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One of the intriguing characteristics of honeycomb lattices is the appearance

of a pseudo-magnetic field as a result of mechanical deformation. In the case of

graphene, the Landau quantization resulting from this pseudo-magnetic field has

been measured using scanning tunneling microscopy. Here we show that a signa-

ture of the pseudo-magnetic field is a local sublattice symmetry breaking observable

as a redistribution of the local density of states. This can be interpreted as a polar-

ization of graphene’s pseudospin due to a strain induced pseudo-magnetic field, in

analogy to the alignment of a real spin in a magnetic field. We reveal this sublat-

tice symmetry breaking by tunably straining graphene using the tip of a scanning

tunneling microscope. The tip locally lifts the graphene membrane from a SiO2

support, as visible by an increased slope of the I(z) curves. The amount of lifting is

consistent with molecular dynamics calculations, which reveal a deformed graphene

area under the tip in the shape of a Gaussian. The pseudo-magnetic field induced

by the deformation becomes visible as a sublattice symmetry breaking which scales

with the lifting height of the strained deformation and therefore with the pseudo-

magnetic field strength. Its magnitude is quantitatively reproduced by analytic and

tight-binding models, revealing fields of 1000 T. These results might be the starting

point for an effective THz valley filter, as a basic element of valleytronics.

Strain engineering in graphene has been pursued intensely to modify its electronic properties

[1, 2, 3, 4], mostly with a focus on deformations able to reproduce Landau level-like gapped

spectra [5, 6, 7, 8]. In addition to these effects, several theoretical works predict broken sublattice

symmetry, measurable by the local density of states (LDOS) distribution in the presence of non-

uniform strain [9, 10, 11, 12, 13, 14, 15, 16]. This local sublattice symmetry breaking (SSB)

implies a valley filtering property in reciprocal space that may be exploited for valleytronic

applications via a clever and controlled tuning of strain patterns [17, 18, 19, 20, 21, 22, 23].

In the Dirac description, the sublattice degree of freedom is represented by a pseudospin, and

a sublattice symmetry breaking is akin to a pseudospin polarization. It is thus tempting to assign

the strain related SSB to an alignment of the pseudospin that occurs in the presence of a pseudo-

magnetic field [24]. Below we present an intuitive understanding of the phenomenon, using the

squared Dirac Hamiltonian and explain it qualitatively and quantitatively by a coupling of the

pseudospin to the pseudo-magnetic field that appears in the presence of strain. The interpretation

is corroborated by experiments that use the tip of a scanning tunneling microscope (STM) to

deliberately strain a graphene sample locally, in the form of a small Gaussian bump, and at the

same time to map the imbalance of the local density of states (LDOS) at the sublattice level.
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Moreover, the measured sublattice contrast is quantitatively reproduced by an analytical model

[15]. These results provide a natural explanation for previous reports of SSB observed by STM

in graphene, under non-tunable mechanical deformations [7, 25, 26, 8], which have so far not

been attributed to a pseudospin polarization.

In the low-energy continuum Hamiltonian description for the electronic properties of graphene

and other 2D-materials with a honeycomb lattice, mechanical deformations lead to a vector

potential ~Aps, which is directly proportional to specific strain terms [27, 28, 29, 5, 30]. The

spatial dependence of ~Aps critically influences the dynamics of charge carriers [2]. A mechanical

deformation with ∇ × ~Aps 6= 0, results in an effective pseudo-magnetic field, perpendicular to

the graphene plane Bps = (∇× ~Aps)z that couples with different sign to states in the two valleys

[27, 29], i.e. it moves electrons in clockwise/counter-clockwise circles, respectively. An effective

way to analyze the effect of Bps on the pseudospin degree of freedom is realized by squaring the

Dirac Hamiltonian [31, 24]. While the squared Hamiltonian describes the same physics as the

original one, it also provides additional insight into the behavior of Dirac particles in a magnetic

field. Following this procedure, for both valleys we obtain (Supplement S2-1):

E2ΨA = v2
F

[
~π2 + e~Bps

]
ΨA (1)

E2ΨB = v2
F

[
~π2 − e~Bps

]
ΨB (2)

Here, E is the energy, ΨA/B is the wave function amplitude on the corresponding sublattice

A/B, ~π = (~p± e ~Aps) is the canonical momentum at each valley (±), vF the Fermi velocity and

~p the momentum measured from the respective Dirac points (K,K′). The first term (~π2) leads

to Landau quantization, provided Bps is homogeneous on the cyclotron radius scale, as observed

by STM [6, 7, 8]. The second term (with prefactor v2
Fe~ = 658 meV2/T) corresponds to the

coupling of Bps to the graphene pseudospin. It appears with opposite signs at sublattices A

and B, shifting the energy of the respective states in opposite directions, thereby giving rise to

a SSB, i.e. a pseudospin polarization. The SSB is identical for both valleys since the change

in sign of Bps between valleys compensates the sign change in sublattice space (see Supplement

S2). An important feature of the Bps - pseudospin coupling is its locality, that allows to use

the SSB as a local fingerprint for even strongly inhomogeneous Bps (strain). The sublattice

polarization resulting from the pseudo-magnetic field has been predicted in several theoretical

works [9, 10, 11, 12, 13, 14, 15, 16]. The term that breaks the sublattice symmetry is sometimes

referred to in the literature as pseudo-Zeeman coupling [24, 32, 33]. Its relation to the classic

Zeeman effect for massive fermions becomes obvious after squaring the Dirac Hamiltonian and

developing it for the non-relativistic limit [34] (see Supplement S2-1). Although for graphene the

3



appropriate description is in terms of a massless Dirac equation, the analogy holds in the sense

that the energy separation between the two pseudospin orientations is due to the coupling to the

pseudo-magnetic field. It is important to emphasize the difference between this term and another

with the same expression, proposed as a gap opening perturbation for the Dirac Hamiltonian and

unfortunately dubbed ’pseudo-Zeeman’ term [35], since a Zeeman coupling breaks a degeneracy

without necessarily opening a gap at the Dirac point. As shown in Supplement section S2, in

order to open a gap the pseudo-magnetic field should be even under inversion, while this is not

the case for centrosymmetric deformations as the ones modeled in this work.

To produce Bps and measure the resulting SSB, we use the tip of a scanning tunneling

microscope which is known to locally strain graphene due to attractive van der Waals (vdW)

forces [36, 37, 38]. Due to these forces, a Gaussian-shaped deformation forms below the W tip,

locally lifting the graphene from its SiO2 substrate (Fig. 1a), as evidenced by molecular dynamics

calculations (see Supplement S3). The deformation moves along with the tip while scanning (Fig.

1b, Supplementary Video). It has typical dimensions of 5 Å halfwidth and 1 Å height. The lifting

height H is tunable either by the tip-graphene distance z, adjusted by the tunneling current I,

or by the locally varying adhesion forces of the substrate [36]. The mechanical strain within the

Gaussian deformation results in a threefold symmetric Bps pattern (color scale in Fig. 1c) [15],

which shifts the local density of states (LDOS) in opposite directions at each sublattice. The

resulting SSB, calculated by a nearest neighbor tight-binding model [13], maps Bps in terms of

sign and strength down to the atomic scale (Fig. 1c) even while Bps varies strongly on the scale

of the pseudo-magnetic length (0.4 - 1 nm). A consequence of this strong variation is the lack of

Landau levels in tunneling spectroscopy curves.

The key to measure the SSB is to tunnel into areas of large Bps, i.e. a few atomic distances

offset from the deformation centre. The inherent asymmetry of real STM tips makes this the

common situation. We find SSB for ∼50% of the individually prepared tips, hence the tunneling

atom is adequately offset with respect to the force centre of the tip, i.e. the Gaussian maximum.

Here, we present results from a single tip showing the strongest SSB within our experiments.

However, comparable results are observed with other tips. In particular, if the tip remains

unchanged, the same sublattice appears brighter in all areas of the sample (Supplement, Fig. S9),

matching with the expectation that one always probes the same local region of the Gaussian, i.e.

the same sign of Bps (Supplementary Video, Fig. 1b, c). STM images in Fig. 1d-g demonstrate a

controlled increase of SSB with increasing lifting force, i.e. increasing I, decreasing z, respectively.

Next, we show that the sublattice contrast C = 2(νA − νB)/(νA + νB), with νA/B the LDOS

on sublattice A/B, can be related to H, the height of the Gaussian deformation [15], due to the

dependence Bps ∝ H2. We estimateH by comparing measured I(Z) curves (Z: distance between
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tip apex and SiO2), with the standard exponential decay expected from the tunneling model.

Therefore we use the work-functions of graphene ΦG = 4.6 eV [39] and tungsten ΦW = 5.3 eV [40]

(red line in Fig. 2a). The measured curves follow the usual dependence at large Z, but strongly

deviate at smaller Z. Applying the tunneling model [41], the steepest areas (1-50 nA) would

correspond to impossibly large work-functions of Φ = 140 eV (green) and Φ = 21 eV (blue). This

indicates the local lifting of graphene towards the tip, which increases I beyond the expected

increase due to the tip movement. An elastic stretching of the tip is ruled out, since the same tips

did not exhibit deviations from the tunneling model on Au(111). Furthermore, since the slope

of the ln(I(Z)) curves changes during the approach and varies across the sample surface, the

previously reported [42] slope change due to high momentum transfer during tunneling into the

K points can also be ruled out. The lifting amplitude Hexp is thus well estimated as the difference

between the measured I(Z) and the tunneling model (red line) as marked. Variations of Hexp

(green vs. blue curve) indicate variations in the adhesion to the substrate [43, 36]. Importantly,

a map of the observed lifting heights Hexp (Fig. 2d) correlates with a map of the SSB (Fig. 2e).

SSB is consistently observed everywhere (Fig. S9 of the supplement) and is reversibly tunable

on the same area (Fig. 2i).

