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Abstract. Necessary and sufficient conditions for the existence of solutions of weakly nonlinear
boundary-value problem of systems of integrodifferential equations with impulsive action at fixed
points of time are obtained. Convergent iterative procedure of the solution and establish the
connection between the necessary condition and the sufficient condition are presented.
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1. STATEMENT OF THE PROBLEM AND AUXILIARY RESULTS

In the mathematical modeling of actual processes with short-term pertubations,
it is often possible to neglect the duration of perturbations. These perturbations are
regarded as “’instantaneous”. The indicated idealization leads to the necessity of in-
vestigation of dynamical systems with discontinuous trajectories, which are often
called dynamical systems with impulsive action. New origional results in the the-
ory of boundary-value problems for differential systems with impulsive action were
obtained by using classical methods of the periodic theory of nonlinear oscillations
together with methods based on the theory of generalized inverse operators and gen-
eralized Green operators [2—06, 1 1, 15].

Conditions for the existence of solutions of systems of linear integrodifferential
equations and boundary-value problems for them were studied in research papers
[9, 10], and research papers [7, 8] were dedicated to nonlinear occasion systems of
integrodifferential equations and boundary-value problems for them, for such kind of
problems there was developed general theory effective methods of finding solutions.
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In the given research paper by means of Moore-Penrose pseudoinverse matrices
and constructive methods nonlinear systems analysis there were investigated condi-
tions for the existence and there were suggested iterative algorithms of constructing
solutions of boundary-value problems for weakly nonlinear system of integrodiffer-
ential equations with impulsive action.

Consider a weakly nonlinear system of integrodifferential equations with impuls-
ive action at fixed points of time

b
X()—P(1) /[A(s)x(s) + B(s)x(s)]ds =

b
f(t)+8/K(t,s)Z(x(s,e),s,s)ds, (1.1)

AEix|t=r,- = Six(‘[i _O)+yl +8J1(x('78)58)’ (12)
t #1,t€la,bl,ti €(a,b),i=1.2,..,p,
and with boundary condition
Ix()=a+elr(x(-8).¢), a € RY (1.3)

Here, we use the assumptions and notation from [7, 10, 12]: A(¢), B(¢), @(¢) are,
respectively, (m xn), (m xn), (n x m) matrices which components are sought in
the space Lj[a,b]; column vectors of matrice @(¢) are linearly independent at [a, b],
the n x 1 vector function f(¢) € Lz[a,b]; y; is an k;-dimensional column vector of
constants, E;,S; are (k; X n) constant matrices such that rank (E; + S;) = k; (i =
1,2,...,p), i. e., the solution of the system is determined by the unique extension
through the point of discontinuity

AEiX|t=¢ = Ei(x(zi +0) —x(1; —0)), (1.4)

a = col(ay,az,03,..,ap) € RP, £ — is a bounded linear p-dimensional vector
functional, D>[a;b], £ = col(€1,£2,43,...£p) : Dala;b] — RP; Z(x(t,¢),t, &) —is
an n -dimensional vector function nonlinear with respect to the first component, con-
tinuously differentiable with respect to x in the vicinity of a generating solution,
integrable with respect to #; and continuous in ¢ :

Z(',Z,S) € Cl[”x_xO” = I'L]’ Z(x(-,g),-,g) € LZ[a’b]v Z(X(t,'),l,') € C[OaEO];

J1(x(-,8),¢e), Ja(x(-,¢),¢) are, respectively, nonlinear bounded
p,q—dimensional vector functionals continuously differentiable with respect to x in
the Frechet sense and continuous in ¢ in the vicinity of a generating solution.

We seek the solution of problem (1.1)— (1.3) in the class of vector functions x () =
x(t,,¢) such that

x(-,€) € Dala,b]\{zi}1), x(-,¢) € La[a,b], x(t,-) € C[0,g0].
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The norms in the spaces D>([a,b]\(;3,) and La[a,b], C[0,&o] are introduced in the
standart way (by analogy with [1,6]).

