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Abstract. Let �D .�n/ be a non-decreasing sequence of positive real numbers tending to1with
�nC1��nC1;�1D 1: In the present paper, we introduce the notion of�-statistical convergence
of order ˛, �-statistical Cauchy sequences of order ˛ in random 2-normed spaces and obtain
some results. We display examples which show that our method of convergence is more general
in random 2-normed space.
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1. INTRODUCTION AND BACKGROUND

The idea of the statistical convergence was given by Zygmund [25] in the first
edition of his monograph published in Warsaw in 1935. The concept of statistical
convergence was introduced by Fast [5] and Steinhaus [23] and then reintroduced
by Schoenberg [20] independently. Over the years, statistical convergence has been
developed in [3, 6, 7, 12, 16, 17, 24] and turned out very useful to resolve many con-
vergence problems arising in Analysis.

Definition 1 ([5]). A sequence x D .xk/ of numbers is said to be statistically
convergent to a number L if for every � > 0,

lim
n!1

1

n
jfk � n W jxk �Lj> �gj D 0;

where vertical bars denotes the cardinality of enclosed set. In this case, we write
S � limk!1xk D L.

In literature, several interesting generalizations of statistical convergence have
been appeared. One among these is �-statistical convergence given by Mursaleen
[14] with the help of a non-decreasing sequence �D .�n/. Let �D .�n/ be a non-
decreasing sequence of positive real numbers tending to1 with

�nC1 � �nC1;�1 D 1:
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The idea of �-statistical convergence can be connected to the generalized de la Vallée-
Poussin mean. It is defined by

tn.x/D
1

�n

X
k2In

xk; where In D Œn��nC1;n� for nD 1;2; : : :

Definition 2 ([14]). A sequence x D .xk/ of numbers is said to be
�-statistically convergent to a number L provided that for every � > 0,

lim
n!1

1

�n
jfk 2 In W jxk �Lj � �gj D 0:

In this case, the number L is called �-statistical limit of the sequence x D .xk/ and
we write S�� limk!1xk D L.

Recently, for ˛ 2 .0;1� Çolak and Bektaş[2] generalized Definition 2 in terms of
�-statistical convergence of order ˛ and obtained some analogous results.

Definition 3 ([2]). Let � D .�n/ be a non-decreasing sequence of positive real
numbers as defined above and 0 < ˛ � 1 be given. A sequence x D .xk/ of numbers
is said to be �-statistically convergent of order ˛ if there is a number L such that

lim
n!1

1

�˛n
jfk 2 In W jxk �Lj � �gj D 0:

In this case, we write S˛
�
� limk!1xk D L.

We next quote the following definition due to Mursaleen and Noman [19] on �-
convergent series.

Definition 4 ([19]). Let �D .�k/ be a sequence of positive real numbers tending
to infinity such that

0 < �0 < �1 < �2 : : : and�k!1ask!1:

Then a sequence x D .xk/ of numbers is said to be �-convergent to a number l if
�xk! l ask!1, where

�xk D
1

�k

kX
iD0

.�i ��i�1/xi

Esi and Braha [4] used Definition 4 to introduce a new notion called �-statistical
convergence in random 2-normed spaces and studied some of its properties. Before
we proceed further it would be better to recall the ideas of probabilistic and random
2-normed spaces which are of much interest in the study of random operator equa-
tions. The concept of probabilistic normed spaces was initially introduced by A. N.
Sherstnev [22] in 1962. Menger [13] introduced the notion of probabilistic metric
spaces in 1942. The idea of Menger [13] was to use distribution function instead
of non-negative real numbers as values of the metric. In last few years these spaces
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are grown up rapidly and many detereministic results of linear normed spaces are
obtained for probabilistic normed spaces. For a detailed study on probabilistic func-
tional analysis, we refer [1, 10, 11, 18, 21]. In 2005, Goleţ [9] used the concept of
2-norm of Gähler [8] and presented generalized probabilistic normed space which he
called random 2-normed space.

Let R denotes the set of reals and RC0 D Œ0;1/: A function f W R! RC0 is called a
distribution function if it is non-decreasing and left-continuous with inft2Rf .t/D 0

and supt2Rf .t/D 1.
We will denote the set of all distribution functions by D.
Also, a distance distribution function is a non decreasing function F defined on

RCD Œ0;1� that satisfies F .0/D 0 and F .1/D 1; and is left continuous on .0;1/.
Let DC denotes the set of all distance distribution functions.