In the following, we establish the relation between the apparent sublattice height difference

∆z and Hexp. We select areas of similar lifting height (for example blue area in Fig. 2d),

subtract long-range corrugations and determine ∆z for each pair of neighboring atoms (Fig. 2e,

Supplement S5). Resulting histograms of Hexp and ∆z with indicated mean values 〈Hexp〉 and
〈∆z〉 are shown for different I in Fig. 2f, g. The values of 〈Hexp〉 and 〈∆z〉 recorded on different

areas and at different z, i.e. I, collapse to a single curve (Fig. 2h). Areas with larger 〈Hexp〉
observed at the same I are most likely caused by locally reduced adhesion to the SiO2 [36],

while the observed lower liftings of 〈Hexp〉 ≈ 1.5 Å are well reproduced by molecular dynamics

calculations of graphene on flat, amorphous SiO2 with an asymmetric W tip in tunneling distance

(see Supplement S3). Due to the much larger polarizability of W (21.4 Å3) with respect to Si

(6.81 Å3) and O (0.7 Å3), the graphene is lifted from the SiO2, even if the attractive dielectric

forces between tip and graphene are neglected (Fig. 3a-c). Importantly, the graphene below the

tip is well approximated by a Gaussian deformation. The observed LDOS sublattice contrast

can thus be compared with the predicted analytic expression [15]:

Ctheo(r, θ) = −2βH2

ba
sin (3θ)g(r/b) (3)

(g(x) = 1
4x3 [1−e−2x2

(1+2x2+2x4)], θ: azimuthal angle, r: distance from centre, β = 3, a: lattice

constant of graphene, b: width of the Gaussian deformation). To compare with our experimental
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results, we determine the LDOS contrast Cexp from 〈∆z〉 (see Supplement S5) using:

Cexp = 2
eκ〈∆z〉 − 1

eκ〈∆z〉 + 1
, with κ =

√
8me

~2

(
ΦG + ΦW

2
− e|V |

2

)
, (4)

(me: free electron mass, V : the sample voltage). The comparison is shown in Fig. 3d with Cexp

values being consistent with Ctheo for deformation widths b = 5−7 Å, in excellent agreement with

b deduced from the molecular dynamics simulation (Fig. 3a-c). Finally, we examine the effect of

the deformation being moved with the tip across the graphene lattice (see Supplementary video).

Figure 3e, f displays the LDOS from a tight-binding (TB) calculation using two different central

positions for the deformation, such that either sublattice A or B is imaged by the offset tunneling

tip (black circle). The lateral shift of the tip preserves the sign of the SSB, while the observed

contrast changes slightly to 6.5% (Fig. 3g), from 6.9% in the static deformation. Conclusively, the

model of pseudospin polarization describes our SSB data without any parameters which are not

backed up by physical arguments. Note that we have carefully considered tip artifacts and several

alternative explanations for SSB, all of which strongly fail either quantitatively or qualitatively

to explain the experimental data (Supplement S4). Furthermore, strong SSB observed on a static

graphene bubble (Supplement S7) further supports the straightforward pseudospin polarization

scenario.

The observed pseudospin polarization dependent on Bps adds an important ingredient to the

analogy of graphene’s Dirac charge carriers to ultrarelativistic particles. In turn, the changes in

SSB might be used to probe Bps on small length scales [44]. Furthermore, the large values of

Bps (∼1000 T) arising due to the dependence Bps ∝ H2/b3 [15], suggest the use of the strained

region as a valley filter [21, 22], operating on nanometer length scales and switchable with THz

frequency (Supplement S8). Recently, valley currents with relaxation length of up to 1 µm

have been measured [45, 46], but so far only in static configurations. Finally, the existence of

strain induced SSB provides the first direct experimental evidence of the unique time reversal

invariant nature of Bps. Being fundamentally different from a real magnetic field, this property

could provide novel ground states dominated by many body interactions not achievable otherwise

[47, 48], or in combination with a real magnetic field of comparable magnitude could mimic the

decoupling of a chiral flavour as observed in the weak interaction [49].
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Figure 1: Sublattice symmetry breaking (SSB): (a), Gaussian deformation induced in graphene
by the attractive van der Waals force of the STM tip (amplitude H = 1 Å, width b = 5 Å) as observed
in molecular dynamics calculation of graphene on SiO2 (Fig. 3a-c). Colour code represents the induced
strain. (b), The deformation (black dashed line) follows the scanning STM tip (red balls), leading to the
apparent STM image (blue) lifted with respect to the relaxed one (red line). Yellow bar represents the
tunnelling current. (c), Colour code: pseudo-magnetic field pattern of the Gaussian deformation of (a)
[15]. Honeycomb lattice is overlayed with LDOS magnitude of individual atoms as calculated in nearest
neighbour tight-binding [13] marked by the brightness of the corresponding dots. White squares show
areas of maximum Bps magnified as insets. (d-g), Constant current STM images of the same graphene
area on a SiO2 substrate recorded at varying currents as marked (T = 6 K, 1.3×1.3 nm2, V = 0.5 V).
A sketch of the graphene honeycomb lattice is overlaid with the different sublattices indicated by blue
and red dots.
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Figure 2: Relating lifting and SSB: (a), I(Z)-curves with logarithmic I scale for regions with low/high
lifting (see (d) blue/green areas). Dots (lines) are measured with (without) STM feedback loop (Sup-
plement S4-2). Red line results from a 1D vacuum tunnelling model [41] using the work functions of
graphene and tungsten. Black arrow indicates the deduced lifting amplitude Hexp of graphene. (b, c),
Raw STM data of the same area at different I, V , as marked. (d), Lifting amplitude Hexp at I = 50 nA,
V = 0.5 V deduced from (b, c) (Supplement S4). (e), Atomic corrugation of (b) obtained by subtracting
the long-range morphology. Full lines mark the profile lines shown in the inset. Same curved, dashed
lines in (d) and (e) (Supplement S4). (f) Histogram of Hexp for the blue area in (d), for different I
as marked, V = 0.5 V. (g), Histogram of ∆z for the same area, at different currents I (points) with
Gaussian fits (lines). (h), Measured 〈∆z〉 with respect to 〈Hexp〉. Colours correspond to the accordingly
coloured tunnelling current in (f). Data from other sample areas than (b, c) are included. (i), STM
images of the same area (V = 0.5 V, 1.5×1.5 nm2) recorded consecutively as marked by the arrows at
varying I.
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Figure 3: Comparing measured and calculated SSB: (a, b) Atomic configuration from molecular
dynamics simulations of graphene on a SiO2 substrate in presence of a pyramidal W (110) tip tilted by
α = 30o with respect to the substrate normal, viewed from two perpendicular directions. The tunnelling
current is visualized as a yellow bar, green colour code marks graphene distance relative to the substrate,
smallest tip sample distance: z = 3 Å. (c), Atomic positions, plotted as dots, along the dashed lines in
(a), (b) with Gaussian fits h(r) = H ·exp (−r2/b2) (lines). (d), Calculated and measured LDOS contrast
C as a function of the lifting amplitude H. Ctheo results from the continuum model (Eq. (3)) and is
plotted at r = b. Cexp results from the data of Fig. 2h using Eq. (4). The corresponding maximum
pseudo-magnetic fields Bps,max are marked at the dots on the full lines, in according colour. All data
are recorded with the same tip showing maximum SSB within our experiments. (e, f), LDOS patterns
(∆ν = νdeformation - νflat) resulting from TB calculation for a Gaussian deformation with H = 1 Å, b =
5 Å, and for different positions of the Gaussian centre (black dot) with respect to the graphene lattice.
Black ring corresponds to the tunnelling position of the tilted tip being on sublattice A (e) and B (f).
(g), Scanned LDOS pattern as observed by the tunnelling atom at the black ring in (e), (f).
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S1: Experimental methods

Graphene was prepared by mechanical exfoliation on SiO2. The layer thickness is determined

by Raman spectroscopy. To avoid surface contamination the graphene flake is contacted by

microsoldering with indium leads [50]. For further cleaning, the sample was annealed at 100◦C

in ultra-high vacuum (UHV) before it was cooled down to 5 K within our home-build UHV-STM

system [51]. For STM measurements, an electrochemically etched tungsten tip is aligned to the

sample by a long range optical microscope, using the indium contacts as cross hairs.

S2: Relation between chiral symmetry, parity and sublattice
symmetry breaking in graphene

Here we analyse the general requirements for a strain induced gauge field ~A to produce a sub-

lattice symmetry breaking (SSB). We show that ~A will always produce a SSB as long its curl is

non zero (∇× ~A 6= 0), irrespective of the spatial mirror symmetry properties of ~A.
We start setting up the problem by considering the tight-binding model of graphene and the

possible symmetry operations therein. The standard description of electron dynamics in pristine

graphene is given by the tight-binding Hamiltonian:

H0 = −t
∑
~n,~δi

[
a†~n b~n+~δi

+ c.c.
]

(5)

where t is the nearest neighbour hopping parameter, a~n and b~n+~δ are electron operators for atoms

in sublattices A and B respectively, and ~δi indicates the three lattice vectors that connect an

atom in sublattice A with its nearest neighbour atoms in sublattice B. In pristine graphene the

magnitude of ~δi is the inter-atomic bond length a, and the three directions are related to each

other by 120◦ rotations around an axis perpendicular to the graphene plane. This model fulfils

the symmetries of the honeycomb lattice that includes these rotations and mirror reflections

about three planes parallel to the three different carbon-carbon bond directions. Notice that

all these symmetry operations relate sites on the same sublattice. Because both sublattices are

populated by the same type of atom, there are additional symmetries that hold when an exchange

of sublattice sites is included. This symmetry appears in the literature as ’inversion’ (or ’parity’

in quantum field theory), and consists of two operations: an inversion of real space coordinates

~r → −~r and a sublattice exchange A→ B [52, 53]. For simplicity the centre of inversion can be

thought of either the middle of the carbon-carbon bond or the centre of a hexagonal unit cell.

To analyse the consequences of this inversion symmetry in the presence of deformations, we use

the spinor representation for wave functions at sites A and B in momentum space. Introducing

S12



the Fourier transform of the operators (a~n; b~n+~δ) defined in Eq. 5, the Hamiltonian in this basis

takes the form:

H0 =

∫
BZ

d2q

(2π)2
Ψ†(~q)H0Ψ(~q) (6)

H0 =

(
0 φ(~q)
φ∗(~q) 0

)
; Ψ(~q) =

(
ψA(~q)
ψB(~q)

)

where the integral runs over the Brillouin zone, φ(~q) = −t
∑
~δi
ei~q

~δi and ~q is measured with

respect to the Γ point. The low-energy physics is obtained by expanding φ(~q) around the two

inequivalent reciprocal lattice points K and K’ (valleys) and results in an effective Dirac Hamilto-

nian. Using the basis Ψ = (ψK
A , ψ

K
B , ψ

K′

B , ψK′

A ) defined by the corresponding Fourier components

(ψA(~p);ψB(~p)) expanded around these points [54]:

ψK,K′

A (~r) =
∫
d2pe−i~p~raK,K′(~p)

ψK,K′

B (~r) =
∫
d2pe−i~p~rbK,K′(~p)

(7)

the Hamiltonian can be written as

H0 = vF

(
~σ · ~p 0

0 −~σ · ~p

)
(8)

where ~σ is the vector of Pauli matrices acting on the sublattice spinor space, the momentum ~p is

measured with respect to K and K′ respectively and H0 acts on the ’valley’ spinor space. These

expressions are derived from a real space coordinate frame (x, y) such that x is along the zigzag

direction (perpendicular to the carbon-carbon bond).

