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Abstract. In this paper, some algebraic properties of the joint k�numerical radius, joint k�
radius and the joint k�norm of matrices are investigated. Moreover, using the joint higher nu-
merical ranges of diagonal matrices which are convex polyhedrons, a description for the shape
of the higher numerical ranges of matrix polynomials is given.
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1. INTRODUCTION AND PRELIMINARIES

Let Mn�m be the vector space of all n�m complex matrices. For the case n D
m, Mn�n is denoted by Mn; namely, the algebra of all n�n complex matrices.
Throughout the paper, k;m and n are considered as positive integers, and k � n.
Moreover, Ik denotes the k�k identity matrix. The set of all n�k isometry matrices
is denoted by Xn�k; i.e., Xn�k D fX 2Mn�k W X

�X D Ikg. Also, the group of
n�n unitary matrices is denoted by Un; namely,

Un D fU 2Mn W U
�U D Ing DXn�n:

The notion of k�numerical range of A 2Mn, which was first introduced by P. R.
Halmos in [8], is defined and denoted by

Wk.A/D f
1

k
tr.X�AX/ W X 2Xn�kg;

where t r.:/ denotes the trace. The sets Wk.A/, where k 2 f1;2; : : : ;ng, are gener-
ally called the higher numerical ranges of A. When k D 1, we have the classical
numerical range W1.A/ D W.A/ D fx�Ax W x 2 Cn; x�x D 1g, which has been
studied extensively; see for example [7] and [9, Chapter 1]. Motivation of our study
comes from finite-dimensional quantum systems. In quantum physics, e.g., see [6],
the quantum states are represented by density matrices, i.e., positive semidefinite
matrices with trace one. If a quantum state D 2Mn has rank one, i.e., D D xx�
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for some x 2 Cn with x�x D 1, then D is called a pure quantum state; otherwise,
D is said to be a mixed quantum state which can be written as a convex combina-
tion of pure quantum states. So, for A 2Mn, we have W.A/ D ft r.AD/ W D 2
Mn is a pure quantum stateg. It is known that A is Hermitian if and only if
W.A/� R, and also A is a positive semidefinite matrix if and only ifW.A/� Œ0;1�.
Moreover, by the fact that the convex hull of the set

f
1

k
P W P 2Mn is Hermitian; P 2 D P; and t r.P /D kg

equals to the set Sk of density matricesD 2Mn satisfying 1
k
In�D is positive semi-

definite, we have

Wk.A/D f
1

k
tr.AP / W P 2Mn; P

2
D P D P �; t r.P /D kg

D ft r.AD/ W D 2 Skg:

Let A 2Mn have eigenvalues �1;�2; : : : ;�n, counting multiplicities. The set of
all k�averages of eigenvalues of A is denoted by � .k/.A/; namely,

� .k/.A/D f
1

k
.�i1C�i2C�� �C�ik / W 1� i1 < i2 < � � �< ik � ng:

Notice that if k D 1, then � .1/.A/ D �.A/, i.e., the spectrum of A. Next, we list
some properties of the k�numerical range of matrices which will be useful in our
discussion. For more details, see [8, 13] and their references.

Proposition 1. Let A 2Mn. Then the following assertions are true:
(i) Wk.A/ is a compact and convex set in C;

(ii) conv.� .k/.A// � Wk.A/, where conv.S/ denotes the convex hull of a set
S �C. The equality holds if A is normal;

(iii) f1
n
t r.A/g DWn.A/�Wn�1.A/� �� � �W2.A/�W1.A/DW.A/;

(iv) If V 2 Xn�s , where k � s � n, then Wk.V �AV / � Wk.A/. The equality
holds if s D n, i.e., Wk.U �AU/DWk.A/, where U 2Un;

(v) For any ˛;ˇ 2 C, Wk.˛ACˇIn/ D ˛Wk.A/Cˇ, and for the case k < n,
Wk.A/D f˛g if and only if AD ˛In.

Let A 2Mn. The k-numerical radius, k-spectral radius and the k-spectral norm
of A are defined and denoted, respectively, by

rk.A/ WDmaxfj´j W ´ 2Wk.A/g; (1.1)

�k.A/ WDmaxfj´j W ´ 2 �
.k/.A/g; (1.2)

and
kAk.k/ WDmaxfj

1

k
tr.X�AY /j W X;Y 2Xn�kg: (1.3)

It is clear that r1.A/D r.A/; �1.A/D �.A/; and kAk.1/ D kAk; which are the nu-
merical radius, the spectral radius, and the spectral matrix norm (i.e., the matrix norm
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subordinate to the Euclidean vector norm) of A, respectively. Also, rk.:/ for the case
k<n, and k:k.k/ are vector norms on Mn:Now, in the following proposition, we state
some other properties of �k.:/; rk.:/ and k:k.k/, and their relations. For more details,
see [10, 12].

