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Abstract

In this note we give sharp Schur type inequalities for multivariate polynomials with generalized
Jacobi weights on arbitrary convex domains. In particular, these results yield estimates for norms of
factors of multivariate polynomials.

1 Introduction and main new results
The classical Schur inequality states that for any univariate polynomial pn of degree at most n− 1 we have on the interval
I := [−1,1]

‖pn‖I ≤ n‖
p

1− x2pn‖I .

Throughout this paper ‖p‖K := supx∈K |p(x)| stands for the usual sup norm on a compact set K ⊂ Rd . The meaning of the
above inequality consists in estimating the uniform norm of the polynomial by the uniform norm of the weighted polynomial
with the Chebyshev weight

p
1− x2. This upper bound is known to be sharp as it is attained for the Chebyshev polynomial of

the second kind. Schur type inequalities proved to be rather useful in verifying Markov type inequalities for the derivatives
of algebraic polynomials. (See [1], p.233 for the basic facts on the classical Schur inequality.) They can be also applied for
estimating norms of factors of polynomials. Schur type inequalities have been generalized in two directions: by replacing the
uniform norm by a weighted uniform norm and by using instead of Chebyshev weight more general weighted polynomials.
Mastroianni and Totik [6] proved a Schur type inequality with generalized Jacobi weights instead of

p
1− x2 in case when

the sup norm is endowed with a nonnegative weight w which satisfies the so called A∗ property on I . This means that is
there is a constant cw depending only on w such that for any interval J ⊂ I and any x ∈ J

w(x)≤
cw

λ(J)

∫

J

w(t)d t. (1)

Here and in what follows λ stands for the Lebesgue measure.
Then as shown in [6] given a generalized Jacobi type weight

h(x) :=
∏

1≤ j≤k

|x − x j |γ j ,γ j > 0

it follows that for any univariate algebraic polynomial pn of degree at most n

‖wpn‖I ≤ cnγ‖whpn‖I , γ :=maxγ∗j , (2)

where w is any weight satisfying the A∗ property and γ∗j = γ j if x j ∈ (−1,1) and γ∗j = 2γ j if x j = 1 or −1.
In the present note we will give the multivariate analogue of the above Schur type inequality for generalized Jacobi

weights. These weights play an important role in the theory of multivariate orthogonal polynomials, see e.g., Y.Xu [7]. It
turns out that in the multivariate setting this question is considerably more delicate since the corresponding upper bounds
depend on the geometry of the zero sets (algebraic varieties) of the polynomial factors appearing in the weight.
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Let us introduce now the generalized multivariate Jacobi type weights which will play a central part in our considerations.
As usual, Pd

n will denote the space of real algebraic polynomials of d variables and degree at most n. Then given any integers
m j ∈ N, positive real numbers α j > 0 and algebraic polynomials p j ∈ Pd

m j
of exact degree m j , 1 ≤ j ≤ s the generalized

multivariate Jacobi weight on a convex body K ⊂ Rd is defined by

φ(x) := dist(x,∂ K)α
∏

1≤ j≤s

|p j(x)|α j , α≥ 0. (3)

F. Dai [2] verified a Schur type inequality with generalized Jacobi weights for multivariate polynomials on the unit
sphere Sd−1 := {x ∈ Rd : |x|= 1} in case when m j = 1, 1≤ j ≤ s and α= 0 in the above definition. Then it is verified in [2]
that for a certain class of weights w and any pn ∈ Pd

n

‖wpn‖Sd−1 ≤ cnξ‖wφpn‖Sd−1 , ξ :=
∑

1≤ j≤s

α j . (4)

If one compares the univariate estimate (2) with the multivariate upper bound (4) then a surprising difference can
immediately be noticed: in (2) the maximum of exponents controls the estimate while in (4) the considerably larger sum
of the exponents appears in the bound. This raises the natural question: what is the sharp form of the multivariate Schur
inequality with generalized Jacobi weights (3) on arbitrary convex bodies K ⊂ Rd?

