ring has square roots if for every
u� 0 there exists a (necessarily unique) v � 0 such that v2D u. In this case we write

u
1
2 . For any positive integer k, u

1

2k has the obvious meaning. Examples of such
f -rings are uniformly complete f -algebras (see [10, Theorem 3.9]).
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Example 4. If a reduced 1-convex f -ring with bounded inversion has square roots,
then it is ´-terminating. We show that in such an f -ring every higher order ´-ideal
is a ´-ideal. Let n be a positive integer, and let I be a ´n-ideal in an f -ring A of
the stated kind. Consider any a;b 2 A such that M.a/DM.b/ and b 2 I . Choose

k 2N such that 2k � n. SinceA has square roots, jaj
1

2k exists inA, and, furthermore,

M
�
jaj

1

2k

�
DM.b/. Since b2

k

2 I , and I is a ´2
k

-ideal, by Lemma 1, it follows

that jaj D
�
jaj

1

2k

�2k

2 I . Since I is an `-ideal, this implies a 2 I , showing that I is
a ´-ideal. Consequently, Zn.A/D Z.A/ for every n, and hence A is ´-terminating.

Example 5. The ring of integers is not ´-terminating. To see this, recall that max-
imal ideals of Z are exactly the principal ideals hpi, for p a prime number. Thus,
if k; l 2N and M.k/DM.l/, then k and l are divisible by exactly the same prime
numbers. Hence, if k is even then so is l . We claim that for any positive integer n,
Zn.Z/ � ZnC1.Z/, where � designates proper containment. Let I D h2nC1i. We
will show that I 2 ZnC1.Z/, but I … Zn.Z/. For the former, suppose that k and l
are integers with M.k/DM.l/ and knC1 2 I . Without loss of generality, we may
assume that k and l are positive. Then k is a multiple of 2nC1, which makes it even,
and hence l is even as well, and consequently lnC1 is divisible by 2nC1, that is, l 2 I .
This proves that I 2 ZnC1.Z/. Next, observe that 4n 2 I because 4n D 2n�1 �2nC1.
Also, M.2/ DM.4/, but 2n … I since 2n is not an integral multiple of 2nC1. This
shows that I … Zn.Z/.

Remark 2. Denote by L.A/ the set of `-ideals of an f -ring A. If A is 1-convex,
then of course Zrad.A/� L.A/. This containment can be proper. Indeed, let X be an
F -space which is not a P -space (see [7] for definitions). Then C.X/ is a 1-convex
f -ring which is not von Neumann regular. Therefore Zrad.C.X// D Z.C.X//, as
observed in Example 2, but Z.C.X//¤ L.C.X// because, in this case, L.C.X// is
the set of all ideals of C.X/. In fact, for the rings C.X/, the equality L.C.X// D
Z.C.X// implies C.X/ is von Neumann regular. The reason is that C.X/ is von
Neumann regular if and only if every prime ideal in C.X/ is a ´-ideal ([7, Problem
14B.4.]), and every prime ideal in C.X/ is an `-ideal ([7, Theorem 5.5]).

We observed above that Z1.A/�Zrad.A/. Three of the examples of ´-terminating
rings we gave above witness that this containment can be an equality. We shall see
that the equality Z1.A/ D Zrad.A/ is not sufficient for ´-termination. In so doing,
we shall actually exhibit a large class of rings for which the stated equality holds.

Definition 3. A ring A is radically ´-covered in case Z1.A/D Zrad.A/.

Thus, A is radically ´-covered precisely when every
p
´-ideal in A is a higher

order ´-ideal. In the following result we show that the class of radically ´-covered
rings includes all Noetherian rings. We doubt that the reader needs to be reminded
that a Noetherian ring is a ring in which every ideal is finitely generated.
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Theorem 1. Noetherian rings are radically ´-covered.