Proposition 2. Let A 2Mn. Then the following assertions are true:
(i) rk.V �AV / � rk.A/ and kV �AV k.k/ � kAk.k/ for all V 2 Xn�s , where
k � s � n. The equality holds if s D n;

(ii) kAk.k/D 1
k

Pk
iD1 si .A/, where s1.A/� s2.A/� � � � � sn.A/ are the singular

values of A;
(iii) �k.A/� rk.A/� kAk.k/;
(iv) rk.A/ D kAk.k/ if and only if there exists a number � 2 R such that j̨ D

aj e
i� for all j D 1;2; : : : ;k, where a1 � a2 � � � � � an are the singular values

and ˛1;˛2; : : : ;˛n, where j˛1j � j˛2j � � � � � j˛nj, are the eigenvalues of A;
(v) If k < n, then 1

2.2k�1/
kAk � rk.A/� kAk;

(vi) kAk.n/ � kAk.n�1/ � � � � � kAk.1/ D kAk.

In Section 2, we study some algebraic properties of the joint k�numerical radius,
joint k�spectral radius and the joint k�norm of matrices. In Section 3, using the joint
higher numerical ranges of diagonal matrices which are convex polyhedrons, we give
a description for the shape of the higher numerical ranges of matrix polynomials.

2. MAIN RESULTS

We begin this section by introducing the notion of the joint k�numerical radius of
matrices.

Definition 1. Let .A1;A2; : : : ;Am/ 2 Mm
n . The joint k-numerical radius of

.A1;A2; : : : ;Am/ is defined and denoted by

rk.A1;A2; : : : ;Am/ WD supfl2.a1;a2; : : : ;am/

W .a1;a2; : : : ;am/ 2Wk.A1;A2; : : : ;Am/g;

where

l2.a1;a2; : : : ;am/D

 
mX
iD1

jai j
2

! 1
2

; and

Wk.A1;A2; : : : ;Am/D

��
1

k
tr.X�A1X/; : : : ;

1

k
t r.X�AmX/

�
W X 2Xn�k

�
is the joint k�numerical range of .A1;A2; : : : ;Am/.

Next, we are going to state a new description of rk.A1;A2; : : : ;Am/ which is one
of the our main results in this section. For this, we need the following lemma.
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Lemma 1. Let .a1;a2; : : : ;am/ 2Cm. Then

l2.a1;a2; : : : ;am/D sup
.�1;�2;:::;�m/2S1

j

mX
jD1

�jaj j;

where S1 D f.´1;´2; : : : ;´m/ 2Cm W
Pm
iD1 j´i j

2 D 1g:

Proof. To avoid of trivial case, we assume that .a1;a2; : : : ;am/¤ .0;0; : : : ;0/. Let
.�1;�2; : : : ;�m/ 2 S

1 be arbitrary. By the Cauchy-Schwartz inequality, we have

j

mX
iD1

�iai j �

 
mX
iD1

j�i j
2

! 1
2
 
mX
iD1

jai j
2

! 1
2

D l2.a1;a2; : : : ;am/:

So,

sup
.�1;�2;:::;�m/2S1

j

mX
jD1

�jaj j � l2.a1;a2; : : : ;am/:

By setting �i D ai

l2.a1;:::;am/
, where i D 1;2; : : : ;m, we have .�1;�2; : : : ;�m/ 2 S1.

Moreover,

j

mX
jD1

�jaj j D

Pm
jD1 jaj j

2

l2.a1;a2; : : : ;am/
D l2.a1;a2; : : : ;am/:

Therefore, the result holds. �

Theorem 1. If .A1;A2; : : : ;Am/ 2Mm
n , then

rk.A1;A2; : : : ;Am/D sup
.�1;�2;:::;�m/2S1

rk.�1A1C�2A2C�� �C�mAm/:

Proof. For every .�1;�2; : : : ;�m/ 2 S1, we have

Wk.�1A1C�2A2C�� �C�mAm/D f
1

k
tr.X�.

mX
jD1

�jAj /X/ W X 2Xn�kg

D f

mX
jD1

�jaj W .a1;a2; : : : ;am/ 2Wk.A1;A2; : : : ;Am/g:

Thus,

rk.�1A1C�2A2C�� �C�mAm/

D supfj
mX
jD1

�jaj j W .a1;a2; : : : ;am/ inWk.A1;A2; : : : ;Am/g:
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Now, using Definition 1 and Lemma 1, we have:

rk.A1;A2; : : : ;Am/D sup
.a1;a2;:::;am/2Wk.A1;A2;:::;Am/

l2.a1;a2; : : : ;am/

D sup
.a1;a2;:::;am/2Wk.A1;A2;:::;Am/

sup
.�1;�2;:::;�m/2S1

j

mX
jD1

�jaj j

D sup
.�1;�2;:::;�m/2S1

sup
.a1;a2;:::;am/2Wk.A1;A2;:::;Am/

j

mX
jD1

�jaj j

D sup
.�1;�2;:::;�m/2S1

rk.�1A1C�2A2C�� �C�mAm/:

So, the proof is complete. �

In the following proposition which follows from Theorem 1 and Propositions 1
and 2, we state some basic properties of the joint k-numerical radius of matrices.

Proposition 3. Let .A1;A2; : : : ;Am/ 2Mm
n . Then the following assertions are

true:
(i) If k < n, then rk.A1;A2; : : : ;Am/ D 0 if and only if A1 D A2 D �� �

D Am D 0;
(ii) rk.�A1;�A2; : : : ;�Am/D j�jrk.A1;A2; : : : ;Am/ for all � 2C;

(iii) rk.A1 C A01; : : : ;Am C A
0
m/ � rk.A1; : : : ;Am/ C rk.A

0
1; : : : ;A

0
m/, where

A01;A
0
2; : : : ;A

0
m 2Mn;

(iv) rk.S�A1S;S�A2S; : : : ;S�AmS/ � rk.A1;A2; : : : ;Am/ for all S 2 Xn�t ,
where k � t � n. The equality holds if t D n. Consequently, for every
U 2Un,

rk.U
�A1U;U

�A2U;: : : ;U
�AmU/D rk.A1;A2; : : : ;Am/:

In view of Proposition 3, rk.:; : : : ; :/, where k < n, is a vector norm on Mm
n .

Moreover, Theorem 1 leads us to introduce the notion of the joint k�norm of matrices.

Definition 2. Let .A1; : : : ;Am/ 2 Mm
n . The joint k�norm of .A1; : : : ;Am/ is

defined and denoted by

k.A1;A2; : : : ;Am/k.k/ WD sup
.�1;�2;:::;�m/2S1

k�1A1C�2A2C�� �C�mAmk.k/:

Using Definition 2 and Proposition 2, we can show that the joint k�norm of
matrices satisfies in the following basic properties.

Proposition 4. Let .A1;A2; : : : ;Am/ 2Mm
n . Then the following assertions are

true:
(i) If k < n, then k.A1;A2; : : : ;Am/k.k/ D 0 if and only if A1 D A2 D �� �

D Am D 0;
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(ii) k.�A1;�A2; : : : ;�Am/k.k/ D j�jk.A1;A2; : : : ;Am/k.k/ for all � 2C;
(iii) k.A1 C A01; : : : ;Am C A

0
m/k.k/ � k.A1; : : : ;Am/k.k/ C k.A

0
1; : : : ;A

0
m/k.k/,

where .A01;A
0
2; : : : ;A

0
m/ 2Mm

n ;
(iv) k.S�A1S;S�A2S; : : : ;S�AmS/k.k/ � k.A1;A2; : : : ;Am/k.k/ for all

S 2Xn�t , where k � t � n. The equality is holds if t D n. Consequently,
for every U 2Un,

k.U �A1U;U
�A2U;: : : ;U

�AmU/k.k/ D k.A1;A2; : : : ;Am/k.k/:

In view of Proposition 4, for the case k < n, the joint k�norm is a vector norm on
Mm
n . In the final result of this section, we are going to study the relations between

the joint k�numerical radius and the joint k�norm of matrices. For this, we need the
following lemma.

Lemma 2. Let A 2Mn. Then

1

2.2k�1/
kAk.k/ � rk.A/� kAk.k/:

Proof. The first inequality follows from Proposition 2(.v/ and .vi/). Also, by
(1.1) and (1.3), it is clear that rk.A/� kAk.k/, and so, the proof is complete. �

Theorem 2. Let .A1;A2; : : : ;Am/ 2Mm
n . Then

1

2.2k�1/
k.A1; : : : ;Am/k.k/ � rk.A1; : : : ;Am/

�minfk.A1; : : : ;Am/k.k/; l2.rk.A1/; : : : ; rk.Am//g:

Moreover, the right inequality is sharp.

