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Abstract. Sufficient conditions guaranteeing the unique existence of a bounded solution of quasi-
linear boundary value problems are established and a successive approximation method for con-
structing the solution is described, together with the proof of the stability of the used method.
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1. INTRODUCTION

On RC we consider the boundary value problem for the quasi-linear differential
system:

x0.t/D P.t/x.t/Cf .t;x.t//; (1.1)

`.x/D h.x/; (1.2)

where P 2 Lloc.RC;Rn�n/, ` W Cloc.RC;Rn/! Rn is linear bounded functional,
h W Cloc.RC;R

n/! Rn is continuous and generally nonlinear operator and f W RC�
Rn! Rn is a function satisfying the local Caratheodory conditions :

(1) f .�;x/ W RC! Rn is a measurable function for an arbitrary x 2 Rn,
(2) f .t; �/ W Rn! Rn is a continuous function for almost every t 2 RC,
(3) 8r > 0 9kr 2L.RCIRC/ such that kf .t;x/k� kr.t/ for almost every t 2RC

and x 2 Rn such that kxk � r .

If we put f .t;x.t//� q.t/ and h.x/� c0 we get from the problem (1.1), (1.2) the
linear boundary value problem for ordinary differential equations on RC which was
studied in [3].

The solvability of boundary value problems for ordinary differential systems on
RC is studied in much bibliography, for example in monograph [1] and publications
[3, 5, 7] and in references mentioned there. The construction methods of the solution
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of boundary value problems for systems of ordinary linear differential equations on
closed interval is studied for example in �4.5. of monograph [4].

In Miskolc Mathematical Notes there are authors studying similar problems, the
solutions of quasilinear differential equations on RC in publication [2] and problems
of integral-differential equations in publication [8].

In this work Theorems 1 and 2 provide the criteria of solvability and uniqueness
solvability including the construction method of successive aproximations for gener-
ally nonlinear boundary value problems on RC. Theorem 3 proves the stability of the
method used for constructing the solution.

By a solution of system (1.1) on RC it is uderstood a local absolutely continuous
vector function x 2 Cloc.RC;Rn/ which is bounded on RC, i.e.

supfkx.t/k W t 2 RCg<C1;

and satisfies the equation (1.1) for almost every t 2 RC. A solution of system (1.1)
satisfying condition (1.2) is called a solution of problem (1.1), (1.2) on RC.

Basic notation:
RD .�1;C1/, RC D Œ0;1/,
Rn – the space of n-dimensional column vectors x D .xi /niD1 with the norm

kx k D

nX
iD1

jxi j and jxj D .jxi j/
n
iD1;

Rn
C
D fx D .xi /

n
iD1 2 Rn W xi 2 RC.i D 1; : : : ;n/g;

Rn�n – the space of n�n matrices X D .xij /ni;jD1 with the norm

kX k D

nX
i;jD1

jxij j and jX j D .jxij j/
n
i;jD1;

Rn�n
C
D fX D .xij /

n
i;jD1 2 Rn�n W xij 2 RC .i;j D 1; : : : ;n/g:

if x;y 2 Rn and X;Y 2 Rn�n, then

x � y” y�x 2 RnC; X � Y” Y �X 2 Rn�nC :

For the matrix X D .xij /ni;jD1 2 Rn�n by the notation Xd and X
d

we mean

Xd D

0BB@
x1 0 : : : 0

0 x2 : : : 0

: : : : : : : : : : : : : : : :

0 0 : : : xn

1CCA ; X
d
D

0BB@
0 x12 : : : x1n
x21 0 : : : x2n
: : : : : : : : : : : : : : : : : : :

xn1 xn2 : : : 0

1CCA ;
det.X/ – the determinant of the matrix X ,
r.X/ – the spectral radius of the matrix X ,
X�1 – the inverse matrix to X ,
E – the unit matrix,
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C.RC;Rn/ – the space of continuous and bounded vector functions1 x W RC! Rn

with the norm

kxkC D supfkx.t/k W t 2 RCg and jxjC D .kxikC /
n
iD1;