By an appropriate transformation, Eq. 8 can be written in the chiral (Weyl) representation

where the Hamiltonian is diagonal. The eigenstates can be classified by energy E, momentum ~p

and the quantum number (±1) associated with a ’pseudo-helicity’ operator defined as the identity

in valley space and as Σps = ~σ · ~p/|p| in sublattice space. We refer to it as ’pseudo-helicity’ to

differentiate it from the helicity operator defined in quantum field theory that refers to rotations

in spin space [52]. The eigenstates or chiral states given in the Ψ basis are:

|1〉 = |+ E, ~p,+1〉 = (e−iθ(~p)/2, eiθ(~p)/2, 0, 0)T ;

|2〉 = | − E, ~p,−1〉 = (e−iθ(~p)/2,−eiθ(~p)/2, 0, 0)T ;

|3〉 = | − E, ~p,+1〉 = (0, 0, e−iθ(~p)/2, eiθ(~p)/2)T ;

|4〉 = |+ E, ~p,−1〉 = (0, 0, e−iθ(~p)/2,−eiθ(~p)/2)T . (9)

Here E refers to the energy and θ(~p) = tan−1(py/px). In the chiral basis, wave function ampli-

tudes are equal at both sublattices, and the system is said to exhibit chiral symmetry.
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To analyse the role of deformations on the symmetries of the Hamiltonian it is convenient to

use a covariant notation. We introduce the γ matrices as: γi = βαi, γ0 = β, γ5 = iγ0γ1γ2γ3

(i = 1, 2, 3), with

αi =

(
σi 0
0 −σi

)
, β =

(
0 I
I 0

)
(10)

and I the 2× 2 unit matrix. With these definitions, the graphene Hamiltonian density reads:

HD
0 = Ψ̄(~r)γµpµΨ(~r) (11)

with an implicit sum over µ = (1, 2), Ψ̄ = Ψ†γ0is the Dirac adjoint spinor, and pµ = −i~∂µ.
The representation of the inversion operation is given in this notation by P = iγ0P , where

P executes the transformation ~r → −~r [52]. A straightforward calculation shows that HD0
is invariant under inversion. For a given energy, its action on the chiral basis results in the

exchange of states with wave function amplitudes at different valleys (for example, it exchanges

|1(~p)〉 with |4(~p)〉).

A deformation in graphene affects the lattice vectors ~δi and introduces a change in the hopping

matrix elements t′ = t + ∆t in Eq. 5. The terms including ∆t result in an effective gauge field
~A [29, 24, 10]. In the continuum model, and for small deformations these changes are described

within elasticity theory by introducing the strain tensor εij = 1/2(∂iuj + ∂jui + ∂ih∂jh) where

(ui, h) are the in-plane and out-of-plane atomic displacements respectively. The components of

the effective gauge field then read (Ax,Ay) = ~β
2a (εxx− εyy,−2εxy) with β ∼ 3. Inclusion of such

a term in Eq. 8 produces:

H = vF

(
~σ · (~p− ~A) 0

0 −~σ · (~p+ ~A)

)
(12)

When written in the covariant notation, the new Hamiltonian density reads:

HD = Ψ̄(~r)γµ(pµ − γ5Aµ)Ψ(~r), γ5 =

(
I 0
0 −I

)
(13)

Notice that the presence of the matrix γ5 ensures the correct change of sign in the components

of ~A(~r) by changing from K to K’, as inherited from the lattice expressions obtained for ∆t.

Now, let us consider how the specific spatial dependence of ~A(~r) influences the invariance

of the Hamiltonian under inversion. For the total Hamiltonian density to remain invariant

under inversion, it must be an even function of ~r, i.e. P ~A(~r)P−1 = ~A′(~r′) = ~A′(−~r) = ~A′(~r)
(axial vector) [54], as in the case of a perfect Gaussian deformation. A reflection of this can

be seen in Fig. 1c of the main text, where the graphene LDOS is symmetric with respect to
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inversion around the deformation centre. Additionally, a deformation with odd gauge field,
~A′(−~r) = − ~A′(~r) (polar vector) breaks parity. Invariance under inversion and time-reversal

symmetries protects the degeneracy at the Dirac points. If ~A(~r) is an odd function under

inversion of space-coordinates, parity is broken and a gap opens at the Dirac points in addition

to the chiral symmetry breaking.

Lastly we ask the question: what are the requirements for ~A(~r) to produce a SSB? The gauge

field term in HD represents an interaction added to HD
0 that may or may not commute with it.

The commutator involves terms like [γµpµ, γ
νγ5Aν ] that are proportional to ∇× ~A. If ∇× ~A = 0,

HD
0 and HD commute, and the gauge field ~A can be removed from Eq. 13 by an appropriate

gauge transformation. As a consequence, chiral symmetry is preserved and electronic densities

will exhibit sublattice symmetry when imaged. However, if ∇× ~A 6= 0, the commutator does not

vanish and an effective ’pseudo-magnetic field’ Bps(~r) = (∇× ~A)z is produced. This pseudofield

couples to the sublattice spinor producing an effective pseudospin polarization that selects the

same sublattice at each valley as a straightforward calculation shows (see S2-1).

In conclusion, a deformation that induces a pseudo gauge field with ∇× ~A 6= 0 will induce a

sublattice symmetry breaking irrespective of its specific functional dependence under inversion.

S2-1: Link between pseudospin polarization and the Zeeman effect for
massive particles

To establish the connection between sublattice symmetry breaking and a pseudo-Zeeman cou-

pling, we study the non-relativistic limit of the squared Dirac Hamiltonian [24, 34]. Using the Ψ

basis defined above and Eq. 12, it reads:

H2 = v2
F

(
~σ(~p− ~A) · ~σ(~p− ~A) 0

0 [−~σ(~p+ ~A)][−~σ(~p+ ~A)]

)
(14)

Using the standard identity (~σ ~X) · (~σ~Y ) = ~X · ~Y + i~σ( ~X × ~Y ), we obtain:

H2 = v2
F

(
(~p− ~A)2I −Bpsσz 0

0 (~p+ ~A)2I +Bpsσz

)
(15)

where we used ~p × ~A(~r) = −i∇ × ~A(~r) − ~A(~r) × ~p, with ∇ × ~A(~r) = e~Bpsσz. The terms

v2
F(~p± ~A)2I correspond to the kinetic or orbital energy leading to pseudo-Landau levels in case

of homogeneous Bps, while v2
FBpsσz is equivalent to a pseudo-Zeeman coupling term [24, 32, 33].

Its prefactor is v2
Fe~ ' 658 meV2/T, i.e., the pseudo-Zeeman energy scales with the square root

of the field.
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Notice that the effect of the Pauli matrix σz is to change the sign of Bps at each sublattice

within the same valley [27, 28]. Thus, the sign change of Bps between the two valleys compensates

the change of sign between sublattices in each valley:

v2
F

(
π2
K,K′ − e~Bps

)
ψK,K′

A = E2ψK,K′

A (16)

v2
F

(
π2
K,K′ + e~Bps

)
ψK,K′

B = E2ψK,K′

B (17)

Here we used π2
K,K′ to represent the orbital kinetic energy operator at each valley. For an

arbitrary shape of the pseudo-magnetic field, the pseudo-Zeeman term locally shifts the LDOS

upwards in energy on sublattice B and downwards in energy on sublattice A. Thus, it leads to

a sublattice polarization, akin to the spin polarization induced by a real magnetic field. From

the eigenvalue expression above we can also see that the pseudospin polarization is symmetric in

energy, i.e. the LDOS increases for the same sublattice for both electrons and holes.

The magnetic field - spin interaction term e~v2
FBps for relativistic spin 1/2 fermions (graphene)

is the analogue of the well known Zeeman term for non-relativistic massive particles as can be

learned from Sakurai [34]. Briefly, one branch of the squared Dirac equation for massive fermions

reads: [
~σ(~p− ~A)

]2
u = (E2 −m2)u, (18)

we use that E2 −m2 is the momentum squared p2. In the non relativistic limit p2 = 2Ekinm

(Ekin: kinetic energy), leading to:

1

2m

[
~σ(~p− ~A)

]2
u = Ekinu (19)

The solution to (~σ(~p− ~A))2 we have seen previously (eq. 15), so we find:

[
(~p− ~A)2

2m
− ~µ ~B

]
u = Ekinu (20)

where ~µ = e
m
~S and ~S = ~

2~σ. This derivation shows that the familiar Zeeman term ~µ ~B appears

by squaring the Dirac Hamiltonian for massive particles in the non-relativistic limit.

Further insight into the pseudo-Zeeman term can be gained, if we consider the situation where

the kinetic energy is quantized within a homogeneous Bps. In this case, the pseudo-Zeeman term

exactly cancels the energy of the lowest cyclotron orbit for sublattice A [32]. This leads to a fully

pseudospin polarized Landau level at zero energy, a hallmark of graphene [16, 32]. In the case

of inhomogeneous Bps it also leads to a sublattice polarization [9, 32].
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S3: Molecular dynamics calculations

S3-1: Van der Waals interaction between tip, graphene and SiO2

The lifting of graphene by the W tip can be rationalized by considering the polarizabilities of

the contributing atoms. The polarizabilities according to Hartree-Fock calculations for the free,

neutral atoms of SiO2, C and W are [55]: αW = 21.4 Å3, αSi = 6.81 Å3, αO = 0.73 Å3, αC = 1.74

Å3. Since the van der Waals (vdW) potential is proportional to α2, the attractive force between

a distant tungsten tip and graphene can be larger than the vdW force pinning the graphene to

the surface. According to ab initio calculations [38], even graphene on Ir(111) (αIr = 15.6 Å3)

can be lifted by a W tip by up to 0.5 Å.

To model the lifting in our experiments, molecular dynamics simulations have been performed

using the LAMMPS code [56]. Therefore, the interactions between the tungsten tip, the graphene

and the SiO2 have been modelled using a pairwise Lennard-Jones (LJ) potential of the form:

VLJ = 4ε
[(
σ
r

)12 −
(
σ
r

)6].
Parameters for the Si-Si, the O-O, and the C-C interaction are taken from the universal

force field (UFF) [57]. Parameters for the tip-graphene and graphene-substrate interactions are

generated by Lorentz-Berthelot mixing rules, for example:

εC−Si =
√
εC−CεSi−Si and σC−Si =

σC−C + σSi−Si

2
(21)

This is not possible for the W atoms, since the UFF parameters refer to the cationic state of the

metal. Therefore, the polarizability of W adatoms on a W (110) tip, as measured by field ion

microscopy experiments [58, 59] was used as αW. These polarizability values are considered to be

a good approximation of our experimental system, since the most likely STM tip orientation is a

(110) pyramid [60]. Using αW, the C6 coefficient of the van der Waals potential (VvdW = −C6/r
6)

for the C-W interaction was determined by the Slater-Kirkwood formula [61]. The C-W LJ

parameters (εC−W, σC−W) were determined by fitting the attractive part of the 12-6 LJ curve to

the C6/r
6 potential. Due to the uncertainties in the experimental polarizability, an upper and a

lower bound for the LJ parameters were used. In both cases lifting of graphene supported by SiO2

was found by the simulations. Using these LJ parameters, the adsorption energy of graphene on

amorphous SiO2 has been calculated, resulting in a value of 43.53 meV/atom. This agrees well

with the adsorption energy calculated from first principles, with values between 32.4 meV/atom

and 55.1 meV/atom (DFT with dispersion corrections) [62], as well as with measurements of the

adhesion (56.7±2.6 meV/atom) [63].