It turns out that in order to give a sharp multivariate Schur inequality for a generalized Jacobi weight (3) one has to
take into account possible intersections of the algebraic varieties

H∗j := {x ∈ Rd : p j(x) = 0}, 1≤ j ≤ s

which makes the problem quite delicate. We will need to study their intersection inside the given domain, so we also set
H j := H∗j ∩ K , 1≤ j ≤ s. In order to handle this difficulty and provide a measure of how fast the weight φ given by (3) may
vanish at a given x ∈ K we will introduce now its zero index z(x) as

z(x) :=
∑

{ j:x∈H j}

α jm j , x ∈ IntK , z(x) := 2α+ 2
∑

{ j:x∈H j}

α jm j , x ∈ ∂ K . (5)

Hence the zero index equals the sum of all properly weighted exponents α j corresponding to algebraic varieties intersecting
at the given point. In addition, it is important that these exponents are doubled for boundary points. Now we introduce the
zero index of the Jacobi type weight as the maximal point wise zero index

zφ :=max
x∈K

z(x). (6)

It turns out that this zero index leads to sharp Schur type inequalities for generalized Jacobi weights on any convex body.
We will verify this for weighted uniform norms with A∗ weights w satisfying (1) for any segment J ⊂ K .

Theorem 1. Let K ⊂ Rd , d ≥ 2 be a convex body and φ a generalized Jacobi weight (3) with zero index zφ . Then for any
pn ∈ Pd

n and A∗ weight w we have
‖wpn‖K ≤ cnzφ‖wφpn‖K (7)

with some constant c > 0 depending only on K and φ.
When all sets H∗j have pair wise empty intersection in K then the zero index zφ will equal the maximum of corresponding

weighted exponents α jm j leading to an estimate similar to the univariate case (2). If all H∗j -s intersect at a single point
in K then zφ =

∑

1≤ j≤s α jm j which is similar to the estimate (4). In Goetgheluck [3] a multivariate Schur type inequality
was given under the condition that the weight φ has rather high order of smoothness. Since a generalized Jacobi weight
(3) in general is not smooth the analytic method used in [3] does not work for general Jacobi weights. Another version
of multivariate Schur type inequality can be found in [4], where the author gives some general upper bounds. However,
the implicit estimates given in [4] are not sharp in general for Jacobi type weights, since they do not distinguish between
interior and boundary points of the domain. A crucial point of our approach consists in providing precise bounds which are
closely related to the intersection of the algebraic varieties H j . The approach used in the present paper is a mix of refining
some polynomial inequalities combined with geometric considerations.

The Schur type estimate (7) naturally leads to the question wether the zero index zφ gives the correct rate of increase.
Our next result addresses this question. Let x0 ∈ K be a point in the domain where the zero index is attained, i.e., zφ = z(x0).
It will be shown below that if x0 ∈IntK or x0 ∈ ∂ K is a so called vertex point then estimate (7) can be reversed. Recall that
x0 ∈ ∂ K is called a vertex point if for some vector h ∈ Sd−1 normal to ∂ K at x0 we have with a γ > 0 for any x ∈ K

|x− x0| ≤ γ|〈x− x0,h〉|. (8)

We will give the converse to Theorem 1 in the model case when w = 1 and the polynomials in (3) are linear.
Theorem 2. Consider a convex body K ⊂ Rd , d ≥ 2 and Jacobi weight (3) with degp j = 1,∀ j. Assume that one of the

following conditions hold:
(i) the zero index zφ is attained at an interior point of K
(ii) the zero index is attained at a boundary vertex point.
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Then there exist polynomials gn ∈ Pd
n such that with some c > 0 independent of n

‖gn‖K ≥ cnzφ‖φgn‖K , n ∈ N.

Theorem 2 provides nearly a complete converse to Theorem 1 except for the case when the zero index is attained only
at a smooth boundary point. It turns out that there is an essential reason behind this fact because for convex bodies with
smooth boundary the upper bound of Theorem 1 can be improved further.

