Miskolc Mathematical Notes

ON THE MOORE-PENROSE INVERSE IN RINGS WITH INVOLUTION

DIJANA MOSIĆ
Received 12 December, 2015

Abstract

We study equivalent conditions to those given in Penrose equations for an element to be the Moore-Penrose inverse of a given element in a ring with involution, using the concept of EP, normal, bi-EP, bi-normal, l-(or r-)quasi-EP, l-(or r-)quasi-normal and *-cancellable elements. The mentioned conditions are weaker that the one of being self-adjoint.

2010 Mathematics Subject Classification: 16W10; 15A09; 46L05
Keywords: Moore-Penrose inverse, EP elements, normal elements, ring with involution

1. Introduction

Let \mathcal{R} be an associative ring with the unit 1 . An involution $a \mapsto a^{*}$ in a ring \mathcal{R} is an anti-isomorphism of degree 2 , that is,

$$
\left(a^{*}\right)^{*}=a, \quad(a+b)^{*}=a^{*}+b^{*}, \quad(a b)^{*}=b^{*} a^{*}
$$

An element $a \in \mathcal{R}$ is self-adjoint if $a^{*}=a$. An element $a \in \mathcal{R}$ satisfying $a a^{*}=a^{*} a$ is called normal.

The Moore-Penrose inverse of $a \in \mathcal{R}$ is the element $x \in \mathcal{R}$, if the following Penrose equations hold [7]:
(1) $a \times a=a$,
(2) $x a x=x$,
(3) $(a x)^{*}=a x$,
(4) $(x a)^{*}=x a$.

There is at most one x such that above conditions hold, and such x is denoted by a^{\dagger}. The set of all Moore-Penrose invertible elements of \mathcal{R} will be denoted by \mathcal{R}^{\dagger}. In the last decades, the Moore-Penrose inverse has found a wide range of applications in many areas of science and became a useful tool for dealing with optimization problems, data analysis, the solution of linear integral equations, etc.

If $\delta \subseteq\{1,2,3,4\}$ and x satisfies the equations (i) for all $i \in \delta$, then x is a δ-inverse of a. The set of all δ-inverse of a is denote by $a\{\delta\}$. Notice that $a\{1,2,3,4\}=\left\{a^{\dagger}\right\}$. Recall that $x \in a\{1,4\}$ if and only if $x^{*} \in a^{*}\{1,3\}$.

The following result is frequently used in the rest of the paper.
Theorem 1 ([1]). For any $a \in \mathcal{R}^{\dagger}$, the following is satisfied:
(a) $\left(a^{\dagger}\right)^{\dagger}=a$;
(b) $\left(a^{*}\right)^{\dagger}=\left(a^{\dagger}\right)^{*}$.

An element $a \in \mathscr{R}$ is said to be EP if $a \in \mathcal{R}^{\dagger}$ and $a a^{\dagger}=a^{\dagger} a$. Observe that a is EP if and only if a^{*} is EP.

We recall the reader that $a \in \mathcal{R}$ is called (i) bi-normal if $a a^{*} a^{*} a=a^{*} a a a^{*}$; (ii) bi-EP if $a \in \mathcal{R}^{\dagger}$ and $a a^{\dagger} a^{\dagger} a=a^{\dagger} a a a^{\dagger}$; (iii) l-quasi-normal if $a a^{*} a=a^{*} a a$; (iv) r-quasi-normal if $a a a^{*}=a a^{*} a$; (v) l-quasi-EP if $a \in \mathcal{R}^{\dagger}$ and $a a^{\dagger} a=a^{\dagger} a a$; (vi) r-quasi-EP if $a \in \mathcal{R}^{\dagger}$ and $a a a^{\dagger}=a a^{\dagger} a[2,4,6]$.

An element $a \in \mathscr{R}$ is: left *-cancellable if $a^{*} a x=a^{*} a y$ implies $a x=a y$; it is right *-cancellable if $x a a^{*}=y a a^{*}$ implies $x a=y a$; and it is *-cancellable if it is both left and right *-cancellable. Notice that a is left *-cancellable if and only if a^{*} is right $*$-cancellable. In C^{*}-algebras all elements are ${ }^{*}$-cancellable. A ring \mathscr{R} is called $*$-reducing if every element of \mathcal{R} is $*$-cancellable. This is equivalent to the implication $a^{*} a=0 \Rightarrow a=0$ for all $a \in \mathscr{R}$.

Malik and Thome [6] investigated weaker conditions than those given by Penrose for an operator to be the Moore-Penrose inverse of a given bounded linear operator between two Hilbert spaces, using operator matrices.

In this paper, applying a purely algebraic technique, we characterize the MoorePenrose inverse of an element in a ring with involution in terms of EP, normal, bi-EP, bi-normal, l-quasi-EP, r-quasi-EP, l-quasi-normal, r-quasi-normal and $*_{\text {- }}$ cancellable elements, generalizing the results from [6]. Thus, we show that the properties of operator matrices are not necessary for the characterization of the MoorePenrose inverse.

