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Abstract. We study so-called near semirings endowed with an antitone involution. Such a near
semiring is in fact a bounded lattice which has one more binary operation, the multiplication.
We classify several families of bounded lattices which can be organized in such near semirings,
e.g. chains or orthomodular lattices. A particular case are the so-called balanced near semirings
which form a variety which is congruence distributive, permutable and regular.
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1. INTRODUCTION

The concept of a near semiring was introduced by the authors in [3]. It seems to be
useful in order to axiomatize certain so-called quantum structures, e.g. basic algeb-
ras, MV-algebras and orthomodular lattices. With respect to addition, near semirings
used in these representations are in fact join semilattices with an additional operation,
which is multiplication. Hence, in every such a near semiring there can be introduced
a semilattice order and these near semirings can be considered to be ordered. Among
other things this means that if an antitone involution is introduced, such a near semir-
ing becomes a lattice with multiplication. The question arises which lattices can be
equipped with a suitable multiplication in order to become a near semiring with an-
titone involution. In the present paper we will study this problem and provide partial
solutions. Adding some natural identities to the axioms of a near semiring with in-
volution we obtain so-called balanced near semirings. They form a variety having
very strong congruence properties. Namely, this variety turns out to be congruence
distributive, permutable and regular.

We start with the following definition:
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Definition 1. A near semiring is an algebra R = (R, +,-,0, 1) of type (2,2,0,0)
such that (R, 4,0) is a commutative monoid and R satisfies the following identities:

o (x+y)z &~ xz+ yz (so-called right distributivity),
e X0~ 0x~0,
o xl~ lx~x.

R is called

e commutative if it satisfies xy ~ yx,

e idempotent if it satisfies x + x ~ x,

o multiplicatively idempotent if it satisfies xx = x,

e a semiring if it satisfies (xy)z ~ x(yz) and z(x + y) ~ zx + 2.

If R is idempotent then we define a partial order relation < on R by
x <yifandonlyifx+y = y.

Then (R, <) is a poset with smallest element O since it corresponds to the join-
semilattice (R,+). In the following we will call < the induced order of the near
semiring R.

If R is a commutative semiring which is multiplicatively idempotent then we can
define a partial order relation <; on R by

x <y yifand only if xy = x

(x,y € R). Of course, the partial order relations < and <; may be different as we
will see later.
Now we define our main concept.

Definition 2. A near semiring with involution is an algebra R = (R, +,-,,0,1)
of type (2,2,1,0,0) such that (R,+,-,0,1) is an idempotent near semiring and the
following conditions hold for all x,y € R:

(a) If x < y then y’ < x'.
(b) (") =x.

Let N denote the class of near semirings with involution. Directly by definition, N
is a variety. R € N is called a semiring with involution if (R, +,-,0,1) is a semiring.
Let & denote the class of semirings with involution. Clearly, also § is a variety.

Lemma 1. EveryR = (R, +,-/,0,1) € N satisfies (x +y) +x' ~ x'.

Proof. For a,b € R we have a < a + b and hence (a + b)’ < a’ which shows
(a+b)+a =ad. O

It is almost evident that condition (a) of Definition 2 can be replaced by the identity
from Lemma 1.
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2. DUALS OF NEAR SEMIRINGS WITH INVOLUTION

In what follows, we use the antitone involution in order to show that the concept
of a near semiring with involution can be dualized. Although (R, +,-) need not be a
lattice, we can define new operations as follows by using the De Morgan laws.

Definition 3. For every R = (R,+,-/,0,1) € N define an algebra R’ :=
(R,+,7), 0,1y byx+"y:=(x'+y)Y and x'y := (x'y’) forall x,y € R. The
algebra R’ will be called the dual of R.

Of course, if R = (R,+,-/,0,1) € N then the induced algebra L(R) :=
(R,+.4+’,,0,0') is a bounded lattice with an antitone involution and hence it sat-
isfies the De Morgan laws.