A triangular norm, briefly t-norm, is a binary operation � on Œ0;1� which is con-
tinuous, commutative, associative, non-decreasing and has 1 as neutral element, i.e.,
it is the continuous mapping � W Œ0;1�� Œ0;1�! Œ0;1� such that for all a;b;c 2 Œ0;1�:

(1) a�1D a,
(2) a�b D b �a,
(3) c �d � a�b if c � a and d � b,
(4) .a�b/� c D a� .b � c/.

The � operations a�b Dmax faCb�1;0g, a�b D ab, and a�b Dminfa;bg on
Œ0;1� are t-norms.

In following, we quote some needful definitions.

Definition 5 ([8]). Let X be a real vector space of dimension d > 1 (d may be
infinite). A real valued function jj�; �jj WX2! R satisfying the following conditions:

(1) jjx1;x2jj D 0, if and only if x1;x2 are linearly dependent.
(2) jjx1;x2jj D jjx2;x1jj for all x1;x2 2X ,
(3) jj˛x1;x2jj D j˛jjjx1;x2jj, for any ˛ 2 R and
(4) jjx1Cx2;x3jj � jjx1;x3jjC jjx2;x3jj

is called a 2-norm and the pair .X; jj�; �jj/ is called a 2-normed space.

For example, if we take X D R2 with 2-norm jjx1;x2jj D area of parallelogram
spanned by the vectors x1;x2 which may be given explicitly by the formula

jjx1;x2jj D jdet.xij /j D abs:
�
det

�
xi ;xj

��
where xi D .xi1;xi2/ 2 R2 for each i D 1;2. Then .X; jj�; �jj/ is a 2-normed space.

Definition 6 ([9]). Let X be a real linear space of dimension d > 1 (d may be
infinite), � be a triangle function(a binary operation on DC which is associative,
commutative, nondecreasing and �0 as a unit) and F W X �X !DC (for x;y 2 X ,
F .x;yI t / is the value of F .x;y/ at t 2 R). Then F is called a probabilistic norm
and .X;F ; �/ a probabilistic 2-normed space if the following conditions are satisfied:
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(1) F .x;yI t /DH0.t/ if x;y are linearly dependent, where H0.t/D 0 if t � 0
and H0.t/D 1 if t > 0.

(2) F .x;yI t /¤H0.t/ if x;y are linearly independent,
(3) F .x;yI t /D F .y;xI t / for all x;y 2X ,
(4) F .˛x;yI t /D F .x;yI t

j˛j
/ for every t > 0, ˛ ¤ 0 and x;y 2X ,

(5) F .xCy;´I t /� � .F .x;´I t /;F .y;´I t //, where x;y;´ 2X .

If (5) is replaced by F .xCy;´I t1C t2/�F .x;´I t1/�F .y;´I t2/ for all x;y;´ 2X
and t1; t2 2 RC0 then .X;F ;�/ is called a random 2-normed space.

Example 1. Every 2-normed space .X; jj�; �jj/ can be made a random 2-normed
space by setting F .x;yI t /DH0.t �jjx;yjj/ where

Ha.t/D

�
0; if t � a;
1; if t > a

for all x;y 2X , t > 0 and a�b D ab; a;b 2 Œ0;1�.

Example 2. Let .X; jj�; �jj/ be a 2-normed space with jjx;´jj D jx1´2�x2´1j; x D
.x1;x2/, ´ D .´1;´2/ and a � b D ab for all a;b 2 Œ0;1�. For every x;y 2 X and
t > 0 we define F .x;yI t /D t

tCjjx;yjj
, then .X;F ;�/ is a random 2-normed space.

Definition 7 ([15]). Let .X;F ;�/ be a random 2-normed space. Then a sequence
x D .xk/ is said to be convergent to x0 2 X with respect to the norm F if for every
� > 0, t 2 .0;1/ and � ¤ ´ 2 X , there exists a positive integer k0 such that F .xk �

x0;´I�/ > 1� t whenever k � k0. It is denoted by F � limxk D x0.

Definition 8. p[15]] Let .X;F ;�/ be a random 2-normed space. Then a sequence
x D .xk/ is said to be statistically convergent or SR2N convergent to x0 2 X with
respect to the norm F if for every � > 0, t 2 .0;1/ and � ¤ ´ 2X ,

ı .fk 2N W F .xk �x0;´I�/� 1� tg/D 0:

In this case, we write SR2N � limxk D x0.

