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Completion of DNA replication needs to be ensured even

when challenged with fork progression problems or DNA

damage. PCNA and its modifications constitute a molecu-

lar switch to control distinct repair pathways. In yeast,

SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of

replication where Srs2 can disrupt Rad51 filaments and

prevent homologous recombination (HR). We report here

an unexpected additional mechanism by which S-PCNA

and Srs2 block the synthesis-dependent extension of a

recombination intermediate, thus limiting its potentially

hazardous resolution in association with a cross-over. This

new Srs2 activity requires the SUMO interaction motif at

its C-terminus, but neither its translocase activity nor its

interaction with Rad51. Srs2 binding to S-PCNA dissociates

Pold and Polg from the repair synthesis machinery, thus

revealing a novel regulatory mechanism controlling spon-

taneous genome rearrangements. Our results suggest that

cycling cells use the Siz1-dependent SUMOylation of PCNA

to limit the extension of repair synthesis during template

switch or HR and attenuate reciprocal DNA strand ex-

changes to maintain genome stability.
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Introduction

Replication of the genome is a fundamental and carefully

controlled process shared by all organisms. Given the size of

the genomes, the complexity of DNA replication and its

interplay with other DNA transactions such as transcription,

recombination and repair, the integrity of the genome is often

undermined by replication stress (Jackson and Bartek, 2009).

Both endogenous and exogenous damage during DNA

replication can severely impede replication. Electron

microscopy and measurements of the amount and size of

newly synthesized DNA have revealed that upon DNA

damage unreplicated single-stranded gaps are left behind

after the completion of bulk chromosomal replication

(Lopes et al, 2006). To cope with stalled replication forks

and filling DNA gaps, cells have evolved a DNA damage

tolerance (DDT) pathway that ensures replication

completion. It is still unclear if DDT mechanisms operate

predominantly at the stalled fork or single-stranded gaps. In

addition, the pathway choice can be determined by the type

of lesions and could be organism specific, since important

differences have been found after treatments with various

damaging agents and between vertebrates and yeasts

(Edmunds et al, 2008; Jansen et al, 2009). Recent detailed

studies in yeast have provided evidence that DDTcan operate

effectively even after chromosomal replication (Daigaku et al,

2010; Karras and Jentsch, 2010) underlining the importance of

gap filling. Gap filling can either take place on stalled forks

that have escaped S phase or after fork collapse via D-loop

formation followed by repriming. At least three separable

mechanisms have been proposed to rescue stalled forks or

filling-in single-stranded gaps formed opposite DNA lesions.

Two of them depend on the RAD6/RAD18-mediated ubiquitin

conjugation system, whereas homologous recombination

(HR) mediates the third mechanism. The first RAD6/RAD18

pathway directs damage bypass by translesion synthesis

(TLS) polymerases to evade damaged DNA in an error-free

or error-prone manner (Nelson et al, 1996; Johnson et al,

1999; Prakash et al, 2005, 2000). The second RAD6/RAD18-

dependent pathway promotes a RAD5-mediated template

switch (TS), in which the newly synthesized strand of the

sister strand is used as a template (Torres-Ramos et al, 2002;

Blastyák et al, 2007). The third pathway that rescues stalled

replication forks includes the RAD52 epistasis group and

utilizes the sister chromatid to achieve recombinational

repair (Zhang and Lawrence, 2005; Gangavarapu et al,

2007; San Filippo et al, 2008; Krejci et al, 2012).

PCNA has been identified as a molecular switch

that regulates DDT (Waga et al, 1994; Kelman, 1997). It is a

homotrimeric ring-like protein that encircles DNA and

functions as a sliding clamp on the DNA (Krishna et al,

1994; Tinker et al, 1994; Gulbis et al, 1996; Yao et al,

1996) and ensures the processivity of the replicative DNA

polymerases (Prelich et al, 1987; Kelman, 1997). The

regulatory role of PCNA depends on post-translational
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modifications reflecting the DNA damage status during

replication (Hoege et al, 2002; Haracska et al, 2004;

Pfander et al, 2005). Blocked DNA synthesis triggers PCNA

ubiquitination. Rad18 monoubiquitinates PCNA (Ub-PCNA)

on residue K164, thus activating TLS (Hoege et al, 2002).

