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In this article a method is presented to find systematically the domain of attraction
(DOA) of hybrid non-linear systems. It has already been shown that there exists a sequence
of special kind of Lyapunov functions Vn in a rational functional form approximating a
maximal Lyapunov function VM that can be used to find an estimation for the DOA. Based
on this idea, an improved method has been developed and implemented in a Mathematica-
package to find such Lyapunov functions Vn for a class of hybrid (piecewise non-linear)
systems, where the dynamics is continuous on the boundary of the different regimes in the
state space.

In addition, a computationally feasible method is proposed to estimate the DOA using
a maximal fitting hypersphere.
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1. INTRODUCTION

The stability and the stability region of physical (and industrial) systems are im-
portant properties to be determined. In practice, it is often not enough to prove the
local asymptotic stability of an equilibrium point, but one may also need to know
the extent of the stability region, too.

A substantial part of methods on finding the region of stability described in the
literature is based upon the classical results of LaSalle and Lefschetz [15] using a
suitably chosen Lyapunov function in [28] and [12]. One of the first results concern-
ing the estimation of stability domains is described by Zubov [30] using a constructed
Lyapunov function of which preimage (contained by an open sphere) over an inter-
val gives an approximation for the domain (or region) of attraction (DOA). This
construction, unfortunately, requires the solutions of the given system (and so the
knowledge of the DOA itself) [12, 30]. The same problem of applicability is true for
the method given by Knobloch and Kappel in [13]. A linear matrix inequality (LMI)
technique of polynomial Lyapunov functions for a class of non-polynomial systems
is presented in [5] where the non-polynomial part of the Taylor expansion of the
Lyapunov function is dropped. A multidimensional gridding approach based upon
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the use of Chebyshev points is presented in [10]. [4] describes an LMI based method
for estimating the so-called Robust Domain of Attraction for uncertain polynomial
systems where the multiplicative uncertainties belong to a polytope. In [6], the do-
main of attraction of polynomial system is estimated using the union of a continuous
family of Lyapunov function estimates. The computation of the minimal distance
between a point and a surface in finite dimensional spaces is a fundamental subprob-
lem in DOA estimation. [7] presents a general framework in which certain classes
of minimum distance problems are solved via LMI computations. The above men-
tioned methods, however, are applicable for smooth non-linear ordinary differential
equation (ODE) systems.

Computing the DOA for hybrid systems containing continuous and discrete com-
ponents is far less advanced [1]. Here again, Lyapunov function based methods are
usually applied. One possible approach that is followed e. g. in [19] is to construct the
overall Lyapunov function of the system from known nonstrict Lyapunov functions
for the dynamics and finite sums of persistence of excitation parameters.

The subject of this paper is to use a special Lyapunov function, the so called
maximal Lyapunov function proposed by Vanelli and Vidyasagar in [25], to develop
an algorithm to estimate the DOA of a class of hybrid non-linear systems. The
maximal Lyapunov function can be constructed by using an iterative procedure
and the DOA is estimated by its appropriately chosen level-set. The algorithm re-
quires to perform a combination of symbolic and numerical calculations, therefore
the Mathematica system has been chosen for its implementation. A similar itera-
tive approximation algorithm for the approximate analytical solution to a non-linear
undamped Duffing equation is reported in [27], where the authors have also imple-
mented their method in Mathematica. The approximation of the stability region of
a special BDF–Runge–Kutta type formulas implemented in Mathematica has also
recently been reported in [26].

The structure of the paper is the following. First the fundamental notions and
definitions are given including the stability of ODE systems, maximal Lyapunov-
functions and hybrid systems. Then the numerical method is shown to find the
DOA of a non-linear hybrid system which is then demonstrated via examples.

2. BASIC NOTIONS

In the following we will consider the ordinary autonomous differential system in the
form of

ẋ = f(x) (1)

where f : Rn → Rn is continuous and moreover we assume that for each x ∈ Rn a
unique solution φ(t, x) exists which is defined on R such that φ(0, x) = x. Then all
necessary conditions are satisfied [8] to allow φ(t, x) to define a dynamical system
on Rn. Note that if f , for instance, is of global Lipschitz-type then the mentioned
conditions are met.

Throughout the paper (X, ρ) denotes locally compact metric space with metric
ρ. Sets I(A), Ā, P(A) and ∂A, denotes the interior of A, closure of A, power set
and the boundary of A respectively. The following notions shall be used in addition:
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S(x, ξ) = {y ∈ X : ρ(x, y) < ξ} is the ξ-neighbourhood of point x, S[x, ξ] = {y ∈
X : ρ(x, y) ≤ ξ} is its closed ξ-neighbourhood, S(M, ξ) = {y ∈ X : ρ(y,M) < ξ}
is the ξ-neighbourhood of set M , S[M, ξ] = {y ∈ X : ρ(y,M) ≤ ξ} is its closed
ξ-neighbourhood and H(x, ξ) = {y ∈ X : ρ(x, y) = ξ} is the sphere-surface with
radius ξ centred at x. If we refer to some neighbourhood of the origin then the first
parameter is left.