Proof. Let A be a Noetherian ring. We need to show that Zrad.A/ � Z1.A/. So
let I 2 Zrad.A/. Then

p
I is a ´-ideal. Since A is Noetherian, there exist finitely

many elements a1; : : : ;an in A such that
p
I is generated by the set fa1; : : : ;ang.

Choose positive integers k1; : : : ;kn such that aki

i 2 I for each i D 1; : : : ;n. Put k D
k1C�� �C kn. We claim that I 2 Zk.A/. To show this, consider any x;y 2 A with
M.x/ DM.y/ and xk 2 I . Then x 2

p
I , and since

p
I is a ´-ideal, we deduce

that y 2
p
I . Since

p
I is generated by the elements a1; : : : ;an, there exist elements

u1; : : :un in A such that y D u1a1C �� �Cunan. Note that .uiai /ki 2 I , for each
i D 1; : : : ;n. We induct on n to show that yk 2 I . The result is trivial for nD 1. So
assume n > 1. For brevity, we write bi D uiai , for i D 1;2; : : : ;n. Then

.b1C�� �Cbn/
k
D
�
b1C .b2C�� �Cbn/

�k
D

kX
rD0

 
k

r

!
br1.b2C�� �Cbn/

k�r

D

X
r<k1

 
k

r

!
br1.b2C�� �Cbn/

k�r

C

X
r�k1

 
k

r

!
br1.b2C�� �Cbn/

k�r :

The second summand is in I since bk1 2 I . By the induction hypothesis, each term
of the form .b2C�� �C bn/

k�r is in I if r < k1 because then k� r � k2C�� �Ckn.
It follows therefore that .b1C �� � C bn/k1C���Ckn 2 I . Thus, yk 2 I since k � n.
Therefore I 2 Zk.A/. Consequently, Zrad.A/� Z1.A/, and hence equality. �

Remark 3. Since Z is Noetherian, it is radically ´-covered, but it is not ´-terminating,
as observed in Example 5. On the other hand, if X is an infinite set, then C.X/ is a
radically ´-covered ring which is not Noetherian.

Remark 4. In the proof of Theorem 1 the fact that A is a Noetherian ring was
used to conclude that

p
I is finitely generated. It may therefore seem as if all we

need in the hypothesis is a “weaker condition” than being Noetherian, namely that
radical ideals of A be finitely generated. This condition however is equivalent to
the ring being Noetherian because every prime ideal is a radical ideal, and a ring in
which every prime ideal is finitely generated is actually Noetherian (see, for instance,
[11, Theorem 8]).
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4. DIRECT PRODUCTS AND ´-TERMINATION

We now examine the preservation and reflection of the ´-terminating property by
direct products, and by homomorphic images. In the proofs of the following res-
ults we shall not decorate the notation M.x/ with subscripts to indicate where the
collection is considered because the element x will make that clear.

Theorem 2. The direct product of finitely many rings is ´-terminating if and only
if each factor is ´-terminating.

Proof. It clearly suffices to prove the assertion for only two rings. To start, let
A and B be rings, I and J be ideals of A and B , respectively, and n be a positive
integer. We claim that

I �J is a ´n-ideal ” I and J are ´n-ideals:

For the left-to-right implication, suppose a1 and a2 are elements of A with M.a1/D

M.a2/ and an2 2 I . Observe that, in the ring A�B , M.a1;0/ �M.a2;0/, because
if n 2M.a2;0/, then either n DM �B for some M 2Max.A/, or n D A�N for
some N 2Max.B/. In the latter case, we clearly have .a1;0/ 2 n, and in the former
we have a2 2M , which implies a1 2M since M.a1/DM.a2/, hence .a1;0/ 2 n,
so that n 2M.a1;0/. Now, .a2;0/n 2 I �J , and since I �J is a ´n-ideal, we have
.a1;0/

n D .an1 ;0/ 2 I �J , which implies an1 2 I , showing that I is a ´n-ideal. The
proof for J is similar.