Let us consider C2 compact sets D satisfying the so called uniform interior ball condition which means that every x ∈ D is
contained in a ball B(a, rD) ⊂ D with rD > 0 depending only on the domain. In what follows B(a, r) will denote the closed
ball centered at a and radius r. Now we consider a generalized Jacobi weight with zero index defined as

ν(x) :=
∏

1≤ j≤s

|p j(x)|α j , zν =max
x∈D

∑

{ j:x∈H j}

α jm j . (9)

Note that in contrast to (5)-(6) now we do not need to double the exponents at the boundary points. This is related
to the fact that for C2 compacts with the uniform interior ball condition the boundary points can be treated in the same
manner as the interior points. However, we need to modify the definition (1) of A∗ weights by assuming that J ⊂ D is any
circular arc contained in the domain. With this modifications we have the following analogue of Theorem 1.

Theorem 3. Let D ⊂ Rd , d ≥ 2 be a C2 compact satisfying the uniform interior ball condition. Then for any pn ∈ Pd
n and A∗

weight w we have
‖wpn‖D ≤ cnzν‖wνpn‖D

where ν is a Jacobi type weight (9) and constant c > 0 depends only on D and φ.
Similarly to Theorem 2 the upper bound of Theorem 3 can be reversed in case when w = 1 and the polynomials in (9)

are linear.
Above results also have interesting implications for estimating norms of factors of multivariate polynomials. Let us

formulate a typical corollary of this type.
Given a multivariate polynomial q which factors into the product of polynomials q = q1 · ... · qs with zero sets H j := {x ∈

K : q j(x) = 0} let us consider the zero index of q relative to the convex body K ⊂ Rd given by

zq :=max
x∈K
(τx

∑

{ j:x∈H j}

degq j),

where τx = 1 if x ∈IntK and τx = 2 if x ∈ ∂ K . It should be noted that the zero index zq of polynomial q can be considerably
smaller than its degree. Then for any pn ∈ Pd

n we have

‖pn‖K ≤ cqnzq‖qpn‖K .

In the next section we will verify the auxiliary analytic and geometric results needed in the sequel. First two lemmas
provide some refinements of the univariate Schur and Polya inequalities. Lemma 3 presents some crucial information on
intersection of algebraic varieties, while Lemma 4 is related to the geometry of convex bodies. Then in Section 3 the proof
of the main new results will be given.

2 Auxiliary results
First we will need a refinement of the univariate Schur type inequality. This refinement will involve the monotone rearrange-
ment of the weight φ with respect to the Chebyshev measure defined as

µ(E) :=

∫

E

d x
p

1− x2
.

Let φ(x)≤ 1 be positive a.e. on [−1, 1] and for any δ > 0 denote

ψ(δ) := sup{c > 0 : µ({x ∈ [−1,1] : φ(x)≤ c})≤ δ}.

In the above definition of monotone rearrangement Chebyshev measure is needed in order to handle properly the end points
of the interval.

Lemma 1. For any A∗ weight w and pn ∈ P1
n

‖wpn‖I ≤
c

ψ(1/n)
‖wφpn‖I .

Proof. Set g(t) := pn(cos t). The weight ω(t) := w(cos t) is also an A∗ weight (see [6], p.68 for details). Furthermore,
by the above definition of function ψ for any 0< a <ψ(1/n)

λ(t ∈ [0,π] : φ(cos t)≤ a) = µ(x ∈ [−1,1] : φ(x)≤ a)≤
1

n
.
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We will use now a Remez type inequality for A∗ weights proved in [6], p.60 which states that for any even trigonometric
polynomial tn of degree n and any E ⊂ [0,π] with Lebesque measure λ(E)≥ π− 1

n
, we have

‖ωtn‖[0,π] ≤ c‖ωtn‖E ,

where c > is an absolute constant.
Hence setting

E := {t ∈ [0,π] : φ(cos t)> a}, λ(E)≥ π−
1

n
yields

‖wp‖[−1,1] = ‖ωg‖[0,π] ≤ c‖ωg‖E ≤
c

a
‖φ(cos t)ω(t)g(t)‖E ≤

c

a
‖wφp‖[−1,1]. �

The next lemma is a refinement of the well known Polya inequality stating that for any univariate monic algebraic
polynomial qm of degree m

λ{t ∈ [0,1] : |qm(t)| ≤ δ} ≤ 4δ
1
m , 0< δ < 1.