2.1. Stability and attractivity of ODE systems

The mathematical notions related to the region of stability with respect to a given
stationary point of an ODE are given below [2].

Definition 2.1. A set M ⊂ X is called invariant (positively invariant) whenever
φ(t, x) ∈ M for all t ∈ R (t ∈ R+) and φ(0, x) = x, i. e. the set M is positively
invariant if for every initial condition in M the trajectory φ(t, x) is contained in M .

Definition 2.2. For any given x ∈ X the set Λ+(x) is called positive or omega limit
set for x and J+(x) is called the first positive prolongational limit set of x where
Λ+(x) = { y ∈ X | ∃{tn} ⊂ R : tn → ∞∧ x(tn) → y } and
J+(x) = { y ∈ X | ∃{xn} ⊂ X, ∃{tn} ⊂ R+ : xn → x, tn → ∞∧ xntn → y } accord-
ingly.

Definition 2.3. With a given compact set ∅ 6= M ⊂ X we associate the sets
Aω(M) = { x ∈ X | Λ+(x) ∩M 6= ∅}, A(M) = {x ∈ X | Λ+(x) 6= ∅ ∧ Λ+(x) ⊂M }
and Au(M) = {x ∈ X | J+(x) 6= ∅ ∧ J+(x) ⊂M } which are called the domain of
weak attraction, attraction and uniform attraction of M , respectively.

A given set M is said to be a local attractor if A(M) is some neighbourhood of
M (i. e. for all point in M there is an open neighbourhood which is subset of A(M)).

A given set M is said to be (i) stable if every neighbourhood U of M contains a
positively invariant neighbourhood V (U) of M and (ii) asymptotically stable if it is
stable and is an attractor. The union of V (U)’s for all neighbourhoods U is called
the domain of stability of M .

The following theorem is classical (see, e. g. [14]).

Theorem 2.4. (LaSalle’s principle to establish asymptotic stability) Let V :
Rn → R be a continuous function such that V (x) > 0 if x 6= 0 and V̇ (x) ≤ 0 on
Ωl = {x ∈ Rn : V (x) ≤ l} for some l > 0. Let R = {x ∈ Rn : V̇ (x) = 0}. If R
contains no whole trajectory other than x(t) = 0 then the origin is asymptotically
stable. The derivative should be considered in Dini-sense, if necessary (see [28]).

Characterization of stability by means of continuous functions is not in general
possible, however strong theorems can be stated on asymptotic stability. Let the
origin of system (1) be asymptotically stable equilibrium point. Satisfying this
condition ensures (among other properties) that the DOA is subset of the domain
of stability of the origin [9].
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2.2. Maximal Lyapunov functions

It is well known that even if a Lyapunov function exists to an autonomous ODE,
then it is not unique. A maximal Lyapunov function is a special Lyapunov function
on A which indicates the DOA for a given locally asymptotically stable equilibrium
point.

Definition 2.5. A function VM : Rn → R+
0 is called maximal Lyapunov function

for the system (1) if

(i) VM (0) = 0, VM (x) > 0, x ∈ A\{0}

(ii) VM (x) <∞ if and only if x ∈ A,

(iii) V̇M is negative definite over A and

(iv) VM (x) → ∞ as x→ ∂A and/or |x| → ∞,

with A being the domain of attraction of the origin for system (1).

Note that if the origin is an asymptotically stable equilibrium point its DOA
cannot be closed unless it is the empty set or the whole space [2].

Theorem 2.6. If M is a weak attractor, attractor or uniform attractor then the
corresponding domain of weak attraction, attraction or uniform attractionN is open
(an open neighbourhood of M).

P r o o f . According to the definitions N is neighbourhood of M . So ∂N is invariant
and disjoint from M and is indeed closed. Note that because ∀x ∈ ∂N : Λ+(x) ⊂ ∂N

it is seen that ∀x ∈ N : Λ+(x) ∩ M 6= ∅. Since ∂N ∩ M = ∅ we conclude that
N ∩ ∂N = ∅. Thus N is open. �

The following theorem forms the basis of our further development.

Theorem 2.7. Suppose we can find a set B ⊆ Rn containing the origin in its
interior and a continuous function V : B → R+ and a positive definite function
ψ : Rn → R+ such that

(i) V (0) = 0 and V (x) > 0 for all x ∈ B\{0},

(ii) the function V̇ (x0) = limt→0+
V (x(t,x0))−V (x0)

t
is well defined at all x ∈ B and

satisfies the relation V̇ (x) = −ψ(x), ∀x ∈ B and

(iii) V (x) → ∞ as x→ ∂B and/or |x| → ∞.

Then B = A.
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P r o o f . See [25]. �

Theorems A.1 and A.2 in the Appendix show that the conditions on V imposed
in theorem 2.7 are reasonable.

Suppose V is a continuous function on some ball S(δ) for some δ > 0 such that
V (0) = 0 and V̇ is negative definite. Then one could prove that V is positive definite.
This fact shows that if we can find a function V and a positive definite function ψ

such that V (0) = 0 and ∂V (x)′f(x) = −ψ(x) then V is guaranteed to be positive
definite.