For the converse, let .a;b/ and .c;d/ be elements of A�B such that M.a;b/D

M.c;d/ and .c;d/n 2 I �J . Let us show that M.a/ �M.c/. Consider any M 2
M.c/. Then M �B is a maximal ideal of A�B containing .c;d/, and hence .a;b/.
Therefore M 2M.a/, as desired. Since I is a ´n-ideal, and cn 2 I , it follows that
an 2 I . Similarly, bn 2 J , and hence .a;b/n 2 I �J , which proves that I �J is a
´n-ideal.

Now suppose A and B are ´-terminating. Pick positive integers m and n such that

Zm.A/D ZmC1.A/D �� � and Zn.B/D ZnC1.B/D �� � :

Say, m� n. We claim that

Zn.A�B/D ZnC1.A�B/D �� � :

Let I �J 2 ZnC1.A�B/. Then, as proved above, I 2 ZnC1.A/ and J 2 ZnC1.B/,
which implies I 2 Zn.A/ and J 2 Zn.B/, whence, again by what we showed above,
I �J 2 Zn.A�B/. A simple induction argument shows that Zn.A�B/D ZnCi .A�
B/ for all i D 1;2; : : :. Therefore A�B is ´-terminating.

Conversely, suppose A�B is ´-terminating. Pick a positive integer n such that

Zn.A�B/D ZnCi .A�B/ for all i D 1;2; : : : :
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For any i D 1;2; : : :, let I 2 ZnCi .A/. Then, the ideal I �B of A�B clearly be-
longs to ZnCi .A�B/, and hence to Zn.A�B/. Thus, as shown above, I 2 Zn.A/.
Therefore A is ´-terminating. Similarly, B is ´-terminating. �

We have established in the foregoing proof that if A and B are rings, and n is a
positive integer, then

Zn.A�B/D Zn.A/�Zn.B/:

A moment’s reflection, taking into account Lemma 1 and the fact that, for any ideal
I of A and any ideal J of B ,

p
I �J D

p
I �
p
J , shows that

Z1.A�B/D Z1.A/�Z1.B/ and Zrad.A�B/D Zrad.A/�Zrad.B/:

These relations yield the following result.

Proposition 2. The direct product of finitely many rings is radically ´-covered if
and only if each factor is radically ´-covered.

Proof. Assume that A and B are radically ´-covered. Then

Z1.A�B/ D Z1.A/�Z1.B/

D Zrad.A/�Zrad.B/D Zrad.A�B/:

Therefore A�B is radically ´-covered. Conversely, assume that A�B is radically
´-covered. Then

Z1.A/�Z1.B/ D Z1.A�B/

D Zrad.A�B/D Zrad.A/�Zrad.B/:

Since none of these sets is empty, it follows that Z1.A/ D Zrad.A/ and Z1.B/ D
Zrad.B/; which says A and B are radically ´-covered. �

5. HOMOMORPHIC IMAGES

We state upfront that we do not know if ´-termination is inherited by homo-
morphic images. We do however have instances of ring homomorphisms that map
´-terminating (respectively, radically ´-covered) rings onto rings with the same fea-
tures. We give such homomorphisms the following name.

Definition 4. A ring homomorphism �WA! B is strict if it is surjective and it
maps non-units to non-units.

Strict homomorphisms abound. We shall present two examples that we shall refer
to a little later.

Example 6. Let RŒŒx�� denote the ring of formal power series over a ring R. The

map
1P
iD0

aix
i 7! a0 is a strict homomorphism because a power series is a unit in

RŒŒx�� if and only if a0 is a unit in R.
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Example 7. LetA be a ring and I be an ideal ofA. The canonical map �WA!A=I

is strict if and only if I � Jac.A/. To see this, first assume I � Jac.A/. For any a 2A,
if aCI is a unit, then there exists an element b 2A such that abCI D 1CI , which
implies 1� ab 2 I . Then 1� ab 2 Jac.A/, so that ab is a unit in A, and hence a
is a unit in A. So � maps non-units to non-units. Being surjective, it is therefore
strict. Conversely, let c 2 I , and consider any x 2A. Then �.1�xc/D 1CI , which
is a unit in A=I . Therefore, by hypothesis, 1� xc is a unit in A, which implies
c 2 Jac.A/. Therefore I � Jac.A/.