We will need an analogue of this inequality for the Chebyshev measure defined above.
Lemma 2. Let q(t) = |t2 − 1|α

∏

1≤ j≤s |t − t j |α j ,α j > 0,α≥ 0,γ := α+
∑

1≤ j≤s α j . Then

µ{t ∈ [−1, 1] : q(t)≤ δ} ≤ 8δ
1

2γ . (10)

Moreover, if t j ∈ [−1+ a, 1− a] with some 0< a < 1,1≤ j ≤ s then setting γ1 :=max{2α,
∑

1≤ j≤s α j} we have

µ{t ∈ [−1, 1] : q(t)≤ δ}= O(δ1/γ1), (11)

with a constant in the O(.) term depending only on a,α, and α j-s.
Proof. Assume first that each α j is an integer. Then setting

q1(t) := (t + 1)α
∏

1≤ j≤s

(t − t j)
α j , q2(t) := (t − 1)α

∏

1≤ j≤s

(t − t j)
α j

it follows that both q1 and q2 are monic algebraic polynomials of degree γ. Thus applying the Polya inequality separately on
intervals [−1, 0] and [0,1] to q1 and q2, respectively we have

µ{t ∈ [−1,1] : q(t)≤ δ} ≤ 2λ{t ∈ [−1, 1] : q(t)≤ δ}
1
2

≤ 2λ{t ∈ [0,1] : |q2(t)| ≤ δ}
1
2 + 2λ{t ∈ [−1, 0] : |q1(t)| ≤ δ}

1
2 ≤ 8δ

1
2γ

which is the first estimate of the lemma in case of integer exponents.
If α j ∈Q we can consider qm(t) with a proper integer m in order to have only integer exponents. Then using the above

estimate with qm(t) and δm instead of δ leads to the same upper bound. Finally, the case of real positive exponents then
follows from rational case by continuity.

In order to prove the second estimate we split the interval [−1, 1] into three parts

I1 := [1− a/2, 1], I2 := [−1,−1+ a/2], I3 := [−1+ a/2, 1− a/2],

and consider q3(t) :=
∏

1≤ j≤s(t − t j)α j , γ2 :=
∑

1≤ j≤s α j . As above it suffices to verify the case for integer exponents. Now
applying the Polya inequality to q3 on the interval I3 yields with some constants c j depending only on a,α, and α j-s

µ{t ∈ [−1, 1] : q(t)≤ δ} ≤ 2µ{t ∈ I1 : |t − 1|α ≤ c1δ}+ c2λ{t ∈ I3 : |q3(t)| ≤ c3δ} ≤ c4δ
1/γ1 . �

Next we present an auxiliary geometric proposition related to intersections of the algebraic varieties H∗j which will be
crucial in the proof of Theorem 1.

Lemma 3. Let K and φ be as in Theorem 1. Then there exists a δ0 = δ0(K ,φ) so that for every 0 < δ ≤ δ0, and x ∈ K
such that

Ω(x,δ) := { j : |p j(x)|< δ} 6= ;
we have

∩ j∈Ω(x,δ)H j 6= ;.

Proof. Assume the contrary. Then ∃δk → 0+ and xk ∈ K such that Ω(xk,δk) 6= ;, k ∈ N but at the same time

∩ j∈Ω(xk ,δk)H j = ;.