Furthermore, the RAD5-dependent post-replication repair

(PRR) mechanism is responsible for the polyubiquitination

of PCNA (polyUb-PCNA) on residue K164 leading to TS.

The other major post-translational modification of PCNA is

SUMOylation that occurs during S phase even in the absence

of exogenous damage and results in modifications at residues

K164 and K127 (Hoege et al, 2002). The residue K164 is the

major SUMOylated site of PCNA in vivo and its modification

depends mostly on the Siz1 E3 SUMO ligase (Pfander et al,

2005; Windecker and Ulrich, 2008). In yeast, it has been

demonstrated that the foremost role of K164-SUMOylated

PCNA (S-PCNA) is to recruit Srs2 to the replication fork

(Papouli et al, 2005; Pfander et al, 2005). This is also the

case in humans where PARI, a recently identified orthologue

of Srs2, shares similar properties (Moldovan et al, 2012). This

recruitment is believed to target the Srs2 antirecombinase

activity to replication forks to prevent untimely HR that can

trigger gross chromosomal rearrangements, cell-cycle arrest

and cell death (Fabre et al, 1991; Smirnova and Klein, 2003;

Marini and Krejci, 2010).

Srs2 is a DNA repair enzyme with ssDNA-dependent

ATPase activity and a 30 to 50 helicase activity (Rong and

Klein, 1993; Van Komen et al, 2003; Marini and Krejci, 2010,

2012) and the SRS2 gene was first identified as a suppressor of

RAD6, the ubiquitin-conjugating enzyme (E2) involved in

PRR. It was suggested to play role as an antirecombinase

by preventing HR via channelling the lesion into the PRR

pathway (Schiestl et al, 1990). This has been biochemically

confirmed, as Srs2 was shown to efficiently dismantle the

Rad51-presynaptic filament (Krejci et al, 2003; Veaute et al,

2003). In addition, Srs2 can translocate on ssDNA and

physically interact with Rad51 protein (Krejci et al, 2004;

Antony et al, 2009). These activities are essential for the Srs2

antirecombinase function (Krejci et al, 2004; Colavito et al,

2009; Seong et al, 2009). In fact, the interaction with Rad51

seems to not only target Srs2 to HR intermediates but

also trigger ATP hydrolysis within the Rad51 filament to

allow its coordinated disruption by Srs2 (Antony et al,

2009). In addition, Srs2 possesses a non-canonical PIP

box requiring tandem receptor motifs for precise

recognition of S-PCNA (Armstrong et al, 2012; Kim et al,

2012; Kolesar et al, 2012).

S-PCNA has the ability to recruit Srs2 to sites of replication

where it can disrupt untimely formed Rad51 filaments and

thus prevent HR. However, it is not known whether Srs2 or

S-PCNA play further roles when replication stalls. In addition,

the nature of the recombination events that are suppressed by

S-PCNA and Srs2 remains elusive. Here, we report a novel

mechanism by which S-PCNA together with Srs2 can block

the extension of a recombination intermediate and limit its

resolution associated with a crossing-over (CO). This activity

requires the SUMO interaction motif (SIM) at the C-terminus

of Srs2, but needs neither its translocase/helicase activity nor

its interaction with Rad51. The molecular characterization of

the underlying mechanism revealed that Srs2 interaction with

S-PCNA dissociates Pold or PolZ from the repair synthesis

ensemble. It does not affect Srs2 helicase or antire-

combinase activities and represents a novel regulatory

element controlling spontaneous genome rearrangements.

Our results strongly support that cycling cells use the Siz1-

dependent SUMOylation of PCNA to concentrate Srs2 at

harmed replication forks, therefore limiting the extent of

repair synthesis during TS or HR and downregulating reci-

procal exchanges to maintain genome stability.