L.RC;Rn/ – the space of integrable vector functions x W RC! Rn with the norm

kxkL D

Z C1
0

kx.t/kdt and jxjL D .jxi jL/
n
iD1;

L.RC;Rn�n/ – the space of integrable matrix functions X W RC ! Rn�n with the
norm

kXkL D

Z C1
0

kX.t/kdt and jX jL D .jxij jL/
n
i;jD1;

if X 2 C.RC;Rn�n/ is a matrix function with columns x1; : : : ;xn and
` W C.RC;Rn/! Rn is a linear functional, then `.X/ stands for the matrix function
with columns `.x1/; : : : ;`.xn/.

2. RESULTS

To formulate the Theorem on solvability of the problem (1.1), (1.2) we need to
formulate the following estimates 8x;y 2 C0.RC;Rn/ :

jf .t;x/�f .t;y/j � NL.t/jx�yjC

where NL.t/ 2 L.RC;Rn�n/,

jh.x/�h.y/j �H jx�yjC

where H 2 Rn�n is constant matrix and

j`.x/j � Ǹ.jxj/;

where Ǹ W C0.RC;Rn/! Rn is linear positive bounded functional. Moreover we use
the notations:

P �d D sup
�Z t

t0

Pd .s/ds W t 2 RC

�
;

P � D sup
�ˇ̌̌̌Z t

t0

exp
�Z t

s

Pd .�/d�

�
jP
d
.s/jds

ˇ̌̌̌
W t 2 RC

�
;

f � D sup
�ˇ̌̌̌Z t

t0

exp
�Z t

s

Pd .�/d�

�
j NL.s/jds

ˇ̌̌̌
W t 2 RC

�
;

where t0 2 RC.

1A vector or matrix function is said to be continuous, bounded, integrable etc., if such are its
elements
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Theorem 1. Assume that P �
d
;P � and Ǹ.E/, defined previously, satisfy the condi-

tion

kP �d kCkP
�
kCk Ǹ.E/k<C1; (2.1)

the matrix

�D `.exp
Z :

t0

Pd .s/ds/ is nonsingular (2.2)

and

r.S/ < 1 (2.3)

where
S D P �Cf �C��d j�

�1
j
�
H C Ǹ.E/.P �Cf �/

�
; (2.4)

and

��d D sup
�

exp
Z t

t0

Pd .�/d� W t 2 RC

�
:

Then the problem (1.1), (1.2) has just one solution.

To prove Theorem 1 we shall need to formulate the following statement that cor-
responds with the methods used in publications of I.Kiguradze (see [4, 5, 7] and the
bibliography mentioned there). To get the effective criteria of solvability of the con-
sidered problem we use one of the methods presented in �1.3. of [6].

Proposition 1. Every solution of the problem (1.1), (1.2) is also a solution of an
operator equation

x D T x (2.5)

where

T x D

Z t

t0

exp
�Z t

s

Pd .�/d�

��
P
d
.s/x.s/Cf .s;x.s//

�
dsC exp

�Z t

t0

Pd .�/d�

�
���1

�
h.x/�`

�Z :

t0

exp
�Z :

s

Pd .�/d�

��
P
d
.s/x.s/Cf .s;x.s//

�
ds

��
(2.6)

where t0 2 RC is an arbitrary fixed point. And from the other side, every solution of
the operator equation (2.5) is also a solution of the problem (1.1), (1.2).