Since K is compact we can assume without the loss of generality that xk → x∗ ∈ K . Furthermore, since Ω(xk,δk) 6= ; there
exist jk ∈ Ω(xk,δk), 1≤ jk ≤ s, k ∈ N. Again without the loss of generality it can be assumed that for any 1≤ j ≤ r, 1≤ r < s
index j belongs only to finitely many of Ω(xk,δk)-s, while for all r + 1 ≤ j ≤ s this index belongs to infinitely many of
Ω(xk,δk)-s. Hence there exist q j so that for any k ≥ q j

j /∈ Ω(xk,δk), 1≤ j ≤ r.

Dolomites Research Notes on Approximation ISSN 2035-6803



Kroó 19

Then setting q :=max{q j , 1≤ j ≤ r} it follows that for any k ≥ q

Ω(xk,δk) ⊂ {r + 1, r + 2, ..., s}. (12)

Moreover, using that whenever r + 1≤ j ≤ s the index j belongs to infinitely many of Ω(xk,δk)-s we obtain that relations
|p j(xk)|< δk also hold for this j with infinitely many k ∈ N. Since δk → 0 and xk → x∗ ∈ K this means that p j(x∗) = 0, i.e.,
x∗ ∈ H j , r + 1≤ j ≤ s. Thus in view of (12) we have

x∗ ∈ ∩r+1≤ j≤sH j ⊂ ∩ j∈Ω(xk ,δk)H j

contradicting our assumption that ∩ j∈Ω(xk ,δk)H j = ;.�
Let us denote by S(a, r) := {u ∈ Sd−1 : |a− u| ≤ r},a ∈ Sd−1, r > 0, the sphere cap in Rd with center a and radius r.
Lemma 4. Let K ⊂ Rd be a convex body, B(0, r) ⊂ K ⊂ B(0, 1), r > 0. For any y ∈ K and u ∈ S(y1, r/2),y1 := y/|y|

consider the line l := {y+ tu : t ∈ R}. Then setting l ∩ K := [a,b]

|b− a| ≥
p

3r, dist(y,∂ K)≥
r

4
min{|b− y|, |y− a|}. (13)

Proof. Since u ∈ S(y1, r/2) it follows that r2

4
≥
�

�u− y1

�

�

2
= 2

�

1− 〈u,y1〉
�

. Since |y| ≤ 1 this yields

dist(l,0) =
Æ

|y|2 − 〈u,y〉2 ≤
Æ

2(|y| − 〈u,y〉)≤
r

2
.

Clearly this means that B(0, r/2)∩ l 6= ;. Recalling that B(0, r) ⊂ K we easily obtain that |l ∩ K | ≥
p

3r which is the first
estimate in (13).

Now we proceed by verifying the second estimate in (13). As shown above B(0, r/2)∩ l 6= ;, i.e., we can consider a
point A ∈ B(0, r/2)∩ l. Since B(0, r) ⊂ K it follows that B(A, r/2) ⊂ K. In addition, A,y ∈ [a,b], hence we may assume
without the loss of generality that y ∈ [A,b]. Now set B0 := B(A, r/2)∩ {w : w−A⊥u}. Thus B0 ⊂ K is a d − 1 dimensional
ball in the hyper plane {w : w− A⊥u} centered at A and of radius r/2. Then by the convexity of K the circular cone Q
with vertex at b ∈ K and base B0 is also contained in K and point y belongs to the axis of this cone. Therefore using that
diamK ≤ 2 we have dist(y,∂ K)≥ dist(y,∂Q) = r

4
|b− y|.�

3 Proof of the main new results
Proof of Theorem 1. We may assume that B(0, r) ⊂ K ⊂ B(0, 1), 0 < r ≤ 1. Since each polynomial p j in (3) is of exact
degree m j it follows that its m j-s homogeneous part denoted by h j is a homogeneous polynomial of degree m j , 1≤ j ≤ s.
Let H∗ := ∪1≤ j≤s{x ∈ Rd : h j(x) = 0} be the union of all zero sets of these homogeneous polynomials. Clearly H∗ is nowhere
dense in Sd−1. In what follows for any given ε > 0 and D ⊂ Rd let D(ε) := ∪x∈DB(x,ε) denote the ε enlargement of D. Then
we can choose a proper a > 0 so that S(z, r/2) \H∗(a) 6= ;, for any z ∈ Sd−1 and hence