We show that the problem with impulsive action (1.1)— (1.2) can be investigated
if we consider this problem as an “interface” boundary-value problem [17]. To re-
veal this relationship, we introduce a k-dimensional linear bounded vector functional

px(-):
@ :=col(p1,....¢p) : Da([a,b]\ir1,) — RE, ki=k1+ka+ ... +kp,

@i Dafa,b]\{ti})) > R¥, (i=1,...p)

as follows:
p1x := E1x(t1+) — (E1 + S1)x(71-)
2x := Exx(12+) — (E2 + 82)x(12—)

px = Epx(tp+)— (Ep + Sp)x(1p—)
and represent the impulsive action (1.2) as the boundary condition
px () =y +eJi1(x(-8),¢), (1.6)

where y = col(y1,y2,....Yp) € R, y; e Rki.
We introduce the bounded linear (k + ¢g)-dimensional vector functional

(1.5)

£= [ ‘2’ ] - Dafa,b]\ {t;}) — RKT4

and write the impulse condition (1.6) with boundary condition (1.3) in the next form
£x() =8 +eJ(x(-e),e) € Rk, (1.7)

where § := [ 3; ] §e Rkt4 J(x(e):= [ Zggzg
k + q dimensional vector functional continuously differentiable with respect to x in
the Frechet sense and continuous in ¢ in the vicinity of a generating solution.

Now the impulse weakly nonlinear boundary-value problem (1.1)—(1.3) we can
consider as weakly nonlinear boundary-value problem (1.1), (1.7). Similarly, as in
the [7], we can establish the necessary and sufficient conditions of solvability and the
relationship between them for so obtained weakly nonlinear boundary value problem
for integro-differential equations (1.1), (1.7).

So, we looking a solution x = x (¢, &) of boundary-value problem (1.1),(1.7) which
is defined in this class of vector functions

x=x(t): x() € Da(la.b]\{zi}1). x() € La[a.b].

x(-,&) € Dafa,b]\{7i}1), Xx(-,¢) € La[a,b], x(t,-) € C[0,0],

] — 1s a nonlinear bounded
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and which for & = 0 converted to one with solutions generating boundary-value prob-
lem

b
x(z)—qb(z)/[A(s)x(s)+3(s)x(s)]ds — (). (1.8)

£x() =§. (1.9)

We now present the following known criterion of solvability for the generating
boundary-value problem (1.8), (1.9):

Theorem 1 ([16]). Let rank Q < (k 4+ ¢,r1). Then the homogeneous boundary-
value problem (1.8), (1.9) (f(t) = 0,6 = 0) has linearly independent solutions of the
form:

x(t,cp) = ‘I’O(Z)PD,I Pg,cr, cr €R",

r1=m+n—rank D, r =r; —rank Q.

The inhomogeneous boundary-value problem (1.8), (1.9) is solvable if and only if the
conditions:

Ppx b=0, Pgx (§—£F())=0, (1.10)
dq dy
dy =m—rank D, dy =k 4+ g —rank Q

are satisfied. Moreover, it has an r-parameter family of linearly independent solu-
tions:

x(t,cr) = Yo(t) Pp,, Po,cr +%o(t)Pp, QT (8—LF()+ F(1), Ver R,
(1.11)

B t . b ~
Here, /(1) = [ f(s)ds, b= [[A() () + B(s)f(s)]ds.

F@) = F@) + Uo(0)D+h, Wo(t) = [#(0), In], (1) = | B(5)ds

b
are n X (m +n) and n x m matrices, respectively; D = [Im —f [A(s)llf(s) +

a
b
B(s)@(s)]ds,—fA(s)ds] is an m X (m + n) matrix, I, and I, are the identity
a

matrices of the corresponding orders; Pp and Pp=+ are, respectively, (m +n) x (m +

n), m x m matrices (orthoprojectors onto the kernel and cokernel of the matrix D;

Pp,, (PD:; ) is the matrix formed by the complete system of r; (d;) linearly inde-
1

pendent columns (rows) of the matrix (orthoprojector) Pp (Pp=). The matrix Q is
a (k + q) x r1 matrix constructed according to [6]; DT (Q™) is the Moore-Penrose
pseudoinverse matrix for the matrix D (Q). The quantities Pp and Py« are, re-
spectively, r1 x r1 and (k + q) x (k 4+ ¢) matrices (orthoprojectors onto the kernel
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and cokernel of the matrix Q) and Pg, (PQZ ) is the matrix formed by the complete
2

system of r (d>) linearly independent columns (rows) of the matrix Pg (Pg=).

Further, the solution x (¢,0) = x¢(¢,cr) (1.11) of generating boundary-value prob-
lem (1.8),(1.9) will be call a generating solution of the boundary-value problem for
the weakly nonlinear impulsive system of integrodifferential equations (1.1)—(1.3),
where ¢, € R” is unknown vector of constants and which will defined below.

