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Abstract—In case of biomedical researches we often have to
deal with complicated biological phenomenons, which are usually
described with complex mathematical models. In most cases these
mathematical models and the systems to be modelled are also
nonlinear. The appropriate adjustment of the parameters of these
models is always a problem which is hard to be solved. To
work with such complex models is essential in many research
fields and application areas e.g. in personalized medicine or
by the control of physiological processes. Although there are
many identification techniques available, there is no general or
”oven-ready” solution in cases where the mathematical model
describing the dynamics of the physiological processes is highly
nonlinear. One of our aims was to develop a simple, user-
friendly and flexible identification framework which supports
the identification of complex, nonlinear mathematical models.
The performance of the method can be measured by simple
metric. On the other hand, our goal was to successfully realize the
identification framework in case of glucose absorption models,
which are essential in our future work in order to validate the
performance of advanced control algorithms. Our results show
that the nonlinear identification framework performed well, since
the predefined requirements were satisfied in all cases.

Index Terms—Nonlinear Least Mean Square-based Identifica-
tion, Identification of Diabetes Mellitus, Glucose Absorption

I. INTRODUCTION

Diabetes mellitus is one of the most widespread diseases.
There are more and more people affected by it every year.
Hence the controlling of the blood glucose level is a major
research area for engineers and doctors. Patients with type 1
diabetes mellitus (T1DM) can not control their blood sugar
level, because their pancreas is unable to produce insulin,
which is the key hormone of blood glucose regulation [1].
Therefore, these people need multiple daily insulin injections
or they have to use an insulin pump. Insulin management is
an energy- and time-consuming burden for the patients, but
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there is a special type of insulin pumps which can simplify
this process and based on them the so-called artificial pancreas
(AP) concept can be realized. The AP is a system combining
a glucose sensor, a control algorithm, and an insulin infusion
device to achieve the closed-loop control of the blood glucose
level. Modern artificial pancreases use continuous glucose
monitoring (CGM) technology. That means that the device
measures glucose concentration – usually in the interstitium
– via the glucose sensor every 5 minutes. Then, based on the
measured values, the insulin infusion device injects a quantity
of insulin which is required to keep the patient’s blood sugar
level in the normoglicemic range. So the AP literally copies the
functioning of the human pancreas, and that way it can match
the needs of every patient individually, even when they are
exercising or eating different portions of meals. With suitable
amounts of insulin the AP helps to prevent hyperglycaemia
(high blood sugar concentration) and hypoglycaemia (low
blood sugar concentration) with little or no input from the
patient [2]–[6].

There exist many different glucose absorption models which
could be applied and tested during the development of an
artificial pancreas. Knowing and applying these absorption
models are essential, since every control algorithm should
be tested in in-silico trials before it can be used in clinical
environment. However, the outputs of different models can
not be compared, because in most cases it is not known, on
what database the model parameters has been identified. To be
able to compare their performances, the parameters have to be
identified on the same database. This problem can be solved
by using a general identification process which is able to adjust
the selected parameters of the applied mathematical models.
With this solution, a large population of virtual patients can
be realized and the performance of any new advanced control
algorithm in this regard can be validated in-silico before its
validation in clinical environment. Accordingly, one of our
goals was to develop an identification framework which is
general and can be used regardless the physiological processes
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to be described and the mathematical model to be identified.
The paper is structured as follows: first, we introduce

the applied glucose absorption models. Next, we present the
developed identification framework. Then, we introduce the
applicability of the identification framework in case of the
introduced glucose absorption models. Finally, we submit our
findings.

II. APPLIED GLUCOSE ABSORPTION MODELS

We applied two well-known glucose absorption models, the
Hovorka model and the Magni model. The point of applying
two different models was to be able to use one model to
generate a data row and then adjust the parameters of the other
model to fit that data row. This is the best approximation of
testing the identification process on real patient data and in this
way we can be sure that the performance of the framework is
good enough to be used with real measured data, which are
usually affected by several noises.

