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The single-degree-of-freedom model of orthogonal
cutting is investigated to study machine tool vibrations
in the vicinity of a double Hopf bifurcation point.
Center manifold reduction and normal form calculations
are performed to investigate the long-term dynamics
of the cutting process. The normal form of the four-
dimensional center subsystem is derived analytically,
and the possible topologies in the infinite-dimensional
phase space of the system are revealed. It is shown
that bistable parameter regions exist where unstable
periodic and, in certain cases, unstable quasi-periodic
motions coexist with the equilibrium. Taking into
account the non-smoothness caused by loss of contact
between the tool and the workpiece, the boundary of
the bistable region is also derived analytically. The
results are verified by numerical continuation. The
possibility of (transient) chaotic motions in the global
non-smooth dynamics is shown.

1. Introduction
Improving the productivity of metal cutting operations
is highly important for the manufacturing society. The
occurrence of harmful vibrations during machining –
known as machine tool chatter – limits the achievable
productivity. Therefore, studying the dynamics of
machine tool chatter is an active field of research.
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The aim of analysing machine tool vibrations is to identify those regions in the space of the1

technological parameters, which are associated with chatter-free manufacturing processes. These2

parameter regions are typically illustrated in the plane of the spindle speed and the depth of cut;3

this picture is called stability lobe diagram or stability chart. The first successful efforts to describe4

chatter and to derive stability charts are presented in the works of Tobias [1] and Tlusty [2].5

Machine tool vibrations are described by delay-differential equations (DDEs), since the chip6

thickness, which determines the cutting force, is affected both by actual and delayed tool7

positions due to the surface regeneration effect. Since DDEs have infinite-dimensional phase8

space representation [3], the dynamics of machine tool chatter is rich and intricate. Furthermore,9

the modelling DDEs are typically nonlinear, since the cutting force is a nonlinear function of the10

chip thickness [4].11

Here, we restrict ourselves to the analysis of autonomous DDEs, which are the typical12

models of turning operations. Along the stability boundaries (or stability lobes) of turning, Hopf13

bifurcation occurs, which gives rise to a periodic solution of the nonlinear system. This periodic14

solution plays an important role in determining the global dynamics of the cutting process that15

may involve the high frequency self-excited vibration called chatter. The effect of nonlinearities16

on the occurrence of machine tool chatter was investigated for example in [5–8], whereas the17

bifurcation analysis of machining processes can be found in [9–14] for turning and in [15] for18

milling operations. The theory of Hopf bifurcation in DDEs is covered by [3,16–19]. The most19

popular approaches for bifurcation analysis are the rigorous center manifold reduction [20] and20

the method of multiple scales [12,13]. Note that other methods also exist for the computation of21

periodic solutions [21], e.g. the method of small parameters or the theory of averaging [5,22–26].22

In this paper, we analyse the intersection of stability boundaries where double Hopf23

bifurcation takes place. The double Hopf bifurcation complicates the dynamics of metal cutting by24

giving rise to a quasi-periodic solution [27]. Examples for the analysis of double Hopf bifurcation25

can be found in [28–38] for various dynamical systems. The double Hopf bifurcation in metal26

cutting was analysed in [39] using the method of multiple scales. Now we extend this work by27

analysing a slightly different model using center manifold reduction. In particular, we investigate28

the possible topologies in the phase portraits of the system near the double Hopf bifurcation and29

we also discuss the phenomenon of bistability. We verify the results by numerical continuation.30

Continuation of periodic solutions of nonlinear DDEs can be carried out by the software DDE-31

BIFTOOL [40], whereas the arising quasi-periodic solution can be computed by the software32

KNUT [41,42] or by the algorithm used in [15]. In this paper, we use the latter algorithm to verify33

the results of center manifold reduction.34

The rest of the paper is organised as follows. Section 2 presents the mechanical model of35

turning. Section 3 discusses the linear stability analysis, whereas Sec. 4 shows the bifurcation36

analysis using center manifold reduction. The resulting stability charts and bifurcation diagrams37

are presented together with implications on the global dynamic behaviour in Sec. 5. Conclusions38

are drawn in Sec. 6.39

2. Equation of Motion40

We consider the single-degree-of-freedom model of orthogonal cutting shown in Fig. 1(a). The41

equation of motion for the tool can be given in dimensionless form as follows (see [11] for details):42

x′′(t) + 2ζx′(t) + x(t) =w
(
(x(t− τ)− x(t)) + η2 (x(t− τ)− x(t))2 + η3 (x(t− τ)− x(t))3

)
,

(2.1)
where t is the dimensionless time measured by the time period of the free undamped natural43

oscillation of the system, x indicates the dimensionless position of the tool with respect to the44

constant theoretical chip thickness set to have unit length in Fig. 1, and ζ is the damping ratio45

of the dominant vibration mode of the system. The right-hand side of Eq. (2.1) is proportional46

to the variation of the dimensionless, x-directional cutting force component, which is assumed47

to be a cubic polynomial function of the dimensionless chip thickness variation x(t− τ)− x(t).48
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Figure 1. Single-degree-of-freedom mechanical model of orthogonal cutting (a); stability lobe diagram of the cutting

process (b); a typical bifurcation scenario (c).

Parameter τ is the dimensionless regenerative delay or, equivalently, the period of workpiece49

rotation related to the dimensionless angular velocity Ω of the workpiece: τ = 2π/Ω. Parameter50

w is the dimensionless chip width, whereas η2 and η3 denote dimensionless quadratic and cubic51

cutting-force coefficients related to the prescribed feed per revolution, which is just the unit52

theoretical chip thickness.53

Equation (2.1) is a delay-differential equation with cubic nonlinearity. The cubic cutting force54

model was introduced in [5]. Note that other cutting force characteristics also exist, see [4] and the55

references therein, but these characteristics can also be approximated by cubic polynomials using56

Taylor series expansion. Approximation of the nonlinearity by a cubic expression is a necessary57

step for the subsequent bifurcation analysis in Sec. 4 and Sec. 5.58

Equation (2.1) is valid only for positive dimensionless chip thickness, h(t) = 1 + x(t− τ)−59

x(t)> 0. For large-amplitude vibrations, it might occur that the dimensionless chip thickness h(t)60

drops to zero or to negative values, which indicates that the tool gets out of the workpiece and61

loses contact with the material. In such cases, the cutting force on the right-hand side of (2.1)62

becomes zero irrespective of the tool’s position. At this point, we do not investigate loss of contact63

between the tool and the workpiece and assume that h(t)> 0 and (2.1) is valid during the entire64

cutting process.65

In the rest of the paper, we deal with the stability and bifurcation analysis of (2.1). For66

convenience, the equation is transformed into the first-order form67

y′(t) = Ly(t) + Ry(t− τ) + g(yt) , (2.2)

where y is the vector of state variables, L and R are the coefficient matrices of the linear and the
retarded terms, respectively, and g contains all nonlinear terms:

y(t) =

[
x(t)

x′(t)

]
, L =

[
0 1

−(1 + w) −2ζ

]
, R =

[
0 0

w 0

]
,

g(yt) =

[
0

w
(
η2 (y1(t− τ)− y1(t))2 + η3 (y1(t− τ)− y1(t))3

) ] . (2.3)

Here subscript 1 refers to the first component of a vector, i.e., y1(t) = x(t).68

Since delay-differential equations have infinite-dimensional phase space [3], the state of the69

system is not determined solely by the vector y(t). Instead, we use a function defined in the70

Banach space B of continuously differentiable vector-valued functions to describe the evolution71

of the system: we introduce the shift yt ∈B : [−τ, 0]→R2, yt(θ) = y(t+ θ). Using yt, system (2.1)72

can be represented in operator differential equation (OpDE) form as73

y′t =Ayt + F(yt) , (2.4)
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where A,F :B→B are the linear and the nonlinear operators, respectively, defined by

(Au) (θ) =


d

dθ
u(θ) if θ ∈ [−τ, 0) ,

Lu(0) + Ru(−τ) if θ= 0 ,
(2.5)

(F(u)) (θ) =

{
0 if θ ∈ [−τ, 0) ,
g(u) if θ= 0 .