Although we shall not need the various characterizations of strict homomorphisms,
we include them for the sake of completeness. Recall that if hWR! S is a surjective
ring homomorphism, and I is an ideal in R, then hŒI � is an ideal in S ; which may be
improper even if I is proper.

Lemma 2. The following are equivalent for a surjective ring homomorphism
�WA! B .

(1) � is strict.
(2) �ŒI � is a proper ideal in B if I is a proper ideal in A.
(3) �ŒM� is a maximal ideal in B if M is a maximal ideal in A.
(4) �ŒM� is a proper ideal in B if M is a maximal ideal in A.
(5) ��1�ŒM�DM if M is a maximal ideal in A.
(6) For any a1;a2 2 A, M.�a1/�M.�a2/ implies M.a1/�M.a2/.

Proof. The implications .1/) .2/, and .3/) .4/ are trivial.
.2/) .3/: Let M be a maximal ideal in A. By (2), �ŒM� is a proper ideal in B ,

and hence is contained in some maximal ideal N , say. Then M � ��1ŒN �, so that
M D ��1ŒN �, by maximality since ��1ŒN � is a proper ideal. Since � is surjective,
N � ���1ŒN �D �ŒM�, whence �ŒM�DN , a maximal ideal.
.4/) .5/: Let M be a maximal ideal in A. Since M � ��1�ŒM�, and ��1�ŒM�

is a proper ideal, by (4), it follows from maximality of M that M D ��1�ŒM�.
.5/) .6/: Let a1;a2 2 A be such that M.�a1/ �M.�a2/. Let M 2M.a2/.

That is, M is a maximal ideal in A containing a2. Then �a2 2 �ŒM�. Since M D
��1�ŒM�, by (5), it follows that �ŒM� is a proper ideal. Let N be a maximal ideal
in B with �ŒM��N . Then N 2M.�a2/, and hence, by hypothesis, N 2M.�a1/.
Thus, a1 2 ��1ŒN �. But now M D ��1�ŒM� � ��1ŒN � implies M D ��1ŒN �, so
that M 2M.a1/, and hence M.a1/�M.a2/.
.6/) .1/: Let a 2 A be such that �a is a unit. Then M.�a/D¿. So, M.�1/�

M.�a/, which, by (6), implies M.1/ �M.a/. But M.1/ D ¿; so a is a unit. It
follows therefore that � maps non-units to non-units. �

Next, let us recall from [15, Lemma 1.7] that a ring homomorphism f WR! S

contracts ´-ideals to ´-ideals if and only if it contracts maximal ideals to ´-ideals.
An almost verbatim argument as employed by Mason to prove this establishes the
following lemma.
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Lemma 3. Let �WA!B be a ring homomorphism, and let n be a positive integer.
Then the following statements are equivalent.

(1) ��1ŒI � 2 Zn.A/ for every I 2 Zn.B/.
(2) ��1ŒM � 2 Zn.A/ for every M 2Max.B/.
(3) ��1ŒM � 2 Z.A/ for every M 2Max.B/.
(4) ��1ŒI � 2 Z.A/ for every I 2 Z.B/.

Proof. .1/) .2/: This is so because every maximal ideal is a ´-ideal, and there-
fore a ´n-ideal, by the first part of Lemma 1.
.2/, .3/: This follows from the fact that ��1ŒM � is a prime ideal for every

maximal ideal M , and prime ideals are ´n-ideals precisely when they are ´-ideals,
by the third part of Lemma 1.
.3/, .4/: This is Mason’s cited result.
.2/) .1/: Exactly as in Mason’s proof. �

As was observed by Mason, surjective ring homomorphisms contract ´-ideals to
´-ideals, and therefore satisfy the conditions above which are equivalent to this prop-
erty.

