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1. INTRODUCTION

Suppose that [ is an interval of real numbers with interior [and @: 71 — Ris
a convex function on /. Then & is continuous on / and has finite left and right
derivatives at each point of I. Moreover, if x,y € [ and x < y, then @ (x) <
@l (x) <@L (y) < @ (y) which shows that both @ and &/ are nondecreasing

o
function on /. It is also known that a convex function must be differentiable except
for at most countably many points.
For a convex function @ : I — R, the subdifferential of @ denoted by d® is the

set of all functions ¢ : I — [—00, 00] such that ¢ (IO ) CRand

D (x)>P(a)+ (x—a)p(a) forany x,a € I. (1.1

It is also well known that if @ is convex on 7, then 09 is nonempty, @’ , @/ € I
and if ¢ € 0@, then

DL (x) <p(x) <P (x) foranyxe]o.

In particular, ¢ is a nondecreasing function.

If @ is differentiable and convex on [ , then 0@ = {®'}.

Let (§2, 4, 1) be a measurable space consisting of a set £2, a o — algebra +4 of parts
of £2 and a countably additive and positive measure y on # with values in R U {co}.
For a y—measurable function w : £2 — R, with w (x) > 0 for u — a.e.(almost every)
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x € §2, consider the Lebesgue space

Ly (2,0) :={f :2 — R, f is u-measurable and / | f ()| w(x)du(x) < oo},
2

For simplicity of notation we write everywhere in the sequel | o wdpu instead of

Jow(x)du(x).
In order to provide a reverse of the celebrated Jensen’s integral inequality for con-
vex functions, S. S. Dragomir obtained in 2002 [15] the following result:

Theorem 1. Let @ : [m, M] C R — R be a differentiable convex function on (m, M)
and [ : 2 — [m,M]sothat Do f, f, P o f, (D' o f) f € Ly (2, 11), where w > 0
u-a.e. (almost everywhere) on 2 with [owdp = 1. Then we have the inequality:

05/9(¢Of)wdu—¢(/gfwdu) (12)
< [ @) fudp= [ (@ rywdu [ rwdn

E%[CD/_(M)—CD/_(m)]/Q‘f—/;szdu‘wdu.

Corollary 1. Let @ : [m, M] — R be a differentiable convex function on (m, M) .
Ifxi €m,M]and w; >0 (i =1,...,n) with Wy := Y}, w; = 1, then one has the
counterpart of Jensen’s weighted discrete inequality:

O§Zw,-q>(x,-)—q>(zw,-x,-) (1.3)

i=1 i=1

n n n
< Zw@/(xi)xi —Zwi‘p/(xi)zwixi

i=1 i=1 i=1

=

[cbjr(M)—cD/_(m)]Zwi X —ijxj :

i=1 j=1

N —

Remark 1. We notice that the inequality between the first and the second term in
(1.3) was proved in 1994 by Dragomir & lonescu, see [17].

If f,g:$2 — R are u—measurable functions and f, g, fg € Ly (§£2, 1), then we
may consider the Cebysev functional

Tu (f.8) = /9 fewdy— /9 Fwdp /Q qwdy. (1.4)

The following result is known in the literature as the Griiss inequality

Tw(£0)l <5 (T =A-5). (1.5
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provided
—o<y<f(x)<TI'<oo, —0<i<gx)<A<o0 (1.6)

for u —ae. x € 2.
The constant % is sharp in the sense that it cannot be replaced by a smaller quantity.
If we assume that —oco <y < f(x) < I < oo for u —a.e. x € §2, then by the
Griiss inequality for g = f and by the Schwarz’s integral inequality, we have

/Q‘f—/gfwdu‘wd,uf{/ﬂfzwdu—(/gfwdu)zr5%(1“—;/). (1.7)

On making use of the results (1.2) and (1.7), we can state the following string of
reverse inequalities

OS/Q(cbof)wdu—(D(/wad,u) (1.8)
[ @ r) rudp— [ (@' rywan [ ruwdn

S%[@;(M)-@L(m)]/g‘f—/gwfdu'wd,u

A

1

1 / / 212
< L [04 (1)~ L m)] [ [ rwan-( [ fwdu)]

1

4

[@, (M)~ @L (m)] (M —m).