Results

Srs2 inhibits the DNA polymerase activity of Pold in a

D-loop extension assay

To address the biological functions of S-PCNA, we carried out

in vitro SUMOylation of yeast PCNA on lysine residue 164

(K164). The K164-S-PCNA was purified from an enzymatic

reaction as described in the experimental procedures

and a fraction containing only monomers of S-PCNA was

used (Figure 1A). First, we tested the effect of S-PCNA on the

DNA polymerase activity of PolZ, a distributive TLS enzyme,

as well as of the processive Pold enzyme involved in repair

synthesis (Maloisel et al, 2008; Li et al, 2009). Purified

S-PCNA and unmodified PCNA were loaded on an

oligonucleotide-based DNA substrate by the RFC complex

and the effect on DNA primer extension was assessed. Under

the same reaction conditions PCNA and S-PCNA stimulate

the polymerase activity of both PolZ and Pold to the same

extent (Supplementary Figure S1, compare lanes 4–10 and

14–20, respectively).

The early steps of the Rad51-dependent rescue of a stalled

replication fork include the formation of a D-loop structure

and its extension. Therefore, we have tested the effects

of PCNA, S-PCNA and Ub-PCNA on primer extension

of a reconstituted plasmid-based D-loop DNA substrate

(Figure 1B; Sebesta et al, 2011). In this assay, PCNA,

S-PCNA and Ub-PCNA stimulate equally well the Pold-

mediated D-loop extension (Figure 1C, compare lanes 4–7,

8–11 and 12–15), indicating that PCNA stimulates the primer

extension activity of Pold regardless of the post-translational

modification tested.

Since Srs2 was shown to interact with S-PCNA and to

promote the synthesis-dependent strand annealing (SDSA)

pathway (Ira et al, 2003; Robert et al, 2006), we wanted to

test the effect of Srs2 interaction with S-PCNA on D-loop

extension. The addition of increasing amounts of Srs2 results

in at most a minor inhibition of the primer extension by Pold
in the presence of PCNA or Ub-PCNA (Figure 1D, compare

lanes 5–8 and 13–16). However, addition of Srs2 in equimolar

amounts to S-PCNA results in a five-fold reduction of D-loop

extension (Figure 1D, lanes 7, 11 and 15), and further

addition of Srs2 in the presence of S-PCNA leads to the

complete abrogation of the primer extension by Pold
(Figure 1D, compare lanes 5–8, 9–12 and 13–16). The inhibi-

tion is efficient compared to that observed with unmodified

PCNA and correlates with the fact that Srs2 binds S-PCNA

with higher affinity than the other forms (Papouli et al,

2005; Pfander et al, 2005; Burgess et al, 2009; Armstrong

et al, 2012).

To further underline the specificity towards S-PCNA in

mediating the Srs2 inhibition, we tested whether the enzy-

matic removal of SUMO from PCNA will have any effect

on D-loop extension. Hence, we have incubated the

reaction mixture containing S-PCNA, Srs2 and Pold with
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increasing concentrations of Ulp1, which mediates PCNA