Now here is the result we are aiming for.

Proposition 3. Let �WA! B be a strict homomorphism.
(a) If A is ´-terminating, then so is B .
(b) If A is radically ´-covered, then so is B .

Proof. (a) Let n be a positive integer such that Zn.A/ D ZnCi .A/ for every i D
1;2; : : : . We aim to show that the same n works for B as well. Fix i 2 N, and let
I 2 ZnCi .B/. Since I is surjective, ��1ŒI � 2 ZnCi .A/, by Lemma 3, and hence
��1ŒI � 2 Zn.A/. Consider any b1;b2 2 B such that M.b1/ �M.b2/ and bn2 2 I .
Pick a1;a2 2 A with �a1 D b1 and �a2 D b2. Then M.�a1/ �M.�a2/, which
implies M.a1/ �M.a2/, by Lemma 2, since � is strict. Now, an2 2 �

�1ŒI � implies
an1 2 �

�1ŒI � since ��1ŒI � is a ´n-ideal. Consequently, bn1 D �.a1/
n D �.an1/ 2 I .

This shows that I is a ´n-ideal, and therefore Zn.B/ D ZnCi .B/. Thus, B is ´-
terminating.

(b) Let I 2 Zrad.B/. Then
p
I is a ´-ideal, and therefore ��1

p
I is a ´-ideal in

A. But ��1
p
I D

p
��1ŒI �; so, by hypothesis, there exists a positive integer n such

that ��1I 2 Zn.A/. Exactly as above, this implies I 2 Zn.B/, which shows that
Zrad.B/� Z1.B/, and hence the desired equality. �

Corollary 2. If AŒŒx�� is ´-terminating (respectively, radically ´-covered) then A
has the same property.

Corollary 3. If Jac.A/ is contained in every higher order ´-ideal of A, then A
is ´-terminating (respectively, radically ´-covered) if and only if A=Jac.A/ has the
same property.
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Proof. For brevity, we write J D Jac.A/. The left-to-right implication always
holds since, as observed above, the canonical mapping A! A=J is strict.

Conversely, assume that A=J is ´-terminating. Then there exists a positive integer
n such that Zn.A=J /D ZnCi .A=J / for every i D 1;2; : : :. We shall show that

Zn.A/D ZnC1.A/D ZnC2.A/D �� � :

Fix i 2 N, and let I 2 ZnCi .A/. By hypothesis, J � I , and therefore I=J is an
ideal of A=J . An argument as in the proof of Proposition 3(a) shows that I=J is a
´nCi -ideal in A=J . Hence I=J 2 Zn.A=J /. By Lemma 3, I 2 Zn.A/ since I is the
inverse image of I=J under the (surjective) canonical map A! A=J . Therefore A
is ´-terminating.

The proof for the result in parenthesis is similar. �

Question

Is it not the case that, in fact, every homomorphic image of a ´-terminating ring is
´-terminating; and similarly for radically ´-covered rings?

6. THE Z-FUNCTORS

In this section we aim to show that, for each positive integer n, Zn can be made into
a functor whose domain is a subcategory of Rngop, where Rng denotes the category
of (commutative rings) and ring homomorphisms. The subcategory in question is
obtained by restricting the morphisms in a suitable manner.

Let Rngz denote the category whose objects are rings, and whose morphisms are

ring homomorphismsA
�
�!B that contract ´-ideals to ´-ideals. It is routine to check

that, indeed, Rngz is a (non-full) subcategory of Rng. For each morphism A
�
�! B

in Rngz, write B
��

�! A for the corresponding morphism in Rngzop.

Theorem 3. For any positive integer n we have the following.