Definition 9 ([4]). Let .X;F ;�/ be a random 2-normed space. Then a sequence
xD .xk/ is said to be�-statistically convergent with respect to the norm F provided
that, for every � > 0, t 2 .0;1/ and � ¤ ´ 2X ,

ı�.fk 2 In W F .�xk �x0;´I�/� 1� tg/D 0;

i:e:

lim
n!1

1

�n
jfk 2 In W F .�xk �x0;´I�/� 1� tgj D 0:

In this case, we write SR2N� � limxk D x0:
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Definition 10 ([4]). Let .X;F ;�/ be a random 2-normed space. Then a sequence
x D .xk/ is said to be �-statistically cauchy with respect to the norm F provided
that, for every � > 0, t 2 .0;1/ and � ¤ ´ 2 X , there exists a positive integer k0.�/
such that for all k; l � k0

ı�.fk 2 In W F .�xk ��xl ;´I�/� 1� tg/D 0:

In present paper, we study quite natural and new notion of �-statistical conver-
gence of order ˛ in random 2-normed spaces.

2. MAIN RESULTS

In this section, we begin with the following definitions of statistical and�-statistical
convergence of order ˛ in random 2-normed spaces.

Definition 11. A sequence x D .xk/ in a random 2-normed space .X;F ;�/ is
said to be statistically convergent of order ˛ .0 < ˛ � 1/ to x0 2X provided that, for
every � > 0, t 2 .0;1/ and � ¤ ´ 2X;

lim
n!1

1

n˛
jfk 2N W F .�xk �x0;´I�/� 1� tgj D 0;

or equivalently

lim
n!1

1

n˛
jfk 2N W F .�xk �x0;´I�/ > 1� tgj D 1:

In this case, we write S˛� limk!1xk D x0.

Let S˛.X/ denotes the set of all statistically convergent sequences of order ˛ in a
random 2-normed space .X;F ;�/.

Definition 12. Let �D .�n/ be a non-decreasing sequence of positive real num-
bers tending to1 with �nC1 � �nC1;�1 D 1. A sequence x D .xk/ in a random 2-
normed space .X;F ;�/ is said to be�-statistically convergent of order ˛ (0< ˛ � 1)
to x0 2X provided that, for every � > 0, t 2 .0;1/ and � ¤ ´ 2X;

lim
n!1

1

�˛n
jk 2 In W F .�xk �x0;´I�/� 1� tgj D 0;

or equivalently

lim
n!1

1

�˛n
jk 2 In W F .�xk �x0;´I�/ > 1� tgj D 1;

where �˛n denote the ˛th power of �n, i:e:, .�˛n/D .�
˛
1 ;�

˛
2 ;�

˛
3 ; � � � � � �/. In this case,

we write S˛�� limk!1xk D x0.

Let S˛�.X/ denotes the set of all �-statistically convergent sequences of order ˛
in a random 2-normed space .X;F ;�/.
For the particular choice ˛D 1, Definition 12 coincides with the notion of�-statistical
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convergence of [4]; For �n D n, Definition 12 coincides with the notion of statistical
convergence of order ˛ in random 2-normed space; For �n D n and ˛ D 1, Defin-
ition 12 coincides with the notion of statistical convergence in random 2-normed
space[15].
We next give an example that shows Definition 12 is well defined for .0 < ˛ � 1/ but
not for ˛ > 1. In view of this, we need the following theorem with lemma.

Lemma 1. Let � D .�n/ be a non-decreasing sequence as defined above and
.X;F ;�/ be a random 2-normed space. Let 0 < ˛ � 1 and xD .xk/ be a sequence in
X . Then, for � > 0, t 2 .0;1/ and � ¤ ´2X , the following statements are equivalent:

(1) S˛�� limk!1xk D x0,
(2) limn!1 1

�˛n
jk 2 In W F .�xk �x0;´I�/� 1� tgj D 0;

(3) limn!1 1
�˛n
jk 2 In W F .�xk �x0;´I�/ > 1� tgj D 1;

(4) S˛�� limk!1F .�xk �x0;´I�/D 1.

Theorem 1. Let .X;F ;�/ be a random 2-normed space and 0 < ˛ � 1 be given.
If S˛�� limk!1xk D x0, then x0 must be unique.