2. RESULTS

Consider the critical case where the corresponding homogeneous generating
(f(t) = 0,8 = 0) boundary-value problem (1.8),(1.9) has nontrivial solutions
x(t,cr) = x9(t,cr), and determined by the formula (1.11).

2.1. The necessary condition.

First, we establish the necessary condition of solvability of the boundary-value
problem (1.1), (1.7). The following statement is true:

Theorem 2. Assume that the weakly nonlinear boundary-value problem (1.1)—
(1.3) has a solution x = x(t,¢) :
x(-,&) € Dala,b]\{zi}1), X(-,¢) € La[a,b], x(t,-) € C(0,&0]
which turns, for € = 0 into a generating solution xo(t,c,) (1.11) with constant ¢, =
c? (r = m+n—rank D —rank Q).
Then the vector of constants c? is necessarily a real root of the system of equations

b

s b
PD;I/|:A(s)//K(f,s)Z(xo(s,c?),s,O)dsdr+

a

b
B(S)/K(s,r)Z(xo(r,c?),t,O)dri|ds =0, (2.1

Po+

%)

- b
J(xo(-,c?),O)—g(//K(z,s)Z(xo(s,c,‘.’),s,o)dsawr

b t

b
qfo(-)zﬁf [A(z)//K(r,s)Z(xo(s,c;’),s,o)dscmr

a

b
B(t) / K(t,s)Z(xo(s,c?),s,O)dsi|dt)} =0, (22
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dy =m—rank D, dr =k +qg—rank Q.

The proof is similar to the proofs of Theorem 5.4 in [6] and Theorem 2 in [7].
For periodic problems, the constant ¢ has a physical meaning and plays the role of
amplitude of the generating solution. Therefore, in the classical periodic problem, the
corresponding equation for the system of ordinary differential equations is called the
equation for generating amplitudes [14]. Similarly, we say that Eq. (2.1), (2.2) is the
equation for generating constants of the boundary-value problem for the system of
integrodifferential equations (1.1)—(1.3).

If Eq. (2.1), (2.2) is solvable, then the vector ¢, = c? € R” specifies the generat-
ing solution x (¢, ¢,;) = xo(z, c?) (1.11), which may correspond to the solution x (¢, €)
of the original boundary-value problem (1.1)—(1.3) for ¢ = 0. If Eq. (2.1), (2.1) has
no solutions, then the boundary-value problem (1.1)—(1.3) also does not have the
required solution. Here, we speak about the real roots of the equation for generat-
ing constants (2.1), (2.2). Thus, the necessary condition for the solvability of the
boundary-value problem (1.1)—(1.3) is satisfied if Eq. (2.1), (2.2) has at least one real
solution
cr = c? eR".

2.2. The sufficient condition.

To establish a sufficient condition for the existence of a solution of the boundary-
value problem (1.1), (1.7) we perform the change the variables:

x(1,6) = xo(t,c)) + y(t.e).
In the new variables, we seek the conditions of existence for the solution y(z,¢) :
y(-,g) € D2([a’b] \ {Tl'}l)’ J}("‘g) € Lz[a,b], y(t") € C[O,S()], y(tvo) =0,

which turns, for ¢ = 0 into the trivial solution of the boundary-value problem

b
50-00) [ [46)6)+ B5)5(5)]s =

b
8/K(I,S)Z(x0(s,cf)—i—y(s,s),s,s)ds, (2.3)

Ly() =eJ (xo(,c)+y(-.e).e). (2.4)

In view of the continuous differentiability of the vector function Z(x,¢,&) and the
Frechet differentiability of the vector functional J(x(:,¢), &) with respect to the first
components in the vicinity of the point € = 0, we select, in the vector function Z (x¢ +
y,t,¢) and in the vector functional J (xo (,c?) + y(-,e),s) their linear parts with
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respect to y and the zero-order terms with respect to €. As a result, we arrive at
the following decomposition:

Z(xo+y.te)= Z(xo(t,cg),t,O) +A1(t)y(t,e)+ R(y(t,e),t,¢), 2.5

J(x0(.c)) +y(.e).e) = J(xo(.cP) + L1y (ne) + Ri(y(ne).e).  (2.6)
where
Z(xo(t.¢;).1.0) € Cla.b. J(xo(.¢})) = J(xo(-.c?).0),
0Z(x,t,0)
ax
and £1y(-, ) is the linear part of the vector functional J (xo e+ y(,e), 8).
The linear operator £1 = J'(x¢) is the Frechet derivative of the vector functiona
J (x (-,¢), 8) at the point x = xo(t,c?). The nonlinear vector function R(y(Z,¢),t,¢)
belongs to the class C'(||y|| < g). Lz[a,b], C[0,&0]. In this case, we have
dR(0,1,0) 0R1(0.0) _
dy dy
Taking into account the decomposition of nonlinearities (2.5) and (2.6) in the
boundary-value problem (2.3), (2.4), we obtain the boundary-value problem

A1) = Ay (t.¢)) = € Cla.b],

x=xo(t,c?)