2. Results

In the first theorem, if x is an 1-inverse of a, we present necessary and sufficient conditions for x to be a 3 -inverse of a.

Theorem 2. Let $a \in \mathcal{R}$ such that $a\{1\} \neq \varnothing$. If $x \in a\{1\}$, then the following statements are equivalent:
(i) ax is self-adjoint;
(ii) $a x$ is $E P$;
(iii) $a x$ is right *-cancellable and normal;
(iv) $a x$ is $b i-E P$;
(v) ax is *-cancellable and bi-normal;
(vi) $a x$ is l-quasi-EP;
(vii) $a x$ is r-quasi-EP;
(viii) ax is left *-cancellable and l-quasi-normal;
(ix) ax is right *-cancellable and r-quasi-normal.

Proof. (i) \Rightarrow (ii)-(ix): Because $a x$ is self-adjoint idempotent, we deduce that $a x \in \mathcal{R}^{\dagger}$ and $(a x)^{\dagger}=a x$. So, the statements (ii)-(ix) hold.
(ii) \Rightarrow (i): Since $a x$ is EP, then $a x \in \mathcal{R}^{\dagger}$ and $(a x)^{\dagger} a x=a x(a x)^{\dagger}$. Thus,

$$
a x=a x(a x)^{\dagger} a x=a x a x(a x)^{\dagger}=a x(a x)^{\dagger}
$$

is self-adjoint.
(iii) \Rightarrow (i): If $a x$ is right *-cancellable and normal, then $(a x)^{*}$ is left *-cancellable and $a x(a x)^{*}=(a x)^{*} a x$. Multiplying this equality by $a x$ from the left side, it follows

$$
a x(a x)^{*}=a x(a x)^{*} a x
$$

Using *-cancellation, we get $(a x)^{*}=(a x)^{*} a x$, i.e. $a x=(a x)^{*} a x$ is self-adjoint.
(iv) \Rightarrow (i): Suppose that $a x$ is bi-EP, that is, $a x \in \mathcal{R}^{\dagger}$ and

$$
a x(a x)^{\dagger}(a x)^{\dagger} a x=(a x)^{\dagger} a x a x(a x)^{\dagger}
$$

Now, we get

$$
\begin{aligned}
{\left[(a x)^{\dagger}\right]^{*} } & =\left[(a x)^{\dagger} a x(a x)^{\dagger}\right]^{*}=\left[(a x)^{\dagger} \operatorname{axax}(a x)^{\dagger}\right]^{*} \\
& =\left[\operatorname{ax}(a x)^{\dagger}(a x)^{\dagger} a x\right]^{*}=(a x)^{\dagger} \operatorname{axax}(a x)^{\dagger} \\
& =(a x)^{\dagger} a x(a x)^{\dagger}=(a x)^{\dagger}
\end{aligned}
$$

which implies $(a x)^{*}=\left(\left[(a x)^{\dagger}\right]^{*}\right)^{\dagger}=\left[(a x)^{\dagger}\right]^{\dagger}=a x$.
(v) \Rightarrow (i): Let $a x$ be *-cancellable and bi-normal. Then

$$
a x(a x)^{*}(a x)^{*} a x=(a x)^{*} \operatorname{axax}(a x)^{*}
$$

gives

$$
a x(a x)^{*} a x=(a x)^{*} a x(a x)^{*}
$$

Multiplying the previous equality by $a x$ from the left side, we obtain

$$
\begin{equation*}
a x(a x)^{*} a x=a x(a x)^{*} a x(a x)^{*} \tag{2.1}
\end{equation*}
$$

Since $a x$ and $(a x)^{*}$ are *-cancellable, by (2.1), $a x=a x(a x)^{*}$ is self-adjoint.
(vi) \Rightarrow (i): Because $a x$ is l-quasi-EP, we have that $a x \in \mathcal{R}^{\dagger}$ and

$$
a x(a x)^{\dagger} a x=(a x)^{\dagger} a x a x
$$

implying $a x=(a x)^{\dagger} a x$ is self-adjoint.
(vii) \Rightarrow (i): Similarly as (vi) \Rightarrow (i).
(viii) \Rightarrow (i): Assume that $a x$ is left $*$-cancellable and l-quasi-normal. We deduce that $(a x)^{*}$ is right $*$-cancellable and

$$
a x(a x)^{*} a x=(a x)^{*} a x a x=(a x)^{*} a x
$$

which yield $a x(a x)^{*}=(a x)^{*}$. Hence, $a x(a x)^{*}=a x$ is self-adjoint.
(ix) \Rightarrow (i): In the same way as in the part (viii) \Rightarrow (i).