We can prove the following statement concerning the dual of R.

Theorem 1. If R = (R,+,-/,0,1) € N then R' := (R,+',”,,0/,1") € N and
(R)Y = R. The mapping h(x) = x’ is an isomorphism from R onto R’. Moreover,
R € 8 ifand only ifR € §.

Proof. Tt is easy to check that (R,+’,”,0’,1") is an idempotent near semiring
whose induced order is >. Hence R’ satisfies the corresponding conditions men-
tioned in Definition 2. Now (R’)’ = R follows by a straightforward calculation. The
remaining assertions are immediate. U

Let us recall that a ternary term m(x, y, z) is called a majority term in a variety V
if it satisfies the identities

m(x,x,y)~m(x,y,x) ~m(y,x,x) ~ Xx.

It is well-known that if 'V has a majority term then it is congruence distributive, see

e.g. [2].
The following important result follows directly from the fact that (R, +,+') is a
lattice as mentioned above.

Theorem 2. The variety N has the majority term
m(x,y.2)=x+y)+ (y+2)+ (@+x)

and hence is congruence distributive.

3. ORTHO NEAR SEMIRINGS

Up to now, we did not assume the involution to have some more important prop-
erties. This will be done now. In what follows we will ask the involution to be a
complementation in the induced bounded lattice (R, +,+’,0,0). Hence we define

Definition 4. A member of N is called an ortho near semiring if it satisfies x +
x" = 0. If, in addition, it belongs to -8 then it is called an orthosemiring.
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It is evident that in this case also the identity x +’ x” &~ 0 holds and that the dual
of an ortho near semiring is an ortho near semiring again. It is clear that the class of
ortho near semirings forms a variety.

Example 1. Let R = {0,a,b, 1} and define binary operations + and - and a unary
operation’ on R by

~

+]0 a b 1 -0 a b 1 x| x
0/0 a b 1 0/{0 0 0 O 0| a
ala a a a al0 a b a al 0
b|b a b a b|0 b b b b|1
111 a a 1 110 a b 1 1|5

Then R = (R, +,-/,0,1) is an orthosemiring and the Hasse diagram of its induced
order looks as follows: a

0

Hence (R, +,+') is in fact a distributive lattice which is not a chain. Since R is,
moreover, multiplicatively idempotent, commutative and associative, we can intro-
duce the order <; induced by multiplication. For this order we have 0 <; b <j a <1 1
which is a chain.

An example of an ortho near semiring whose induced lattice is not distributive is
shown in the following

Example 2. Let R = {0,a,b,c,d, 1} and define binary operations + and - and a
unary operation’ on R by

~

+10 a b ¢ d 1 -0 a b ¢ d 1 x| x
0/0 a b ¢ d 1 0/0 0O OO O O 01
ala a 1 1 1 1 al0 a b 0 d a alc
bbb 1 b1 1 1 b|0 a b ¢ 0 b b|d
cle 1 1 ¢ 1 1 c|0 0 b ¢ d c c|a
d|ld 1 1 1 d 1 d|0 a 0 ¢ d d d|b
11 1 1 1 1 1 110 a b ¢ d 1 110

Then R = (R, +,-,/,0,1) is an ortho near semiring the Hasse diagram of its induced
order looks as follows:
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R is neither an orthosemiring since (ab)c = bc = ¢ # 0 = ac = a(bc) nor commut-
ative since cd =d # ¢ = dc.

4. CONSTRUCTIONS OF NEAR SEMIRINGS WITH INVOLUTION

Now we investigate the question which bounded lattices (L,V,A,’,0,1) can be
equipped with a binary operation of multiplication in such a way that (L, V,-,,0,1)
becomes a near semiring with involution and (L, V,-) is not a lattice.