=

provided that @ : [m, M] C R — R is a differentiable convex function on (m, M) and
f:2 — [m,M]sothat ®o f, f, ®' o f, (®'of)f € Ly (2,4), where w > 0
p-a.e. on £2 with [ wdp = 1.

Remark 2. We notice that the inequality between the first, second and last term
from (1.8) was proved in the general case of positive linear functionals in 2001 by
S.S. Dragomir in [14].

For recent inequalities for convex functions, see [1,2,4, 10, 18,23,29,33-36, 38,

—45]and [51].

Motivated by the above results, we establish in this paper some integral inequalities
in which we provide upper and lower bounds for the quantity | o (@o flwdu and
obtain some generalization for the celebrated Fejér’s inequality [19]. Applications
for divergence measures in information theory are provided as well.

2. MAIN RESULTS

The following result holds:



154 S. S. DRAGOMIR

Theorem 2. Let @ : [m,M] C R — R be a convex function on [m,M] and f :
2 —[m,M]sothat®o f, f € Ly, (2, 1t), where w > 0 p-a.e. on 2 with [ wdpu =
1. Then we have the inequalities:

m+M m4+M m+M
¢( 2 )“”( 2 )/g(f_ 2 )wd” @D
S/Q(GDOf)wdu
<Q>(m)+<D(M)+<D(M)—<D(m) (f_m—;M)de’
22

- 2 M—m

where ¢ (#) € [45'_ (th) Dl (m';M)] )

Proof. By the gradient inequality (1.1) we have

@(Z)—@(m_;M)Z(t—m—;M)(p(m—;M) 2.2)

where ¢ (m+M) € [CD’_ (m;M) Pl (m'gM)] forany ¢ € [m, M].
This inequality implies that

otzo (") ¢ (ro-"10)e (M) ey

2

for any x € 2.

If we multiply (2.3) by w > 0 p-a.e and integrate on 2, we get the first inequality
in (2.1).

By the convexity of @ we also have

M —t t—m
D)= M
(?) (M_ m+M_ )

¢(M)

¢(m)+<P(M) -m 1
2 (M— _E) G H( —m E) (M)
+M

m+ m
:<D(m)+<15(M)_¢( )(z )+<D(M)(l zm)

< q)( )+
m
M —

2 M —
B (15(m)+<15(M)+cD(M)—<P(m) (t_m—i-M)
N 2 M—m 2

for any t € [m, M].
This inequality implies that

& (x)) < D (m)+ (M) , & (M)~ (m) (f(x)_m—;M)

> M —m 2.4)
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for any x € £2.
If we multiply (2.4) by w > 0 pu-a.e and integrate on £2, we get the second inequal-

ity in (2.1). O
Corollary 2. With the assumptions of Theorem 2 and if
M
/ (f—mJr )wdu=0, (2.5)
Q 2
then we have
M @ o (M
cb(mz )gf(qbof)wdufw. 2.6)
2

Remark 3. With the assumptions of Theorem 2 and if

0c [@’_ (’";M),cp; (mZM)}

then the first inequality in (2.6) is valid.

If either
D (M) <D (m) and/ (f—m-;M)wduzo
2
or
® (M) > & (m) and/ (f—m—;M)wd/L<0,
2

then the second inequality in (2.6) is valid.
The following result also holds:

Theorem 3. Let @ : [m,M] C R — R be a convex function on [m,M] and f :
2 = [m, M) so that ® o f, f,(f_#)(qs'of) € Ly (82, 10), where w > 0 pu-
a.e. on §2 with f_Q wdp = 1. Then we have the inequalities:

M S(M)+d(m) &(M)—(m) m+ M
—M_m/m @ (s)ds — 5 e Q(f— 5 )wdu

= [ @0 ywdp
1 M . +M
SM—m/ Qﬁ(t)dt—i-/ﬂ(q§ of)wal,u/g(f—m2 )wd,u

m

+/ [(qﬁ/of)—/ (cb/of) wdu] fwdp. 2.7)
2 2
Proof. By the gradient inequality (1.1) we have

D)D)= (t—5)P'(s), (2.8)
for any ¢ € [m, M] and almost any s € [m, M].
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Integrating over s on [m, M] and dividing by M —m we get

M
D (1) > Ml /m qb(s)a’s+M1

M
f (t—s5)D (s)ds (2.9)