The following result can be checked similarly as Theorem 2.
Corollary 1. Let $a \in \mathcal{R}$ such that $a\{1\} \neq \varnothing$. If $x \in a\{1\}$, then the following statements are equivalent:
(i) ax is self-adjoint;
(ii) $a x$ is $E P$;
(iii) $a x \in \mathcal{R}^{\dagger}$ and ax is normal;
(iv) $a x$ is $b i-E P$;
(v) $a x \in \mathscr{R}^{\dagger}$ and $a x$ is bi-normal;
(vi) $a x$ is $l-q u a s i-E P$;
(vii) $a x$ is r-quasi-EP;
(viii) $a x \in \mathcal{R}^{\dagger}$ and ax is l-quasi-normal;
(ix) $a x \in \mathcal{R}^{\dagger}$ and $a x$ is r-quasi-normal.

Proof. Since $a x \in \mathcal{R}^{\dagger}$, by [5, Theorem 5.3], we deduce that $a x$ is *-cancellable. The rest of this proof follows as in the proof of Theorem 2.

For an 1 -inverse x of a, several equivalent conditions which insure that x is 4inverse of a are given now.

Theorem 3. Let $a \in \mathcal{R}$ such that $a\{1\} \neq \varnothing$. If $x \in a\{1\}$, then the following statements are equivalent:
(i) $x a$ is self-adjoint;
(ii) $x a$ is $E P$;
(iii) $x a$ is left *-cancellable and normal;
(iv) $x a$ is $b i-E P$;
(v) $x a$ is *-cancellable and bi-normal;
(vi) $x a$ is r-quasi-EP;
(vii) $x a$ is $l-q u a s i-E P$;
(viii) $x a$ is right $*$-cancellable and r-quasi-normal;
(ix) $x a$ is left *-cancellable and l-quasi-normal.

Proof. For $x \in a\{1\}$ such that $x a$ satisfies any of the conditions (i)-(ix), we have that $x^{*} \in a^{*}\{1\}$ such that $a^{*} x^{*}$ satisfies any of the conditions (i)-(ix) of Theorem 2. Applying Theorem 2, we verify this result.

In the main result of this article, weaker conditions than those given in Penrose equations for an element x to be the Moore-Penorose inverse of a are given.

Theorem 4. Let $a \in \mathcal{R}$ such that $a\{1,2\} \neq \varnothing$ and $x \in a\{1,2\}$. If ax satisfies any of the conditions (ii)-(ix) of Theorem 2 and xa satisfies any of the conditions (ii)-(ix) of Theorem 3, then x is the Moore-Penrose inverse of a.

Proof. This result is a consequence of Theorem 2 and Theorem 3.
The preceding theorems hold in rings with involution assuming in some conditions that $a x$ and $x a$ are left or (and) right *-cancellable which is automatically satisfied in C^{*}-algebras and *-reducing rings. Thus, we recover the results in [6] for Hilbert space operators.

In a unital C^{*}-algebra \mathcal{A}, since $a \in \mathscr{A}$ is Moore-Penrose invertible if and only if $a\{1\} \neq \varnothing$ (see [3]), we get the following result as a consequence of Theorem 4.

Corollary 2. Let $a \in \mathcal{A}$ such that $a\{1\} \neq \varnothing$ and $x \in a\{1,2\}$. If both $a x$ and $x a$ satisfy any of the statements:
(i) $E P$;
(ii) normal;
(iv) $b i-E P$;
(v) bi-normal;
(vi) $l-q u a s i-E P$;
(vii) r-quasi-EP;
(viii) l-quasi-normal;
(ix) r-quasi-normal,
then x is the Moore-Penrose inverse of a.
By corresponding examples in [6], it is showed that conditions (i)-(ix) of Corollary 2 are weaker that one of being self-adjoint and can be adopted to define the MoorePenrose inverse.

Aknowledgement

The author is supported by the Ministry of Science, Republic of Serbia, grant No. 174007.

REFERENCES

[1] D. M. c and D. S. Djordjević, "Moore-penrose-invertible normal and hermitian elements in rings," Linear Algebra Appl., vol. 431, no. 5-7, pp. 732-745, 2009, doi: 10.1016/j.laa.2009.03.023.
[2] T. Furuta, Invitation to linear operators. New York: Taylor and Francis, 2001.
[3] R. E. Harte and M. Mbekhta, "On generalized inverses in c^{*}-algebras," Studia Math, vol. 103, pp. 71-77, 1992.
[4] R. E. Hartwig and K. Spindelböck, "Matrices for which a^{*} and a^{\dagger} commute," Linear Multilinear Algebra, vol. 14, pp. 241-256, 1984, doi: 10.1080/03081088308817561.
[5] J. J. Koliha and P. Patrí, "Elements of rings with equal spectral idempotents," J. Australian Math. Soc., vol. 72, pp. 137-152, 2002.
[6] S. B. Malik and N. Thome, "On a revisited moore-penrose inverse of a linear operator on hilbert spaces," 2017," doi: 10.2298/FIL1707927M.
[7] R. Penrose, "A generalized inverse for matrices," Proc. Cambridge Philos. Soc., vol. 51, pp. 406413, 1955, doi: 10.1017/S0305004100030401.

Author's address

Dijana Mosić

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia
E-mail address: dijana@pmf.ni.ac.rs