2.3. Hybrid systems

There are two possible fundamentally different ways of describing a hybrid system
that possesses both continuous and discrete variables. The first one utilizes the
concepts of theory of discrete event systems [18, 23] and embeds the continuous
elements into a discrete system. In this article the other approach is followed which
sometimes is called switched systems approach when some non-smooth variables are
embedded into the continuous part [23] so that the dynamics by piecewise functions
can be described which are continuous, however, not differentiable on the border
between different dynamics. There also exists an extended approach called systems
with impulse effect [16, 17] where the possibility is added to the states to jump
when certain conditions are satisfied, often when some boundaries are crossed by
the trajectory. These boundaries are generally subsets of the state-space, often
being described by zeros of several functions.

Let function f in the autonomous system (1) be piecewise-defined over finite
number of different domains Xi with no point belonging to more than one dynamics,
more precisely f(x) = fi(x), x ∈ Xi, i ∈ n̄ = {1, 2, . . . , n} and ∪i∈n̄Xi = X and Xis
are pairwise disjoint. The border of the dynamics {i1, i2, . . . , im} = I ∈ P (n̄) is
given by DI = ∩i∈IXi. The border of all dynamics is then given by D = ∪I∈P(n̄)DI .
Furthermore let the DOA for the subsystem ẋ = fi(x) be Ai (= Ai({0})) ⊆ Xi.
Note that Ai is not restricted onto Xi (on which the given sub-dynamics is active).

2.3.1. DOA of hybrid systems

There are some not too rigorous conditions that the function f of a hybrid system
model should meet in order to enable a relatively easy DOA analysis. In short it
should be smooth enough to have only one trajectory going through any point in X .
The detailed list of conditions can be found in Subsection 3.2.1.

It is easy to see that if for all I ∈ P (n̄) and for all {i1, i2} ⊆ I : Ai1∩DI = Ai2∩DI

then A = ∪i∈n̄Ai. Otherwise neither the union ∪i∈n̄Ai nor the intersection ∩i∈n̄Ai

is necessarily invariant for each fi, thus an appropriate subset of ∪i∈n̄Ai has to be
chosen as estimation of A. Precise description of the mathematical background of
choosing this subset is detailed later in Section 3.3.
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2.3.2. Stability analysis of hybrid systems

Several approaches have already been introduced in the literature for the stability
analysis of hybrid systems. For a certain class of hybrid systems consisting of non-
linear subsystems a linear matrix inequality (LMI) method has been proposed [20]
which extends the classical Lyapunov theory for these hybrid systems. One of its
assumptions is the same condition we have in this paper, namely to have the same
equilibrium point of each subsystem, however, it allows the Lyapunov function to
be discontinuous.

The emerging need of controlling hybrid systems in the industry yields results
such as in [29] where set of sufficient conditions has been formulated for the stability
of a switching control scheme by imposing a hierarchy among the controllers which
is then in a suitable form for controller design.

Branicky introduced multiple Lyapunov functions in [3] which are used to analyse
Lyapunov stability and then extended Bendixson’s theorem for Lipschitz continuous
vector fields, allowing limit cycle analysis of some class of ’continuous switched’
systems.

For switched systems with impulse effects it is often not easy to construct mul-
tiple Lyapunov functions. In the paper [16] concepts of minimum holding time and
redundancy have been used to establish sufficient conditions for stability, asymptotic
stability and exponential stability in Lyapunov sense. For hybrid systems, condi-
tion of exponential stability can be formulated as LMIs by using piecewise quadratic
forms of the Lyapunov function candidates, too [21].

3. NUMERICAL APPROXIMATION OF MAXIMAL LYAPUNOV FUNCTIONS

In this section an iterative method proposed by Vanelli and Vidyasagar is shown
to estimate V with a sequence of Vns. Results in this section are based upon the
paper [25].

3.1. The Vanelli–Vidyasagar algorithm

Based on the properties of the maximal Lyapunov functions in Section 2.2, we seek
for a function VM and a positive definite function ψ satisfying VM (0) = 0 and

V̇M (x) = −ψ(x) (2)

over some neighbourhood of the origin such that the set ∂A is given by the relation

VM (x) → ∞. If we could write VM as VM (x) = N(x)
D(x) , where N(x) and D(x) are

polynomials in x then ∂A would be given by D(x) = 0. So let us write VM (x) as

VM (x) =

∑∞

i=2 Ri(x)

1 +
∑∞

i=1Qi(x)
(3)

where Ri and Qi are homogeneous functions of degree i. The estimation Vn of VM is

Vn =

∑n

i=2Ri

1 +
∑n−2

i=1 Qi

. (4)
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In order to construct Vn the expansion f(x) =
∑∞

i=1 Fi(x) is used where functions
Fi, i ≥ 1 are again homogeneous functions of degree i. For i = 1 we have F1(x) =
Φx,Φ ∈ Rn×n, where Φ is the Jacobian matrix of f at x = 0. For the sake of
brevity, let Fi(x) = 0, i ≤ 0. Having ψ(x) = x′Qx, Q > 0 we obtain V̇M (x) =
∇VM (x)′f(x) = −ψ(x) = −x′Qx and thus finally we get the polynomial equality