Proof. Suppose S˛�� limk!1xk D y0 where y0 ¤ x0. Given � > 0 and t > 0,
choose � > 0 such that .1��/� .1��/ > 1� �. For � ¤ ´ 2X , define

K1.�; t/D

�
k 2 In W F

�
�xk �x0;´I

t

2

�
� 1��

�
I

K2.�; t/D

�
k 2 In W F

�
�xk �y0;´I

t

2

�
� 1��

�
:

Since S˛�� limk!1xk D x0 and S˛�� limk!1xk D y0, it follows for every t > 0,

lim
n!1

1

�˛n
jK1.�; t/j D 0 and lim

n!1

1

�˛n
jK2.�; t/j D 0

Let K.�; t/DK1.�; t/[K2.�; t/, then clearly limn!1 1
�˛n
jK.�; t/j D 0 which im-

mediately implies limn!1 1
�˛n
jKc.�; t/jD 1. Let k 2Kc.�; t/DKc1.�; t/\K

c
2.�; t/.

Now one can write,

F

�
x0�y0;´I

t

2

�
� F

�
�xk �x0;´I

t

2

�
�F

�
�xk �y0;´I

t

2

�
> .1��/� .1��/ > 1� �:

Since � is arbitrary, it follows that F
�
x0�y0;´I

t
2

�
D 1, for t > 0 and � ¤ ´ 2 X .

This shows that x0 D y0. �

Example 3. Let X D R2 with the 2-norm jjx;´jj D jjx1´2 � x2´1jj where x D
.x1;x2/, ´D .´1;´2/ and a � b D ab for all a;b 2 Œ0;1�. Let F .x;´I t /D t

tCjjx;´jj
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where x 2X;t 2 .0;1/ and � ¤ ´ 2X . Then .R2;F ;�/ is a random 2-normed space.
We define a sequence x D .xk/ as follows:

�xk D

�
.1;0/; if k is even,
.0;0/; if k is odd:

For � > 0, t 2 .0;1/, if we define

K.�; t/D fk 2 In W F .�xk ��;´I t /� 1� �g ;� D .0;0/

D

�
k 2 In W

t

tCjj�xk ��;´jj
� 1� �

�
D

�
k 2 In W jj�xk ��;´jj �

�t

1� �
> 0

�
D fk 2 In W�xk D .1;0/g

D fk 2 In W k is eveng I

then,

lim
n!1

1

�˛n
jK.�; t/j D lim

n!1

1

�˛n
jfk 2 In W k is evengj � lim

n!1

Œ
p
�n�C1

2�˛n
D 0

for ˛ > 1.
Similarly, for � > 0 and t 2 .0;1/ if we define

B.�; t/D fk 2 In W F .�xk �x0;´I t /� 1� �g ;x0 D .1;0/

then

lim
n!1

1

�˛n
jB.�; t/j D lim

n!1

1

�˛n
jfk 2 In W k is odd gj � lim

n!1

Œ
p
�n�C1

2�˛n
D 0

for ˛ > 1.
This shows that S˛�� limk xk is not unique and we obtain a contradiction to The-

orem 1.

Theorem 2. Let .X;F ;�/ be a random 2-normed space and 0 < ˛ � 1 be given.
For a sequence x D .xk/ in X if F�� limk xk D x0, then S˛�� limk xk D x0. How-
ever, the converse need not be true in general.

Proof. Since F� � limk xk D x0, so for � > 0, t 2 .0;1/ and � ¤ ´ 2 X there
exists a positive integer n0 such that F .�xk �x0;´I t / > 1� � for all k � n0:

Hence the set

K.�; t/D fk 2 In W F .�xk �x0;´I t /� 1� �g � f1;2;3; : : : ;n0�1g;

for which we have,

lim
n!1

1

�˛n
j fk 2 In W F .�xk �x0;´I t /� 1� �g j D 0:
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This shows that S˛�� limk xk D x0. We next give the following example which shows
that the converse need not be true.