A. The Hovorka Model

The glucose absorption subsystem of the Hovorka model
is a two compartment model which has one input, the meal
disturbances, and it simulates the glucose absorption rate from
the meals.

D(t) =
1000 · (t)
MwG

(1)

where d(t) is the meal input in gCHO/min, D(t) mmol/min
is the meal input and MwG g/mol is the molecular weight of
glucose. The Hovorka model describes the dynamic between
the meal input and the states D1(t) and D2(t), both in mmol
in the two compartments:

Ḋ1(t) = AGD(t)−
D1(t)

τD
(2)

Ḋ2(t) =
D1(t)

τD
−
D2(t)

τD
(3)

where AG is the carbohydrate bioavailability parameter and
τD is a time constant which indicates how long it takes until
the meal is digested and enters the blood stream.

The glucose absorption rate can be calculated as follows:

UG(t) =
D2(t)

τD
(4)

where UG(t) mmol/min is the glucose absorption rate.

B. The Magni Model

The input of the Magni model is also the consumed glucose,
and the intestinal absorption of glucose is modelled by a three-
compartment model:

Qsto(t) = Qsto1(t) +Qsto2(t) (5)

Q̇sto1(t) = −kgriQsto1(t) + d(t) (6)

Q̇sto1(t) = −kgut(t, Qsto)Qsto2(t) + kgriQsto1(t) (7)

Q̇gut(t) = −kabsQgut(t) + kgut(t, Qsto)Qsto2(t) (8)

Ra(t) =
fkabsQgut(t)

MwG
(9)

where Qsto mg gives the amount of glucose in the stomach
(Qsto1 is the solid phase and Qsto2 is the liquid phase), Qgut

mg is the amount of glucose in the intestine, kgri 1/min is
the grinding rate, kabs 1/min is the rate constant of intestinal
absorption, f is the proportion of the absorbed amount that
actually appears in the plasma, d mg/min is the consumed
glucose, Ra mmol/min is the glucose rate of appearance in
plasma, and kgut is the rate constant of gastric emptying,
which is a nonlinear function of Qsto2.

kgut(t, Qsto) = kmin +
kmax − kmin

2
{tanh[α(Qsto−

−bD̄(t))]− tanh[β(Qsto − aD̄(t))] + 2}
(10)

α =
5

2D̄(t)(1− b)
, β =

5

2D̄(t)a
,

D̄(t) = Qsto(t̄) +
∫ t̄f
t̄
d(τ)dt

(11)

where t̄ and t̄f are the initial and final times of the last
ingestion, and a, b, kmax, and kmin are model parameters [7]

III. THE IDENTIFICATION PROCESS

We decided to handle the parameter identification problem
as a Non Linear Least Squares Optimization (NLSO) prob-
lem [8]. In this case the default cost function is the sum of
squares of errors between the measured and simulated outputs.
We have been realized the identification framework in the
Mathworks’ MATLAB system by using an embedded solver
called lsqnonlin which is able to solve nonlinear least-squares
data-fitting problems in the following form:

min
Ω
‖f(Ω)‖22 = min

Ω

(
f1(Ω)2 + f2(Ω)2 + ...+ fn(Ω)2

)
,

(12)
where f(Ω) is the objective function to be minimized and

Ω is the vector of the parameters to be identified. Rather
than compute the sum of squares, the implemented lsqnonlin
function requires a user-defined function to compute the real
vector-valued function [9].

In order to handle the identification process appropriately
we defined a difference based function which was applied in
the following form:

f1(Ω) =
√

(z− ẑ(Ω))2 , (13)

at which the ẑ(Ω) and z are the simulated data value
and the target data value, respectively. From the investigated
solutions (we examined different norm-based and absolute
error functions as well) the (13) provided the best outcome
in case of the given specific problem, namely, the smallest
identification error based on the applied metric.