∞
∑

i=2

∞
∑

k=1

∇R′
iFk +

∞
∑

i=1

∞
∑

j=2

∞
∑

k=1

Qi∇R
′
jFk −

∞
∑

i=1

∞
∑

j=2

∞
∑

k=1

Q′
iRjFk

= −x′Qx



1 + 2

∞
∑

i=1

Qi +

∞
∑

i=1

∞
∑

j=1

QiQj



 . (5)

Equating the coefficients of the same degrees k of the two sides for k = 2 we get

∇R′
2F1 = −x′Qx (6)

and for k ≥ 3 we have

k
∑

i=2

∇R′
iFk+1−i +

k−2
∑

i=1

k−1
∑

j=2

(

Qi∇R
′
j −∇Q′

iRj

)

Fk+1−i−j

= −x′Qx

(

2Qk−2 +

k−3
∑

i=1

QiQk−2−i

)

(7)

which can in short be expressed as and under-determined set of linear equations

Any = bn (8)

where An are matrices of appropriate dimension, and the vector y is composed of
the coefficients of the homogeneous functions Ris and Qis.

It can be shown that functions Vn are Lyapunov-functions, i. e. they are positive
definite and V̇n is negative definite about some neighbourhood of the origin. Proof
of this non-obvious statement is detailed in [25] and [22].

The form of this result is similar to the one yielded by Zubov [30], but while there
it was dim(An) = n×n, in our case it is dim(An) = m×n,m < n which fact allows
us to accelerate the convergence of Vn’s to VM by minimizing a certain expression
en(y) as it is detailed below.

Let us find homogeneous functions Rn and Qn−2, n ≥ 3, such that the coefficients
of Rn and Qn solve the constrained minimization problem

min en(y)
s.t. An(y) = bn

(9)

where en(y) is the squared 2-norm of the coefficients of degree greater than or equal
to n+ 1 in the expression of V̇n. Let

U =

(

1 +

n−2
∑

i=1

Qi(x)

)2

. (10)
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Then

V̇n = ∇Vn
′f =

1

U





(

1 +

n−2
∑

i=1

Qi

)

n
∑

j=2

∇Rj
′ −

(

n−2
∑

i=1

∇Qi
′

)





n
∑

j=2

Rj







 f

=
1

U





n
∑

i=2

∇Ri+

n−2
∑

i=1

n
∑

j=2

(

Qi∇Rj
′−∇Qi

′Rj

)





∞
∑

k=1

Fk =
1

U

(

V̇nmain+V̇nresid

)

(11)

where

V̇nmain = ∇R2
′F1

+

n
∑

k=3



∇R2
′Fk−1 +

k
∑

j=3

(

∇Rj
′ +

j−2
∑

i=1

(

Qi∇Rj−i
′ −∇Qi

′Rj−i

)

)

Fk−j+1



 (12)

and

V̇nresid

=

∞
∑

i=1





n−1
∑

j=n−i+1

∇Rj+1 +

n
∑

r=2

n−2
∑

q=(n+1)−(i−1)−r

(

Qq∇Rr
′ −∇Qq

′Rr

)



Fi

−∇R1
′

∞
∑

i=n+1

Fi. (13)

For simpler notation let Qi, Ri and Fi be zeros whenever i ≤ 0. Then we get

V̇n =
1

U

(

−x′Qx− x′Qx

(

n

2
∑

k=3

Qk−2 +

n
∑

k=3

k−3
∑

i=1

QiQk−2−i

))

+
1

U
V̇nresid

=
1

U

(

−x′Qx

(

1 + 2

n
∑

k=3

Qk−2 +

n
∑

k=3

k−3
∑

i=1

QiQk−2−i

))

+
1

U
V̇nresid. (14)

Since the numerator of the first term is part of the expression U of degree up to and
including n− 2, V̇n can be written in the form of

V̇n = −x′Qx+
Ug

U
(15)

where Ug is the sum of terms whose degree is greater than or equal to n−1. This, in

addition, shows that V̇n is negative definite about some neighbourhood of the origin.
According to the theorem of LaSalle [15] about invariant sets, one can choose the

largest positive value C⋆ such that the sublevel set

Aest = {x : Vn(x) < C⋆} (16)
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is contained in the region given by

Ω =
{

x : V̇n(x) ≤ 0
}

. (17)

As soon as the desired accuracy (computed as en (y⋆) = 0 for the minimizer y⋆) has
been reached (or the error starts growing) the iteration can be stopped. Relation
Aest ⊆ A holds true in each step which means the more step one executes the more
precise estimation of A can be computed. If en (y⋆) = 0 for some y⋆ and some n
then the iteration can be stopped and due to the relation V̇n = −x′Qx the set A is
given by D(x) = 0, i. e.