(2.6)

3. Linear Stability Analysis74

Equation (2.1) has a single equilibrium x(t)≡ 0, which corresponds to stationary cutting. Machine75

tool chatter is associated with the loss of stability of this equilibrium. Substitution of the76

exponential trial solution x(t) =Ceλt, λ,C ∈C into (2.1) gives the characteristic function77

D(λ) := det
(
λI− L− Re−λτ

)
= λ2 + 2ζλ+ 1 + w

(
1− e−λτ

)
. (3.1)

Its infinitely many zeros – known as characteristic exponents – are the same as the eigenvalues78

of the operator A in (2.5). The trivial solution is exponentially asymptotically stable if and only79

if all the characteristic exponents lie in the open left half of the complex plane. The system is at80

the boundary of stability if a single real root λ= 0 or a pair of complex conjugate roots λ=±iω81

(i2 =−1, ω > 0) exists, while no characteristic exponents have positive real part. For (3.1), only82

the latter case with critical roots λ=±iω is possible, which corresponds to a Hopf bifurcation in83

the nonlinear system. The analysis of the Hopf bifurcation can be found in [9–11] in details. The84

Hopf bifurcation points can be located after the separation of D(±iω) = 0 into real and imaginary85

parts:86

R(ω) =− ω2 + 1 + w (1− cos(ωτ)) ,

S(ω) =2ζω + w sin(ωτ) .
(3.2)

Solving R(ω) = 0 and S(ω) = 0 gives the linear stability boundaries in the form87

wH(ω) =

(
ω2 − 1

)2
+ 4ζ2ω2

2 (ω2 − 1)
, τH(j, ω) =

2

ω

(
jπ − arctan

(
ω2 − 1

2ζω

))
, ΩH(j, ω) =

2π

τH(j, ω)
,

(3.3)

where subscript H indicates that (3.3) gives the location of Hopf bifurcation. Note that (3.3) defines88

a family of curves called stability lobes where j ∈Z+ is the lobe number. Depicting the stability89

boundaries in the plane (Ω,w) of the technological parameters leads to so-called stability lobe90

diagrams (see the example in Fig. 1(b) for ζ = 0.02 where gray shading indicates the linearly91

stable region associated with chatter-free cutting process).92

As it was shown in [9–11], subcritical Hopf bifurcation occurs along the stability lobes. In the93

vicinity of the stability boundaries, the bifurcation gives rise to an unstable periodic orbit around94

the linearly stable equilibrium with approximate period 2π/ω. At the intersection points of the95

stability lobes, a codimension two bifurcation – often referred to as double Hopf bifurcation –96

takes place. At these points, two pairs of characteristic exponents λ=±iω1,2 lie on the imaginary97

axis (ω1,2 > 0). Let us consider the intersection of the lobes with lobe numbers j1 and j2. The98

location of this point (the so-called double Hopf point) is given by wHH :=wH(ω1) =wH(ω2),99

τHH := τH(j1, ω1) = τH(j2, ω2) and ΩHH :=ΩH(j1, ω1) =ΩH(j2, ω2), which can be obtained by100

solvingR(ω1) = 0, S(ω1) = 0,R(ω2) = 0 and S(ω2) = 0 numerically for ω1, ω2, w and τ . Subscript101

HH refers to Hopf-Hopf (double Hopf) bifurcation.102

The rest of the paper deals with the analysis of the double Hopf bifurcation via center103

manifold reduction and the derivation of the normal form of the resulting four-dimensional center104

subsystem.105
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4. Center Manifold Reduction and Normal Form Calculations106

In this section, center manifold reduction is used to analyse the long-term dynamics of the time-107

delay system (2.1) in the vicinity of the double Hopf bifurcation point. The theory of center108

manifold reduction is discussed in [3]. The calculation follows the steps of the single Hopf109

bifurcation analysis, which is described in [9–11] in details.110

At a double Hopf point on the boundary of the linearly stable region, the system has four111

characteristic exponents located on the imaginary axis, while all the other characteristic roots are112

located in the open left half-plane. Therefore, the long-term dynamics of the system is determined113

by the flow on a four-dimensional center manifold, which is embedded in the infinite-dimensional114

phase space of (2.1). This flow can be analysed by decomposing the four-dimensional center115

subsystem (see (4.24) at the end of this Section). In what follows, we perform this decomposition116

using the theorem given by (3.10) and (3.11) in Chap. 7 of [3].117

The decomposition theorem of [3] introduces the operator A∗, which is formally adjoint to
operator A relative to a certain bilinear form. The formal adjoint A∗ :B∗→B∗ must satisfy
(v,Au) = (A∗v,u) for any pair of u∈B : [−τ, 0]→R2 and v∈B∗ : [0, τ ]→R2, where B∗ is the
adjoint space and operation ( , ) :B∗ × B→R indicates the bilinear form. The definition of the
formal adjoint and the bilinear form can be found in [3] (see (3.1) and (3.3) in Chap. 7), and here
they become

(
A∗v

)
(ϕ) =

 −
d

dϕ
v(ϕ) if ϕ∈ (0, τ ] ,

L∗v(0) + R∗v(τ) if ϕ= 0 ,

(4.1)

(u, v) =u∗(0)v(0) +
∫τ
0

u∗(ϕ)Rv(ϕ− τ)dϕ , (4.2)

where the superscript ∗ of R, L and u refers to conjugate transpose.118

(a) Right and Left Eigenvectors119

The four-dimensional center subspace of the associated linear system is tangent to the plane
spanned by those infinite-dimensional right eigenvectors (eigenfunctions) of operator A, which
correspond to the four critical characteristic exponents λ=±iωk, k= 1, 2. From this point on,
index k= 1, 2 is used to indicate that an expression is related to one of the angular frequencies,
i.e., either to ω1 or to ω2. For τ = τHH and w=wHH, the four eigenvectors sk(θ) and sk(θ) satisfy(

Ask
)
(θ) = iωksk(θ) ,

(
Ask

)
(θ) =−iωksk(θ) , (4.3)

where overbar indicates complex conjugate. Decomposing the eigenvectors into real
and imaginary parts as sk(θ) = sk,R(θ) + isk,I(θ), substituting τ = τHH, w=wHH and the
definition (2.5) of operator A, we get the boundary value problem

d

dθ
s(θ) = B8×8s(θ) , θ ∈ [−τHH, 0) , (4.4)

L8×8s(0) + R8×8s(−τHH) = B8×8s(0) . (4.5)

The coefficient matrices and s(θ) are defined as

s(θ) =


s1,R(θ)

s1,I(θ)

s2,R(θ)

s2,I(θ)

 , B8×8 =


0 −ω1I 0 0
ω1I 0 0 0

0 0 0 −ω2I
0 0 ω2I 0

 ,
L8×8 = diag [L,L,L,L]|w=wHH

, R8×8 = diag [R,R,R,R]|w=wHH
,

(4.6)

where I and 0 denote the 2× 2 identity and zero matrices, respectively, and diag refers to block-120

diagonal matrices. The solution of (4.4) can be written in exponential form as s(θ) = eB8×8θc. The121
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constant c can be determined from (4.5). In order to select the norm of the right eigenvectors,122

four components of c can be chosen arbitrarily. Now we choose c1 = 1, c3 = 0, c5 = 1, and c7 = 0,123

whence we get124

sk,R(θ) =

[
cos(ωkθ)