Therefore, we modified the (12) in accordance with the (13)
in the following way:

min
Ω
‖f(Ω)‖22 = f1(Ω)2

. (14)
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The realized identification framework has many beneficial
properties: it is easily adaptable to different nonlinear identi-
fication problems, cost effective and can be easily used. The
model to be identified has to be realized in the SIMULINK
environment – which is quite convenient solution –, however,
the identification process is running under the MATLAB
which makes the calling of external functions easy. However,
these sub-systems cannot reach each other directly due to
the specificities of the MATLAB system. In order to bypass
this problem we have applied an intermediate layer through
which the communication between the modules became pos-
sible. This layer is responsible for data synchronization and
matching. The final structure of the framework can be seen on
Fig. 1.
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Figure 1. The core structure of the identification framework

As the Fig. 1. depicts, the identification framework can be
divided into three parts: the core is the NLSO sub-system
which is accompanied by the parameter initialization and
adjustment sub-systems.

The first step of the identification process is the initializa-
tion of the sub-systems. The following parameters shall be
determined preliminary:
• The external model parameters, namely the Ωinit.
• The parameters of the identification core. These are the

internal and external parameters of the lsqnonlin solver
and the determined boundaries of the parameters.
The followings need to be determined for the appropri-
ate running of the algorithm: type and the termination
(or stopping) criteria. The used algorithm type was the
trust-region algorithm [10] which is numerically stable
and robust, further, it allows the use of different freely
defined cost functions. These were the applied termina-
tion criteria: O = [MaxIter,FunTol,StepTol,defaults] =
[500, 1e − 10, 1e − 10,[]], where the MaxIter is the
maximum number of allowed iterations, the FunTol is the
termination tolerance on the function value, the StepTol is

the termination tolerance on the maximum step distance
and the [] means the not determined options which are
defaults.
The Ωub upper and Ωlb lower boundaries also needed to
be set preliminary.

• The parameters of the SIMULINK simulator. These are
the followings: the initial values of the SIMULINK model
x(0), the sampling time T – which shall be the same as
the sampling time of the measurements z to keep the
consistency –, the maximum step size of the simulation
(we used 1 as maximum step size) and finally, the input
related parameters (continuous or discrete).

The following steps summarize the operation of the NLSO-
based identification process:

1) Initialization. After the initialization the first ẑ(Ω) ap-
pears through the simulation.

2) Investigation of the result. Based on the defined metric
(5), the goodness of the ẑ(Ω) is calculated.

3) Examination whether the algorithm reached the termi-
nation criteria in the given step or not. If one of the
termination criteria is satisfied, then the iteration of
the identification process stops. Otherwise, the iterations
continue.

The outcome of the process is the adjusted Ω parameter set
(Ω | f1(Ω)2 → min).

IV. RESULTS

During the investigation we applied simulated data instead
of measured data – since one of the main purposes was
to validate the operation of the identification framework.
However, the simulated data coming from the virtual patient
model was realistic and loaded by realistic noises.

We simulated the daily glucose intake of a man, so the
simulation covers a period of 24 h and it includes five meals
over the day. As a result of this simulation we get a vector
with 1440 elements, because every minute has a corresponding
value of glucose intake in g/min. In the next step we used the
glucose intake vector as the input of one of the applied glucose
absorption models to get a sample vector which contains
the amounts of absorbed glucose in every five minutes in
accordance with the capability of the CGM sensors. To test the
performance of the identification algorithm we defined three
scenarios as follows:

1) In the first scenario the model, which parameters were to
be adjusted was the same as the model, which was used
to generate the sample vector of the glucose absorption
values in order to validate the prompt operation of the
identification framework.

2) In the second scenario noise was added to the sample
vector. In this case we had to consider the way of adding
noise to the sample vector, because negative absorption
values can physiologically not exist, so we had to avoid
them. The noise was generated as a vector same size
as the sample data vector and every element of the
noise vector was a random number between −1 and 1.
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Since the glucose absorption values are less than 20,
these boundaries are suitable to generate noise which
has an impact on the sample data, so we could test the
identification algorithm in a more complex way than in
scenario 1.