M

M
= Ml—m/m <1>(s)ds+M1_m |:(t—s)q§(s)|ﬁ‘n4+/m q)(s)dsi|

1 M
=M—m/,;1 @ (s)ds
M
M1—m|:/m cb(s)ds—(M—t)cD(M)—(t—m)cD(m):|

M
:M2_m/ ¢(S)ds_(M_t)¢(AZ;j—’S_m)¢(M)
forany t € [m, M].
Observe that
(M—t)cD(M)+(t—m)CD(m)_CD(M)+<D(m)

M-t 1 t—m 1
:(M—m_§)¢(M)+(M—m_§)qj(m)
_O(M)—D(m) (m+M
T M-m (2 _[)

_l’_

(2.10)

forany t € [m,M].
Then we have

M
/ (p(s)ds_(M—z)@(M)—i—(t—m)q)(m) o1

M—-m M—-m
M
_ 2 / cD(S)ds_(M—t)cl5(M)+(t—m)cZ5(m)
M—-—mJ, M —m
+<15(M)+(D(m)_q§(M)+d5(m)
2 2
2 M & (M)—® (m) m+M
:M—m/m D(s)ds+ A —m (t— 7 )
_¢(M)+q5(m)
2
and by (2.9) we have
M
00z g [ oy T (1 M) A0 B0

for any ¢ € [m, M].
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This inequality implies that

M
e R A ) e

2
(M) + P (m)
2

for any x € £2.

If we multiply (2.12) by w > 0 p-a.e and integrate on §2, we get the first inequality
in (2.7).

Integrating over ¢ in (2.8) and dividing by M —m we get

M
Ml_m/m & (1) dt— b (5) > (mJ;M—s)qY(s),

for almost every s € [m, M], which is equivalent to

M
Ml_m[m @(t)dt—i—(s—m—;M)@’(s)zq)(s)

for almost every s € [m, M].
This inequality implies that

1 M m+MY\ _,
i [ ewdre (0= )o@z e w) @)

for p—a.e. x € §2.

If we multiply (2.13) by w > 0 u-a.e and integrate on §2, we get the inequality

M
L(@of)wdufMl_m/m @(t)dt—{—/g(f—m-;M)((D’of)wdu.

Now, since a simple calculation reveals that

M
Ml_mf @(t)dl+[(2(f—m—;M)(¢/of)wdu

M
Ml—m/ @(t)dt—i—/g(@’of)wd,u/g(f—m+M)wd/L

2

+/Q(f_m—;M)|:(<p’of)—/9(q§’of)wdu}wdu

1 M / ,
:M—m/m CD(’)“’“F/Q[(‘p Of)—/g(CD Of)wdu]fwdu,

and the second part of (2.7) is also proved.

Remark 4. Making use of (1.8), we have the following string of inequalities

/ (®o fwdu (2.14)
2
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<

1 M , m+M
_M—m/m @(t)dt+L(¢of)wd,u/ﬂ(f— 5 )wd,u

+ [ J@en-[ @ ryvan] rud

M
Ml—m/ cD(t)dt—i—/g(CD/of)wdp,/g(f—m—;M)wdu

+%[Q§;(M)—Q>'_(m)]/9‘f—/ﬂfwdu‘wdu
1 M , m+M
SM—m/m @(t)dt+/9(<1§ of)wd,u/g(f— 7 )wdu
272
—i—%[@ﬁr(M)—@’_(m)] |:/Qf2wdu—(/gfwdu)}
<

1 M p m+M
_M—m/m @(t)dt—i—/g(q§of)wd,u/9(f— 3 )wd,u

1
+ 4[24 () — @ )] (M —m).

Corollary 3. With the assumptions of Theorem 3 and if condition (2.5) holds, then
2 M O (M)+®
/ (D(s)ds——( )+ 2 (m)
m

(2.15)

M —m 2
< [ @ fywdy
2
M
SMlm/m ¢(s)ds+[9|:(¢’0f)—/9(¢’of)wd,u}fwd,u

M
l_m/ @(s)ds—i—%[CDjr(M)—CD/_(m)]/Q‘f—/gfwd,u‘wdu

m

1 M 1., . 2
SM—m/m (p(s)ds+§[q)+(M)_q)—(m)]X|:/;)f2u}d,u—(/9fwd,u) :|

M
/ q§(s)ds+%[Cbﬁr(M)—Cb’_(m)](M—m).