−ωk sin(ωkθ)

]
, sk,I(θ) =

[
sin(ωkθ)

ωk cos(ωkθ)

]
. (4.7)

The decomposition theorem of [3] also uses the so-called left eigenvectors: the eigenvectors125

nk(ϕ) and nk(ϕ) of the adjoint operator A∗. Since the eigenvalues of A∗ are complex conjugates126

to those of A, the left eigenvectors nk(ϕ) and nk(ϕ) satisfy127 (
A∗nk

)
(ϕ) =−iωknk(ϕ) ,

(
A∗nk

)
(ϕ) = iωknk(ϕ) (4.8)

for τ = τHH and w=wHH. We decompose the eigenvectors into real and imaginary parts as128

nk(ϕ) = nk,R(ϕ) + ink,I(ϕ), where nk,R(ϕ) and nk,I(ϕ) can be obtained from the boundary value129

problem defined by (4.8) and (4.1) in the same way as we computed sk,R(θ) and sk,I(θ). The130

norm of the left eigenvectors cannot be selected arbitrarily, since they must satisfy the following131

orthonormality condition in order to apply the decomposition theorem of [3]:132

(n1,R, s1,R) = 1 , (n1,R, s1,I) = 0 , (n2,R, s2,R) = 1 , (n2,R, s2,I) = 0 . (4.9)

Solving the boundary value problem (4.8) constrained by the orthonormality condition (4.9), we
get the left eigenfunctions in the form

nk,R(ϕ) =
2

p2k+q
2
k

[
(2ζpk + ωkqk) cos(ωkϕ)+(ωkpk − 2ζqk) sin(ωkϕ)

pk cos(ωkϕ)− qk sin(ωkϕ)

]
,

nk,I(ϕ) =
2

p2k+q
2
k

[
(−ωkpk+2ζqk) cos(ωkϕ)+(2ζpk+ωkqk) sin(ωkϕ)

qk cos(ωkϕ) + pk sin(ωkϕ)

]
,

(4.10)

where the constants pk and qk read133

pk = 2ζ + τHH

(
1 + wHH − ω2

k

)
, qk = 2ωk (1 + ζτHH) . (4.11)

(b) Decomposition of the Solution Space134

Using the right and left eigenvectors, the four-dimensional center subspace can now be separated135

via the decomposition theorem given by (3.10) and (3.11) in Chap. 7 of [3]. We decompose the136

solution as137

yt(θ) = z1(t)s1,R(θ) + z2(t)s1,I(θ) + z3(t)s2,R(θ) + z4(t)s2,I(θ) + ytn(θ) , (4.12)

where z1(t), z2(t), z3(t) and z4(t) are local coordinates on the attractive center manifold, which
describe the long-term dynamics of the time-delay system (2.1), whereas ytn(θ) accounts for
the remaining infinite-dimensional stable subsystem with coordinates transverse to the center
manifold. The decomposition theorem gives the formula of these components:

z1(t) = (n1,R, yt) , z2(t) = (n1,I, yt) , z3(t) = (n2,R, yt) , z4(t) = (n2,I, yt) ,

ytn(θ) = yt(θ)− z1(t)s1,R(θ)− z2(t)s1,I(θ)− z3(t)s2,R(θ)− z4(t)s2,I(θ) .
(4.13)

From this point on, we omit the argument t from z1, z2, z3 and z4 for the sake of simplicity.138

Differentiating (4.13) with respect to time and using (2.4), (4.12) and (4.3), we get139 
z′1
z′2
z′3
z′4
y′tn

=


0 ω1 0 0 O
−ω1 0 0 0 O
0 0 0 ω2 O
0 0 −ω2 0 O
o o o o A




z1
z2
z3
z4
ytn

+


n1,R,2(0)F2(0)
n1,I,2(0)F2(0)
n2,R,2(0)F2(0)
n2,I,2(0)F2(0)
G(yt)

 ,

G(yt) =F(yt)−F2(0)
(
n1,R,2(0)s1,R + n1,I,2(0)s1,I + n2,R,2(0)s2,R + n2,I,2(0)s2,I

)
,

(4.14)
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where o :R→B is a zero operator, O :B→R is a zero functional, subscript 2 in nk,R,2 and nk,I,2140

indicates the second component of vectors, and F2(0) shortly indicates the second component of141

F(yt) at θ= 0 with τ = τHH and w=wHH.142

(c) Approximation of the Center Manifold143

Equation (4.14) shows that the four-dimensional center subsystem is decoupled in the associated144

linear system, but there is still coupling in the nonlinear terms. In order to fully decouple the four-145

dimensional subsystem, the dynamics must be restricted to the center manifold of form ytn =146

yCM
tn (z1, z2, z3, z4). The nonlinear terms in the first four rows of (4.14) must be expanded into147

Taylor series in terms of z1, z2, z3 and z4 in order to do normal form analysis – we must expand148

F2(0) up to third order. The computation of the center manifold and the Taylor expansion is rather149

lengthy, but it can be tackled by symbolic algebra. Now we present the milestones of this process.150

Substituting the decomposed solution (4.12) into the definition (2.6) of F , we get the Taylor151

series expansion of F2(0) if the center manifold ytn = yCM
tn (z1, z2, z3, z4) is expanded into Taylor152

series in terms of z1,2,3,4. The second-order terms inF2(0) are independent of yCM
tn , the expansion153

of the center manifold is necessary only to obtain the cubic (and higher-order) terms inF2(0). The154

quadratic part of F2(0) is of form155

F2nd
2 (0) =F11z

2
1 + F22z

2
2 + F33z

2
3 + F44z

2
4

+ F12z1z2 + F13z1z3 + F14z1z4 + F23z2z3 + F24z2z4 + F34z3z4 ,

Fmn =
1

2

∂2F2(0)
∂z2m

∣∣∣∣
0
, if m= n , Fmn =

∂2F2(0)
∂zm∂zn

∣∣∣∣
0
, if m<n ,

(4.15)

m,n= 1, 2, 3, 4, where the subscript 0 stands for the substitution yt(0) = 0. In order to include all
cubic terms in F2(0), we need at least the second-order expansion of the center manifold yCM

tn in
terms of z1,2,3,4:

yCM
tn (z1, z2, z3, z4)(θ)≈

1

2

(
h11(θ)z

2
1 + h22(θ)z

2
2 + h33(θ)z

2
3 + h44(θ)z

2
4

+ 2h12(θ)z1z2 + 2h13(θ)z1z3 + 2h14(θ)z1z4 + 2h23(θ)z2z3 + 2h24(θ)z2z4 + 2h34(θ)z3z4

)
.