R(0,1,0) =0, =0, R1(0,0)=0,

b
50 -00) [ [46036)+ B©)i)]ds = p(t.) @7

£y() = e{J(xo.c0) + £17(.8) + Ri(y(2).2)], 2.8)
and seek its solution in the form
y(t,e) = Xr(t)c+ y(t,e), c =c(e) € R,

where X, (t) = ¥ (t)PDrl Pg, ia an n x r matrix, ¢ € R” is an unknown constant
determined in what follows and

7(t.6) = e¥0(1) Pp,, 0 {J(xo(ef)) + L1y (e)+

Ri(y(.8).6) = SFo(,8)} + Folt.e)

By Theorem 1, the inhomogeneous boundary-value problem (2.7), (2.8) is solvable
if and only if the conditions

Pps. bo(e) =0, (2.9)

Po;, {aJ(xo(.,c;’) +y(-e).e) — LFo (- 8)} —0. (2.10)
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N b
Here, bo(e) = [ [A(s)ﬁ(s, &)+ B(s)p(s, 8)]ds is an n x 1 column vector whose com-
a
ponents belong to the space C|0, o],

b
h(t,e) =B/K(t,s)[Z(xo(s,c?),s,O)+A1(s)y(s,8)+

R(y(s,s),s,e)]ds = 8(h1(t) + hg(t,s)),

b
hl(t):/K(Z,S)Al(s)Xr(s)ds,

b

(1) = / K(t,s) [Al(s))'/(s,s) + R(y(s,s),s,e)]ds,

a

Fo(t.e) = h(t.e) + Wo(t) DV bo(e) = Fy (1) + F§ (1.8),

b
RO =k @)+ 90D [ [46)6)+ B ©)]ds.

a

b
F2(t.e) = i%(t.e) + %(z)m/ [A(s)ﬁg(s,e) + B(s)hg(s,e)]ds,

a
t t

t

ht,e) = /h(s,s)ds, hi(t) = /hl(s)ds, h(t.¢) = /hg(s,s)ds.
a a a

In view of the facts that y(z,¢) = X,(t)c + y(¢,¢) and conditions (2.1), (2.2) are

satisfied, we obtain the following system for the unknown vector of constants ¢ € R”

from (2.9) and (2.10)

b
Pp;, { [ [A(s)ﬁl(s) + B(s)hl(s)]ds}c -

b
~Pp; / [A(s)ﬁg(s,s)+B(s)hg(s,e)]ds, 2.11)
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Pos {£1X,() = £F ()fe =
~Po;, {TGo(. D)+ £17¢.0) + Ri(y(.0),0) — SRR o)} (2.12)
System (2.11), (2.12) can be rewritten as follows:
Boc = g, (2.13)

with the (d; + d2) x r matrix

be o
Pps [ [A(s)hl (s) + B(s)h (s)]ds

Pos {€1X, ()~ SR ()]

and the (d; + d») x 1 vector function

B() =

—Pp j [A(s)ﬁg(s,e) + B(S)pg(s’g)]ds
~Pos 1 (xo(.eD) + £15.) + Ri(y(-6). ) ~ L))
System (2.13) is solvable if and only if the condition
Pp;g =0 (2.14)

g:=

is satisfied. Since the vector function g contains unknown quantities, in order to use
this condition, we assume, instead of (2.14), that the condition PB(’)‘ = 0 is satisfied,
which is equivalent to the condition [6] :

rank By = dq + d>. (2.15)

Here, Pgx isa (d1 + d2) x (d1 + d2) matrix (orthoprojector) that projects the spacec

R%41+42 onto the null space N(By).
As a result of the solution of system (2.13), we arrive at the equivalent operator
system

y(Z,S) = Xr(t)c +.)_}(Z’8)7
¢c=-B;g, (2.16)

F(t.6) = e90(1) Pp,, O [ (xo(.cf)) + L1y (o) +

+ R1((0).) = LFo(-.8)| + Folt.e).