Note that we must differentiate between the tip sample separations in the calculations z∗ and
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ε [meV] (min, max) σ [Å]
C-O interaction 3.442 3.27
C-Si interaction 8.909 3.62
C-W interaction 65, 120 3.2
O-W interaction 9.6, 13 3.16
Si-W interaction 104, 142 3.51

Table 1: Lennard-Jones parameters. Bold values are used for the calculations shown in supplementary
Fig. S4 and Fig. 3a-c of the main text

the tunnelling distance z. The quantity z∗ differs from z by an offset, since z = 0 Å is taken as

the distance where the conductance between sample and tip reaches the conductance quantum

[64] G0 = 2e2/h. However, the exact offset of z with respect to z∗ could only be deduced

by detailed transport calculations using a tip with known atomic configuration. Generally, z∗

delicately depends on the tunnelling orbitals and their respective vdW-radii. We assume z∗ − z
to be the sum of the vdW-radius of tungsten and the length of the pz-orbital of graphene, i.e.

z∗ − z = 2− 4 Å.

S3-2: Details of the LAMMPS calculation

The bonds in between the tungsten atoms was implemented via the embedded-atom method

potential [65], while the Tersoff potential was used for the SiO2 substrate [66]. For graphene we

used the AIREBO potential [67]. Visualization of the data was done using OVITO [68]. The

calculations were performed for a cell of size (84.6 × 83) Å2 in the (x, y)-plane and 70 Å in

the z direction. For this cell size, the graphene is strain-free due to the fitting of the periodic

boundary conditions used in the (x, y)-plane to the atomic lattice. The tip is modelled as a

pyramid made up of stacked W(110) planes. The positions of the atoms in the top layer of

the tip were fixed, while the rest of the tip could relax during energy minimization. Fixing the

whole tip or letting it relax during the simulation does not affect the height of the graphene

deformation. The experimentally most likely situation involves a tip, which does not show any

rotational symmetry along the z axis, due to a misalignment of the (110) planes of the tip with

respect to the W wire axis or due to a rotation of the tip with respect to the sample plane. To

model this situation in the molecular dynamics calculations, the (110) crystallographic planes of

the STM tip are tilted by 30◦ with respect to the graphene surface towards the zig-zag direction

of graphene.

The SiO2-substrate is prepared by annealing α-quartz in a periodic simulation cell, at 6000 K

with a time step of 0.1 fs. The system was held at 6000 K for 10 ps, after which the temperature

was lowered to 300 K at a rate of 1012 K/s, over 570 ps [69]. After quenching the system, the
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Figure S4: LAMMPS simulation. a, Ball model of graphene on SiO2 with the tip far away from
graphene (z∗ = 7 Å) (W atoms: grey, C atoms: green, O atoms: blue, Si atoms: red). Colour code on
graphene indicates the local height with respect to the SiO2. The amorphous SiO2 surface induces a slight
corrugation of the graphene. b, Same as (a) at z∗ = 3.5 Å. Moving the tip close to the graphene induces
a Gaussian deformation of height H '1 Å. c, d, Height H and width b of the Gaussian deformation
for various tip-graphene distances z∗ as obtained by fitting a Gaussian curve to the graphene atomic
positions along the armchair (blue) and zigzag (red) directions (see inset). Red marks are along the tilt
direction of the tip. Notice that the deformation becomes more asymmetric at z∗ ≤ 3.7 Å as visible
by the different H of the Gaussian fits in perpendicular directions. The difference between z∗ (distance
between atom cores) and z (the distance where tunnelling conductance is 2e2/h) is described in Sec.
S3-1

energy was minimized via the conjugate gradient method. The radial distribution function of the

amorphous SiO2 obtained in this way matches that of SiO2 glass as known from x-ray data [70].

To prepare the SiO2 surface, the atoms in the top half of the amorphous SiO2 are removed and

the surface is subsequently relaxed. Alternatively, a simplified substrate has been used in the

calculations. This substrate is modelled by a featureless surface 3.09 Å beneath the graphene,

acting on the graphene atoms with a force perpendicular to the surface. For this "wall" type

substrate, we used the "9-3" Lennard-Jones potential of the form: VLJ = ε
[

2
15

(
σ
r

)9 − (σr )3],
which describes the vdW interaction between a surface and an atom [?]. We have chosen the ε

and σ parameters such that the graphene adsorption energy on this substrate is 43.53 meV/atom.

The choice of either the amorphous SiO2 or the wall-type substrate does not have any influence
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on the height and width of the graphene deformations produced by the tip. Therefore, in most

calculations the wall type potential is used in order to save computational time and to avoid the

slight graphene corrugations induced by the amorphous SiO2 surface (S4a). Lifting of graphene

was obtained by relaxing the graphene-substrate-tip system via energy minimization with the

tip far away from the surface, followed by lowering the tip towards the graphene and running

another energy minimization via the conjugate gradient method. The simulation results in

graphene deformations with up to H ≈ 1 Å indicating that graphene can be lifted by the tip, if

originally in contact with SiO2.

The deformations resulting from the LAMMPS calculations are well fitted by a Gaussian

of the form: h(r) = H · exp(−r2/b2), as shown in Fig. 3a-c of the main text. Therefore,

within our tight binding and continuum Dirac model calculations, we have used this Gaussian

function to describe the displacement of the graphene membrane. The major difference between

the LAMMPS and Gaussian deformation is that the one resulting from molecular dynamics

will have in plane relaxation of the atoms, in addition to the out of plane displacement. To

check the validity of our Gaussian approximation we compare the pseudo-magnetic field of a

deformation resulting from LAMMPS calculations with a perfect Gaussian. For the latter, we fit

the LAMMPS deformation we determine the height H and width b and calculate Bps, according

to Eq (3) from ref. [15]. The strain tensor of the LAMMPS deformation was evaluated by fitting

algebraic functions to the in plane and out of plane atom displacements. S5 shows the comparison

of Bps for the perfect Gaussian and the LAMMPS deformation. The maximum Bps difference

is 14% or 60 T, 1.2 nm or ∼2b away from the deformation maximum. The Bps distribution

of the LAMMPS deformation is only slightly asymmetric, reflecting the C2 symmetry of the

(110) W STM tip, which is barely visible in S5b. These calculations show that the Gaussian

approximation used in the main text (e.g. Fig 3D) is valid.
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Figure S5: Contour plot of Bps in Gaussian/LAMMPS deformation: a, Bps of a Gaussian
deformation with H = 1 Å and width b = 5.8 Å. b, Bps of a deformation from LAMMPS calculations,
which is fitted by a Gaussian with parameters: H = 1 Å, b = 5.8 Å.

S3-3: Estimating the energy contributions during graphene lifting

Here, we disentangle the different interaction forces in order to get a more intuitive understanding

of the observed lifting.

The interaction forces are sketched in Fig. S6a. The force directions are marked by coloured

arrows. The potential energy EL favouring the lifting is the sum of the vdW potential ΦvdW,T

between tip and graphene and the electrostatic energy Φel caused by the differences between

the electrostatic potentials of tip and sample [36]. The restoring potential energy ER, opposing

the lifting, is the sum of the vdW potential between graphene and substrate ΦvdW,S and the

strain potential within the Gaussian deformation ΦS (Fig. S6a). In Fig. S6b and c, we plot

these energies as a function of z∗, the distance between the atomic cores of the atoms of tip and

graphene being closest to each other. Since the tunnelling distance z can be calculated by Eq.

22, we get, e.g. for I = 50 nA at V = 0.5 V, z ≈ 2 Å corresponding to z∗ ≈ 4−6 Å. ΦvdW is then

calculated in the pairwise model as described in S3-1, using the upper and lower values for the

polarizabilities as found in the literature (Table 1). Results for the Gaussian deformation found

by the MD simulations of a pyramidal tungsten tip tilted by 30o above a circular graphene area

of (12 nm)2 are displayed in Fig. S6b. For z∗ = 4.5 Å, e.g., we find ΦvdW,T = 1.5-3 eV, which

changes only slightly if other reasonable tip geometries are used.

The electrostatic energy Φel between tip and graphene is estimated by Φel = 1
2CV

2, where

C is the capacitance of the system. We calculated C following a model described elsewhere [36].

In short, the tip is represented by a W sphere of radius 5 nm and the sample as a circular plate
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Figure S6: Energy scales of the lifting process. a, Schematic of the forces involved in the lifting pro-
cess. Arrows labelled with the associated potential energies Φ and the origin of the force (tip, substrate,
graphene) mark the direction of the forces acting on graphene. The yellow half-sphere represents the
large-scale part of the tip responsible for the electrostatic potential Φel. Lifting amplitude H and width
b of the Gaussian deformation are marked as resulting from the MD. b, Potential energies, which favour
the lifting of graphene EL. z∗ is the vertical distance between the cores of the closest atoms of the tip
and graphene. The vdW-potential ΦvdW,T is calculated by LAMMPS using a pairwise model between a
30o tilted W(110) tip and a (12 nm)2 area of graphene. Large (red) or small (green) polarizabilities of
the W atoms are applied according to Table 1. Φel (black line) is calculated in a sphere-plane geometry
for tunnelling voltage V = 0.5 V [36]. c, Sum of potential energies, which oppose the lifting (ER) as a
function of the amplitude of the Gaussian deformation for different widths of the Gaussian b calculated
in the absence of the tip. Left inset: vdW-potential between graphene and SiO2 (ΦvdW,S). Right inset:
strain potential of the deformation ΦS calculated using the AIREBO potential [67]. Both potentials are
calculated by LAMMPS [56].

of graphene with radius 2 nm, taking into account the finite charge carrier density of graphene

(quantum capacitance). The resulting Φel is smaller than ΦvdW,T for z∗ < 7 Å, i.e. for all rea-

sonable distances during lifting. Nevertheless, it provides an approximately constant background

energy of 0.5-1 eV favouring lifting. Since the electrostatic forces are more homogeneous than

the vdW-forces, the deformation shape of graphene will, however, be dominated by the stronger

and more short-range vdW-potentials.