deSUMOylation (Parker et al, 2008). After 5 min incubation

with Ulp1, the DNA polymerase reaction was started. As

expected, the Ulp1-mediated removal of SUMO from PCNA

restores the primer extension activity of Pold (Figure 1E,

compare lanes 6–10). This result indicates that the inhibition

of D-loop extension by Srs2 depends on its increased local

concentration by S-PCNA.
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Figure 1 Effect of S-PCNA on D-loop extension by Pold. (A) Purified PCNA and S-PCNA. PCNA was SUMOylated and purified as described in
the experimental procedures. (B) Schematic of the of the D-loop reaction linked with primer extension using a plasmid-based DNA substrate.
(C) D-loop extension in the presence of PCNA, Ub-PCNA and S-PCNA. Rad51 (1 mM) and Rad54 (150 nM) mediated D-loops were mixed with
Pold (33 nM) and indicated amounts of PCNA, Ub-PCNA or S-PCNA in an equimolar complex with RFC, respectively. After 5 min incubation,
the reaction was started with the addition of dTTP and [32-P]-dATP, followed by a 10-min extension. The reaction products were treated with
proteinase K, resolved on a 0.8% agarose gel and analysed. The numbers at the bottom of the panel represent relative amounts of extension
products. The percentage of incorporation is determined as an amount of incorporated dATP versus the total amount of [32P]-dATP. (D) Srs2-
mediated inhibition of D-loop extension. Reactions were carried out as described in (C) except that 5 min after loading PCNA three
concentrations of Srs2 (4, 20 and 100 nM) were added to the reactions. (E) Inhibition of D-loop extension by Srs2 requires SUMOylated
PCNA. The D-loop extension reaction was performed in the presence of the D-loop substrate, RFC, Pold, Srs2 and S-PCNA. After 5 min
incubation with Srs2, increasing amounts of Ulp1 (2, 6, 12 and 20 nM) were added. Following 5 min incubation, the reactions were started with
the addition of dTTP and radioactively labelled dATP. After a 10-min extension, the reactions were stopped and the products analysed. Relative
extension represents an amount of incorporated [32P]-dATP in the extension products relative to the incorporation in the absence of Srs2, which
was set as 100%. Source data for this figure is available on the online supplementary information page.
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The Srs2 SUMO interacting motif is required for Pold
inhibition

The last five amino acids of Srs2 form a SUMO interacting

motif (SIM) and are crucial for the interaction with S-PCNA

(Pfander et al, 2005; Le Breton et al, 2008; Burgess et al,

2009). To determine whether this SIM is required for the

inhibition of D-loop primer extension, we have tested the

effect of a truncated Srs2 protein lacking the last five amino

acids (Figure 2A). In contrast to full-length protein, this

truncation does not show an inhibition of D-loop extension

in the presence of S-PCNA (Figure 2B, compare lanes

7–9, and 10–12, respectively). To demonstrate that the Srs2
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Figure 2 The SIM but not the catalytic activity of the Srs2 mediates the inhibition of the D-loop extension by Pold. (A) Schematic of the Srs2
domains and truncations used in this study. (B) D-loop extension by Pold in the presence of S-PCNA and Srs2 or its SIM deleted truncation
(Srs2 (1–1169)). Reactions were assembled as described earlier and incubated with increasing amounts of Srs2 or Srs2 (1–1169). (C) Inhibition
of D-loop extension by Pold is independent of the Srs2 ATPase activity. Reactions were carried out as described in the experimental procedures
using wild-type Srs2 and Srs2-K41A mutant. (D) The inhibition is independent of the Rad51 binding site of Srs2. The Rad51 interaction-deficient
mutant of the Srs2 875D902 inhibits the D-loop extension. Reactions were carried out as described using increasing amounts (4, 20 and 100 nM)
of Srs2 and Srs2 875D902 proteins. (E) Minimal Srs2 region required for inhibition of extension. Reactions were carried in the presence of
full-length Srs2 as well as Srs2 C-terminal fragments ranging from 824 to 998 until the end of the protein. The numbers at the bottom of the
panels are the relative amounts of extension product representing an amount of incorporated [32P]-dATP in the extension products relative
to the incorporation in the absence of Srs2, which was set as 100%. Source data for this figure is available on the online supplementary
information page.
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truncation is deficient only in binding S-PCNA, we have

tested it for all known biochemical activities. This truncated

Srs2 preserves DNA binding, ATPase and helicase activities

as well as the ability to displace Rad51 protein form the

presynaptic filament, indicating that its biochemical proper-

ties analysed are indistinguishable from those of full-length

Srs2 protein (Supplementary Figures S2A and B). Similarly to

full-length protein, the Srs2 truncation had a slight effect on

the D-loop extension in the presence of unmodified PCNA

(Supplementary Figure S2C), compare lanes 7–9 and 10–12,

respectively). Finally, we tried to suppress the Srs2 inhibitory

activity by competing it out with increasing amounts of free

unconjugated SUMO. This addition has no effect on D-loop

synthesis and cannot alleviate the inhibitory effect of Srs2

mediated by S-PCNA (Supplementary Figure S2D), therefore

confirming the specific role of S-PCNA binding to Srs2.

Srs2 possesses DNA helicase activity and is capable of

dislodging Rad51 from the presynaptic filament; thus, we

have tested the effect of the Srs2-K41A mutant deficient in

ATPase and translocase activities (Krejci et al, 2004).