=

M

1
2

<
~M-—m

The case of functions of real variable is of interest due to its connection to Fejér’s
inequality that states that [19]

b b b
@(a;b)/a w(t)dtf/a @(t)w(t)dtfw/a w(t)dt, (2.16)
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provided @ : [a,b] — Ris convex and w : [a,b] — [0, o0) is integrable and symmetric
on[a,b],ie. w(a+b—t)=w(t)forallt €[a,b].

If @ :[a,b] — Risconvex and w : [a,b] — [0, o0) is integrable with fab w(t)dt =
1, then from (2.1) we have

a+b a+b\ (? a+b
d)( > )+¢( > )[a (t— > )w(t)dt 2.17)

b
5[ D ()w(t)dt
_2@+ok)  2(0)-2 @ b a+b
= ) + h—a g (t—T)W(t)dl,
where ¢ (“;b) € |:<D’_ (a;rb),tﬁﬁr (a;b)] and
2 (b @ (b) + @ (a)
m[ @ (s)ds - =T (2.18)

PBb)-P() (P( a+b
+ b—a a (t_ 2

)w(t)dt

b
E/ D(t)w(t)dt

b b b
Ebia/a @(z)dr+/a q)’(t)w(t)dt/a (z—#)w(;)m

b b
+/ |:CD’(Z)—/ (@'(s))w(s)dsi|tw(t)dt

b b b
Sbia/a @(Z)dt+/a qj’(t)w(t)dt/a (z—#)w(;)m

1 b b
+5[<I§f|_(b)—®'_(a)]/ z—/a sw(s)ds

a

b b b
Sbla/a cp(z)dt+/a qb’(t)w(t)dt/a (z—a;b

b b 212
+%[¢Lr(b)—d5/_(a)] [/a tzw(z)dt—(/a tw(t)dt)}

b b b
Sﬁ/ﬂ @(Z)dt+/a qj’(t)w(t)dt/a (z—#)w(;)m

w(t)dt

)w(t)dt



160 S. S. DRAGOMIR

£ [@) )L @] b-a).

If w: [a,b] — [0,00) is integrable and

b
/ (t—#)w(l)dt=0, (2.19)

then from (2.17) we have the Fejér’s inequality (2.16) for | ab w (t)dt = 1. We observe
that the condition (2.19) is more general than the symmetry of the functions w. If w

is symmetric, then the function % (¢) := (t — #) w (¢) is antisymmetric and then

[P h(tydr =o.
If (2.19) is satisfied, then from (2.18) we get

b
bia/a CD(s)ds—w (2.20)

b
5/ D()w(t)dt

b b b
= ;fa ¢(t)dZ+/a [qb/(z)—/a (<D/(s))w(s)ds:|tw(t)d;

b
t—/ sw(s)ds

S

b

b
§b1 fa qb(z)dz+%[q>/+(b)—q>’_(a)]/ w () dt

a

b b b 2
Sbl L¢(z)dz+%[¢;(b)—¢L(a)]x /atZw(t)dt—(/a tw(t)dt)

1P 1
< —[ P (1)dt +— [P (b)— P (a)](b—a).
b—al, 4
Now, if we take in (2.17) w (¢) = ﬁ,t € [a,b] then we get the Hermite-Hadamard

inequality

1 P @ @

Py 5—/ oy < LOT2O) 2.21)
2 b—a/, 2

The case of discrete measure produces the following inequalities of interest for a
convex function @ : [m,M] — R,

m+M m+M )\ « m+M
q>( 5 )—I—gD( 5 );wi(x,-— 5 ) (2.22)

Ezwi(p(xi)

i=1




INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS 161

@ (m)+® (M) qD(M) cp(m) m+M
< 5 + > w; ( )

i=1

where ¢ (%) € [45/_ (m+M) o (m'gM)] provided x; € [m, M] and w; > 0

(i=1,....,n)with W, :=>"7_jw; = 1.
Moreover, if we assume that @ : [m, M| — R is differentiable on (m, M), then