(4.16)

The coefficients hmn(θ) (m,n= 1, 2, 3, 4, m≤ n) can be determined as follows. Both sides
of (4.16) are differentiated with respect to time, then the first four rows of (4.14) are substituted
into the right-hand side and the fifth row of (4.14) is substituted into the left-hand side. The
case θ ∈ [−τHH, 0) is considered and the definitions (2.5)-(2.6) of A and F are substituted
accordingly. Afterwards, the derivative of (4.16) with respect to θ is substituted and the second-
order approximation F2(0)≈F2nd

2 (0) is used. Finally, the coefficients of the quadratic terms of
z1,2,3,4 are collected and a polynomial balance is considered. This leads to three decoupled sets
of non-homogeneous first-order differential equations:

d

dθ
Hl(θ) = ClHl(θ) + p1,l cos(ω1θ) + q1,l sin(ω1θ) + p2,l cos(ω2θ) + q2,l sin(ω2θ) , (4.17)
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l= 1, 2, 3, where156

H1(θ) =

 h11(θ)

h12(θ)

h22(θ)

, H2(θ) =

 h33(θ)

h34(θ)

h44(θ)

, H3(θ) =


h13(θ)

h14(θ)

h23(θ)

h24(θ)

, Qk =
2

p2k + q2k

[
pk qk
qkωk −pkωk

]
,

[
pk,1 qk,1

]
=

 2F11Qk

F12Qk

2F22Qk

 , [
pk,2 qk,2

]
=

 2F33Qk

F34Qk

2F44Qk

 , [
pk,3 qk,3

]
=


F13Qk

F14Qk

F23Qk

F24Qk

 ,

Ck =

 0 −2ωkI 0
ωkI 0 −ωkI

0 2ωkI 0

 , C3 =


0 −ω2I −ω1I 0
ω2I 0 0 −ω1I
ω1I 0 0 −ω2I

0 ω1I ω2I 0

 .
(4.18)

The solution of (4.17) takes the form157

Hl(θ) = eClθKl + M1,l cos(ω1θ) + N1,l sin(ω1θ) + M2,l cos(ω2θ) + N2,l sin(ω2θ) , (4.19)

l= 1, 2, 3. The coefficients Mk,l and Nk,l can be determined by substituting (4.19) back into (4.17)158

and considering the harmonic balance of the trigonometric terms, which yields159 [
Mk,l

Nk,l

]
=

[
−Cl ωkI

−ωkI −Cl

]−1 [
pk,l
qk,l

]
. (4.20)

In order to determine the coefficient Kl in (4.19), a boundary condition corresponding to (4.17)160

must be derived and satisfied. The boundary condition is formulated similarly as the differential161

equation (4.17). Both sides of (4.16) are differentiated with respect to time, then the first four rows162

of (4.14) are substituted into the right-hand side and the fifth row of (4.14) is substituted into the163

left-hand side as before. Now the case θ= 0 is considered when using the definitions (2.5)-(2.6) of164

A and F . Afterwards, (4.16) is substituted and the second-order approximation F2(0)≈F2nd
2 (0)165

is used. The coefficients of the quadratic terms of z1,2,3,4 are collected for a polynomial balance166

and, by taking τ = τHH, w=wHH, it leads to the boundary conditions for (4.17) in the form167

PlHl(0) + RlHl(−τHH) = p1,l + p2,l + rl , (4.21)

where

Lk = L6×6 = diag [L,L,L]|w=wHH
, L3 = L8×8 , Pl = Ll − Cl ,

Rk = R6×6 = diag [R,R,R]|w=wHH
, R3 = R8×8 ,

r1 =−
[
0 2F11 0 F12 0 2F22

]T
,

r2 =−
[
0 2F33 0 F34 0 2F44

]T
,

r3 =−
[
0 F13 0 F14 0 F23 0 F24

]T
.

(4.22)

Finally, substituting the trial solution (4.19) into the boundary condition (4.21), we obtain the168

coefficient Kl. After some simplifications, we can write Kl in the form169

Kl =
(

Pl + Rle
−Clτ

)−1
rl . (4.23)

This way, the solution (4.19) of the above boundary value problem is constructed and the170

coefficients hmn(θ) (m,n= 1, 2, 3, 4, m≤ n) are available. The second-order approximation (4.16)171

of the center manifold is obtained and, with (4.12), it can be used to derive the third-order172



Proceedings of the Royal Society A, in press (2017)

9

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

expansion of F2(0) in terms of z1,2,3,4. Thus, the nonlinearity in the first four rows of (4.14)173

is now expressed in terms of the four local coordinates of the center manifold, and we get a174

four-dimensional subsystem with cubic nonlinearity in the form175 
z′1
z′2
z′3
z′4

=


0 ω1 0 0

−ω1 0 0 0

0 0 0 ω2
0 0 −ω2 0



z1
z2
z3
z4

+


G1(z1, z2, z3, z4)

G2(z1, z2, z3, z4)

G3(z1, z2, z3, z4)

G4(z1, z2, z3, z4)

 . (4.24)

The lengthy process of center manifold reduction has been performed in order to decouple176

the four-dimensional center subsystem (4.24). The advantage of this formulation is that the long-177

term dynamics of the original infinite-dimensional time-delay system (2.1) can be investigated by178

analysing the finite-dimensional ordinary differential equation (4.24). Hence, from this point on,179

the bifurcation theorems and normal forms of ordinary differential equations can be used, which180

are well-known in the literature [17,19]. In the next section, we use normal form theory to analyse181

the flow on the center manifold and show the existence of periodic and quasi-periodic motions.182

(d) Normal Form Equations183

The four-dimensional system (4.24) can be transformed into polar form with two amplitudes r1,
r2 and two phase angles θ1, θ2 as

r′1 =µ1r1 + a11r
3
1 + a12r1r

2
2 , θ′1 = ω1 + c11r

2
1 + c12r

2
2 ,

r′2 =µ2r2 + a21r
2
1r2 + a22r

3
2 , θ′2 = ω2 + c21r

2
1 + c22r

2
2 .

(4.25)

Now we focus on the amplitudes r1, r2 only and investigate the existence of periodic and quasi-184

periodic solutions by giving analytical formulae for coefficients µ1, µ2, and a11, a12, a21, a22.185

The coefficients µ1, µ2 of the linear terms in (4.25) are unfolding parameters that are functions186

of the bifurcation parameters. The double Hopf bifurcation is a codimension two bifurcation,187

hence two bifurcation parameters must be selected. Now we choose the dimensionless chip188

width w and the dimensionless angular velocity Ω. For convenience, we introduce the shifted189

parameters ŵ=w − wHH and Ω̂ =Ω −ΩHH to investigate the system in the vicinity of the190

double Hopf bifurcation. We can approximate the unfolding parameters by linear functions of191

the bifurcation parameters as192

µ1 = γ11ŵ + γ12Ω̂ ,

µ2 = γ21ŵ + γ22Ω̂ ,
(4.26)

where the constants γmn (m,n= 1, 2) are called the root tendencies. The constants γmn represent
the speed by which the four critical characteristic exponents cross the imaginary axis during the
double Hopf bifurcation. They can be obtained via implicit differentiation of the characteristic
equation D(λ) = 0. Using (3.1), this yields

γk1 =Re

(
∂λ

∂w

∣∣∣∣
λ=iωk

)
=Re

− ∂D
∂w
∂D
∂λ

∣∣∣∣∣
λ=iωk

=
pkVk + qkWk

p2k + q2k
,

γk2 =Re

(
∂λ

∂Ω

∣∣∣∣
λ=iωk

)
=Re

− ∂D
∂τ

dτ
dΩ

∂D
∂λ

∣∣∣∣∣
λ=iωk

=wHH
τ2HH

2π
ωk
qk(Vk + 1)− pkWk

p2k + q2k
,

(4.27)

where pk and qk are defined by (4.11), whereas Vk and Wk are given by193

Vk = cos(ωkτHH)− 1 , Wk =− sin(ωkτHH) . (4.28)

The coefficients amn (m,n= 1, 2) of the cubic terms in (4.25) can be obtained from the results
of center manifold reduction. These normal form coefficients can directly be calculated from the
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nonlinear terms of (4.24) by applying the formulae derived in [43], whence we obtain

a11 =−
1

2
w2(V 2

1 +W 2
1 )η

2
2

(
K1R1 + L1S1
K2

1 + L2
1

p1V1 + q1W1

p21 + q21
+
K1S1 − L1R1

K2
1 + L2

1

q1V1 − p1W1

p21 + q21

)
+

3

4
w(V 2

1 +W 2
1 )η3

p1V1 + q1W1

p21 + q21
,

a12 =− w2(V 2
2 +W 2

2 )η
2
2

((
K3R3 + L3S3
K2

3 + L2
3

+
K4R4 + L4S4
K2

4 + L2
4

)
p1V1 + q1W1

p21 + q21

+

(
K3S3 − L3R3

K2
3 + L2

3

− K4S4 − L4R4

K2
4 + L2

4

)
q1V1 − p1W1

p21 + q21

)
+

3

2
w(V 2

2 +W 2
2 )η3

p1V1 + q1W1

p21 + q21
,

(4.29)

where η2 and η3 are the cutting force coefficients that appear in (2.1), while the auxiliary194

parameters are195

Rk = 1− cos(2ωkτHH) , Sk = sin(2ωkτHH) ,

R3,4 = 1− cos((ω2 ± ω1)τHH) , S3,4 = sin((ω2 ± ω1)τHH) ,

Kk =wRk −
(
4ω2
k − 1

)
, Lk =wSk + 4ζωk ,

K3,4 =wR3,4 −
(
(ω2 ± ω1)2 − 1

)
, L3,4 =wS3,4 + 2ζ(ω2 ± ω1) .