A =

{

x :

n−2
∑

i=1

Qi(x) > −1

}

. (18)

The choice of the quadratic form −φ(x) = −x′Qx may seem to be conservative
for the time derivative of Vn. However, this form can guarantee that the coefficients
of the homogeneous functions Ri and Qi in (5) can be obtained as the solution of a
set of linear equations (8). Moreover, V̇n can be written as [25]

V̇n = −x′Qx+
{terms of degree ≥ n+ 1}

(

1 +
∑n−2

i=1 Qi

)2 (19)

and this ensures that V̇n is negative definite over a neighbourhood of the origin. It is
also proved in [25] that Vn is positive definite in some neighbourhood of the origin.
These facts imply that Vn can be used as a Lyapunov function in a neighbourhood
of the investigated equilibrium point for n ≥ 2.

The concept of maximal Lyapunov function, basic ideas and some referred proofs
are taken from [25]. However the authors of this article think that equation (63) on
page 75 in [25] suffers from several typographical errors which may cause difficulties
in applications of the algorithm. In this article and in [22] a similar reasoning in
a rewritten form is followed which may be easier to understand and implement for
application purposes.

Based on the above algorithm, a Mathematica-package has been implemented to
find a sequence of Lyapunov functions Vn that can be used to estimate the set A.
The given algorithm is able to estimate unbounded DOAs, too. Usually, the first
few number of iterations show whether the domain is bounded or not.

3.2. Applying the algorithm to hybrid systems

3.2.1. Conditions for f

To find the common DOA A(= A ({0})) using the Vanelli–Vidyasagar algorithm,
the following criteria should be fulfilled for f :

(i) f is continuous,

(ii) fi(0) = 0, ∀i ∈ n̄,
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(iii) 0 ∈ I (∩i∈n̄Ai),

(iv) f should be Lipschitz continuous, which due to Lagrange-theorem, holds if fi

is Lipschitz-continuous on Xi for each i ∈ n̄, and

(v) in order to directly use the implemented algorithm in Mathematica, f should
be differentiable on some neighbourhood about the origin. Note that on set
Ai the function Vi is maximal Lyapunov function for system fi.

It is visible from conditions (i) – (v) that if f is continuously differentiable about
the origin or the origin lies within I ∩i∈n̄ Xi then the following algorithm (and the
corresponding implemented Mathematica-package) can be used on the hybrid system
determined by f .

3.2.2. Steps of the algorithm for hybrid systems

If the conditions detailed in Subsection 3.2.1 are satisfied, then the algorithm de-
scribed in Section 3.1 can be adapted appropriately to find the DOA. Note that the
first steps coincide with the ones described in [25].

Step 1. Since the origin is asymptotically stable, it follows that ẋ = F1(x) = Φx
and the Lyapunov-equation Φ′P + PA = −Q can be solved such that Q > 0. That
means for n = 2 it is V2(x) = R2 = x′Px.

Step 2. For n ≥ 3 let us find the form of the minimization problem (8) based upon
Vn−1 and (7).

Step 3. Define en(y) as in Equations (9) – (15) and solve the minimization problem
(9). Denote the solution by y⋆.

Step 4. From the solution y⋆ we get the coefficients of Rn and Qn−2. If en(y⋆) is
smaller than a threshold (which depends on the accuracy we want to accomplish)
then go to Step 5. Otherwise increase n and repeat from Step 2.

Step 5. If en(y⋆) < ǫ then go to Step 6, otherwise go to Step 7. Here ǫ is a small
number, since in numerical calculations numbers must not be compared directly to
zero.

Step 6. The DOA is given by equation (18).

Step 7. Estimation of the DOA is given by equation (16). Finding of the appropriate
C⋆ can be done manually or algorithmically. Differences between the two approaches
are investigated among the examples. Basis of the algorithmic search is detailed in
the following section.

3.3. Finding the widest possible sublevel set

The following theorem enables us to give a computationally feasible algorithm of
finding a good approximation of the widest possible sublevel set for the DOA.

Theorem 3.1. Let us consider the system ẋ = fi(x) with its equilibrium point in
x = 0. Let ǫi > 0 such that the ball S [ǫi] is a compact subset of I (Ai) and define
mi(ǫ) = min {Vi(x) : x ∈ H(ǫ)} being the minimal value of the Lyapunov function
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on the surface of the ball. So we have 0 < mi (ǫi). If we choose αi such that
0 < αi < m (ǫi), then Pαi

= Kαi
∩ S [ǫi] is a compact positively invariant subset

of Ai where Kαi
= {x ∈ Ai : Vi(x) ≤ αi} is the αi sublevel set of the Lyapunov

function Vi(x).

P r o o f . Choose {xn} to be a sequence in Pαi
. Since {xn} ⊆ S[ǫi] which is compact,

it follows that {xn} (taking subsequences if necessary) converges to some x ∈ S[ǫi].
Because of this, and because ∀n : Vi(xn) ≤ αi then Vi(x) ≤ αi, thus x ∈ Kαi

. Then
compactness follows from x ∈ (Kαi

∩ S[ǫi]) = Pαi
.