|h j(u)| ≥ ξ, ∀u ∈ S(z, r/2) \H∗(a), 1≤ j ≤ s (14)

with some ξ depending only on K and φ.
Now take any pn ∈ Pd

n and let y ∈ K be such that ‖wpn‖K = |w(y)pn(y)|. For any u ∈ S(y/|y|, r/2) \H∗(a) consider the
line

l := {y+ tu : t ∈ R}, l ∩ K := [y+ alu,y+ blu], al ≤ 0≤ bl .

Then p j(y+ tu), 1≤ j ≤ s are univariate polynomials of variable t of degree m j . Let tk j ∈ C, 1≤ k ≤ m j , 1≤ j ≤ s denote
all zeros of p j(y+ tu).

Then for any fixed al ≤ t ≤ bl we have by (3), (14) and (13)

φ(t) := φ(y+ tu) = dist(y+ tu,∂ K)α
∏

1≤ j≤s

|p j(y+ tu)|α j ≥ c(r,α)|t − al |α|t − bl |αξ
∑

α j m j
∏

1≤ j≤s

|g j(t)|α j ,

where g j ∈ P1
m j

are the monic univariate polynomials corresponding to p j(y+ tu), 1≤ j ≤ s.
Furthermore, denote by M the maximum of all directional derivatives of p j , 1≤ j ≤ s in K(1).
Now with δ0 from Lemma 3 and any fixed al ≤ t ≤ bl set

Ωt := { j : min
1≤k≤m j

|t − tk j | ≤ M−1δ0}. (15)

.
For j = 1, ..., s we denote by t∗j the zero of g j closest to t and we have

|t − t∗j |= min
1≤k≤m j

|t − tk j |.

Then by the previous estimate

φ(t)≥ c1|t − al |α|t − bl |α
∏

j∈Ωt

|t − t∗j |
α j m j

∏

j /∈Ωt

|t − t∗j |
α j m j .
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Here and in the remaining part of the proof c j denote positive constants depending only on K and φ. Evidently, it follows
from (15) that for any j /∈ Ωt we have |t − t∗j |> M−1δ0. Thus we obtain from the last lower bound with ℜt∗j being the real
part of the corresponding zero

φ(t)≥ c2|t − al |α|t − bl |α
∏

j∈Ωt

|t − t∗j |
α j m j ≥ c2|t − al |α|t − bl |α

∏

j∈Ωt

|t −ℜt∗j |
α j m j . (16)

Clearly, we have by the mean value theorem for every j ∈ Ωt

|p j(y+ tu)|= |p j(y+ tu)− p j(y+ t∗j u)| ≤ M |t − t∗j | ≤ δ0.

This means that Ωt ⊂ Ω(y+ tu,δ0). Thus by Lemma 3

∩ j∈Ωt
H j 6= ;.

We will distinguish between the cases when the set ∩ j∈Ωt
H j contains some boundary points of K, or is completely

embedded into IntK .
Case 1. ∩ j∈Ωt

H j ∩ ∂ K 6= ;, i.e., for some x ∈ ∂ K we have x ∈ ∩ j∈Ωt
H j . Then by the definition of the zero indices (5) and

(6) it follows that
zφ ≥ z(x) = 2α+ 2

∑

x∈H j

α j ≥ 2α+ 2
∑

j∈Ωt

α j . (17)

Now let us denote by Q the set of all generalized algebraic polynomials q of the form

q(t) = |t − al |α|t − bl |α
m
∏

j=1

|t −ℜt j |α j , m≤ s, (18)

with each t j chosen arbitrarily from the set {tk j , 1≤ k ≤ m j} and α,α j-s satisfying (17). Clearly Q is a finite set with some
cardinality N depending only on m j , 1≤ j ≤ s. Thus in view of (16) we obtain that

µ{t ∈ [al , bl] : φ(t)≤ δ} ≤ Nµ{t ∈ [al , bl] : q(t)≤ δ/c2}, (19)

where q(t) is any generalized polynomial of the form (18) with exponents satisfying (17), i.e.,

γ := α+
m
∑

j=1

α j ≤ zφ/2.