(a) The associations C 7! Zn.C / and B
��

�! A 7! Zn.B/
��1

�! Zn.A/ define a
functor ZnWRngzop �! Set.

(b) Zn preserves finite products.
(c) Zn is a subfunctor of ZnC1.
(d) If C denotes the subcategory of Rngzop whose objects are the rings with zero

Jacobson radical, then the functor TWC! Set, which maps as Zn, reflects
epimorphisms.

Proof. (a) This is verified routinely.
(b) Since our rings have identity, every ideal in A�B is of the form I � J , for

some ideals I and J of A and B respectively. Therefore the assertion in (b) is exactly
what was shown in the course of the proof of Theorem 2 that I �J is a ´n-ideal if
and only if I and J are ´n-ideals.
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(c) For any object C in Rngop
z , we have Zn.C /� ZnC1.C /, by Lemma 1. There-

fore the mapping �WObj.Rngop
z /!Mor.Set/, given by the inclusion �C WZn.C /!

ZnC1.C /, is a natural transformation �WZn ! ZnC1 because, for any morphism

B
��

�! A in Rngop
z , we have the following commutative diagram:

Zn.B/

��1

��

�B
// ZnC1.B/

��1

��

Zn.A/
�A

// ZnC1.A/

Furthermore, the horizontal morphisms in this diagram are monomorphisms, and so
Zn is a subfunctor of ZnC1.

(d) Let B
��

�! A be a morphism in C for which T.��/ is an epimorphism. We
must show that �� is an epimorphism. For this it suffices to show that the ring

homomorphism A
�
�! B is one-one. Let then a 2 A be such that �.a/D 0. Saying

the morphism T.��/ is an epimorphism in Set means that the function ��1WZn.B/!
Zn.A/ is surjective. Let M be a maximal ideal in A. Then M 2 Zn.A/, and hence,
by surjectivity of ��1, there is an ideal I 2 Zn.B/ such that M D ��1ŒI �. But now
0 D �.a/ 2 I , which implies a 2 ��1ŒI � DM . Since M is an arbitrary maximal
ideal in A, it follows that a 2

T
Max.A/ D f0g since A has zero Jacobson radical.

Therefore � is one-one, as required. �

The functor TWC! Set does not reflect monomorphisms. To give an example
substantiating this assertion, we need to know that the inclusion �WQ! R of the field
of rational numbers into the field of real numbers is not an epimorphism in Rng. This
was brought to our attention by Zurab Janelidze, and we thank him for that. The
outline of the validating argument he provided goes as follows.

Let C be the field of complex numbers. By Galois Theory, C has only two auto-
morphisms which fix the reals – the identity and the complex conjugate mappings.
It is known, however, that C has infinitely many automorphisms (this is not trivial).
Thus, we may consider two maps from R!C: one, the usual inclusion map, and the
other being the composite of the inclusion map with an automorphism of C which is
different from the complex conjugate mapping and is not the identity map. Compos-
ing these morphisms with �WQ!R we get equal morphisms since any automorphism
of C fixes the rationals. However, the two maps from R to C are not equal (if they
were equal, the chosen automorphism would have fixed all reals).

Example 8. The functor TWC! Set does not reflect monomorphisms. The morph-

ism R
��

�! Q is not a monomorphism in the category Rngop
z . However, its image
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T.��/WZn.R/! Zn.Q/ is a monomorphism (and, in fact, an isomorphism) in Set
because Zn.R/D

˚
f0g;R

	
, Zn.Q/D

˚
f0g;Q

	
, and ��1 sends f0g to f0g, and R to Q.

CONCLUDING REMARK

We had hoped to construct, for each positive integer n� 2, a ´-terminating ring A
such that the termination commences exactly at stage n; that is, such that

Zn�1.A/� Zn.A/D ZnC1.A/D �� � :

This has so far eluded us. We have not pursued the question of sums of higher order
´-ideals. We leave that for another occasion.
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