(4.30)

The expressions of a22 and a21 are the same as that of a11 and a12, respectively, but the roles of196

ω1 and ω2 are interchanged. The formula of a22 can be obtained from that of a11 by replacing K1,197

L1, p1, q1, V1, W1, R1 and S1 with K2, L2, p2, q2, V2, W2, R2 and S2, respectively. Whereas the198

formula of a21 is the same as that of a12 but with p2, q2, V2, W2, V1, and W1 instead of p1, q1,199

V1, W1, V2, and W2, respectively, and replacing L4, S4 with −L4, −S4 (see the change of the sign200

when interchanging ω1 and ω2 in the definition (4.30) of L4 and S4).201

The above formulae are valid for non-resonant double Hopf bifurcation, where the angular202

frequencies ω1 and ω2 are not related by small integer numbers. Note that for specific values203

of the damping ratio ζ, it might be possible to obtain weak resonant double Hopf bifurcations204

[44], but their analysis is out of scope of this paper. The formula (4.29) of a11 is the same as205

that obtained for the Poincaré-Lyapunov constant via the analysis of the single Hopf bifurcation206

in [11]. It is also important to note that the cubic coefficients amn (m,n= 1, 2) are in fact functions207

of the bifurcation parameters w and Ω, and (4.29) gives only their constant approximation. In208

Sec. 5, we show a linear approximation of the cubic coefficients amn in terms of the bifurcation209

parameters w and Ω following [45]. The linear approximation leads to a higher-order estimation210

of the amplitude of the arising periodic and quasi-periodic motions.211

5. Stability Charts and Bifurcation Diagrams212

The analysis of the polar-form system (4.25) can be found in [17]. Accordingly, (4.25) can be further
simplified by the transformation r1 = r1/

√
|a11|, r2 = r2/

√
|a22|:

r′1 =r1
(
µ1 + ar21 + br22

)
,

r′2 =r2
(
µ2 + cr21 + dr22

)
,

(5.1)

where a= a11/|a11|, b= a12/|a22|, c= a21/|a11| and d= a22/|a22|. These four parameters are213

important, since they determine the possible topologies in the phase portraits of the polar-form214

system (4.25). Simplified phase portraits can be depicted in the plane (r1, r2) for different values of215

the bifurcation parametersw andΩ. As it was shown in [17], the topology of these phase portraits216

depends on the signs of a, b, c, d andA= ad− bc. Depending on their signs, twelve different cases217

of unfolding (twelve sets of different topologies) can occur (see pages 399–409 in [17]). For (2.1),218

the Hopf bifurcation is always subcritical [11], thus a> 0 and d > 0 hold, which excludes some of219

these twelve cases. As it is shown below, two of the twelve topologies can be identified.220
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Table 1. The parameters of the double Hopf bifurcation points shown in Fig. 2.

j1 j2 ω1 ω2 ΩHH wHH γ11 γ12 γ21 γ22

1 2 1.0006 1.52994 1.01018 0.671754 0.005553 0.3623 0.2963 −0.6699

4 5 1.00247 1.15031 0.253092 0.164877 0.02429 1.251 0.3182 −1.530

Table 2. The cubic coefficients of the double Hopf bifurcation points shown in Fig. 2.

j1 j2 a11 a12 a21 a22 a b c d A

1 2 8.090×10−6 0.008128 0.0002925 0.4317 1 0.01883 36.16 1 0.3193

4 5 1.460×10−4 0.01560 0.002356 0.1121 1 0.1392 16.14 1 −1.248

(a) Phase Portraits and Topologies221

Here we show a numerical case study for damping ratio ζ = 0.02 and cutting-force coefficients222

η2 = 1.43059 and η3 = 0.738487, which are the dimensionless counterparts of actual measured223

cutting-force coefficients reported in [5] with feed h0 = 250 µm per revolution. We found that224

topology Case Ia of [17] occurs at the intersection of the first and the second stability lobes, while225

the intersections of higher-order lobes are all associated with Case Ib of [17]. In what follows, we226

demonstrate the differences between the two cases.227

Consider the intersection of the first (j1 = 1) and the second (j2 = 2) stability lobes, which is228

marked by a circle in Fig. 1(b) and is also shown by thick lines in more detail in Fig. 2(a). The229

first row of Tab. 1 presents the location (ΩHH, wHH) of the intersection point, the two angular230

frequencies ω1, ω2 and the root tendencies γmn (m,n= 1, 2). The cubic coefficients amn (m,n=231

1, 2) and parameters a, b, c, d and A are listed in the first row of Tab. 2. In this example, a, b, c, d232

and A are all positive, which corresponds to Case Ia in [17]. We also computed coefficients b and233

c numerically by DDE-BIFTOOL [40] and obtained the same results up to the displayed digits.234

The corresponding phase portraits and their topologies are shown in Fig. 2(a). According
to [17], six different topologies can be distinguished for Case Ia depending on the unfolding
parameters µ1 and µ2. Correspondingly, six sectors with different topologies can be separated
in the plane (Ω,w) of the bifurcation parameters. The straight lines separating these sectors are

Line 1: µ1 = 0 ⇒ ŵ=−γ12
γ11

Ω̂ ,

Line 2: µ2 = 0 ⇒ ŵ=−γ22
γ21

Ω̂ ,

Line 3: µ2 =
c

a
µ1 ⇒ ŵ=

cγ12 − aγ22
aγ21 − cγ11

Ω̂ ,

Line 4: µ2 =
d

b
µ1 ⇒ ŵ=

dγ12 − bγ22
bγ21 − dγ11

Ω̂ .