Now we are going to apply estimate (10) of Lemma 2 to the generalized polynomial q(t) on the interval [al , bl] instead of
[−1, 1]. Note that by Lemma 4 we have 2≥ |al − bl | ≥

p
3r, i.e, the transition to this segment can alter the outcome only by

a constant factor. Hence by (19) and (10)

µ{t ∈ [al , bl] : φ(t)≤ δ} ≤ Nµ{t ∈ [al , bl] : q(t)≤ δ/c2} ≤ c3δ
1

2γ ≤ c3δ
1

zφ . (20)

Now consider the univariate algebraic polynomial gn(t) := pn(y+ tu) ∈ P1
n , t ∈ [al , bl] where al ≤ 0≤ bl , |bl−al | ≥

p
3r

and ‖wgn‖[al ,bl ] = |w(y)pn(y)| = ‖wpn‖K . Note that by (20) and definition of monotone rearrangement ψ of φ we have
ψ(δ)≥ c4δ

zφ . Now we can apply Lemma 1 to gn ∈ P1
n (since |bl − al | ≥

p
3r we can obviously transform [al , bl] to [−1, 1])

yielding

‖wpn‖K = ‖wgn‖[al ,bl ] ≤
c

ψ(1/n)
‖wφgn‖[al ,bl ] ≤ c(K ,φ)nzφ‖wφp‖K

which is the needed estimate.
Case 2. ∩ j∈Ωt

H j ⊂IntK . In this case using the definition of the zero indices (5) and (6) and the obvious relation zφ > 2α
it follows that

zφ ≥max{2α,
∑

j∈Ωt

α j}. (21)

Consider the quantity
Q1(δ) := min

Hi1∩...∩Hir ∩∂ K=;
dist(∂ K , H∗i1(δ)∩ ...∩H∗ir (δ)).

We clearly have that Q1(0)> 0 and hence using the continuity of functions involved it follows that Q(δ)> 0 for any δ > 0
sufficiently small. Let us choose such a δ1 > 0, where it can be assumed without the loss of generality that 2δ0 <Q1(δ1)
with δ0 being the quantity from Lemma 3. Then using that ∩ j∈Ωt

H j ∩ ∂ K = ; we obtain that for any x ∈ ∩ j∈Ωt
H∗j (δ1)

dist(x,∂ K)≥Q1(δ1)> 2δ0. (22)

Consider now y+ t∗j u,y+ t∗i u, i, j ∈ Ωt , where by (15) we have |t − t∗j |, |t − t∗i | ≤ M−1δ0. Then

|pi(y+ℜt∗j u)|= |pi(y+ℜt∗j u)− pi(y+ t∗i u)| ≤ M(|ℜt∗j − t|+ |t∗i − t|)≤ 2δ0.
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This upper bound clearly means that y+ℜt∗j u must be in the vicinity of H∗i for δ0 small enough, i.e., we may assume
without the loss of generality that δ0 is chosen sufficiently small so that y + ℜt∗j u ∈ H∗i (δ1),∀i, j ∈ Ωt . Then clearly
y+ℜt∗j u ∈ ∩i∈Ωt

H∗i (δ1), and therefore (22) yields

min{|ℜt∗j − al |, |ℜt∗j − bl |} ≥ dist(y+ℜt∗j u,∂ K)≥Q1(δ1)> 2δ0.