We introduce u = col(y(¢,€),c(e), y(t,¢e)) and rewrite system (2.16) in the new vari-
ables as follows:

u=LDVy+ Fu, (2.17)
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0 X,@) In
LY=o o L.
0 0 0

B b s b
—Pp; | [A(s)ffK(t,r)Al(r)go(r)dth—

a

b
+B(s) [ K(s,7) A1 (r)(p(r)dr]ds

b
~Pg: {slw() ’3({[’{ DA (Dp(0)d T+
s b

+Ll/0()D+f [A(s)ffK(t )41 (D)e(t)d Tdi+

+B(s) fK(s,r)Al(f)go(r)dt]ds)}
( 0 )
—B(f g

e¥0(1) Pp,, 0 {J (xo(.c))+
| +E00(0) + R (16).6) = £Fo(0)| + Folt.e) )

—PD:;1 fb[A(s)jfbK(t,r)R(y(r,s),t,s)drdt+

a

b
B(s) [ K(s,T)R(y(z.8),T, s)dt]ds

b
_PQZ. {R1(y(- g),- g)—£(ffK(~ )R(y(z,8),t,8)d T+
Ll/o()D+f[A(s)fsfbK(t T)R(y(t,¢),t,8)drdt+

B(s) f K(s,7)R(y(1,8),1, e)dt]ds)}

System (2.16) can be rewritten in the form

(IQ—L(I))u:ﬁu, o=n+r+1.
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Since the block-diagonal matrix operator (I, — LMY is always invertible, we can
rewrite system (2.16) as follows:

u=Su, S:=U,—LW)1F,

By the choice of ¢ and the neighborhood of the generating solution, in view of the
structure of the operator F , asin [6,7], we can show that ' is a contraction operator
[13] acting from the space D ([a,b]: R") x C([0,&0]: R) x D>([a.b]; R") into itself
with the corresponding norm. Hence, the operator equation ¥ = Su has a unique
solution, which can be found as follows:

u= lim uy, Uy = Suy—_1, whereug = col(yo,co, yo) =0.
V>0

Returning to the original boundary-value problem (1.1), (1.7), we get the following
iterative process for finding the solution.
In the first stage of the iterative process, we obtain the boundary-value problem

b
710 00) [ [46316)+ B )]s =

b
g/K(t,s)z(xo(s,c;’),s,o)ds, (2.18)

£y1() = eJ (xo(-,c?),0). (2.19)

This problem is solvable if and only if the following conditions are satisfied:

b

s b
PD;;]/|:A(s)[[K(t,s)Z(xo(s,c?),s,O)dsdr—i—

a

b
B(s) / K(s,7)Z(xo(z, C,?),‘L’,O)d‘[:|ds =0,

- b
Pg:, J(xo(-,cf),O)—z(f/K(r,s)Z(xo(s,c?),s,O)dsder

a
b t

b
Wo(-)D+/ |:A(t)//K(r,s)Z(xo(s,c?),s,O)dsdr+

a
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b
B(t)/K(t,s)Z(xO(s,c?),s,O)dsj|dt)} =0.
a

These conditions are satisfied because the generating solution satisfies conditions
(2.1) and (2.2) in view of the choice of c? € R”. Assume that the first approximation
y1(t,€) to the required solution y(z,¢) of the boundary-value problem (2.3), (2.4) is
equal to yi(z,¢). This yields

$1(.6) = F1(t.8) = Wo(1) P, O {J (x0(¢0).0) ~ LF1 (&)} + Fi(t.0).

where

t b
Fi(t,¢) :8//K(r,s)Z(xo(s,cf),s,O)dsdt+
a

a
b s

b
ellfo(t)D+/ |:A(s)//K(r,s)Z(xo(s,c?),s,O)dsdf—i-

a

b
B(s) / K(S,I)Z(xo(r,cf),r,O)dt:|ds.

In the second stage of the iterative process, we get the following boundary-value
problem:

b b
720 00) [ [46)3206)+ B30 ]ds = [ Kie.0) {zuo(s,ci’),s,ow

A1(s) [Xr(t)cl +)71(s,8)] + R(yl(s,s),s,s)i| ds, (2.20)

£20) =T, eD) + 1 [ X, (et +516.0)] + R Ge).0)). 22D

By using the necessary and sufficient conditions for the solvability of this boundary-
value problem, we arrive at the following algebraic system for
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c1 €R":
—pp, j[m)ﬁ;(s,ewB(s)h;@,e)]ds
Boci — (2.22)
~Pos, {JCxolech) + L1710+
] Ri(i(.6).e) = SF2C)).
where

b
F2(t.e) = hl(t.e) + %(z)m/ [A(s)ﬁg(s,e) + B(s)h;(s,a)]ds,

a

b t
hé(t,e):/K(t,s)[Al(s)fl(s,e)+R(y1(s,8),s,£)]ds, E;(t,s) =/hé(s,£)ds.