(5.2)

Note that Lines 1 and 2 are the tangents of the intersecting stability lobes at the double Hopf point235

(the lobes are shown by thick blue and cyan lines in Fig. 2).236

Let us investigate the sectors of plane (µ1, µ2) by going around anti-clockwise. In Sector I237

(µ1 > 0, µ2 > 0), (4.25) has only a single, trivial equilibrium (r1, r2) = (0, 0), which corresponds238

to the trivial equilibrium of the original time-delay system (2.1) and exists in all the six sectors.239

The trivial equilibrium (0, 0) is a source (unstable node) in Sector I. The equilibrium undergoes a240

pitchfork bifurcation while crossing Line 1, which gives rise to a non-trivial equilibrium (r1, r2) =241 (
rp1 , 0

)
, rp1 6= 0 in Sector II (µ1 < 0, µ2 > 0). This equilibrium corresponds to a periodic solution242

(P1) in the time-delay system (2.1), whereas the pitchfork bifurcation in system (4.25) corresponds243

to a Hopf bifurcation in the delay-differential equation (2.1). In Sector II, the equilibrium
(
rp1 , 0

)
244

is a source, therefore the corresponding periodic solution P1 is unstable, while the trivial245
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Figure 2. The possible phase portrait topologies in the vicinity of the double Hopf bifurcation at the intersection of the first

and the second lobes (a); at the intersection of the fourth and the fifth lobes (b). The intersecting stability lobes are shown

by thick blue and cyan lines. Sources, sinks and saddles are indicated by red, green and blue dots, respectively.

equilibrium (0, 0) becomes a saddle. Another pitchfork bifurcation of (0, 0) takes place along Line246

2, and a non-trivial equilibrium (r1, r2) =
(
0, rp2

)
, rp2 6= 0 is born when entering Sector III (µ1 < 0,247

cµ1/a < µ2 < 0). This, again, corresponds to a Hopf bifurcation of the equilibrium of the infinite-248

dimensional time-delay system (2.1), which gives rise to another periodic solution (P2). In Sector249

III, the trivial equilibrium becomes a sink (stable node), the equilibrium
(
rp1 , 0

)
remains a source250

and the equilibrium
(
0, rp2

)
is a saddle. When entering Sector IV (µ1 < 0, dµ1/b < µ2 < cµ1/a),251

a pitchfork bifurcation of
(
rp1 , 0

)
gives rise to the non-trivial equilibrium (r1, r2) =

(
rqp1 , rqp2

)
,252

rqp1 6= 0, rqp2 6= 0. This phenomenon corresponds to a torus bifurcation of the periodic solution P1253

of (2.1), by which a quasi-periodic solution (QP) arises. Thus, in Sector IV, the trivial equilibrium254

coexists with two periodic solutions and a quasi-periodic one. The trivial equilibrium is still a sink,255

the equilibrium
(
0, rp2

)
is still a saddle, while the equilibrium

(
rp1 , 0

)
becomes a saddle and the256

equilibrium
(
rqp1 , rqp2

)
is born as a source. The equilibrium

(
rqp1 , rqp2

)
merges with the equilibrium257 (

0, rp2
)

via a pitchfork bifurcation when leaving Sector IV by crossing Line 4 to Sector V (µ1 < 0,258

µ2 < dµ1/b). Equivalently, a torus bifurcation of P2 occurs in the infinite-dimensional system (2.1).259

In Sector V, the equilibrium
(
0, rp2

)
becomes a source, while the equilibrium

(
rp1 , 0

)
remains a260

saddle and the trivial equilibrium remains a sink. Entering Sector VI (µ1 > 0, µ2 < 0) by crossing261

Line 1, the equilibrium
(
rp1 , 0

)
disappears via a pitchfork bifurcation, which corresponds to a262

Hopf bifurcation of the trivial equilibrium of (2.1). Here, the equilibrium
(
0, rp2

)
remains a source263

and the trivial equilibrium becomes a saddle. Finally, the equilibrium
(
rp2 , 0

)
disappears via a264

pitchfork bifurcation when returning to Sector I by crossing Line 2, i.e., P2 vanishes as a result of265

a Hopf bifurcation in the time-delay system (2.1).266

A second example is presented in Fig. 2(b), where the intersection of the fourth (j1 = 4) and the267

fifth (j2 = 5) stability lobes is shown, see also the square mark in Fig. 1(b). The parameters of the268

double Hopf point, the corresponding root tendencies and the cubic coefficients are listed in the269

second row of Tab. 1 and Tab. 2. In this example, a, b, c and d are positive but now A is negative,270

thus Case Ib in [17] applies. In this case, the order of Lines 3 and 4 changes when going around271

the sectors of the plane (µ1, µ2) anti-clockwise. Therefore, the quasi-periodic solution QP is born272

from P2 (and not P1) when entering Sector IV along Line 4, and it collapses into P1 (and not P2)273

when leaving Sector IV along Line 3. Interchanging Lines 3 and 4 modifies the topology only in274

Sector IV: now the equilibria
(
rp1 , 0

)
and

(
0, rp2

)
are sources and the equilibrium

(
rqp1 , rqp2

)
is a275

saddle. Consequently, the periodic solutions P1 and P2 behave as sources and the quasi-periodic276

solution QP behaves as a saddle.277
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(b) Bifurcation Diagrams via Higher-Order Estimation278

The amplitudes of the arising periodic and quasi-periodic orbits can be determined by calculating
the non-trivial equilibria of (5.1). According to [17], they can be calculated as

P1 : rp1 =

√
−µ1
a

⇒ rp1 (ŵ, Ω̂) =

√
−γ11ŵ + γ12Ω̂

a11
,

P2 : rp2 =

√
−µ2
d

⇒ rp2 (ŵ, Ω̂) =

√
−γ21ŵ + γ22Ω̂

a22
,

QP : rqp1 =

√
bµ2 − dµ1

A
⇒ rqp1 (ŵ, Ω̂) =

√
(a12γ21 − a22γ11) ŵ + (a12γ22 − a22γ12) Ω̂

a11a22 − a12a21
,

rqp2 =

√
cµ1 − aµ2

A
⇒ rqp2 (ŵ, Ω̂) =

√
(a21γ11 − a11γ21) ŵ + (a21γ12 − a11γ22) Ω̂

a11a22 − a12a21
.

(5.3)

Here we emphasise that the amplitudes depend on the two bifurcation parameters ŵ and Ω̂. Later279

on we omit the argument (ŵ, Ω̂) for simplicity.280

In [45], it was show that a higher-order estimation of the amplitude of the periodic orbits281

arising from Hopf bifurcation is possible when special global properties hold in the system. This282

estimation can also be done for the quasi-periodic orbit arising from the double Hopf bifurcation.283

The estimation is based on the approximation of the cubic coefficients amn (m,n= 1, 2) by a linear284

function of the bifurcation parametersΩ, w instead of using the constant values defined by (4.29):285

âmn = amn + aΩmnΩ̂ + awmnŵ , (5.4)

m,n= 1, 2. Replacing amn with âmn in (5.3) yields a higher-order estimation of the amplitude of286

the periodic and the quasi-periodic orbits as long as the additional coefficients aΩmn and awmn are287

chosen properly.288

The additional coefficients can be calculated based on the following global properties of the289

system. When the chip width is zero, that is, w= 0, the cutting force on the right-hand side290

of the governing equation (2.1) vanishes and the system reduces to a damped free oscillator.291

Hence the periodic and the quasi-periodic solutions must disappear at w= 0, which happens292

such that their amplitudes tend to infinity. That is, limw→0 r
p
1 =∞ and limw→0 r

p
2 =∞ holds293

for the periodic solutions, whereas limw→0 r
qp
1 =∞ and limw→0 r

qp
2 =∞ for the quasi-periodic294

solution. Similarly, when τ = 0 or, equivalently, Ω→∞, the right-hand side of (2.1) becomes295

zero. Therefore, the periodic solutions satisfy limΩ→∞ rp1 =∞ and limΩ→∞ rp2 =∞, whereas the296

quasi-periodic solution satisfies limΩ→∞ rqp1 =∞ and limΩ→∞ rqp2 =∞. It can be shown that297

these properties are guaranteed with the coefficients298

âmn = amn +
amn
wHH

ŵ , (5.5)

m,n= 1, 2. Note that approximating the cubic coefficients by such linear functions of the299

bifurcation parameters instead of using the constants in (4.29) does not change the formulae of300

Lines 1-4 in (5.2).301

The periodic and quasi-periodic solutions of (2.1) can be approximated as

yt(θ)≈r1(ŵ, Ω̂)
(
cos(ω1t)s1,R(θ)− sin(ω1t)s1,I(θ)