Surprisingly, the K41A mutant is as competent as wild-type

Srs2 in inhibiting D-loop extension (Figure 2C, compare lanes

7–9 and 10–12, respectively), indicating that the helicase

and/or translocase activities of Srs2 are not required for

this inhibition. We next analysed whether Srs2 directly

inhibits D-loop extension using a labelled oligonucleotide.

The analysis of the products by denaturing gels confirms that

the extent of DNA synthesis decreases with increasing con-

centrations of Srs2 (Supplementary Figure S3).

To rule out the possibility that Srs2 inhibits DNA synthesis

by unwinding the D-loops, we have performed the experi-

ment using a radioactively labelled oligonucleotide. As in-

dicated in Supplementary Figure S4A and our previous

publication (Sebesta et al, 2011), Srs2 does not unwind the

D-loop, indicating that the inhibition is mediated by a

protein–protein interaction with S-PCNA.

We have shown previously that the region 875–902 of Srs2

is responsible for the interaction with Rad51 (Colavito et al,

2009). In our experimental system, the Srs2 875D902 mutant

is fully capable to inhibit the extension of the D-loop by Pold
in the presence of S-PCNA (Figure 2D, lanes 8–10). The extent

of inhibition is almost identical to that of a wild-type protein

(Figure 2D, lanes 5–7), suggesting that the Rad51 interaction

domain is not required for this inhibition. This is further

supported by replacement of Rad51 and Rad54 by RecA

protein in the D-loop formation. In the RecA-mediated

D-loop DNA substrate, we observe the same extent of inhibi-

tion as detected using a Rad51-based D-loop, indicating that

the strand extension inhibition is independent of Rad51 and

Rad54 proteins (Supplementary Figure S4B, compare lanes

4–7 to lanes 11–14). To further narrow down the region

required for blocking the extension reaction, we tested a set

of N-terminally truncated versions of Srs2 (Figures 2A and E).

Similarly to the full-length protein, most of the Srs2 fragments

inhibit D-loop extension. Specifically, even the Srs2 fragment

spanning residues 906–1174 and lacking the Rad51 interact-

ing domain is fully capable of mediating the S-PCNA-depen-

dent inhibition (Figure 2E, lanes 12 and 13). On the other

hand, the shorter truncation fragment of Srs2 (998–1174) no

longer sustains the inhibitory effect (Figure 2E, lanes 14 and

15), a result that could reflect the loss of an additional

interaction site or of a proper conformation.

S-PCNA does not affect the Srs2 activities and forms a

complex with Srs2

To address whether S-PCNA influences known Srs2 biochem-

ical activities, we tested its helicase activity in the presence of

PCNA or S-PCNA. As shown in Supplementary Figure S4C,

neither PCNA nor S-PCNA has any effect on the ability of Srs2

to unwind 30 overhangs. Similarly, PCNA or S-PCNA did not

alter the ability of Srs2 to displace Rad51 from a nucleopro-

tein filament (Supplementary Figure S4D). However, this

displacement of Rad51 is titrated out by increasing amounts

of DNA molecules loaded with S-PCNA before the addition of

Srs2. This result suggests that the interaction of Srs2 with

S-PCNA loaded onto a separate DNA molecule can compete

out the capacity of Srs2 to dislodge Rad51 (Supplementary

Figure S4E). Furthermore, this suppression is stoichiometric

since equimolar amounts of S-PCNA were sufficient to reduce

by half the inhibitory effect of Srs2 on D-loop formation

(Supplementary Figure S4E, compare lanes 1 and 5). This is

in agreement with a pull-down experiment showing that Srs2

can bind simultaneously Rad51 and either PCNA or S-PCNA

(Supplementary Figure S4F).

To gain further insight into the mechanism of the Srs2 and

S-PCNA mediated inhibition, we tested the effect of Srs2

addition at different stages of the D-loop extension assay

(Supplementary Figure S5). First, Srs2 was added together

with Pold and S-PCNA, (Stage I). Alternatively, Srs2 was

added 5 min after Pold or at the same time when dNTPs

start the extension reaction (Stages II and III, respectively).