Positive invariance can be proven by contradiction. Suppose x(0) ∈ Pαi
and

x(R+) * S (ǫi). Then there is some t > 0 such that x(t) ∈ H (ǫi) and x([0, t]) ⊂
S [ǫi] ⊂ Ai. Then it follows that Vi(x(t)) ≥ mi (ǫi) > αi but for Vi being Lyapunov
function for the system fi, the inequality Vi(x(t)) < Vi(x(0)) ≤ αi holds which is a
contradiction. Thus x(R+) ⊂ S (ǫi) ⊂ Ai so for each t ≥ 0 x(R+) ⊂ Kαi

and then
x(R+) ⊂ Kαi

∩ S [ǫi] = Pαi
. �

With the above theorem the way of finding the widest possible sublevel set is as
follows. Let us select a hypersphere H(r) about the origin which contains subset
of the DOA A for the whole hybrid system. First we choose the maximal r > 0
such that the hypersphere of radius r lies inside D that is positively invariant. More
precisely, we select the maximal r > 0 such that (H(r) ∩ D) ⊆ (∪i∈n̄Ai ∩ D) holds
true which is possible sinceX is locally compact. As a next step, we find the maximal
value Ci of Vi on Ai ∩Xi ∩ S[r] (this Ci is the value of C⋆ in equation (16)) so we
can construct the set ∪i∈n̄ {x ∈ Ai ∩Xi : Vi(x) ≤ Ci} which is a subset of A.

Note again that the origin has to be an asymptotically stable equilibrium point
of the system and the fis have to be Lipschitz-continuous on their domain to be able
to perform the above algorithm. For details, we refer to Subsection 3.2.1.

Finally it is important to note that the above method of finding the widest possible
sublevel set may be conservative because it considers only sphere-environments, so
that it finds a sphere which contains a subset of the DOA.

3.3.1. Manually approximated DOA

The proposed algorithm can be applied for systems of any dimension. However, due
to the automatic calculation of C⋆ in equation (16), the DOA will reside inside an
appropriately chosen sphere-environment of the origin, which can be considered to
be a conservative approximation of the widest sublevel set.

If the algorithmic determination of level C⋆ is not required, then in case of two-
dimensional systems much better estimates of the DOA can be found by choosing
manually the value C⋆. In most cases, this heuristic approach results in a better
estimate, although the method can be carried out only by trial-and-error.

In Figures 1(b) and 2(d) one can see the difference between the quality of es-
timation by manually tuning the value of C⋆ and its automatic determination (as
described above). The manual tuning includes the search for higher values of level
C⋆ obeying equations (16) and (17).
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(a) Structure of the estimated maximal
Lyapunov function for Example 1, the
light grey area corresponds to the auto-
matic computation of C⋆

(b) Estimated DOAs with the automatic

(dark grey area) and manual (light grey
area) computation of C⋆ for Example 1

Fig. 1. Estimated DOA of Example 1.

(c) Structure of the estimated maximal
Lyapunov function for Example 2, the
light grey area corresponds to the auto-
matic computation of C⋆

(d) Estimated DOAs with the automatic

(dark grey area) and manual (light grey
area) computation of C⋆ for Example 2

Fig. 2. Estimated DOA of Example 2.
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4. EXAMPLES

In this section two examples are shown to demonstrate the operation of the extended
Vanelli–Vidyasagar algorithm on hybrid systems. In order to be able to demonstrate
the results graphically, both of our examples are dynamical systems defined on the
real Euclidean plane described by the differential equations

ẋ = g(x, y)
ẏ = h(x, y)

where x, y ∈ R, g, h ∈ R2 → R.

4.1. Example 1: a hybrid Van der Pol model

In this section an example is shown where the DOA contains parts from both dy-
namics X1 and X2. This example is a hybrid version of the well known van der Pol
model.

The van der Pol system [24] is a widely known example for non-linear closed loop
system, which, for example, appears in the study of non-linear resonance circuits
consisting of an inductor, a capacitor and a non-linear resistor. The given non-
conservative non-linear system has a stable limit cycle. If the system shows hybrid
behaviour (for example, certain elements in the circuit have different characteristics
on different working domains) then a highly non-linear hybrid system is resulted.

Let us define the domains of different dynamics first:

X1 =
{

(x, y) ∈ R2 : x > 0.6 ∧ (0.36 − x2)y > −0.14x
}

X2 =R2 \X1

In order to construct a simple hybrid van der Pol model, let the functions g and
h be

g(x, y) = −1.2y

h(x, y) =

{

h1(x, y) (x, y) ∈ X1

h2(x, y) (x, y) ∈ X2

where

h1(x, y) =2x− 0.65y + 1.1x2y

h2(x, y) =1.86x− 1.01y + 2.1x2y

Using the piecewise interpretation of hybrid systems, the functions fis over their
respective Xi’s are:

f1(x, y) = (g (x, y) , h1 (x, y))′

f2(x, y) = (g (x, y) , h2 (x, y))′

The equilibrium point, the origin, lies inside X1. Since f is continuous on its
whole domain and is differentiable about the origin, the algorithm can be applied
and an estimated maximal Lyapunov function is obtained in 2 iterations.
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The dashed-dotted line indicates the boundary between the two hybrid domains
X1 and X2 in all figures.