Proof. Let x.t/ be a solution of the problem (1.1), (1.2). Then by integration of
(1.1) we get

x.t/D x.t0/exp
�Z t

t0

Pd .�/d�

�
C

Z t

t0

exp
�Z t

s

Pd .�/d�

�h
P
d
.s/x.s/Cf .s;x.s//

i
ds: (2.7)
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To calculate x.t0/ we shall substitute x(t) in the left side of the boundary condition
(1.2) and with use of the linearity of the functional ` we get

h.x/D `

�
exp

�Z �
t0

Pd .�/d�

��
x.t0/

C`

�Z �
t0

exp
�Z �

s

Pd .�/d�

�h
P
d
.s/x.s/Cf .s;x.s//

i
ds

�
:

Then according to (2.2) we obtain

x.t0/D�
�1

�
h.x/�`

�Z �
t0

exp
�Z �

s

Pd .�/d�

�h
P
d
.s/x.s/Cf .s;x.s//

i
ds

��
:

By substituting x.t0/ back in (2.7) we get (2.6).
From the other side, if x.t/ is a solution of (2.5) then it satisfies the condition (1.2),

because by substituting t0 for t in (2.6) we get:

x.t0/D�
�1

�
h.x/�`

�
x.�/�x.t0/exp

�Z t

t0

Pd .�/d�
���

;

and then with use of linearity of `we get (1.2). By derivating of (2.5) we get equation
(1.1). It means that the solution x.t/ is also the solution of the problem (1.1), (1.2).

�

Proof of Theorem 1. To deduce the sufficient criterias of the solvability of the
equation (2.5) we have to prove the contractivity of the operator T W C0.RC;Rn/!
C0.RC;Rn/, where C0.RC;Rn/ is a subspace of the space Cloc.RC;R

n/ with
bounded functions on RC. This space is a Banach space with a supreme norm and
thus the operator T displays a Banach space into itself. Let’s make the following
estimation:

jT x�TyjC �

ˇ̌̌̌Z t

t0

exp
�Z t

s

Pd .�/d�
�
P
d
.s/ Œx.s/�y.s/�

ˇ̌̌̌
C

C

ˇ̌̌̌Z t

t0

exp
�Z t

s

Pd .�/d�
�
Œf .s;x.s//�f .s;y.s//�ds

ˇ̌̌̌
C

C

ˇ̌̌
exp

�Z t

t0

Pd .�/d�
�
��1 Œh.x/�h.y/�� exp

�Z t

t0

Pd .�/d�
�
��1

�`
�Z t

t0

exp
�Z t

s

Pd .�/d�
�
P
d
.s/ Œx.s/�y.s/�ds

C

Z t

t0

exp
�Z t

s

Pd .�/d�
�
Œf .s;x.s//�f .s;y.s//�ds

�ˇ̌̌
C

� .P �Cf �/jx�yjC

C��d j�
�1
j

h
H jx�yjC C Ǹ.E/.P

�
Cf �/jx�yjC

i
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D S jx�yjC

where

S D P �Cf �C��d j�
�1
j
�
H C Ǹ.E/.P �Cf �/

�
:

Thus, for x;y 2 C0.RC;Rn/, we get

kT x�TykC � kSkkx�ykC (2.8)

and since for S is valid r.S/ < 1we get kSk<1. Thus we proved that T is a contrac-
tion. The existence of the unique solution of the operator equation (2.5) follows from
Banach Theorem and by Lemma 1 this solution is also the solution of the problem
(1.1), (1.2). �

The construction of the solution of problem (1.1), (1.2) follows from Banach The-
orem.

Theorem 2. Suppose that all assumptions of Theorem 1 are fulfilled. Then the
problem (1.1), (1.2) has the solution x on RC which is a limit of the sequence of the
solutions of ancillary system:

x0mC1.t/D Pd .t/xmC1.t/CPd .t/xm.t/Cf .t;xm.t//; (2.9)

`.xmC1/D h.xm/; (2.10)

where m 2N and x1.t/ 2 C0.RC;Rn/ is arbitrary.