Example 4. Consider the random 2-normed space as in Example 3. Define a se-
quence x D .xk/ as follows:

�xk D

�
.k;0/; if n� Œ

p
�n�C1� k � n,

.0;0/; otherwise:

For � > 0 and t > 0 if we define K.�; t/D fk 2 In W F .�xk;´I t /� 1� �g, then one
can write as in Example 3 K.�; t/D

˚
k 2 In W n� Œ

p
�n�C1� k � n

	
Thus,

lim
n!1

1

�˛n
jK.�; t/j D lim

n!1

1

�˛n

ˇ̌̌n
k 2 In W n� Œ

p
�n�C1� k � n

oˇ̌̌
� lim
n!1

Œ
p
�n�

�˛n
D 0

for 1
2
< ˛ � 1. This shows that S˛�� limk xk D 0: But F�� limk xk ¤ 0, since

F .�xk;´I t /D
t

tCjj�xk;´jj
D

� t
tCk´2

; if n� Œ
p
�n�C1� k � n;

1; otherwise:

which implies

lim
k!1

F .�xk;´I t /D

�
0; if n� Œ

p
�n�C1� k � n;

1; otherwise:

�

Theorem 3. Let .X;F ;�/ be a random 2-normed space and 0 < ˛ � 1 be given.
Let x D .xk/ and y D .yk/ be two sequences in X .
(i) If S˛�� limk!1xk D x0 and 0¤ c 2 R, then S˛�� limk!1 cxk D cx0:
(ii) If S˛� � limk!1xk D x0 and If S˛� � limk!1yk D y0, then S˛� � lim.xk C
yk/D x0Cy0:

Proof. The proof of the Theorem is not so hard so is omitted here. �

Theorem 4. Let .X;F ;�/ be a random 2-normed space and 0 < ˛ � ˇ � 1 be
given. Then S˛�.X/� S

ˇ
�.X/ and the inclusion is strict for some ˛ and ˇ such that

˛ < ˇ.

Proof. If 0 < ˛ � ˇ � 1, then for every � > 0, t > 0 and � ¤ ´ 2X , we have
1

�
ˇ
n

jfk 2 In W F .�xk � l;´I t /� 1� �gj

�
1

�˛n
jfk 2 In W F .�xk � l;´I t /� 1� �gj I
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which immediately implies the inclusion S˛�.X/� S
ˇ
�.X/. We next give an example

that shows the inclusion in S˛�.X/� S
ˇ
�.X/ is strict for some ˛ and ˇ with ˛ < ˇ.

Example 5. Let .R2;F ;�/ be a random 2-normed space as defined above. We
define a sequence x D .xk/ as follows:

�xk D

�
.1;0/; if n� Œ

p
�n�C1� k � n,

.0;0/; otherwise:

Then one can easily see Sˇ�� limk xk D 0, i:e:, x 2 Sˇ�.X/ for 1
2
< ˇ � 1 but x …

S˛�.X/ for 0 < ˛ � 1
2

. This shows that the inclusion in S˛�.X/� S
ˇ
�.X/ is strict.

�

Theorem 5. Let .X;F ;�/ be a random 2-normed space and 0 < ˛ � 1 be given.
If x D .xk/ be a sequence in X , then S˛�� limk xk D x0 if and only if there exists
a subset K D fkm W k1 < k2 < :: :g of N such that limn!1 1

�˛n
jKj D 1 and F� �

limk xk D x0.

Proof. First suppose that S˛�� limk xk D x0. For t > 0, � ¤ ´ 2X and p 2N, if
we define

K.p; t/D

�
k 2 In W F .�xk �x0;´I t /� 1�

1

p

�
M.p;t/D

�
k 2 In W F .�xk �x0;´I t / > 1�

1

p

�
I

then,

lim
n!1

1

�˛n
jK.p; t/j D 0:

Also, for p D 1;2;3; : : :

M.1; t/�M.2; t/� : : :M.i; t/�M.iC1; t/� : : : (2.1)

and

lim
n!1

1

�˛n
jM.p;t/j D 1: (2.2)