Proof. Applying Lemma 2 to the matrix A WD �1A1C�2A2C�� �C�mAm, where
.�1;�2; : : : ;�m/ 2 S

1, and using Definition 2 and Theorem 1, we have

1

2.2k�1/
k.A1; : : : ;Am/k.k/ � rk.A1; : : : ;Am/� k.A1; : : : ;Am/k.k/:

Moreover, it is clear that Wk.A1;A2; : : : ;Am/�Wk.A1/�Wk.A2/� � � ��Wk.Am/.
Then,

rk.A1; : : : ;Am/D supfl2.a1; : : : ;am/ W .a1; : : : ;am/ 2Wk.A1; : : : ;Am/g
� l2.rk.A1/; : : : ; rk.Am//:

Therefore, the right inequality also holds.
To prove that the right inequality is sharp, we consider the matrix A 2Mn with sin-
gular values a1 � a2 � � � � � an and eigenvalues ˛1;˛2; : : : ;˛n, where j˛1j � j˛2j �
� � � � j˛nj. Moreover, we assume that there exist a � 2 R such that j̨ D aj e

i� for all
j D 1;2; : : : ;n. Then by Proposition 2.v/, we have rk.A/D kAk.k/. Now, suppose
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that Aj D tjA, where tj 2C for all j D 1;2; : : : ;m. Then by Theorem 1, Proposition
4 and Definition 2, we have:

rk.A1;A2; : : : ;Am/D sup
.�1;�2;:::;�m/2S1

rk.�1A1C�2A2C�� �C�mAm/

D sup
.�1;�2;:::;�m/2S1

j

mX
jD1

tj�j jrk.A/

D sup
.�1;�2;:::;�m/2S1

j

mX
jD1

tj�j jkAk.k/

D sup
.�1;�2;:::;�m/2S1

k�1A1C�2A2C�� �C�mAmk.k/

D k.A1;A2; : : : ;Am/k.k/:

Now, if we choose tj � 0, then by Lemma 1 and the above inequalities, we have:

k.A1;A1; : : : ;Am/k.k/ D l2.rk.A1/; rk.A2/; : : : ; rk.Am//:

Hence, the right inequality changes to equality. This completes the proof. �

3. ADDITIONAL RESULTS

In this section, by using the joint higher numerical ranges of diagonal matrices,
we find an approximation for the higher numerical ranges of matrix polynomials.
For this, suppose that

P.�/D Am�
m
CAm�1�

m�1
C�� �CA1�CA0 (3.1)

is a matrix polynomial, where Ai 2Mn .i D 0;1; : : : ;m/; Am¤ 0 and � is a complex
variable. The numbers m and n are referred as the degree and the order of P.�/;
respectively. The matrix polynomial P.�/ is said to be a diagonal matrix polynomial
if all the coefficientsAi are diagonal matrices. A scalar �0 2C is called an eigenvalue
ofP.�/ if the systemP.�0/xD 0 has a nonzero solution x0 2Cn. This solution x0 is
known as an eigenvector of P.�/ corresponding to �0, and the set of all eigenvalues
of P.�/ is said to be the spectrum of P.�/; namely,

�ŒP.�/�D f� 2C W det.P.�//D 0g:

The (classical) numerical range of P.�/ is defined and denoted by

W ŒP.�/� WD f� 2C W x�P.�/x D 0 for some non´ero x 2Cng;

which is closed and contains �ŒP.�/�. The numerical range of matrix polynomials
plays an important role in the study of overdamped vibration systems with finite num-
ber of degrees of freedom, and it is also related to the stability theory; e.g., see [5,11]
and its references. Notice that the notion of W ŒP.�/� is generalization of the clas-
sical numerical range of a matrix A 2Mn; namely, W Œ�I �A�DW.A/: In the last
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few years, the generalization of the numerical range of matrices and matrix polyno-
mials has attracted much attention and many interesting results have been obtained;
e.g., see [1–4, 15]. One of these generalizations is the notion of higher numerical
ranges. The k-numerical range of P.�/ is defined and denoted, e.g., see [2], by

WkŒP.�/�D f� 2C W t r.X�P.�/X/D 0 for some X 2Xn�kg: (3.2)

Also, the k� spectrum of P.�/ is defined as

� .k/ŒP.�/�D f� 2C W 0 2 � .k/.P.�//g: (3.3)