Proof. It is obvious that the solution to the ancillary system (2.9), (2.10) is equi-
valent with the solution to the operator equation

xmC1 D T xm (2.11)

where operator T is defined by (2.6), m 2N and t0 2 RC is an arbitrary given point.
Let x1.t/ be arbitrary. With respect to the contractivity of operator T and to Theorem
1 we shall prove that x2D T x1;x3D T x2; : : : ;xmD T xm�1;xmC1D T xm : : : is the
Cauchy sequence:

kxmC1�xmkC D kT xm�T xm�1kC � kSkkxm�xm�1kC

D kSkkT xm�1�T xm�2kC � kSk
2
kxm�1�xm�2kC : : :

� kSkm�1kx2�x1kC

where m 2N is arbitrary. By virtue of this we get for n > m;n 2N

kxn�xmkC � kxmC1�xmkC C�� �Ckxn�xn�1kC

� kSkm�1kx2�x1kC CkSk
m
kx2�x1kC C�� �CkSk

n�2
kx2�x1kC

D kx2�x1kC kSk
m�1.1CkSkC � � �CkSkn�m�1/

� kx2�x1kC kSk
m�1.1CkSkC : : : /D

kSkm�1

1�kSk
kx2�x1kC
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Let � > 0 be arbitrary. Since r.S/ < 1 then kSkm�1! 0 for m!1. Thus there
exists n0 2N such that for m� n0 the following holds:

kSkm�1kx2�x1kC
1

1�kSk
< �:

This implies kxn�xmkC < � for m;n � n0. Thus we proved that fxmg is a Cauchy
sequence. Since C0 is a complete space fxmg is convergent. That means xm! x0,
x0 2 C0. With respect to the Banach Theorem x0 is the only one fixed point of the
operator T and also the solution of the operator equation (2.11). This solution is also
the solution of the problem (2.9); (2.10). �

The following Theorem proves that the process of constructing the solution of
problem (2.9), (2.10) described above is stable in some sense, analogously to the
assertions published by I.Kiguradze in [4].

Theorem 3. Consider a sequence of vectors m 2 Rn .m D 1;2; : : : / and a se-
quence of vector-valued functions �m 2 L.RC;Rn/ .m D 1;2; : : : /. Let

P1
mD1 �m

be convergent where

�m D

�
kmkC sup

�Z t

t0

k�m.s/kds W t 2 R

��
and assume that all the conditions of Theorem 1 are satisfied. Then the solution x
on RC of problem (1.1), (1.2) is the limit of the sequence of solutions of ancillary
system:

x0mC1.t/D Pd .t/xmC1.t/CPd .t/xm.t/Cf .t;xm.t//C�m.t/; (2.12)

`.xmC1/D h.xm/Cm; (2.13)

where m 2N and x1.t/ 2 C0.RC;Rn/ is arbitrary.

Proof. To prove the theorem we have to show that the operator equation (2.11)
enriched with error function doesn’t breach the Cauchy property of the sequence
occurred in Theorem 2. Therefore we consider the operator equation

xmC1 D T xmCbT .�m;m/
where operator T is defined by (2.6) and

bT .�m;m/D Z t

t0

exp
�Z t

s

Pd .�/d�

�
�m.s/ds

C exp
�Z t

t0

Pd .�/d�

�
��1

�
m�`

�Z :

t0

exp
�Z :

s

Pd .�/d�

�
�m.s/ds

��
where m 2 N and t0 2 RC is an arbitrary given point. Now, to prove the stability
of the solution we show that also the sequence x2 D T x1CbT .�1;1/; : : : ;xm D
T xm�1CbT .�m�1;m�1/;xmC1 D T xmCbT .�m;m/ : : : is a Cauchy sequence,
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with respect to Theorem 1, 2 and to the contractivity of operator .T CbT /, analog-
ously to the proof of Theorem 2. In addition to (2.8) we need to make the following
estimation:

kbT .�m;m/�bT .�m�1;m�1/k
�

Z t

t0

exp
�Z t

s

Pd .�/d�
��
�m.s/ds��m�1.s/

�
ds


C

exp
�Z t

t0

Pd .�/d�
�
��1

�
m�m�1

�
C

exp
�Z t

t0

Pd .�/d�
�
��1`

�Z :

t0

exp
�Z :

s

Pd .�/d�
��
�m.s/��m�1

�
ds

�
�
��d j��1j�m�m�1�
C
��d .1Cj��1j Ǹ.E/��d /Z t

t0

�
�m.s/ds��m�1.s/

�
ds


� kc�kkm�m�1kCkS�k

Z t

t0

k�m.s/ds��m�1.s/kds

where

c� D��d j�
�1
j; S� D�

�
d .1Cj�

�1
j Ǹ.E/��d /:

Then

kxmC1�xmkC D kT xmCbT .�m;m/� .T xm�1CbT .�m�1;m�1//kC
� kTxm

�T xm�1kC CkbT .�m;m/�bT .�m�1;m�1/k
� kSkkxm�xm�1kCkc

�
kkm�m�1k

CkS�k

Z t

t0

k�m.s/ds��m�1.s/kds

� kSkkTxm�1
�T xm�2kC CkbT .�m�1;m�1/�bT .�m�2;m�2/k

Ckc�kkm�m�1kCkS�k

Z t

t0

k�m.s/ds��m�1.s/kds � : : :

� kSkm�1kx2�x1k

Ckc�k

mX
iD2

ki �i�1kCkS�k

mX
iD2

Z t

t0

k�i .s/��i�1.s/kds

where m 2N is arbitrary. For n > m;n 2N we get

kxn�xmkC D
kSkm�1

1�kSk
kx2�x1kC Ckc

�
k

mX
iD2

ki �i�1k
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CkS�k

mX
iD2

Z t

t0

k�i .s/��i�1.s/kds

Ckc�k

mC1X
iD2

ki �i�1kCkS�k

mC1X
iD2

Z t

t0

k�i .s/��i�1.s/kdsC

:::

Ckc�k

n�1X
iD2

ki �i�1kCkS�k

n�1X
iD2

Z t

t0

k�i .s/��i�1.s/kds

Ckc�k

nX
iD2

ki �i�1kCkS�k

nX
iD2

Z t

t0

k�i .s/��i�1.s/kds

�
kSkm�1

1�kSk
kx2�x1kC

C

nX
jDm

�
kc�kkj kCkS�ksup

�Z t

t0

k�j .s/kds W t 2 R

��
:

Convergency of
Pn
jD1 �j implies the convergency of the series of both addends of

�m and their linear combinations as well. Then by virtue of Theorem 2 the sequence
fxmg D fT xmCbT .�m;m/g is Cauchy and xm D T xmCbT .�m;m/! x0 2 C0
which is the solution of the problem (2.12), (2.13). �

Remark 1. If m D 0 and �m � 0 then from Theorem 3 we get immediately
Theorem 2. Thus Theorem 2 could be perceived as the corollary of Theorem 3. For
clearer view on calculations in proofs of both theorems it is convenient to formulate
first Theorem 2 separately and then Theorem 3 including the error function.

All consequences for linear boundary value problems published in [3] and analog-
ous statements for solutions of linear boundary value problems for nonlinear systems
of ordinary differential equations follow directly from Theorem 1 and Theorem 2.

The following example illustrates the case of nonlinear boundary value problem
for nonlinear system of ordinary differential equations:

x0i .t/D�xi .t/Cgi .t/sinxi .t/Cqi .t/; .i D 1; : : : ;n/;

xi .0/D ci cosxi .1/C c0i ; .i D 1; : : : ;n/;

where gi ;qi 2 Lloc.RC;R/;ci ; c0i 2 R .i D 1; : : : ;n/.
Then we have

P.t/��E � Pd .t/; P
d
.t/� 0;

f .t;x/D .gi .t/sinxi .t/Cqi .t//niD1;
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l.x/D .xi .0//
n
iD1; h.x/D .ci cosxi .1/C c0i /niD1

and then

jf .t;x/j � .jgi .t/jC jqi .t/j/
n
iD1; jh.x/j � .jci jC jc0i j/

n
iD1;

NL.t/� 0; NhD 0:

Because P �
d
D 0;P � D 0; Ǹ.E/ D E then it follows that condition (2.1) is fulfilled

on assumption

kgkLCkqkL <C1:

Then S D 0 which means that the differential equation has a unique solution.
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