3) In the third scenario one model was used to generate
the sample vector and then the algorithm adjusted the
parameters of the other model to fit the sample vector.
Noise was added to the sample vector in this case as well
to simulate the measurement noise. This scenario is the
closest approximation of adjusting the model parameters
by using measurement data.

In case of both models we used zero initial values x(t0) =
0>, namely, we considered that there has not been glucose
intake before the simulated time duration. We used the same
glucose intake vector in all three scenarios.

The effectiveness of the identification process was measured
with a well-known quality metric called root mean square error
(RMSE) [11]. We calculated it in vector form as follows:

RMSE =

√
(z− ẑ)>(z− ẑ)

N
, (15)

where N is the number of samples of the measured data.

A. Parameters of the Hovorka Model

The following parameters of the Hovorka model can be
adjusted by the identification algorithm: the carbohydrate
bioavailability parameter Ag and the time constant which
indicates how long it takes until the meal is digested and enters
the blood stream τD, so based on (12) the parameter vector
to be adjusted is Ω = [Ag, τD]>. During the identification we
considered the followings in terms of the applied lower and
upper boundaries and the applied initial parameter set:
• The applied lower and upper boundaries were Ωlb =

[0.7, 26]> and Ωub = [1, 55]> in accordance
with [12] [13] and our previous studies.

• The initial parameter values were defined as random
numbers between the preset lower and upper boundaries
so we can run multiple tests and see if the change of the
initial parameters has any influence on the results of the
identification process.

B. Parameters of the Magni Model

The following parameters of the Magni model can be
adjusted by the identification algorithm: the grinding rate
kgri, the rate constant of intestinal absorption kabs and the
proportion of the absorbed amount that actually appears in
the plasma f , so based on (12) the parameter vector to be
adjusted is Ω = [kgri, kabs, f ]>. During the identification we
considered the followings in terms of the applied lower and
upper boundaries and the applied initial parameter set:
• The applied lower and upper boundaries were Ωlb =

[0.0279, 0.0285, 0.7]> and Ωub = [0.0837, 0.0855, 1]>,
respectively. In the literature there are not any references
on the boundaries of the parameters kgri and kabs, so we
had to define them. Since the mentioned parameters fall

in the magnitude of 10−2, we defined the lower boundary
as the 50% of the initial parameter value and the upper
boundary as the 150% of the initial parameter value.

• The initial parameter values were defined as random
numbers between the preset lower and upper boundaries
– same as by the Hovorka model.

C. Results of Scenario 1

The results of identification concerning the first scenario
can be seen on Figure 2. In the upper panel the blue line
represents the absorption profile we wanted to approach by
adjusting the parameters of the Hovorka model and the red
dashed line represents the absorption profile generated us-
ing the parameters adjusted by the algorithm. The magenta
line represents the absorption profile we wanted to approach
by adjusting the parameters of the Magni model and the
cyan dashed line represents the absorption profile generated
by using the parameters adjusted by the algorithm. In the
lower panel the green and black lines represent the error
in both cases (green line – Hovorka model, black line –
Magni model), namely, the difference between the sample
data and the result of the identification corresponding to each
sample time. Despite of the applied 5 min sampling time –
in accordance with the capabilities of a usual CGM sensor
– the plots in this paper contain continuous lines, based on
linear approximation in order to increase the understandability
of the results. Table I. provides an overview of the adjusted
parameters, lower and upper boundaries and RMSE values.
The identification algorithm performed perfectly in the first
scenario, since the adjusted model parameters matched the
parameters that we used to create the sample data every time
we ran the identification algorithm. It can be seen on Figure 2.
that the sample absorption profile and the profile generated
using the adjusted parameters overlap. These results proved
that the algorithm is functioning well and we can run more
complex tests.