The sum of the restoring potentials ΦvdW,S +ΦS is plotted for different Gaussian deformation

geometries in Fig. S6c. The two contributing potentials ΦvdW,S and ΦS are plotted separately

in the inset. ΦvdW,S is calculated in the absence of the tip by applying the wall-type potential

between graphene and SiO2, fitting to the experimental adhesion energy as described in S3-2.

ΦS is simulated using the AIREBO potential [67] of graphene. The comparison of Fig. S6b and

c reveals that, e.g., at z∗ ≈ 4.5 Å (z ≈ 2 Å, I ≈ 50 nA), the lifting energies ΦvdW,T + Φel ≈ 2.5-4

eV can induce a Gaussian amplitude of H = 1-1.5 Å. This reasonably agrees with the lifting

heights found in the MD and with the lower experimental lifting heights presumably found in

supported areas of graphene (Fig. S10d, and Fig. 2d, f of the main text, blue areas). Thus, we

corroborate that lifting by the STM tip can also appear on supported graphene within tunnelling

distance.

In turn, lifting heights of Hexp ≈ 2.5-3 Å, as partly observed in the experiment, are not
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possible in tunnelling distance according to our estimates. Thus, they can only be realized for

areas that are originally not in contact with the substrate, such that ΦvdW,S is significantly

reduced. Such areas have indeed been found previously for graphene on SiO2 [36, 43]. In those

areas, mostly the strain energy ΦS has to be paid for the lifting allowing larger amplitudes. For

example, for z∗ = 4.5 Å (50 nA, 0.5 V) without ΦvdW,S, we find H = 1.8 − 2.2 Å again in

reasonable agreement with the experiment.

S3-4: Video - Movement of deformation with scanning tip

To create an animation of the moving deformation during scanning of the STM tip, we have

taken advantage of the fact that the graphene is periodic within the calculation cell. After the

energy minimization, the graphene was laterally moved by 0.141 Å and the energy of the system

was minimized again. By repeating this step, the scanning of the STM tip was simulated. After

the tip has travelled one graphene unit cell, the movie is looped. LJ parameters are the same as

in the other MD calculations.

S4: Excluding alternative models that predict sublattice sym-
metry breaking

In order to substantiate our successful description of the SSB by pseudospin polarization, we

have to exclude other possible mechanisms. In the following sub-chapters we consider:

1. The influence of double or multiple tunnelling tips.

The dependence of the SSB on the tunnelling current and hence the lifting height, would be

opposite.

2. A different lifting height of the graphene membrane, if the centre of the tip is

positioned either on sublattice A or on sublattice B.

The effect is at least a factor of 100 too small to explain the SSB.

3. Real buckling of the graphene lattice as present, e.g., in silicene [71].

It requires a compressive strain of 16%, which is of the wrong sign (pulling graphene implies

tensile strain) and a factor of, at least, 10 smaller than the applied strains.

4. A Peierls transition as expected to be possible in graphene due to the Kohn

anomaly and other types of Kekulé order.

It requires an expansion of the graphene lattice by 12%, which is again a factor of 10 too

large (see S3).
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5. A sublattice symmetry breaking due to the correlation of electric and pseudo-

magnetic fields as proposed by Low, Guinea and Katsnelson [72].

The SSB should be voltage dependent, which we don’t observe up to 1 V. Moreover, it is

likely a factor of 10 smaller than the observed SSB.

Consequently, these models fail either qualitatively or quantitatively by a large margin when

compared with our experimental results, which we describe in detail in the following.

S4-1: Multiple tips

It is well known that STM images are prone to artefacts arising from multiple tips contributing

to the tunnelling current. Multiple tip effects can generally be ordered in two categories: either

the two scanning tips are far from each other or they are close on the scale of the Bloch function

periodicity of the sample wave functions. In the first case [73], the contributions of the two

tunnelling tips sum up, resulting in "ghost images" from the secondary tip. In the second case

[73], interference can occur between the two tunnelling channels [74]. This induces a symmetry

breaking within the STM images, reflecting the rotational symmetry of the tip.

In the former case, one could imagine that two graphene lattices imaged by two different tips

are overlaid in a way that sublattice A imaged by tip 1 overlaps with sublattice B imaged by

tip 2, while sublattice B by tip 1 does not overlap with sublattice A by tip 2. This would lead

to an apparent SSB and a weaker additional spot within the graphene unit cell belonging to

sublattice A imaged by tip 2. Firstly, we never observe such an additional spot, if we see SSB.

Secondly, one would expect that double tips are less important, if one moves the mostly imaged

area towards the tip, thereby enhancing its contribution to the image with respect to the ghost

image. Consequently, the SSB should disappear with increased lifting height in striking contrast

to the experimental finding. Thus, we can safely rule out long-range double tips as the origin of

SSB.

If the two tunnelling tips are close together on the scale of the Bloch function wavelength,

interference effects can arise between sample quasiparticle states and those of the tip [74]. In this

case, the rotational asymmetry of the STM tip is transferred to the STM images. In order to

create a sublattice symmetry breaking, the tip would need to have threefold symmetry C3 (see

Fig. S7). Such interference effects are typically strongly energy dependent, such that they only

appear in differential conductance maps [74]. Firstly, we measure topography images at relatively

large voltage (V up to 1V), i.e., we integrate over the various interference terms. As shown by

da Silva Neto et al. [74], this results in overall cancellation of the asymmetries. Secondly, we do

not see any drastic changes in the SSB pattern (disappearance and reappearance [74]) between
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V = 0.05 V and V = 1 V. Thirdly, it is highly unlikely that the tip asymmetry causes strongly

different strength of the interference on originally supported and suspended areas independent

of the lateral shape of the corresponding areas. Thus, we rule out this possibility.

S4-2: Tip induced favoured lifting

Another possibility is that the apparent sublattice height difference ∆z is induced by a different

lifting amplitude Hexp, if the tip is positioned either on sublattice A or on sublattice B. This

requires an anisotropic distribution of vdW forces. Figures S7a and b show the last three tip

atoms (green and black) within a maximally anisotropic triangular configuration centred either

atop sublattice A (a) or sublattice B (b). The three tip atoms if centred atop sublattice A or B

are located atop graphene atoms or atop holes of the hexagons, respectively. This naturally leads

to different vdW forces for these two cases. We neglect the more slowly decaying electrostatic

potentials Φel ∼ 1/r, since their variation on the atomic scale (C-C distance < tip graphene

distance) is negligible with respect to the one from the more short-range vdW potentials ΦvdW ∼
1/r6. In order to quantify the difference in lifting, we simulate the local pairwise vdW-potentials

ΦvdW of three atoms of a W tip, which form a W(110) facet with corresponding inter-atomic

distances, with the C atoms of a (12 nm)2 area of graphene. We only use the attractive part of

the Slater-Kirkwood formula [61]. Simulations including a second layer of tip atoms above the

triangle reveal that the additional atoms do not alter the differences of vdW forces on the atomic

scale. Adding a single W atom to the graphene side of the tip triangle moves the triangle so far

apart from graphene that the differences of vdW forces on the atomic scale are suppressed by

more than one order of magnitude. Thus, for the sake of simplicity, we consider a single triangle

of tip atoms with the strongest possible differences in vdW forces.

The pairwise interactions are calculated using the polarizabilities of Table 1 and are subse-

quently summed up to reveal ΦvdW,T. The scanning of the tip is simulated by moving the three

tip atoms laterally on the graphene lattice at a constant tip sample distance z∗, which is the

vertical distance between the centres of the last tip atom and the closest C atom of graphene.

z∗ is larger than the tunnelling distance z between tip and graphene by 2− 4 Å (see S3-1), since

z = 0 Å is taken to be at tunnelling conductivity σ = 2e2/h. Figure S7c-f shows the resulting

scanned ΦvdW,T(x, y) at an unrealistically small z∗ = 2 Å, which is artificially possible since

we ignore chemical bonding forces. This results in a relatively strong SSB. We used different

azimuthal angles ϕ of the tip with respect to the armchair direction of graphene as sketched in

all images and different vertical tilts of the tip as sketched in Fig. S7e. For some ϕ, we find po-

tential patterns that break the sublattice symmetry (Fig. S7c-f). Figure S7g shows the potential

difference between the two sublattices ∆ΦvdW,T,(A−B) = ΦvdW,T,(A) −ΦvdW,T,(B) for different ϕ
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Figure S7: Favoured lifting above one sublattice. a, b, Schematic of an STM tip consisting of 3
atoms (green and black dots) with the centre located (a) on sublattice A (red dots) or (b) on sublattice
B (blue dots). Note that the three tip atoms are either on top of C atoms (a) or not (b). Inset: Sketch
of the tip apex (green) with the three terminating tip atoms marked. The atom closest to graphene
which dominates the tunnelling current is coloured black. c−f, The vdW-potential energy ΦvdW,T(x, y)
between the three tip atoms and graphene as a function of lateral tip position using an unrealistically
small tip sample-distance z∗ = 2 Å (distance between centres of black tip atom and graphene plane).
Atomic positions of graphene are marked by red dots. (c), (d) All three tip atoms have the same distance
to the graphene plane. (e), (f) Green tip atoms are 20 pm further apart from the graphene plane. The
azimuthal angle of the tip with respect to the armchair direction is marked: (c), (e) ϕ = 10o, (d), (f) ϕ
= 50o. The tip with the black atom being the closest to graphene is sketched in all images and the tilted
tip is visualized in the inset of (e). g, Potential difference ∆ΦvdW,T,(A−B) between the two sublattices
as deduced from images as (c)−(f). Different tip azimuths ϕ are labelled. h, Required potential energy
ER to induce a Gaussian deformation (b = 6 Å) of graphene on SiO2 according to molecular dynamics
(see Fig. S6). Insets show zooms into the region of negligible (large) lifting amplitudes, marked by black
(blue) squares. Arrows mark the energy required for an additional lifting of graphene by ∆z = 20 pm.
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and z∗ showing that ∆ΦvdW,T,(A−B) strongly decreases with increasing z∗. For the estimated

distances at largest tunnelling current I = 50 nA being z∗ ≈ 4-6 Å the energy difference is

∆ΦvdW,T,(A−B) ≤ 1 meV.

This can be compared with the energy cost for lifting. For small z∗, we have to take into

account that the graphene is already lifted by H ≈ 1.5 Å (Section S3-3). The energy cost to

increase H by an additional ∆z = 0.2 Å, as observed experimentally, is ∼1 eV according to the

MD simulations (Fig. S7h), i.e. more than three orders of magnitude larger than ∆ΦvdW,T,(A−B).

Even, if we assume that for an unknown reason, graphene is not lifted at all, if the tip is positioned

on one sublattice, the required cost to lift the graphene with a tip on top of the other sublattice

would be ∼0.1 eV still two orders of magnitude too large.