)
+ r2(ŵ, Ω̂)

(
cos(ω2t)s2,R(θ)− sin(ω2t)s2,I(θ)

)
,

(5.6)

x(t) =yt1(0)≈ r1(ŵ, Ω̂) cos(ω1t) + r2(ŵ, Ω̂) cos(ω2t) , (5.7)

where (r1, r2) =
(
rp1 , 0

)
and (r1, r2) =

(
0, rp2

)
must be substituted for the periodic solutions P1302

and P2, respectively, whereas (r1, r2) =
(
rqp1 , rqp2

)
for the quasi-periodic solution QP with the303

amplitudes given by (5.3) using âmn instead of amn. The bifurcation diagrams presenting the304
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amplitude of the periodic and the quasi-periodic solutions will be presented in Fig. 3 together305

with the corresponding global stability charts.306

(c) Global Dynamics and Region of Bistability307

In the linearly stable region, where the equilibrium is a sink, the coexisting periodic and quasi-308

periodic solutions are unstable. Due to these unstable orbits, the basin of attraction of the linearly309

stable equilibrium is finite, hence the equilibrium is not stable in the global sense. To large enough310

perturbations, the vibrations of the machine tool amplify in a self-excited manner.311

When the vibration amplitude becomes large enough, the tool jumps out of the workpiece and312

leaves the material during cutting. In such cases, the tool’s motion is governed by non-smooth313

dynamics: switching occurs between the dynamics of a cutting tool and the dynamics of a ’flying’314

tool (a damped free oscillator). The switching surface is located where the chip thickness is zero315

and loss of contact takes place. If the tool loses contact with the workpiece and undergoes a free316

flight, then (2.1) becomes no longer valid, since the cutting force on the right-hand side vanishes.317

It was shown in [14] for the case of the single Hopf bifurcation that once the unstable periodic318

motion involves loss of contact and grazes the switching surface, the periodic orbit undergoes319

a kind of non-smooth fold of limit cycles bifurcation called Big Bang Bifurcation (B3). This320

bifurcation is illustrated in Fig. 1(c) for j = 2, ω= 1.37 (Ω = 0.901) as shown by the dashed line321

in Fig. 1(b). Via the non-smooth fold, the unstable periodic orbit vanishes by merging with a322

large-amplitude attractive solution. This solution describes machine tool chatter with intermittent323

loss of contact, it may be chaotic and it coexists with the unstable periodic orbit and the linearly324

stable equilibrium. The region of coexistence is also called unsafe zone or region of bistability.325

Determining the boundary of the bistable region is important, since the cutting process unsafe in326

this region: it is stable only linearly but not in the global sense.327

We can expect similar behaviour in the vicinity of the double Hopf point. Periodic and328

quasi-periodic solutions exist only up to the point where the tool first loses contact with the329

workpiece during its large-amplitude motion. Thus, a Big Bang Bifurcation happens where the330

dimensionless chip thickness h(t) first drops to zero, that is, when331

h(t) = 1 + x(t− τ)− x(t) = 0 (5.8)

occurs for any t. Equation (5.8) defines the loci of the Big Bang Bifurcation and gives the boundary
of the bistable region for the periodic and the quasi-periodic solutions. Substituting (5.7) into (5.8),
combining the trigonometric terms and approximating τ ≈ τHH, we get

r1(ŵ, Ω̂)

√
(1− cos(ω1τHH))

2 + sin2(ω1τHH) cos (ω1t+ φ1)

+ r2(ŵ, Ω̂)

√
(1− cos(ω2τHH))

2 + sin2(ω2τHH) cos (ω2t+ φ2) = 1 , (5.9)

where φ1 and φ2 are certain phase shifts. If there exists any t for which (5.9) holds, then loss332

of contact takes place and the periodic or the quasi-periodic solutions disappear. The smallest333

amplitude for which loss of contact might occur is obtained by substituting cos (ω1t+ φ1) = 1334

and cos (ω2t+ φ2) = 1. This motivates the introduction of the scaled amplitude335

r := r1(ŵ, Ω̂)
√

2 (1− cos(ω1τHH)) + r2(ŵ, Ω̂)
√

2 (1− cos(ω2τHH)) (5.10)

and r= 1 indicates loss of contact. If r > 1, then the periodic and the quasi-periodic solutions336

disappear via the Big Bang Bifurcation. Note that the quasi-periodic solution is located on an337

invariant torus. Taking cos (ω1t+ φ1) = 1 and cos (ω2t+ φ2) = 1 implies that the solution is338

assumed to be dense where the torus touches the switching surface (5.8).339

Taking r= 1, substituting the higher-order estimation of the amplitude of the periodic340

solutions given by (5.3) with âmn instead of amn, we can obtain the boundary where the periodic341
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solutions disappear via a Big Bang Bifurcation in the form342

ŵB3

Pk
(Ω̂) =−

γk2Ω̂ +
akk

2 (1− cos(ωkτHH))

γk1 +
akk

2wHH (1− cos(ωkτHH))

. (5.11)

The boundary ŵB3

QP(Ω̂) where the quasi-periodic solution vanishes can be determined the same343

way by symbolic algebra (the resulting formula is too long to be presented here). If any of the344

unstable periodic or quasi-periodic solutions exists, a large-amplitude attractive solution coexists345

with the stable equilibrium. Therefore, the boundary of the bistable region is determined by those346

Big Bang Bifurcation curves, which are the farthest from the linear stability boundary.347

The results are summarised in Fig. 3 where the double Hopf points (DH) at the intersections348

of the first and the second, the second and the third, and the fourth and the fifth lobes are349

considered in rows (a), (b) and (c), respectively. In each panel, the analytical results are indicated350

by solid lines. The left panels show the stability charts of the system. The right panels show the351

corresponding bifurcation diagrams with the amplitude r of the periodic orbits P1, P2 and the352

quasi-periodic orbit QP as a function of the bifurcation parameter w. Parameter Ω is fixed to353

Ω = 1.0095, Ω = 0.505 and Ω = 0.2527 in rows (a), (b) and (c), respectively, which correspond354

to the dotted vertical lines in the left panels. In the left panels, solid thick blue and cyan lines355

show the intersecting stability lobes given by (3.3), whereas their tangents (Lines 1 and 2) are356

indicated by thin blue and cyan lines. Note that in the region depicted, Line 2 overlaps with the357

solid thick cyan stability lobe. In the right panels, the periodic orbits P1 and P2 initiate from the358

(approximate) Hopf bifurcation points H(P1) and H(P2), which correspond to the intersections359

of the dotted line with Lines 1 and 2 in the left panels of Fig. 3, respectively. The periodic orbits360

undergo a torus bifurcation along the red and purple lines (Lines 3 and 4) in the left panels. In361

the right panel of Fig. 3(a), the quasi-periodic solution QP is born from the periodic solution P1362

through a torus bifurcation at T(P1), which corresponds to the intersection of the dotted line and363

Line 3 in the left panel. In Figs. 3(b) and 3(c), the quasi-periodic orbit QP arises from the other364

periodic solution P2 through a torus bifurcation at T(P2), see also the intersection of the dotted365

line and Line 4 in the left panels.366

The bifurcation diagrams in the right panels of Fig. 3 are valid only up to points B3(P1),367