Under condition (2.15), this system is solvable. The first approximation c; to c(¢)
has the form
— b . -
—Pps [ [A(s)h;(s,s) n B(s)h;(s,g)]ds
g
c1 = —BJ_
—Pgs, {J(xo.c2) + £171(0)+
FRI (1 (8),08) — LFE(.6)
For the second approximation y; (¢, ¢) to the required y(¢,e) we get
y2(t.8) = Xr(t)er + ya(t.6).

Continuing the iterative process, we obtain the following iterative procedure for
finding the solution y(z,-) € C[0,&0], y(¢,0) = 0 of the boundary-value problem
(2.3), (2.4) from the operator system (2.16):

Vi+1(t.8) = Xy (t)c; +yj+1(t.€),

_ , | | _
P | [A(s)ﬁg (s.6) + B(s)hg(s,g)]ds

, (2.23)
~Poy, [/xatc) + 2150+

Ri(y;(-.€),-¢) —QF].Z(.,g)}
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By +1(t.8) = eWo(t) P, Q| (xo(.e) + L1y (1) +

Ri(3j.8).6) = £F; (.6)| + Fy(1.e).
where
b
Fi(t.e) = hj(t.e) + %(z)zﬁ/ [A(s)ﬁ,- (s.6) + B(s)h; (s,s)]ds

= Fo (1) + F2(1),
b
RO =k @)+ 00D [ [46)h6)+ B ©)]ds,

a

b
F2(t.e) = h}(t.6) + wo(z)p+/ [A(s)ﬁg (s,8) + B(s)hé(s,s)]ds,

a

b
by (t.0) = (O + W (1.6)). (0 = [ Ke.5)416)X,5)ds.

b
h(t.e) = /K(t,s) [Al(s))?j_l(s,e) + R(yj_l(s,e),s,e)]ds,

t t t

ﬁ,(z,s)=/h,(s,e)ds, ﬁl(t)=/h1(s)ds, ﬁé(z,s)thé(s,e)ds.

Thus, we have proved the following theorem:

Theorem 3 (The sufficient condition). Assume that, under conditions (2.1), (2.2),
the generating boundary-value problem (1.8), (1.9) possesses an r-parameter family
of solutions (1.11) (r = m +n —rank D —rank Q). Then, under condition (2.15),
for each real value of the vector ¢, = c? € R” satisfying the system of equations
(2.3), (2.4) for generating constants, the weakly nonlinear boundary-value problem
(1.1)=(1.3) has at least one solution x = x(t,¢) :

x("g) € DZ([a’b]\{Ti}I)’ ).C(-,{-,‘) € LZ[avb]’ .X(t,') € C[O,SO]-

For ¢ = 0 this solution turns into a generating solution xo(t,cf) (1.11) and is de-
termined by using the convergent iterative process (2.23) and the relation x; (t,€) =

xo(t,c?) +y(te), (j =0,1,2,..).
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2.3. Relationship between necessary and sufficient conditions.

By analogy with [7], one can establish the relationship between the dy + dp x r
-dimensional matrix By used to determine the sufficient condition for the existence
of the solution of problem (1.1)—(1.3) and the necessary condition for the existence
of this solution, which can be formulated as the existence of a root of the equations
for generating constants (2.3), (2.4). The following assertion is true:

Theorem 4. In order that a weakly nonlinear boundary-value problem for the
system of integrodifferential equations (1.1)—(1.3) have the solution x = x(t,¢€) :

x(-,¢) € Dala,b], x(-,e) € La[a,b], x(t,-) € C[0,g0], x(¢,0) = xo(t,cg),

where xo(t,c?) is the generating solution (1.11) with a constant ¢, = c? € R” (r =
r1—rank Q, ry = m+n—rank D,) it is necessary that the constant c? be a real root
of the equation for generating constants (2.3), (2.4) and sufficient that the following
condition be satisfied:

dF (c,) -
dcy Hep=co = d1+da.

rank{Bg :=
Moreover, if p = r1, then the last condition means that ¢, = c? € R" is a simple root
of the equation for generating constants (2.3), (2.4).
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