If (L,Vv,A,0,1) is a bounded lattice and a € L we call the interval [0,a] a section.
We say that the mapping x — x¢ from [0, «] to [0, a] is a sectional antitone involution
on ([0,a], <) if (x*)? = x and x < y implies y¢ < x? for each x,y € [0,a].

Theorem 3. Let (L,V,A,0,1) be a bounded lattice where for each a € L there
exists a sectional antitone involution ® on the section [0,a]. Define xy := (x' A y)”
forall x,y € L. Then (L,V, 1o, 1) is a near semiring with involution.

Proof. Itisevident that (L, V,0) is an idempotent commutative monoid. Moreover,
(xvy)z=((xv' At =" Ayt A= (' A A AZ)?
=(x!'A2)P Vv Az = (x2) vV (y2),
x0=(x'A00°=0"=0,
0x = (0' Ax)* =x¥ =0,
xl=(x'AD=(xH! =x and
Ix=(1'Ax)*=0"=x
forall x,y,z € L. O

For the reader’s convenience let us recall that an orthocomplemented lattice is a
bounded lattice L = (L, Vv, A,’,0,1) with an antitone involution satisfying the iden-
tities x Vx’ ~ 1 and x A x” & 0.

Not for every orthocomplemented lattice (L,V,A,”,0,1) there exists a multiplic-
ation - such that (L, V,-,,0,1) becomes an ortho near semiring. A certain sufficient
condition for this will be given in the next corollary.
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Corollary 1. If (L,Vv,A,,0,1) is an orthocomplemented lattice such that for
every a € L there exists a sectional antitone involution * on ([0,a], <) such that ' =’
and xy := (x’ Ay)? forall x,y € L then (L,V,-,,0,1) is an ortho near semiring.

For finite chains the antitone involution is determined uniquely and we can prove
that there exists a multiplication such that the induced near semiring is even a

semiring.

Theorem 4. Let L = (L,Vv,A,,0,1) be a finite chain with antitone involution
containing more than two elements. Then there exists a binary operation - on L such
thatR = (L,Vv,-/,0,1) € 8 and (L,V,-) is not a lattice.

Proof. Without loss of generality we can assume L = {1,...,n} with an integer
n > 2 and we define an order on L as follows: l <3 <:---<n—1l<n<---<4<2
ifnisevenand 1 <3 <:--<n<n—1<---<4<2ifnis odd and denote by ’the
unique antitone involution on (L, <). As proved in [5], if - denotes the minimum
operation on L with respect to the natural ordering <; of integers then (L, V,-,0,1)
is a commutative idempotent semiring and hence R = (L, V,-,,0,1) € 8. Because

of <#<4, (L,V,-) is not a lattice. O

Theorem 5. For every infinite cardinal k there exists a bounded chain L =
(L,v,A,,0,1) of cardinality k with an antitone involution and a binary operation -
on L such thatR = (L,v,-,0,1) € 8 and (L,V,-) is not a lattice.

Proof. Let (C,<,,0,1) be a bounded chain of infinite cardinality k, put L :=
C x {1,2} and define binary relations < and <; and a unary operation ' on L as
follows:

e (x,i) = (y.j)ifeither ((i,j) = (1,1) and x <5 y) or (i,j)=(1,2) or ((i, ) =
(2,2) and x =5 y),
e (x,i) <y (y,j)ifeitherx <a yor(x =yandi <j),
o (x,i) :=(x,3—1)
for (x,i),(y,j) € L. Then (L, <,(0,1),(0,2)) and (L, <1,(0,1),(1,2)) are bounded
chains of cardinality X and ’ is an antitone involution on (L,<). Let L =
(L,v,A,,(0,1),(0,2)) denote the bounded lattice with antitone involution corres-
ponding to (L, <). Then L is a chain of cardinality k with an antitone involution
as proved in [5]. If - denotes the minimum operation on L with respect to <; then
(L,Vv,-,0,1) is a commutative idempotent semiring and hence R = (L, V,-,,0,1) €
&. Because of <#<1, (L, V,-) is not a lattice. O

For the reader’s convenience let us recall that an orthomodular lattice is an or-
thocomplemented lattice L = (L, V, A, ,0, 1) satisfying the identity x V y ~ x Vv ((x V
y)AX).