In addition, by (15) |ℜt∗j − t| ≤ δ0. Since t ∈ [al , bl] the last two estimates obviously yield

ℜt∗j ∈ [al + 2δ0, bl − 2δ0], j ∈ Ωt . (23)

Now similarly to Case 1 we can obtain the upper bound (19) where q is a generalized algebraic polynomial (18) whose
exponents by (21) satisfy relation

max{2α,
∑

1≤ j≤m

α j} ≤ zφ . (24)

Another crucial information concerning q consists in the fact that in view of relation (23) all its zeros belong to [al +2δ0, bl −
2δ0]. Hence we are in position to apply now the second estimate (11) of Lemma 2 yielding together with (24)

µ{t ∈ [al , bl] : φ(t)≤ δ} ≤ Nµ{t ∈ [al , bl] : q(t)≤ cδ}= O(δ
1

zφ ).

Therefore, similarly to Case 1 this yields for the monotone rearrangement ψ of φ estimate ψ(δ)≥ cδzφ . This means
that we can finish the proof now analogously to Case 1. �

Proof of Theorem 2. We may assume that diamK ≤ 1. Consider first the case when the zero index is attained at a
boundary vertex point x0 ∈ ∂ K satisfying (8) for a certain outer normal h at x0. Then

zφ = z(x0) = 2α+ 2
∑

x0∈H j

α j .

Note that 0≤ 〈x0 − x,h〉 ≤diamK ≤ 1,∀x ∈ K . Moreover, whenever x0 ∈ H j it follows by (8) that

|〈x− c j ,h j〉|= |〈x− x0,h j〉| ≤ |x− x0| ≤ γ|〈x− x0,h〉|,
dist(x,∂ K)≤ |x− x0| ≤ γ|〈x− x0,h〉|.

Now we will need a result from [5] (see Proposition 1 on p. 84) according to which given any ρ > 0 there exist univariate
polynomials qn ∈ P1

n such that
xρ|qn(x)| ≤ 1, x ∈ [0,1], |qn(0)| ≥ cn2ρ, n ∈ N. (25)

Set ρ :=
zφ
2

. Consider the polynomial p(x) := qn(〈x− x0,h〉) ∈ Pd
n . Then using above estimates together with (25) we obtain

for any x ∈ K
φ(x)|p(x)|= dist(x,∂ K)α

∏

1≤ j≤s

|〈x− c j ,h j〉|α j |p(x)|

≤ c1|〈x− x0,h〉|α
∏

x0∈H j

|〈x− x0,h〉|α j |p(x)|= c1|〈x− x0,h〉|ρ|qn(〈x− x0,h〉)| ≤ c1,

with c1 > 0 independent of n. On the other hand (25) also yields

|p(x0)|= |qn(0)| ≥ cn2ρ = cnzφ .

This is the required lower bound in the case when the zero index is attained at a boundary vertex point.
Now assume that the zero index is attained at an interior point x0 ∈IntK . Hence by (5)

zφ = z(x0) =
∑

x0∈H j

α j .

Set p(x) := qn(|x− x0|2) ∈ Pd
2n. Then using again (25) we have for any x ∈ K

φ(x)|p(x)|= dist(x,∂ K)α
∏

1≤ j≤s

|〈x− x0,h j〉|α j |p(x)| ≤
∏

x0∈H j

|〈x− x0,h j〉|α j |p(x)|

≤ |x− x0|zφ |p(x)|= |x− x0|2ρ|qn(|x− x0|2)| ≤ 1
and

|p(x0)|= |qn(0)| ≥ cn2ρ = cnzφ .
This completes the proof of Theorem 2.

The proof of Theorem 3 can be given quite similarly to the proof of Theorems 1, in fact it follows the same arguments
with considerable simplifications due to the absence of the boundary difficulties. Since for a C2 compact D satisfying uniform
interior ball condition any point x ∈ D lies on a sphere of radius rD imbedded into the domain it suffices to consider the case
when D = Sd−1 is the unit sphere. Now we can essentially repeat the arguments of Theorem 1 by modifying Lemma 1 for
monotone rearrangements based on circular Lebesgue measure instead of the Chebyshev measure, and considering circular
arcs passing through x, we omit the details.
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