For a consistent model, one has to additionally allow imaging with atomic resolution, which

is not provided by a planar triangle of tip atoms. Tilting the tip as shown in Fig. S7e-f, however,

reduces ∆ΦvdW,T further. These quantitative estimates safely exclude the scenario of a favoured

lifting with the tip centred above one of the sublattices as an explanation of the observed SSB.

S4-3: Compression induced buckling

Next we consider possible buckling of graphene, which moves sublattice A upwards and sublattice

B downwards geometrically. A compression of the atomic lattice could in principle favour such a

transition from sp2-bonds to sp3-bonds or, alternatively, to a stable mixture of both bond types.

Then, sublattice A (B) would be closer (further away) from the tip with its pz-orbital pointing

towards (away) from the tip orbitals. This leads to the preferential observation of sublattice

A. The required compression might be induced by the flattening of a curved surface during the

transition from a valley to a hill, while lifting the graphene (Fig. S8a). This compression is

calculated straightforwardly from the geometry to be 0.1% in Fig. S8a and of similar size in all

other lifted areas. The induced strain of ∼0.1 % interestingly matches the overall strain of the

sample found by Raman spectroscopy to be compressive and ∼0.1 % [75].

We have performed ab-initio calculations on the level of density-functional theory (DFT) in

the generalized gradient approximation (GGA) in order to check if buckling could explain the

observed triangular STM-picture. The calculations are done with the code Quantum-Espresso

[76]. The wave-functions are expanded in plane-waves with an energy cutoff at 37 Ry. We have

used the projector augmented plane-wave (PAW) method [77, 78] to describe the core-valence

interaction. In this approximation, the equilibrium lattice constant is 2.466 Å (corresponding to

a bond-length of 1.424 Å, slightly overestimating the experimental lattice constant as is usually

the case in the GGA). We compressed the lattice by various amounts and relaxed the geometry

in order to check if buckling occurs. The result is shown in Fig. S8h. Up to an (isotropic)
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Figure S8: Compression induced buckling. a, Profile lines for relaxed (blue) and lifted (red) graphene
as indicated in (b). Dotted lines (red, blue) mark the low pass topography of the graphene (see S5);
graphene lifting (blue arrow) and compression (black arrows) is indicated; same atoms are marked
by dotted black lines. Modifications of the graphene lattice are illustrated for buckled (top) and flat
(bottom) graphene. Blue and red dots mark different sublattices. b, c STM image of the same (1.5
nm)2 of graphene (b) in the relaxed (I = 0.1 nA, V = 0.5 V) and (c) lifted situation (I = 50 nA, V =
0.5 V). Lines being at identical positions in b and c, mark directions of cross sections along C-C bond
directions as shown in (a). d, e DFT calculated STM image for flat graphene (V = 1 V, constant-height:
z∗=2 Å) (d), and buckled graphene (∆z = 5.3 pm) at a compression of 16% (e). As expected, the
buckling leads to an STM image that enhances the sublattice that is shifted towards the STM-tip and
reduces the intensity of the other sublattice. Graphene lattice is indicated (yellow lines and dots). f,
Apparent lattice constant in STM images as a function of the local radius of curvature of the long range
morphology. Red curves are a fit of the data points to the intercept theorem, with the effective length
of the pz-orbitals (distance of tip from the centre of the C atom) as a free parameter turning out to be
z∗ = 5.3 Å. The red dot corresponds to the lifted graphene exhibiting SSB in (c). The green dot shows
the required compression for buckling. g, schematic representation of the apparent lattice constant (red
double arrow) due to the curvature of the sample. Blue dots mark the atom core positions, pz-orbitals
are visualized by orange clubs. Radius of curvature R is indicated. h, Buckling amplitude ∆z as a
function of the in-plane compression as calculated by DFT. i, Energy per atom as a function of an
isotropic compression strain, calculated in LAMMPS [56] with the AIREBO potential [67] as a model
for the carbon-carbon interaction.
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compression by 16%, the planar geometry remains stable At larger compression (up to 20%), the

sublattice height difference increases quickly and at even larger compression, the buckled planar

structure becomes unstable. We checked by calculations that the presence of a perpendicular

electric field (of the order of ±1V/Å - such as it occurs during STM measurements) does not

change the threshold for buckling formation. In principle, buckling induced by compression

could thus explain the observed trigonal STM features (see simulated STM-images Fig. S8d-

e). However, the applied strain in the measurements is much too small to induce a buckling

transition.

Nevertheless, a priori, one cannot exclude a phase separation into compressed and extended

areas within the lifted graphene, which compensate each other in strain. Thus, we estimated

the strain observed in the STM images. This is complicated by the curvature of the graphene

topography leading to an apparently larger (smaller) lattice constant on graphene hills (valleys) in

STM images [36]. The reason is the dominating contribution of the pz-orbitals to the tunnelling

current. On curved graphene, the pz-orbitals are tilted with respect to its neighbours, such that,

at the tip, neighbouring pz-orbitals are further apart (closer to each other) than at the C atom

cores in case of hills (valleys). The apparent lattice constant measured by STM, i.e. probed at

the position of the last tip atom [41], will therefore be modified by the curvature with respect

to the real lattice constant. We find that this effect can be surprisingly well described by the

intercept theorem as sketched in Fig. S8g.

Probing the lattice constant in areas, which are barely lifted, as a function of local curvature

of the graphene (Fig. S8f) fits to the intercept theorem (red lines) within a few percent. While

the determined strain in a lifted area is within these error bars (large red dot in Fig. S8f), the

required strain of ε = 16% (large green dot) is clearly out of the error bar with respect to the

upper limit of measured compression of 3%. Consequently, a strain of ε = 16% can be safely

excluded.

Generally, it might also be possible that a compression pattern is scanned with the tip in a

way that does not allow measuring the decreased lattice constant directly. But then, the scanning

tip itself must dominantly induce the compression. However, it is difficult to imagine that the

attractive forces of the tip induce a compressive strain. The opposite is the case as shown by

our MD. Moreover, using MD where the atomic interaction in graphene is modelled with the

AIREBO potential [67], we find that the in-plane compression of 16% requires a strain energies

>2 eV per atom (Fig. S8i) to be compared with ∼400 mV of tip induced energies to the closest

C atom at an unrealistically small tip-graphene distance z∗ = 3 Å. Thus, the tip forces are not

only of the wrong sign, but also too weak to induce a compressive buckling.
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S4-4: Strain induced Peierls transition, Kekulé distortion

Another electronic effect that can modify the charge density on the graphene lattice is a Peierls

transition, predicted to occur in a real magnetic field, in the quantum Hall regime [?]. Since in our

experiments we are dealing with a pseudo-magnetic field and the sample does not show Landau

levels, we will investigate the effect of a strain induced Peierls transition. A periodic change of

the bond length can make it energetically favourable to adjust the electron system into a charge

density wave leading to a gap at the Fermi level in the electronic system and to a softening of

the corresponding phonon mode [79]. A precursor of such a phonon softening is observed in

graphene known as the Kohn anomaly at the K point [80, 81]. However, graphene and graphite

do not exhibit a Peierls transition down to lowest temperatures. With DFT calculations (in

agreement with the results of Ref. [79]), we find that biaxial tensile strain can drive the system

into a Peierls transition. However, this requires a large lattice expansion of at least 12% (Fig.

S9e). Therefore, similarly to the buckling transition, this is neither compatible with the observed

strain nor energetically possible.

Additionally we find, as expected, that the strongest LDOS of the Peierls phase is located

between the sublattices, i.e. at the bond sites similar to the Kekulé phase (Fig. S9c). In contrast,

the STM experiment exhibits the largest LDOS (highest positions in constant current mode) at

the atomic sites, which can be unambiguously determined, if one observes continuously how the

honeycomb appearance at low I transfers into the SSB phase at larger I (Fig. S8a-c, blue and

red lines). Thus, we can exclude the Peierls transition as the origin of our SSB. Furthermore,

because the SSB appears at the atomic sites, we can rule out other types of Kekulé distortions,

e.g. brought about by hybridization with the substrate [82].

S4-5: < V,Bps > correlation gap

A final possible reason for the appearance of sublattice symmetry breaking is a correlation of

pseudo-magnetic field Bps and a scalar potential V (r), which can be induced by the electric field

of the tip [72]. In principle, V (r) can also be induced by strain, but then the required correlation

with the strain induced Bps(r) disappears [72]. The Dirac Hamiltonian exhibits a finite mass

term (∝ σz), if V (r) is correlated with Bps(r), i.e. the mass term is roughly proportional to

< V (r), Bps(r) >r. This leads to a real gap ∆Ecorr and accordingly induces a SSB around

∆Ecorr, which continuously weakens at higher energy. Experimentally, we do not observe a gap

in dI/dV -curves down to, at least, 10 meV, but we find a SSB with nearly voltage independent

contrast Cexp up to V ≈ 1 V, if the tip-graphene distance is kept constant by adjusting I. This

makes this scenario unlikely.
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Figure S9: Strain induced Peierls transition. a, b, Possible phonon modes in highly (12%) strained
graphene, A1 (a) and B1 (b) with undistorted graphene lattice (black) and unit cell of the distorted
calculation cell (dotted black lines) marked [79]. Blue and red dots represent atomic positions at extrema.
c, DFT calculated STM image for a relative lateral displacement amplitude of 6 pm between the graphene
atoms at the 15.5% strained graphene lattice in the Peierls phase (A1-mode). The graphene lattice is
indicated (yellow lines and dots). d, Energy per atom as a function of an isotropic tensile strain calculated
in LAMMPS with the AIREBO potential as a model for the carbon-carbon interaction. e, Calculated
lattice deformation d (atomic displacement from the equilibrium position) in A1-mode as a function of
isotropic tensile lattice strain.

However, since we increase the scalar potential V (r) within graphene with increasing applied

bias voltage V , we cannot exclude a priori that ∆Ecorr is always smaller than V . Notice that one

expects a contact potential difference between graphene and tip of about 100 meV [36], such that

a remaining scalar potential is also expected at V = 0 mV implying the persistence of ∆Ecorr at

low V , which was never observed.

Assuming the unlikely, best case scenario that the tip electric field is perfectly correlated with

the pseudo-magnetic field Bps(r), we can use the formula given by Low et al. [72] to estimate

an upper bound for the gap ∆Ecorr = BpsVell
2e2/~. Here, Bps and Vel is the spatially averaged

magnitude of the pseudo-magnetic field and electrostatic potential and l ≈ 1 nm is the spatial

scale over which the two are correlated. Plugging in a typical Bps = 1-10 T of rippled graphene

on SiO2 [83, 84] and a scalar potential Vel(r) = 0.2 V [36], we get a gap of 0.3-3 meV at a tip

voltage of V = 1 V, indeed much too small to be observed. However, in the experiment we image
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SSB up to 35 % at an energy of 1000 times of such a gap, where any remaining SSB by the

correlation effect is negligible (< 0.1 %). Thus, we safely exclude this scenario as well.