Now we can show that also every orthomodular lattice L = (L, Vv, A,”,0,1) can be

equipped with a multiplication operation - in such a way that (L, V,-,,0,1) becomes
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an ortho near semiring such that (L, V,-) is not a lattice provided L is not a Boolean
algebra.

As it was defined in [6] and [1], two elements a,b of an orthomodular lattice
L = (L,v,A/,0,1) are said to commute with each other, in symbols aCbh if a =
(a Ab)V (a AD"). The following result can be found in [6] and [1]:

Proposition 1. If L = (L,Vv,A,”,0,1) is an orthomodular lattice and a,b,c € L
then the following hold:

(1) IfaCbhb then bCa and aCb'.

(2) Ifa <b thenaCh.

(3) If one of the three elements a,b,c commutes with the remaining two then the
distributive laws hold for a, b, c.

(4) L is a Boolean algebra if and only if any two elements commute with each
other.

Now we are ready to get a positive answer to the previous question in the case of
orthomodular lattices.

Theorem 6. Let L = (L,V,A,,0,1) be an orthomodular lattice which is not
a Boolean algebra. Then there exists a binary operation - on L such that R =
(L,v,-/,0,1) is an ortho near semiring and (L, V,-) is not a lattice.

Proof. Let a,b,c € L. Define a binary operation - on L by ab := (a vV b') A b.
Since ¢’ <a v and ¢/ < b Vv’ we have by Proposition 1(2) that ¢/Ca Vv ¢’ and
¢'Ch Vv ¢’. Again according to Proposition 1(1) we have cCa Vv ¢’ and ¢ Ch v ¢’ and
we can use distributivity for these elements (by Proposition 1(3)) and hence compute

(avb)e=(avb)yvcyrc=((av)v(bvc))ae
=((avc)rc)v((bvc')Ac)=acVbc.
By straightforward calculations it follows that R = (L,V,-,,0,1) is a ortho near
semiring. If (L, V,-) would be a lattice then we would have
a= @) =@b va) =((avb)Ab)yva) =(((a'Vvb)vad)s®d va))
=((d' Vb YAN(@ Vb)) =(arb)Vv(and),

i.e. a Cb and hence L would be a Boolean algebra (by Proposition 1(4)) contradicting
our assumption. This shows that (L, V,-) is not a lattice. O

The following example shows that there exist orthocomplemented lattices
(L,v,A,,0,1) which are not orthomodular but have an antitone involution on
every section ([0,a], <) and hence according to Corollary | can be converted into
an ortho near semiring:
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5. VARIETIES OF NEAR SEMIRINGS WITH INVOLUTION

In the remaining part of our paper we investigate some varieties of near semirings
with involution. For this purpose we define the following:

Let R = {0,a, 1} and define binary operations + and - and a unary operation ’ on
R by

/

+‘Oa1 0 a 1 X | x
0/0 a 1 00 0 O 0|a
ala a a al0 a a al| 0
111 a 1 110 a 1 1)1

Then (R, +,-,0,1) is a commutative idempotent semiring which was denoted by S3
in [5] and S’3 :=(R,+,-/,0,1) € 8. The induced order of S3 is 0 < 1 < a. However,
the order induced by multiplication is as follows: 0 <y a <; 1. Thus <#<; and
hence (R, +,-) is not a lattice.

As pointed out in [5], a prominent role plays the variety V(S3) generated by the
near semiring S3. If we endow S3 with an antitone involution, we can ask about the
properties of the variety 'V(S}) generated by S5. It is rather surprising that contrary
to V(S3), which is residually large, 'V(S5) has completely different properties.