The sublevel set corresponding to the estimated maximal Lyapunov function is
shown in Figure 1(a). The area bounded by dotted line is the domain where the
Lyapunov function is non-negative, while the thick line indicates the region where
its derivative is negative. The value of sublevel set is chosen from the thin circle (it
corresponds to H(r) in Section 3.3). Choosing this value yields the estimated DOA
shown by the thick dashed line.

In Figure 1(b) a few trajectories of the hybrid ODE can be seen demonstrating
that the region we found (the dark grey area) is really a subset of the DOA. The
manual tuning of the value of C⋆ leads us to a better estimate (the light grey area)
which demonstrates the approximation capability of our algorithm more clearly. The
two approaches can be compared to the real DOA which is denoted here by thick
black line. The manually tuned approximated DOA is very close to it.

The estimated maximal Lyapunov function is found to be

(0.320906x4 + x3(0.350448y + 0.194919) + x2(0.495843y2 + 0.0874554y + 1.48863)

+ xy(−0.113556y2 + 0.0496311y − 0.537634) + y2(0.0385325y2 + 0.0863618y + 0.814436))/

(−0.0156067x2 + x(0.22978y + 0.130939) − 0.0775623(y − 4.33872)(y + 2.97158)).

Its time derivative is

((−0.0792071x5 + x4(0.0343035y − 0.0342947) + 0.146433x3(y + 0.0500198)(y +1.03264)

−0.0545911x2(y−4.85856)(y−0.116165)(y+4.56961)+0.0353697x(y−1.68199)(y+3.42803)·

·(y2
−0.73423y+2.63625)−0.00597735(y−7.01123)y(y+4.88748)(y2 +1.19367y+7.95243))·

·

 (

1.1x2y + 2x − 0.65y x > 0.6 ∧ y(0.36 − 1.x2) > −0.14x

2.1x2y + 1.86x − 1.01y otherwise

!

− 1.2y(−0.0100165x5 +x4(0.215744y +0.123015)+x3(0.0614912y2 +0.317465y +1.33467)

+0.0306178x2(y+0.563949)(y2+4.39797y+45.1545)−0.0757147x(y−4.42848)(y+3.01079)·

·(y2+0.172409y+2.94918)−0.0000463596y(y+6.43028)(y+873.11)(y2+0.114472y+2.06561)))/

/((−0.0156067x2 + x(0.22978y + 0.130939) − 0.0775623(y − 4.33872)(y + 2.97158))2).

4.2. Example 2: stable system is embedded into an unstable one

Here an other simple hybrid system, where a stable subssystem is embedded into an
unstable one, is discussed.

Let us define the domains of different dynamics first:

X1 =
{

(x, y) ∈ R2 : x2y2 ≥ 1
}

X2 =R2 \X1
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In order to construct the hybrid model, let the functions g and h be

g(x, y) =

{

g1(x, y) (x, y) ∈ X1

g2(x, y) (x, y) ∈ X2

h(x, y) = −y

where

g1(x, y) =x

g2(x, y) =2x3y2 − x

Using the piecewise interpretation of hybrid systems, the functions fis over their
respective Xi’s are:

f1(x, y) = (g1 (x, y) , h (x, y))
′

f2(x, y) = (g2 (x, y) , h (x, y))
′

It can be shown that the origin is asymptotically stable for dynamics over X2

(the area bounded by the dash-dotted lines), while over X1 it is not, thus the con-
ditions do not hold true as it is demanded in 3.2.1. In this case since X2 itself is a
positively invariant set thus the algorithm can still be executed yielding a maximal
Lyapunov function in 4 iterations. Note also that the theoretical DOA coincides
with domain X2.

The dashed-dotted line indicates the boundary between the two hybrid domains
X1 and X2 in all figures.

The sublevel set corresponding to the estimated maximal Lyapunov function is
shown in Figure 2(c). The area bounded by dotted line is the domain where the
Lyapunov function is non-negative, while the thick line indicates the region where
its derivative is negative. The value of sublevel set is chosen from the thin circle (it
corresponds to H(r) in Section 3.3). Choosing this value yields the estimated DOA
shown by the thick dashed line.

In Figure 2(d) a few trajectories of the hybrid ODE can be seen demonstrating
that the region we found (the dark grey area) is really a subset of the DOA. Manually
tuning the value of C⋆ leads us to a better estimate (the light grey area) which, again,
demonstrates the strength of the algorithm. Here again, the manually tuned DOA
is very close to the real DOA (thick dashed line here).