Finally, one can ask if the correlation of V (r) with the induced Bps(r) of the Gaussian de-

formation is the origin of the SSB. This cannot be excluded completely. But the fact that V (r)

induced by the tip bias V will be at first order rotationally symmetric, while Bps(r) within the

Gaussian is sixfold rotationally antisymmetric (Fig. 1c of main text) suppresses the correlation

gap significantly. For a perfect correlation, we find Ecorr ' 0.6 eV at V = 1 V. Suppression by a

factor of 5 by imperfect correlation would safely exclude this scenario, too, and is geometrically

likely.

Closing this chapter, we state that all reasonable explanations for the SSB, with the exception

the pseudo-Zeeman effect, strongly fail. Together with the quantitative agreement of the strength

of the pseudospin-polarization in the effective model with the SSB in the experiment, this provides

substantial evidence for the correctness of the pseudospin scenario.

S5: Evaluation of the sublattice contrast ∆z(x, y) and the
lifting height Hexp(x, y)

The experimental LDOS contrast Cexp is derived from the measured difference in apparent height

between the two graphene sublattices ∆z within constant current images. It is evaluated for

different tunnelling distances z, respectively different tunnelling currents I.

Generally, the determination of ∆z is disturbed by the corrugation of the long-range mor-

phology, due to the possible finite slope along the A-B bond direction. It is thus, necessary to

remove the long-range morphology (rippling), from the atomic corrugation pattern prior to ∆z

evaluation.

Therefore, we firstly apply a Gaussian-weight averaging with large enough Gaussian width in

order to remove the atomic corrugation completely. This leads to the effectively low-pass filtered

image in S10b exhibiting the rippling only. Subtracting this from the original image (shown in

S10a) results in S10c exhibiting the atomic corrugation only (See also Fig. 2e of the main text).

Of course, the Gaussian width has to be adapted carefully. This is done by hand until the atomic

corrugation disappears from the low-pass filtered image. Additionally, z-noise on length scales

smaller than the atomic corrugation, which is mostly induced by the feedback loop reaction to

the lifting of graphene (S11), is removed by an additional short-scale Gaussian filter. The width

of this Gaussian is adapted until no atomic corrugations are visible in the removed part of the

image, i.e., the full width at half maximum (FWHM) of 75 pm is significantly smaller than the
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Figure S10: Determination of ∆z and Hexp from constant current images. a, Constant current
image of graphene on SiO2 (10×10 nm2, I = 50 nA, V = 0.5 V). b, Long-range morphology of (a) deduced
by applying a Gaussian smoothing filter as displayed in colour code in the inset. The Gaussian smoothing
acts as an effective low pass filter. c, Map obtained by subtraction of (b) from the STM image (a) yielding
only the atomic lattice contrast due to an effective high pass filtering. d, Lifting amplitude Hexp of
graphene at I2 = 50 nA, V = 0.5 V derived by subtracting the long-range morphology of the same area
recorded at I1 = 0.1 nA, V = 1 V (barely lifted) from (b) and additionally subtracting homogeneously
the required change of tip-graphene distance κ−1 ln(I2/I1) in order to increase the current, same marks
as in (c). Red and black squares mark the areas where 〈Hexp〉 and 〈∆z〉 are evaluated in Fig. 2h of the
main text.

unit cell of graphene. This procedure is applied to the raw data, e.g., leading to Fig. 1d-g and

Fig. 2e of the main text.

After this procedure, ∆z is determined by profile lines along the C-C bond direction through

the image exhibiting the atomic lattice. In order to determine 〈∆z〉, ∆z is measured separately

for all atom pairs in all three bond directions for areas of relatively constant Hexp (marked by

green or blue dashed lines in S10c and d). The contrast values 〈∆z〉 shown in Fig. 2h of the

main text originate from the areas marked in S10c and d.

The local lifting amplitude Hexp(x, y) is determined from the height difference between two

low pass filtered images (S10b) of the same area recorded at high current I2 and low current I1,

respectively. Additionally, ∆z = κ−1 · ln (I2/I1) is subtracted in order to compensate for the
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required tip approach towards graphene which increases the current from I1 to I2. Thereby, κ is

defined in Eq. 4 of the main text. Using this procedure, we assume that the image at the lower

I1 (0.1 nA) is barely lifted. S10d shows the resulting Hexp for I = 50 nA and V = 0.5 V.

In order to display 〈∆z〉 with respect to 〈Hexp〉 (Fig. 2h, main text), ∆z is measured in

selected areas at different 〈Hexp〉, i.e. at different I. The relatively large error bars of 〈Hexp〉
and 〈∆z〉 (Fig. 2h and 3d, main text), are due to the variation of Hexp and ∆z across a selected

area, i.e., all other errors of 〈Hexp〉 and 〈∆z〉 as, e.g., the ones induced by z-noise (S11e,f), are

smaller.

S5-1: Translation of ∆z into the LDOS contrast Cexp

Using the averaged sublattice height difference 〈∆z〉 from a certain area, we deduce the corre-

sponding LDOS contrast Cexp as described by Eq. 4 of the main text. Within the Tersoff-Hamann

model [41], the STM current I reads:

I ≈ 4πe

~

∫ eV

0

νG(EF − eV + ε) · νT(EF + ε) · e−κzdε (22)

with νG and νT being the LDOS of graphene and the tip, respectively, and the Fermi energy

EF of graphene. For constant tip-graphene distance z, an energy-independent change of νG on

the two sublattices by +∆νA and −∆νB, respectively, implies a change of the tunnelling current

I. The difference of I to the set-point IS is compensated by a respective adjustment of the

tunnelling distance by ∆zA and −∆zB, respectively, with ∆z = ∆zA + ∆zB. Hence, we find:

IS,A/B ≈
4πe

~

∫ eV

0

(νG ±∆νA/B) · νT · e−κ(z±∆zA/B)dε (23)

⇒ (νG + ∆νA) · e−κ(z+∆zA) = (νG −∆νB) · e−κ(z−∆zB) (24)

In the last step, we reasonably ignore the possible energy dependence of κ and νG. The LDOS

contrast Cexp = ∆νA+∆νB
νG

is calculated straightforwardly by using ∆νA = ∆νB as implied by the

first order perturbation theory [41]:

Cexp =
2∆νA

νG
= 2

eκ∆z − 1

eκ∆z + 1
(25)

S5-2: The effect of the feedback loop in relation to I(Z) curves

S11a shows a constant current STM image of graphene on SiO2 with zooms displayed in S11b and

c. Several areas, some of them marked by arrows, exhibit an enhanced noise in the topography.
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Figure S11: Interaction between STM feedback and graphene. a, Constant current STM image
of graphene on SiO2, (50×50 nm2, I = 1 nA, V = -0.3 V), black (red) square marks the zoom area of
(b) ((c)); white arrows point to areas of increased Z-noise. b, Zoom into (a), (10×10 nm2, I = 1 nA, V
= 0.5 V), red square marks area of (c). c, Zoom into (b) (1.5×1.5 nm2, I = 1 nA, V = 0.5 V), blue and
green (black) stripes mark profile lines displayed in (e), ((f)). d, Sketch of the tip (red) above partially
suspended graphene (dashed line) deposited on SiO2 (blue). Arrows mark the lateral tip movement
(blue), the tip induced movement of graphene (black), and the vertical movement of the tip induced by
the feedback correction (red). The yellow bar indicates the required tip-graphene distance for I = IS:
(i) tip on supported area. (ii) initial tip position on suspended area, (iii) tip position on suspended area
after feedback induced tip retraction. e, Profile lines from (c) through a lifted area (blue) and a supported
area (green). Black square marks the zoom shown in (f). f, Feedback induced Z-movement (blue) and
simultaneously measured logarithmic tunnelling current (red) from the zoom of (e); the Z-movement
follows ln (I) with a time delay; note that the displayed lateral distance is less than a graphene lattice
constant such that only part of an individual atom of one sublattice is probed as profiled by the dotted
line. g, Graphene movement during I(Z)-curve, same meaning of colours and symbols as in (d): (i) tip
approach, (ii) begin of lifting, (iii) reaction of graphene to tip approach (left arrows) and tip retraction
(right arrows), (iv) possible hysteresis of graphene lifting after tip retraction. h, Schematic I(Z)-curves
with hysteresis during tip approach (black) and retraction (red). A comparison with the I(Z)-curve
expected on a vertically fixed substrate (blue) is used to measure the lifting amplitude Hexp(Z) of
graphene as marked.
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The enhanced noise indicates that these areas are more strongly lifted by the forces of the STM

tip as cross-checked by I(Z)-curves. The Z-noise is due to the fast vertical retraction of the STM

tip by the feedback loop, which is triggered by the suddenly increased current during the lifting

of graphene (S11d). We find that the amount of noise depends on the feedback parameters,

such as the bandwidth with respect to the recording time per pixel and the stabilization current.

The noise also spatially varies at given feedback parameters, which we ascribe to different local

lifting amplitudes Hexp induced by a different strength of the local adhesion between graphene

and the substrate. Since the bandwidth of our feedback loop (1 kHz) is much lower than the

eigenfrequency of the graphene membrane (∼1 THz) [36], we get a retarded reaction of the STM-

servo, such that the Z-correction overshoots, leading to an enhanced Z-noise (S11d-f). Since a

larger Hexp leads to a stronger current I and thus, to a stronger retraction of the tip by the

feedback, a large Hexp implies a large Z-noise. In turn, the Z-noise is a fingerprint of the local

adhesion force between graphene and the substrate.

During I(Z)-curves, the tip is firstly approached towards graphene and retracted afterwards,

while the feedback loop is switched off. The resulting movement of tip and graphene is sketched

in S11g including a possible hysteresis of the graphene lifting [36]. S11h sketches the resulting

I(Z)-curve with hysteresis. Such a hysteresis is partially also found in the experimental I(Z)-

curves [36] and within the MD (not shown). Measuring I(Z) with feedback loop on, i.e. deducing

Z from a series of constant current images at different I, corresponds to a situation between an

approaching and a retracting I(Z)-curve without feedback loop. Consequently, the I(Z) values

probed with feedback loop are larger than the I(Z) values recorded without feedback loop during

the approach. This is indeed found as visible in Fig. 2a of the main text.

S5-3: Sublattice symmetry breaking over large areas

Our model described in the main text implies that, as long as the STM tip remains unchanged,

the tunnelling tip will scan within an area of constant sign of Bps (see supplementary video). This

means that the same sublattice will appear higher, all over the sample. In Fig. S12a we show

a large area (10×10 nm2), measured at large tunnelling current (50 nA). The atomic resolution

image clearly shows one of the sublattices being higher (marked red) all over the sample surface.