> wid (x) (2.23)

i=1

1 M “ “ m+M
SM—m/m cD(t)dt+Zwi¢/(xi)Zwi(xi— > )

i=1 i=1

-I—Zw,x, @' (x;)— Zw] x]

i=1

1 ) +M
M—m/m @(t)dt—i—Zwi(P (Xi)zwi (xi_m ) )

i=1 i=1

=

+ = [®) (M) — . (m) Zwl xi— Zw,

i=1 j=1

M n n
Ml—m/m @(t)dt+2wiq§/(xi)2wi (xl'—m-;M)

i=1 i=1

273
%[Cb_l_(M) @/ (m)] Zwlx —(Zwlx,)

i=1 i=1
1 M z . “ m+M
M—m/m @(t)dt%—éwﬂb (x,-);wi (xi— 2 )

+ i [@ (M) —®. (m)| (M —m),

l\)lv—‘

=

=

provided x; € [m,M]and w; >0 (i =1,...,n) with Wy :=>"7_ w; = 1.
If we assume that

m+M
> wii =
i=1
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then from (2.22) and (2.23) we have

(p(m-ﬁ-M) ;wlq)(xl)<w (2.24)

and

Z w;i D (x;) (2.25)

i=1

1
SM—m/m cD(t)dtJrZwlx, @' (x;)— Zw, (x;)

i=1

1 M
EM—m/m @ (t)dt + = [@_,_(M) @’ (m) ;wl Xi J;w] (x;)
2732
o] /Mq)(t)dt+1[q) (M) — @ (m)] x wa _ wa
“M-—m m + Pt i P 1M
<ar- quj(”dHl[@’(M)—@’(m)]w—m)
~M-m/J, gt - :

3. APPLICATIONS FOR f-DIVERGENCE

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [24], Kullback and Leibler [30],
Rényi [40], Havrda and Charvat [21], Kapur [27], Sharma and Mittal [42], Burbea
and Rao [7], Rao [39], Lin [31], Csiszar [11], Ali and Silvey [3], Vajda [50], Shioya
and Da-te [16] and others (see for example [32] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [39],
genetics [32], finance, economics, and political science [41,47,48], biology [37], the
analysis of contingency tables [20], approximation of probability distributions [9,28],
signal processing [25,26] and pattern recognition [5,8]. A number of these measures
of distance are specific cases of Csiszar f-divergence and so further exploration of
this concept will have a flow on effect to other measures of distance and to areas in
which they are applied.

Assume that a set §2 and the o-finite measure u are given. Consider the set of all
probability densities on u tobe P :={p|p: 2 = R, p(x) =0, [ p(x)du(x) = 1}.
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The Kullback-Leibler divergence [30] is well known among the information diver-
gences. It is defined as:

Dkr (p.q) = /9 p (x)ln[

where In is to base e.

In Information Theory and Statistics, various divergences are applied in addition
to the Kullback-Leibler divergence. These are the: variation distance D, Hellinger
distance Dy [22], x*-divergence D2, a-divergence Dy, Bhattacharyya distance
Dp [6], Harmonic distance Dy, Jeffrey’s distance D y [24], triangular discrimina-
tion D p [49], etc... They are defined as follows:

Dv(p,q):=/le(x)—q(X)ldu(X), P.q€P; (3.2)

Di(p)i= [ VP -Vae|du). pac? 63

p(x)
q(x)

i|du(x), p.q €P, (3.1

Datray= | p(X)[(%)z—l}du(X), pac? G4
Palp) =1z [ 1= [ I F I du )] pgeri 69)
Dp (p,q):=f9x/mdu(@, p.q € P (3.6)

Dha(p.9) :=L%du(X), p:q € P 3.7

Dy ()= [ =g 28 auw. paers G

[P (x) =g ()]
patri= [ LT
For other divergence measures, see the paper [27] by Kapur or the book on line [46]
by Taneja.

Csiszar f-divergence is defined as follows [12]
b= [ peo s[4 aut. pae. (3.10)
2 p(x)
where f is convex on (0,00). It is assumed that f (1) = 0 and strictly convex
around 1. By appropriately defining this convex function, various divergences are
derived. Most of the above distances (3.1) — (3.9), are particular instances of Csiszar
f -divergence. There are also many others which are not in this class (see for example

[46D.

du(x), p,q . (3.9
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For the basic properties of Csiszar f-divergence see [12, 13] and [50]. The most
important property is that

I (p.q) > O forany p,q € P.
The definition (3.10) can be extended for any measurable function defined on
[0,00).