It was shown in [5] that S3 is a subdirectly irreducible semiring and in [4] that
V(S3) is the variety of commutative idempotent and multiplicatively idempotent
semirings satisfying the identity x + y + xy & x + y and that it has a proper class of
subdirectly irreducible members. Contrary to this we can prove:

Theorem 7. The only subdirectly irreducible member of 'V(S%) is S.

Proof. Apparently, 'V(S}) is a subvariety of § which is in turn a subvariety of
M. By Theorem 2, V(S%) is congruence distributive. Since V(S}) is congruence
distributive and S} is finite, every subdirectly irreducible member of 'V(S}) belongs
to HS(S%) according to Jonsson’s Lemma. However, as can be easily verified, S5 has
no proper subalgebras and it is simple and hence it has no non-trivial homomorphic
image. This shows that S is the only subdirectly irreducible member of V(S5). [
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Very strong congruence properties have varieties of ortho near semirings satisfying
a certain more or less natural property. Hence we define:

Definition 5. A balanced near semiring is an ortho near semiring R =
(R,+,-/,0,1) satisfying ((x +y) 4+ y) + x ~ x. Let B denote the class of bal-
anced near semirings.

This identity is surely satisfied in an ortho near semiring provided the elements x
and y are comparable. Namely, if x < y then x + y = y and thus ((x + y)' + y)' +
x=0'4y)+x=0)+x=0+x=xand,if y<xthen (x+y) +y) +x=
(x"+y) +x = (x+"y’)+x = x according to the absorption law.

Remark 1.

(1) Of course, B is a variety.

(2) Every bounded distributive lattice with an antitone involution belongs to 3.

(3) We have 8 C N and hence 8 is congruence distributive according to The-
orem 2.

Theorem 8. The variety 8B is congruence permutable and hence arithmetical.
Proof. If R=(R,+,-/,0,1) € B,a,b,c € R and
p(x.y.2) = (((x"+») +2) + (" +») +x))
for all x,y,z € R then
pla,a,b) = (((@+a) +b) +((d'+a) +a)) = + (b +a) +a))
= (' +a) +a) +b") = (') =b and
p(x,y,2) = p(z,y,x) forall x,y,z € R and hence

pla,b,b)=a
which shows that p is a Malcev term proving congruence permutability of 8. Ac-
cording to Remark 1(3), 8 is arithmetical. ]

Recall that a variety 'V is called congruence regular if for every A = (A, F) eV
and each a € A and for every ©®, @ € ConA the equality [a]® = [a]® implies & = P.
It is well-known (cf. [2]) that a variety 'V is congruence regular if and only if there
exists a positive integer n and ternary terms t1,...,%, such that #;(x,y,z) =--- =
tn(x,y,z) = z is equivalent to x = y.

Theorem 9. The variety 8B is congruence regular.

Proof. LetR= (R, +,-/,0,1) € B and a,b,c € R and put
n(x,y,2) =@ +y) 4+ (x+y") +zand
(x.y.z) = ((x+ ) + (" +y) +2)
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for all x,y,z € R. A straightforward calculation shows t1(a,a,b) = ta(a,a,b) = b.
Conversely, assume t1(a,b,c) = tz(a,b,c) = c. Then (¢’ +b) + (a +b’) < c and
(@a+b') +(a +b) <c"whence ((a+b") + (@’ +b)) >(c') =cand (@' +b) +
(@+bY < ((@+b') + (@ +b)). Hence (a’ +b) < ((a’ +b)) =a +b and
(@a+b'Y <((@a+b")) =a+b'. From this we obtaina +b" =a’ +b = 0'. Now we
have

a=(a) =@ +b)+b)+d) =(0+b) +a") =" +a) <)
=b<b+a=0+b)Y+a={(a+b)+b)Y+a=a

whence a = b. This shows that #; and f, are Csakany terms proving congruence
regularity of B (cf. [2]). U
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