The magnitude of the sublattice contrast can change as a function of the local lifting height (see

Fig. 2d, e of the main text). As a comparison, a constant current image of the same area is

shown in Fig. S12b, measured at low tunnelling current / low lifting. It displays the honeycomb

lattice of graphene, with the sublattices having equal height in most areas of the image.
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Figure S12: Sublattice symmetry breaking on a 10×10 nm2 area: Constant current STM images
(10 nm2) of graphene on a SiO2 substrate. The 3D topography results from the long range Gaussian
convolution filtering (FWHM = 3 Å), showing the large scale graphene topography. The colour code
results from the subtraction of the topography from the raw data, showing the atomic corrugation. a,
The whole graphene membrane is lifted resulting in a smoothing of the corrugation induced by the SiO2

substrate. The whole area shows SSB, with the sublattice marked red being higher (see inset). The
SSB 〈∆z〉 is in the 10 to 20 pm range, depending on lifting amplitude. b, STM image at low tunnelling
current of the same area as in (a), showing the honeycomb atomic lattice of the graphene membrane in
most areas. The graphene is expected to be barely lifted (see I(Z) curve at 0.1 nA in Fig. 2a of the main
text). The morphology shows a much higher corrugation amplitude compared to (a), resulting from the
surface roughness of the SiO2 substrate.
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S6: Tight-binding calculation and contrast evaluation of sub-
lattice symmetry breaking

The tight binding calculations were carried out, as described elsewhere [13]. The Gaussian

deformation was implemented by a position dependent nearest neighbour hopping parameter

while total and local density of states (LDOS) were obtained using recursive GreenâĂŹs function

methods. Due to the ribbon geometry used for the tight binding (TB) calculation, the LDOS

is strongly affected by the boundary conditions, showing spatial oscillations at the atomic scale

even for undeformed ribbons [13]. These finite size effects produce sublattice symmetry breaking

SSB on zigzag terminated ribbons (caused by the boundaries) and streamline currents in the

armchair ribbons (AGNR) [85]. Hence we consider an AGNR with width of 11 nm and length of

12 nm. In order to eliminate the finite size effects, Fast Fourier transform methods were used to

filter the associated finite momenta contribution, which are similarly observed in ribbons with

and without the Gaussian deformation. The filtered data was Fourier transformed back to real

space, where the LDOS at different sublattice sites was determined for ribbons with Gaussian

deformations. This filtering method might influence the absolute values of the SSB, but since it

is applied identically to the different deformations, the relative ∆z values are barely influenced

by the procedure.

To simulate the sublattice contrast observed by STM, we calculate LDOS data from ribbons

with different central positions of the Gaussian deformation within the graphene lattice. Two

examples of this calculation can be seen in Fig. 3e and f of the main text. In these figures the

colour scale encodes the LDOS difference which results from subtracting the LDOS of the pristine

AGNR from the one containing the Gaussian deformation. In these images Fourier filtering was

not used. In order to simulate the tip scanning, for each position of the Gaussian within the

AGNR, only the LDOS at a constant distance from the centre of the Gaussian towards armchair

direction is plotted (Fig. 3g of main text). All these calculations were repeated for different

LDOS energies, values of the elastic parameter β, system sizes, and deformation sizes. The

system size did not change the observed SSB contrast, while it is found to be proportional to β

(β = 3 in main text) as expected from Eq. 3 of the main text.

S7: Sublattice symmetry breaking in a graphene bubble

If we sacrifice the tunability of the strain, available through lifting the graphene by the tip, the

presence of SSB can be checked in static graphene deformations. Within the literature there

are numerous observations of SSB in strained graphene, measured by STM [7, 25, 26, 8]. One

intriguing example is the paper by Lu et al. [7], where bubbles of graphene are prepared on a Ru
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substrate. They show that regions of the bubbles having low strain show a honeycomb atomic

structure, while regions with high strain have a sublattice symmetry broken atomic lattice (Fig.

3c, 4h and S8 in ref. [7]). However, the authors don’t explain the origin of the SSB.

Of course, the presence of strain does not necessarily mean that there is a finite Bps field

present. Therefore, to check for increased SSB in static graphene deformations, we have studied

bubbles on a sample of graphene supported on hexagonal boron nitride (BN). The stacking

of graphene onto BN is known to result in the formation of bubbles below the graphene and

probably containing hydrocarbons [86]. Usually these bubbles are too large for stable STM

imaging, having lateral sizes in the 10 nm to 1 µm range. However, by STM measurements on

a dry stacked graphene/BN sample [?] we have identified a bubble having a width (b) of 5.2 Å

and 8.5 Å in two perpendicular directions and a height (H) of 2.28 Å. This is similar to the size

of the deformation induced by the STM tip on SiO2.

Figure S13: Graphene bubble on hexagonal boron nitride. Red ellipse marks the graphene bubble.
The STM imaging parameters are, 0.4 V and 0.4 nA. a, Long-range morphology of the bubble, obtained
by low-pass filtering of the STM image. b, Atomic corrugation on the graphene bubble, obtained by
high-pass filtering. Inset: zoom of the area marked by the green rectangle. Moving from the BN up along
the bubble ridge, the sublattice symmetry breaking due to the BN (bottom) is inverted and gradually
increases due to the increase of Bps (the sublattice marked blue being higher). c, Pseudo-magnetic field
pattern of the graphene bubble, calculated by fitting four Gaussians to the graphene bubble.

The bubble (Fig. S13) is rotationally not symmetric, with a ridge along the armchair direction

(shown by black arrows). Its orientation with respect to the armchair direction is a favourable

coincidence, since it allows for an extended pseudo-magnetic field along the ridge of the bubble

of 400-1000 T (Fig. S13c). Indeed if we examine the SSB in the atomic resolution image (Fig.

S13b), we observe an increasing SSB as Bps increases. Starting from the bottom of the ridge

(S13b inset) the atoms marked red are measured to be higher, due to the influence of the BN

support. This SSB inverts and becomes stronger towards the top of the bubble, with the atoms

marked blue being higher. Measured as the height difference (∆z) between the blue and red

atomic positions, it has values of 8.4 pm and 5.3 pm, at the site of the vertical bonds marked
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by larger blue and red atoms in the inset of Fig. S13b. This is similar to the SSB observed in

Fig. 2h of the main text for a lifting height of 1.8 Å. The resulting LDOS contrast has values

of 18% and 11%. Calculating the LDOS contrast in tight-binding for the same two bonds, we

end up with values of 15% and 5%, being reasonably consistent. In comparing these numbers,

one should consider that the SSB on the bubble could be influenced by the additional strain

components in the graphene on BN, as well as by adsorbates trapped between the graphene and

BN.

S8: Valley filter

As stated in the main text, the inhomogeneous nature of the pseudo-magnetic field produced by

the deformation might lead to different deflection directions of electrons from K and K’ valleys.

Generally, if an electron hits one lobe of the Bps pattern (inset in Fig. S14b), it acquires a valley

dependent deflection. This deflection might guide the electrons in other lobes of the same sign of

Bps, thereby substantiating the deflection. Thus, electrons from the K valley might be deflected

to the left and electrons from the K’ valley to the right.

However, the largest fields found in our experiment (Fig. 3d, main text) are up to 4000 T

implying magnetic lengths of lB > 0.4 nm. Thus, the cyclotron diameter is always larger than b,

depending in detail on H and b of the deformation as well as on the LDOS energy of the incoming

electron. This large cyclotron diameter relative to b also explains why we do not observe any

orbital quantization (Landau levels) within the deformation.

Nevertheless, by tailoring of H, b and electron energy, an effective valley filter, which exploits

the valley degree of freedom for information processing, can be constructed.

To investigate the valley filter characteristics, we used a standard elastic scattering formalism

based on the Lippmann-Schwinger equation applied to the Dirac equation. In this approach the

strain field is represented by a pseudo-magnetic vector potential [87] that gives rise to the term

−evF~σ ~Aps within the Dirac Hamiltonian treated in perturbation theory.

The differential scattering cross sections for a plane wave pseudospinor (eigenstate of the

undeformed Hamiltonian) injected along the armchair direction (see inset in Fig S14b), are

obtained for gv(H/b)2 = 280 meV < E, with gv ∼ 7eV and in the low-energy scattering regime

kb � 1, up to second order in perturbation theory. To distinguish the contributions from each

valley, we chose two pseudospinors with energy E and momentum ~k measured with respect to

valleys K and K’ with the same velocity (defined as ∇~kE), i.e., two eigenstates not related by

time-reversal invariance, yet moving in the same direction.
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Figure S14: Cross check of perturbative calculation and valley filter calculation. a, LDOS
contrast between sublattices Ctheo calculated within the effective Dirac model for a deformation of di-
mensions H = 2.5 Å and b = 5 Å, as a function of radial distance r (measured in units of b) for a
fixed azimuthal angle of θ = π/2. The figure shows the comparison between the perturbative expression
(Eq. (3), main text) and the exact result calculated numerically using scattering matrix methods [15].
b, Differential scattering cross section for plane-wave spinors originated at valleys K (purple) and K’
(green) calculated up to second order perturbation theory in the Lippmann-Schwinger equation formal-
ism. Inset shows pseudo-magnetic field lobes of the K-valley as colour code for a Gaussian deformation
with parameters H = 1 Å and b = 5 Å and the azimuthal scattering angle θ. The incident plane-waves
move parallel to the armchair direction (shown by black arrow, θ = 210◦) at energy E = 300 meV.
Black curves correspond to first order corrections and show identical contributions from both valleys
(non-unitary scattering matrix). Second order corrections reveal that states originating from valleys
K (purple) and K’ (green) deflect differently by 40 % with additional differences of 1.5◦ in electron
trajectories.

The results show that first order (Born approximation) corrections do not distinguish con-

tributions from K- and K’-valleys [88], a fact that can be attributed to the lack of unitarity of

the scattering matrix at this order. However, second order terms do reveal different contribu-

tions from each valley that strongly depend on the orientation of motion of the incident state.

Fig. S14b shows the differential cross section for two plane-wave pseudospinors from K and

K’ valleys, incident along the armchair direction of the graphene lattice, at E= 300 meV. A

strong backscattering (' 75 % at 210◦) is found and opposite preferential deflections by about

100◦ for the two valleys (peaks at 113◦ and 306◦). These deflections are the consequence of the

anisotropic spatial distribution of the pseudo-magnetic field. Analysis of Fig. 1c in the main

text, shows that a pseudospin state originating from the K valley experiences a net pseudofield

value of a positive sign, while the one that originating from the K’ valley experiences a net field

of negative sign. The difference results in a net valley polarization of 40% for parameters of the

STM induced deformation on originally supported areas. Analysis of data for different incident

orientations confirms that the valley polarization effect is strongest in the regions with maximal

pseudo-magnetic field (as shown).
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