Proposition 1. Ler f : (0,00) — R be a convex function with the property that
f (1) = 0. Assume that p,q € P and there exists the constants 0 <r <1 < R < 00
such that
rfwfRforu-a.e. x € S2. 3.11)
p(x)
Then we have the inequalities

r+R r+R r+R
f( > )—l—(p( 5 )(1— 5 ) 3.12)

<Ir(p.q)
< f(r)+f(R)+f(R)—f(r) (1_r+R)’
2 R—r 2

whreo (755) < [ 12 (42) 12 ()]

Proof. From the inequality (2.1) applied for the convex function f we have

r+R r+R g(x) r+R
f( 2 )“”( 2 )/g(p(x)_ 2 )”(x)d“(x) G
g (x)
< [ 1(43) pwrduco
R R)— R
OLTW) SRS [ (80D T2RY g,
e (22) < [ (245) 12 ()]
Since ) TR LR
qgx) r _, ItR
[(55-55 ) pednn =1-74%,
then by (3.13) we get the desired result (3.12). O

We also have:

Proposition 2. Let [ : (0,00) — R be a differentiable convex function with the
property that f (1) = 0. Assume that p,q € P and there exists the constants 0 < r <
1 < R < o0 such that (3.11) is valid. Then

R —
[ o LRI TR f(r)(l_r+R

R_r 7 ) (3.14)
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<lIy (p q)

< [ r0assiwo(i-f

< [ roasipea(1-755)
—[f+ (R)— fL(r)] Dy (p.q)

o [ roas o (i-75F)

R) +1rre(p.q)— 1 (p.q)

<
—[f+(R)—f (] D2 (p.q)

/f<s>ds+1f/<pq>(1—r+R)

_R— 2
F AR O] R=r),

where £(t) =t,t € R,

Proof. From the inequalities (2.7) and (2.14) for the convex function f, we have

%/Rf(s)ds_f(R);f(V)_Ff(R)—f(r) (q(x)_r+R

R—r o \pXx) 2
5/ f("f“;)p(x)du(x)

q(x) g(x) r+R
<L / s+ [ (20 ) peodueox [ (45" ) () dp ()
q(x)\ q(x) q(x)
+/Qf(—p(x))p() wdne- [ 1 (p()) e [ L0 du

T a | roass [ (49 peanc [ (pixﬁ—r;R)pu)du(x)

syl [ 90 [ 400 perduco

s [ rwast [ (42 pwane [ (49 -TEE) panc
e

-
)p(X)du(X)—( —; (X)du(X))]

DY peaueo [ (45 -255) pedco

) p () (x)

1
ACE f(r)[ (4

1 R
Eﬁ ; f(S)dS+ (
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F AR - £ O)R=n),

which is equivalent to the desired result (3.14).

(3.15)

Consider the convex function f (¢) = —Int¢, t > 0. Then

o g(x) _ p)
- (p.q) = /Qp(x)ln[p(x)}du(x)—/Qp(x)ln[q(x)}du(x)
=DkrL(p.9). P.gEP

and

f(r)+f(R)+f(R)—f(r) (1_r+R)

2 R—r 2

Inr +InR —lnR—I-lnr( r—I—R)
=— + 1—

2 R—r 2

_lnR—lnr r+ R ! Inr +InR
~ R-r 2

L |
r+R_, 2

=ln(5)%_r—lnx/m=ln (,B);

r

and by the second inequality in (3.12) we get

Ohi
(0 <) Dkr (p.q) <In rT . (3.16)

We also have that
#_r/er(s)dst/(p,q)(l—#) AR - 220Dy (r.0)
o i -52)
+%(—%+%)Dv(p,q)

r+ R 1R—r
=—Inl(r,R)—(D 1)|1— — D
nl(r,R)—(D,2(p.q)+ )( 5 )+2 R v (P.q)
1R—r

=5 D (p.9)+ (D2 (p. q)+1)(+TR—1)—lnl(r,R)
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and by the third inequality in (3.14) we have

(0=) Dk (p.9) (3.17)
Ror r+R
=5 D)+ (Dp(p.9)+1) (T_l) —Inl(r,R),

where [ (a,b) is the identric mean, namely

1
L(8)" ifa#b
I(a,b):=
a ifa=>b
b
= exp / Insds |, ifa #b.
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