It is clear that � .k/ŒP.�/� �WkŒP.�/�D f� 2 C W 0 2Wk.P.�//g; �
.1/ŒP.�/�D

�ŒP.�/�; and W1ŒP.�/�DW ŒP.�/�. Moreover, if P.�/D �I �A, where A 2Mn,
then WkŒP.�/� D Wk.A/ and � .k/ŒP.�/� D � .k/.A/. The sets WkŒP.�/�, where
k 2 f1;2 : : : ;ng, are generally called the higher numerical ranges of P.�/. The joint
k�numerical range of P.�/ is defined as the joint k�numerical range of its coeffi-
cients; namely, JWkŒP.�/� WD Wk.A0;A1; : : : ;Am/: It is known, e.g., see [2, The-
orem 2.2(iii)], that:

WkŒP.�/�D f� 2C W cm�
m
C�� �C c0 D 0; .c0; : : : ; cm/ 2 JWkŒP.�/�g

D f� 2C W cm�
m
C�� �C c0 D 0; .c0; : : : ; cm/ 2 conv.JWkŒP.�/�/g :

(3.4)
So, if Q.�/ is a matrix polynomial of degree m and arbitrary order such that
JWkŒP.�/�� JWkŒQ.�/� or if conv .JWkŒP.�/�/� conv .JWkŒQ.�/�/ ; then we
have WkŒP.�/��WkŒQ.�/�: In the following proposition, we characterize the joint
k�numerical range of a diagonal matrix polynomial.

Proposition 5. Let P.�/, as in (3.1), be a diagonal matrix polynomial. Then
JWkŒP.�/� is a convex polyhedron. Conversely, every convex polyhedron H �
CmC1 is the joint k�numerical range of a diagonal matrix polynomial of degree
m.

Proof. Suppose that Ai D diag.a
.i/
1 ;a

.i/
2 ; : : : ;a

.i/
n / for i D 0;1; : : : ;m and

S1;S2; : : : ;Sc.n;k/ are all the subsets of f1;2; : : : ;ng with k elements. By considering

q
.j /
Si
D

P
t2Si

a
.j /
t

k
for j D 0;1; : : : ;m, we have

JWkŒP.�/�D conv.f.q
.1/
Si
;q
.2/
Si
; : : : ;q

.m/
Si
/ W i D 1;2; : : : ; c.n;k/g/:

Conversely, suppose that H � CmC1 is a convex polyhedron with n vertices
v1;v2; : : : ;vn. Now, we can find the points .ci;0; ci;1; : : : ; ci;m/ 2 CmC1; i D

1;2; : : : ;q with q � n such that their k�averages are v1;v2; : : : ;vn. Then H D
JWkŒD.�/�, where

D.�/D diag.c1;m; : : : ; cq;m/�
m
C�� �Cdiag.c1;1; : : : ; cq;1/�Cdiag.c1;0; : : : ; cq;0/:

So, the proof is complete. �
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The following theorem is a generalization of [14, Theorem 2.4].

Theorem 3. Let P.�/ be a matrix polynomial as in (3.1). Then[
WkŒD1.�/�DWkŒP.�/�D

\
WkŒD2.�/�;

where the union [intersection] is taken over all diagonal matrix polynomials D1.�/
[D2.�/] of degree m for which JWkŒD1.�/�� JWkŒP.�/�� JWkŒD2.�/�.

Proof. By [1, Theorem 3.1(ii)], the left equality holds.
For the right equality, note that for every diagonal matrix polynomialD2.�/ of degree
m for which JWkŒD2.�/�� JWkŒP.�/�, we have WkŒD2.�/��WkŒP.�/�. Thus

WkŒP.�/��
\

JWkŒD2.�/��JWkŒP.�/�

WkŒD2.�/�:

Conversely, let
�0 2

\
JWkŒD2.�/��JWkŒP.�/�

WkŒD2.�/�:

By considering T1.�0/D f.c0; c1; : : : ; cm/ 2CmC1 W cm�m0 C�� �Cc1�0C c0 D 0g,
we have T1.�0/\ JWkŒD2.�/� ¤ ¿ for every diagonal matrix polynomial D2.�/
satisfying JWkŒD2.�/�� JWkŒP.�/�. Thus, by [14, lemma 4.1] and Proposition 5,
we have

T1.�0/\ conv.JWkŒP.�/�/¤¿; :
So, by (3.4), �0 2WkŒP.�/�. Therefore,

WkŒP.�/��
\

JWkŒD2.�/��JWkŒP.�/�

WkŒD2.�/�;

and hence, the proof is complete. �

Remark 1. In view of Proposition 5 and Theorem 3, one can estimate the shape of
the k�numerical range of matrix polynomials by convex polyhedrons.
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