The estimated maximal Lyapunov function is found to be

(−0.0448653x6 +x5(0.0180341y +0.0126314)+x4(0.195264y2 +0.0158483y +0.0235638)

+0.0360749x3(y+1.09455)(y2
−0.305092y+1.26441)−0.0492912x2 (y−2.19048)(y+1.69975)·

·(y2
−0.0870472y+2.72444)+0.0180408xy2 (y+1.2174)(y2

−0.338931y+2.2732)+0.0439128y2
·

(y2
− 2.35279y + 3.40781)(y2 + 2.64044y + 3.34121))/

/(−0.0897306x4 + x3(0.0360682y + 0.0252627) − 0.186408x2(y − 0.594968)(y + 0.42493)

+ 0.0360816x(y + 1.2174)(y2
− 0.338931y + 2.2732) + 0.0878257(y2

− 2.35279y + 3.40781)·

· (y2 + 2.64044y + 3.34121)).
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The estimated Lyapunov function’s time derivative is given by

(x(0.00805158x8+x7(−0.00647284y−0.00453368)+0.034754x6 (y−0.533202)(y+0.421965)

−0.00789933x5(y+1.19235)(y2
−0.635437y+1.64973)−0.102683x4 (y2

−1.69209y+1.34265)·

· (y2 + 1.60552y + 1.24899) + 0.0289652x3(y + 0.971945)(y2
− 1.11574y + 1.96416·

·(y2+1.1252y+1.08393)+0.0856599x2 (y2
−2.33439y+3.41084)(y2+0.0772159y+0.107608)·

+(y2+2.63214y+3.31506)+0.00633779x(y+1.2174)(y2
−2.35279y+3.40781)(y2

−0.338931y

2.2732)(y2+2.64044y+3.34121)+0.00771335(y2
−2.35279y+3.40781)(y2

−2.35279y+3.40781)·

· (y2 + 2.64044y + 3.34121)(y2 + 2.64044y + 3.34121))

 (

x x2y2
≥ 1

2x3y2
− x otherwise

!

+ y2(0.0517688x8
− 0.00554989x7(y + 2.21773) + x6(−0.034754y2

− 0.00669958

y−0.023599)+0.0319493x5 (y−1.17169)(y2+1.57296y+1.36317)+0.036961x4 (y−1.77959)

(y+1.93546)(y2+0.403155y+3.88414)+0.00711639x3 (y−1.58435)(y+0.621309)(y+1.7218)

(y2
− 0.29928y + 4.96928) + 0.031441x2(y − 0.657981)(y + 0.439392)(y2

− 2.39252

y + 3.36771)(y2 + 2.66083y + 3.4047) − 0.00633779x(y + 1.2174)(y2
− 2.35279

y + 3.40781)(y2
− 0.338931y + 2.2732)(y2 + 2.64044y + 3.34121) − 0.00771335

(y2
− 2.35279y + 3.40781)(y2

− 2.35279y + 3.40781)(y2 + 2.64044y + 3.34121)

(y2 + 2.64044y + 3.34121)))/

/((−0.0897306x4 + x3(0.0360682y + 0.0252627) − 0.186408x2

(y− 0.594968)(y +0.42493)+0.0360816x(y +1.2174)(y2
− 0.338931y +2.2732)+0.0878257

(y2
− 2.35279y + 3.40781)(y2 + 2.64044y + 3.34121))2).

5. CONCLUSIONS AND FUTURE WORK

In this paper a method is proposed to systematically approximate the domain of
attraction (DOA) of smooth hybrid non-linear systems. The proposed method is
based on the algorithm of Vanelli and Vidyasagar [25], and it is capable to give a
subset of the DOA for non-linear hybrid (switching) systems where the dynamics is
continuous on the boundary of the different regimes of the state space.

The method first constructs the overall Lyapunov function from the individual
Lyapunov functions of the sub-dynamics in a rational function form by approximat-
ing a maximal Lyapunov function Vi. All the necessary functions and algorithms
have been implemented in a Mathematica-package. In addition, a potentially conser-
vative but computationally feasible method is proposed to estimate the overall DOA
from the individual sub-Lyapunov functions using a maximal fitting hypersphere.
A manually tuned approximation method based on the manual tuning of the level
value has also been proposed for two-dimensional systems.

The performance of the method was investigated by simulations using two two-
dimensional example systems. The estimated DOA based on the maximal fitting hy-
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persphere could be substantially improved by the proposed manual tuning method,
and thus a good but still conservative estimate of the real DOA has been achieved.

Further work will be focused on using advanced optimization methods for the
improvement of the automatic DOA computation part of the algorithm and defining
less restrictive conditions for the system dynamics.

APPENDIX

Properties of maximal Lyapunov-functions

Proofs of the next two theorems can be found in [25].

Theorem A.1. Suppose f is continuously differentiable in some neighbourhood of
the origin. Then there exists a continuous function V : A → R+

0 and γ : R+
0 → R+

0

which is continuous, monotonically increasing and γ(0) = 0 (γ belongs to class K
due to Hahn in [11]) such that

(i) V (0) = 0, V (x) > 0, ∀x ∈ A\{0},

(ii) V̇ (x) = −γ(|x|), ∀x ∈ A,

(iii) V (x) → ∞ as x→ ∂A.

Moreover, if f is Lipschitz-continuous on A then V can be selected to be continuously
differentiable on A and

(iv) V (x) → ∞ as |x| → ∞.

Theorem A.2. Suppose f is Lipschitz-continuous on A. Then in order for an open
set B containing the origin to be the DOA of system (1), it is necessary and sufficient
that there exists a continuous function V : B → R+

0 and a positive definite function
ψ such that conditions of Theorem 2.7 hold true.
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