Table I
RESULTS OF THE IDENTIFICATION IN SCENARIO 1: INITIAL VALUES OF
MODEL PARAMETERS, LOWER AND UPPER BOUNDARIES, ADJUSTED
PARAMETERS AND RMSE VALUES – FIRST ROW: HOVORKA MODEL,

SECOND ROW: MAGNI MODEL

Par. Init. Lb. Ub. Ident. RMSE

Hov.
Ag 0.772 0.7 1 0.8

5.400 · 10−9

τD 51.709 26 55 40

Mag.

kgri 0.061 0.0279 0.0837 0.056

5.011 · 10−9kabs 0.037 0.0285 0.0855 0.057

f 0.760 0.7 1 0.95

D. Results of Scenario 2

The results of testing the identification algorithm on noisy
data can be seen on Figure 3. Same colors represent the same
absorption profiles, identification results and errors as in the
first scenario. As can be seen in Figure 3, the added noise did
effect the sample data, but the RMSE values were good, taking
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Figure 2. Results of the Identification in Scenario 1

into consideration the magnitudes of the values of the sample
data. Table II. provides an overview of the adjusted parameters,
lower and upper boundaries and RMSE values concerning the
second scenario.

Figure 3. Results of the Identification in Scenario 2

E. Results of Scenario 3

This was the most realistic scenario which we set up to
test the identification algorithm, namely, the sample data was
generated with one absorption model, noise was added to
it, and the algorithm adjusted the parameters of the other
absorption model to fit the sample data. In the upper panel
of Figure 4. the blue line represents the absorption profile of
the Magni model which we wanted to approach by adjusting

Table II
RESULTS OF THE IDENTIFICATION IN SCENARIO 2: INITIAL VALUES OF
MODEL PARAMETERS, LOWER AND UPPER BOUNDARIES, ADJUSTED
PARAMETERS AND RMSE VALUES – FIRST ROW: HOVORKA MODEL,

SECOND ROW: MAGNI MODEL

Par. Init. Lb. Ub. Ident. RMSE

Hov.
Ag 0.787 0.7 1 0.956

0.369
τD 37.674 26 55 43.698

Mag.

kgri 0.080 0.0279 0.0837 0.073

0.137kabs 0.032 0.0285 0.0855 0.043

f 0.790 0.7 1 1

the parameters of the Hovorka model and the red dashed line
represents the result of the identification. The magenta line
represents the absorption profile of the Hovorka model which
we wanted to approach by adjusting the parameters of the
Magni model and the cyan dashed line represents the result
of the identification. In the lower panel the green and black
lines represent the error of the identification in each sample
time, same color belongs to the same model as in the first
and second scenarios. Table III. provides an overview of the
adjusted parameters, lower and upper boundaries and RMSE
values. The RMSE values were satisfying in this scenario as
well.

Figure 4. Results of the Identification in Scenario 3

V. CONCLUSION

In this paper we described a user-friendly and flexible
nonlinear identification framework which can be used con-
cerning to biomedical researches, e.g. in the field of phys-
iological model identification. We systematically introduced
the structure and the operation of the developed algorithm
and the applied metric for the assessment. Our aim was to
prove that the identification process is performing well in
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Table III
RESULTS OF THE IDENTIFICATION IN SCENARIO 3: INITIAL VALUES OF
MODEL PARAMETERS, LOWER AND UPPER BOUNDARIES, ADJUSTED
PARAMETERS AND RMSE VALUES – FIRST ROW: HOVORKA MODEL,

SECOND ROW: MAGNI MODEL

Par. Init. Lb. Ub. Ident. RMSE

Hov.
Ag 0.814 0.7 1 1

0.759
τD 82.850 26 55 28.873

Mag.

kgri 0.069 0.0279 0.0837 0.029

0.600kabs 0.071 0.0285 0.0855 0.043

f 0.984 0.7 1 0.754

in silico trial. To this end, we defined three scenarios with
increasing complexity and we tested the algorithm using two
well-known glucose absorption models. We applied the RMSE
metric for the assessment of the operation of the identification
framework. The identification algorithm performed well dur-
ing our trials, even in the third scenario which was a close
approximation of testing the algorithm on measured data. In
our future work we will investigate the performance of the
developed algorithm using measured patient data and we will
apply the identification framework also on insulin absorption
models.
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