B3(P2) and B3(QP) at r= 1, where (2.1) becomes invalid due to loss of contact between the368

tool and the workpiece. The branches are invalid for r > 1, the periodic and the quasi-periodic369

solutions vanish there and large-amplitude stable solutions are born via a non-smooth fold. In the370

left panels, solid green and orange lines show the loci of Big Bang Bifurcation given by (5.11) for371

the periodic orbits P1 and P2, respectively. The Big Bang Bifurcation curve for the quasi-periodic372

solution is shown by a black line. Dark gray shading shows the regions where the periodic orbits373

indeed exist, that is, without losing contact with the workpiece. Similarly, darker gray shading374

indicates the region where the quasi-periodic solution exists. Light gray shading indicates the375

region where no periodic or quasi-periodic orbits exist due to loss of contact. Only the stable376

equilibrium exists here, hence the system is globally stable. In the regions with dark gray and377

darker gray shading, the system is bistable. Based on the figure, the quasi-periodic orbit occurs378

in a narrow range of parameters and does not affect the boundary of the globally stable region.379

Consequently, even close to the intersection of the stability lobes, the globally stable region can be380

determined by the formulas obtained from the analysis of the single Hopf bifurcation [11].381

We calculated the amplitude of solutions by numerical continuation as well, see the dashed382

lines in Fig. 3. We used DDE-BIFTOOL [40] for the computation of the periodic orbits, and383

used the algorithm in [15,41] to compute the quasi-periodic orbit. The loci of torus and Big384

Bang Bifurcations have also been continued in two parameters, see the dashed lines in the left385

panels. Note that the analytical results are only approximations and the numerical results can386

be considered as exact ones. We can see that the analytical results give only the tangents of387

the numerical torus bifurcation branches. The agreement between the analytical and numerical388

results is better in the right panels of Figs. 3(b) and 3(c) than in Fig. 3(a). At the intersection of the389
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Figure 3. Stability charts (left) and bifurcation diagrams (right) close to the double Hopf point (DH) at the intersection of

the first and the second lobe (a); the second and the third lobe (b); the fourth and the fifth lobe (c). Analytical results are

indicated by solid lines and dashed lines show the numerical results. Blue and cyan lines show the loci of Hopf bifurcation

(H) where periodic solutions (P1 and P2) are born. Red and purple lines represent the loci of torus bifurcation (T) where

a quasi-periodic orbit (QP) emerges from one of the periodic orbits. Green, orange and black lines indicate the loci of Big

Bang Bifurcation (B3) where the tool loses contact with the workpiece during periodic or quasi-periodic oscillations. Thin

black line indicates period doubling bifurcation (PD). The globally stable region is indicated by light gray shading, whereas

dark gray and darker gray shadings show the bistable regions where unstable periodic and quasi-periodic solutions coexist

with the linearly stable equilibrium and the large-amplitude stable motion (chatter) that involves loss of contact.
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Figure 4. Trajectories of the cutting process in the neighbourhood of a single periodic orbit (a); trajectories where two

periodic orbits coexist with a quasi-periodic one (b).

first and the second stability lobes in Fig. 3(a), the analytical results for the torus bifurcation curves390

are valid only in the close vicinity of the double Hopf point, then the numerical branches deviate.391

Therefore, the analytical bifurcation diagram in the right panel is not accurate even qualitatively:392

the quasi-periodic solution is born from the other periodic solution as in the numerical case. The393

numerical counterparts of the Big Bang Bifurcation branches B3(P1) and B3(P2) are also shown394

by dashed green and orange lines in the left panels of Fig. 3. Again, the analytical results give395

only the tangents of the numerical branches. Note that the solid and dashed orange lines overlap.396

The dashed green and orange lines can also be obtained by analytical formulae using the results397

of [11,45] on the single Hopf bifurcation, which considers the entire stability lobes not only their398

intersection. In addition, numerical continuation showed that even a period doubling bifurcation399

of the periodic solution P1 can occur, see the dashed thin black line PD(P1) in the left panel of400

Fig. 3(a). However, this branch lies beyond the Big Bang Bifurcation B3(P1), hence the period401

doubling does not show up when considering loss of contact between the tool and the workpiece.402

Finally, Fig. 4 shows a qualitative picture about the trajectories of the infinite-dimensional403

non-smooth system including loss of contact between the tool and the workpiece. The infinite-404

dimensional phase space is illustrated by three axes: x and x′, which are the general coordinates of405

the corresponding delay-free system, and x∞, which is introduced only for illustration purposes406

to represent the other infinitely many dimensions as a cumulative effect of the past. Panel407

(a) shows the case where only a single periodic orbit (cyan line) exists in the vicinity of the408

equilibrium. Here, the trajectories which lie within the basin of attraction of the equilibrium tend409

towards the equilibrium, see the solely green trajectory. However, the basin of attraction is finite410

and trajectories lying outside spiral outwards, see the red line. In this case, the vibrations amplify411

until the trajectory hits the switching surface (5.8) indicated by hatches at point A. Here, the412

tool jumps out of the workpiece. When the tool is out of contact, the infinite-dimensional system413

reduces to a two-dimensional one as shown by the black line. Temporarily, the system behaves414

as a damped free oscillator, which is illustrated by the trajectories spiralling towards the origin in415

the plane (x, x′) (see the green line). The amplitude of the vibrations decreases until the tool gets416

back into the workpiece at point B. The system becomes infinite-dimensional again (black line)417

and the trajectory diverges from the origin again (red line).418

Figure 4(b) shows the case where two periodic solutions (blue and cyan lines) and a quasi-419

periodic solution (purple line) coexist, cf. Sector IV in Fig. 2. The green trajectories lie within the420

basin of attraction of the equilibrium, hence they spiral towards the origin. The red trajectory lies421

outside and diverges from the origin. Note that this red trajectory is only a possible example, and422

it can be considered as the representation of the red lines in Sector IV of Fig. 2(b). The solution423

initiates in the vicinity of one periodic solution, cf. the upper red curve in Fig. 2(b). The trajectory424

spirals outwards, wraps around the quasi-periodic solution, and runs until it hits the switching425
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surface (5.8) at point A, see the hatches in Fig. 4(b) and the dashed line in Fig. 2(b). Here, the426

tool gets out of the workpiece (black line), the system becomes two-dimensional and restricted to427

plane (x, x′), where the trajectory spirals towards the origin (green line). Then, the tool enters the428

workpiece at point B (black line) and the solution continues in the vicinity of the other periodic429

orbit (red line), cf. the lower red curve in Fig. 2(b). The vibrations start amplifying again until the430

contact between the tool and the workpiece is lost at point C (black line). A damped motion431

(green line) follows in the plane (x, x′) until point D is reached. The tool gets back into the432

workpiece again (black line) and, once more, the infinite-dimensional dynamics prevails. The433

whole trajectory may even describe chaotic motion. The chaos can be transient, since it can occur434

that, after a while, the trajectory penetrates the basin of attraction of the equilibrium when the tool435

gets back into the workpiece. Then, at last, the system becomes globally stable and the trajectory436

approaches the origin.437

6. Conclusions438

In this paper, we investigated the dynamics of machine tool vibrations in the vicinity of a double439

Hopf bifurcation point. Via center manifold reduction, we derived the normal form coefficients of440

the four-dimensional center subsystem, which determines the long-term dynamics in the vicinity441

of the double Hopf point. Based on the normal form coefficients, we identified the possible442

topologies in the phase space of the four-dimensional center subsystem. We found the previously443

unexplored Case Ia of [17] and also the Case Ib that was predicted in [27], and showed that444

unstable periodic and quasi-periodic solutions coexist with the linearly stable equilibrium in445

certain parameter regions. Taking loss of contact between the tool and the workpiece into account,446

we derived the approximate boundaries of the globally stable region in closed form. We verified447

the results by numerical continuation using DDE-BIFTOOL [40] and the algorithm of [15,41],448

which even revealed the existence of period doubling bifurcation of periodic orbits. Finally, we449

assessed qualitatively the non-smooth global dynamics in the infinite-dimensional phase space450

and pointed out the possibility of transient chaotic motions.451
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