Now, to prove the result in one way, it is sufficient to prove that F�� limk xk D x0
over M.p;t/. Suppose xk is not convergent to x0 over M.p;t/ with respect to the
norm F�. Then, there exists some � > 0 such that

fk 2N W F .�xk �x0;´I t /� 1��g

for infinitely many terms xk . Let

M.�; t/D fk 2 In W F .�xk �x0;´I t / > 1��g
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and � > 1
p

for p D 1;2;3 � � � . This implies that limn!1 1
�˛n
jM.�; t/j D 0. Also from

(2.1), we have K1.p; t/ �M.�; t/ which gives that limn!1 1
�˛n
jM.p;t/j D 0, this

contradicts (2.2). Hence F�� limk xk D x0.
Conversely, suppose that there exists a subsetK D fkm W k1 < k2 < :: :g of N such

that limn!1 1
�˛n
jKj D 1 and F�� limk xk D x0. Then for every t > 0, � > 0 and

� ¤ ´ 2X there exists a positive integer k0 such that

fk 2 In W F .�xk �x0;´I t / > 1� �g

for all k � k0. Since the set fk 2 In W F .�xk �x0;´I t /� 1� �g is contained in
N�fk0C1;k0C2;k0C3; � � � g therefore,

lim
n!1

1

�˛n
jfk 2 In W F .�xk �x0;´I t /� 1� �gj D 0:

Hence, S˛�� limk xk D x0. �

Definition 13. Let .X;F ;�/ be a random 2-normed space. A sequence x D .xk/
is said to be�-statistically Cauchy of order ˛ (0< ˛� 1) if for every � > 0, t 2 .0;1/
and � ¤ ´ 2X there exists a positive integer k0 such that for all k; l � k0

lim
n!1

1

�˛n
jk 2 In W F .�xk ��xl ;´I�/� 1� tgj D 0;

or equivalently

lim
n!1

1

�˛n
jk 2 In W F .�xk ��xl ;´I�/ > 1� tgj D 1:

Theorem 6. Let .X;F ;�/ be a random 2-normed space and 0 < ˛ � 1 be given.
Then a sequence x D .xk/ is said to be �-statistically convergent of order ˛ iff it is
�-statistically Cauchy of order ˛.

Proof. Let x D .xk/ be a �-statistically convergent sequence of order ˛. Suppose
that S˛�� limk xk D x0. Let � > 0. Choose r > 0 such that .1� r/� .1� r/ > 1� �.
If we define

K.r; t/D

�
k 2 In W F

�
�xk �x0;´I

t

2

�
� 1� r

�
;

then

Kc.r; t/D

�
k 2 In W F

�
�xk �x0;´I

t

2

�
> 1� r

�
I

which gives by virtue of S˛�� limk xk D x0,

lim
n!1

1

�˛n
jK.r; t/j D 0 and lim

n!1

1

�˛n
jKc.r; t/j D 1:
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Let m 2Kc.r; t/, then F
�
�xm�x0;´I

t
2

�
> 1� r . If we take

B.�; t/D fk 2 In W F .�xk ��xm;´I t /� 1� �g ;

then to prove the first part it is sufficient to prove that B.�; t/ � K.r; t/: Let k 2
B.�; t/, which gives F .�xk ��xm;´I t /� 1� �: Suppose k …K.r; t/, then
F
�
�xk �x0;´I

t
2

�
> 1� r . Now, we can observe that

1� � � F .�xk ��xm;´I t /� F

�
�xk �x0;´I

t

2

�
�F

�
�xm�x0;´I

t

2

�
� .1� r/� .1� r/ > 1� �:

This contradiction shows thatB.�; t/�K.r; t/ and therefore, one way of the theorem
is proved.

Conversely, suppose that x D .xk/ is �-statistically Cauchy sequence of order ˛
but not�-statistically convergent of order ˛ with respect to F . Then for every t > 0,
� > 0 and � ¤ ´ 2X there exists a positive integer m such that

lim
n!1

1

�˛n
jK.�; t/j D 0whereK.�; t/D fk 2 In W F .�xk ��xm;´I t /� 1� �g :

This implies that limn!1 1
�˛n
jKc.�; t/j D 1. Choose r > 0 such that .1� r/� .1�

r/ > 1� �. Let

B.r; t/D

�
k 2 In W F

�
�xk �x0;´I

t

2

�
> 1� r

�
:

Let m 2 B.r; t/, then F
�
�xm�x0;´I

t
2

�
> 1� r:

Since

F .�xk ��xm;´I t /� F

�
�xk �x0;´I

t

2

�
�F

�
�xm�x0;´I

t

2

�
> .1� r/� .1� r/ > 1� �I

therefore,

lim
n!1

1

�˛n
jfk 2 In W F .�xk ��xm;´I t / > 1� �gj D 0:

i:e: limn!1 1
�˛n
jKc.�; t/j D 0 which leads to a contradiction. Hence x D .xk/ is

�-statistically convergent of order ˛. �
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