Srs2 exhibits a similar inhibitory effect on the extension

reaction regardless of the order of addition (Supplementary

Figure S5, compare lanes 5–8, 9–12 and 13–16), indicating

that S-PCNA and Srs2 readily form an elongation inhibitory

complex.

PCNA SUMOylation triggers the disassembly of

Pold/PCNA complex by Srs2

To test the possible mechanisms by which Srs2 inhibits

D-loop-mediated strand extension, we monitored the amount

of the free Pold in the reaction. A three-fold molar excess of

S-PCNA over Pold was used in order to ensure that all Pold
molecules are in a complex with S-PCNA. This is indeed the

case, since the addition of increasing amounts of unmodified

PCNA to the reaction does not further increase D-loop exten-

sion in the absence of Srs2 (Figure 3A, lanes 4–7). On the

other hand, in the presence of Srs2, the addition of unmodi-

fied PCNA reverses the blockage of D-loop extension

(Figure 3A, lanes 8–11), indicating that Srs2 triggers the

release of Pold from the complex with S-PCNA.

To confirm that Srs2 interaction with S-PCNA is capable of

releasing Pold from the DNA polymerizing complex, we used

a pull-down assay. We immobilized S-PCNA on Ni-NTA beads

via a His tag on PCNA and tested the effect of Srs2 (902–1174)

on the ability of Pold to interact with S-PCNA. The addition of

Srs2 to the reaction mixture containing Pold resulted in the

disruption of the interaction between Pold and S-PCNA

(Figure 3B). Alternatively, we carried out the experiment

with the full-length Srs2. We immobilized the S-PCNA/Pold
complex on GTH-beads via a GST tag present on the

Pol3 subunit of Pold (Supplementary Figure S6, lane 7) and

challenged the complex by addition of increasing amounts of

Srs2 protein. As expected, the addition of Srs2 to the reaction

mixture results in the disruption of the interaction between
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Pold and S-PCNA and the release of S-PCNA from beads

(Supplementary Figure S6, compare lanes 7, 9 and 11),

further supporting the Srs2 inhibition of D-loop extension

by disrupting the Pold/S-PCNA complex.

The interaction between Srs2 and S-PCNA is

responsible for the sensitivity of rad18D cells

To determine the relative importance of Srs2 binding to

Rad51, its translocase activity and its capacity to disrupt the

interaction between the polymerase and S-PCNA during the

rescue of stalled replication forks, we have tested the ability

of different srs2 mutants to suppress the UV sensitivity of the

PRR-deficient rad18D mutants. We have used the srs2-K41A

and srs2-K41R mutants deficient for their helicase activity, the

srs2 875D902 mutant that no longer interacts with Rad51 as

well as the srs2-R1 allele that abolishes the interaction with

S-PCNA. Unexpectedly, the srs2-K41A, srs2-K41R and srs2

875D902 mutants fail to suppress the rad18 sensitivity to

UV irradiation, indicating that the sensitivity of rad18D
mutants is not a consequence of preventing recombinational

repair (Figure 4). Interestingly, srs2-R1 and srs2D are the only
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tested alleles of SRS2 that partially suppress the sensitivity of

rad18D mutants to UV (Figure 4). These data are in agree-

ment with previously published observations (Colavito et al,

2009) in which srs2D, srs2 (1–860), srs2DPIP or srs2DSIM but

not srs2 875D902 was able to suppress the rad18D sensitivity

(Colavito et al, 2009; Armstrong et al, 2012; Kolesar et al,

2012).

It is therefore the ability of Srs2 to disrupt the interaction

between the polymerase and S-PCNA in a context where

PCNA cannot be ubiquitinated that is responsible for the

sensitivity of rad18D cells. This result also suggests that in

the absence of the Rad18-dependent ubiquitination, mainte-

nance of S-PCNA may prevent the TLS rescue of the stalled

replication fork by recruiting Srs2.

PCNA SUMOylation is required for genome stability

To address the biological significance of the disruption of the

S-PCNA/Pold complex in the context of a D-loop extension,

we reasoned that it should reduce the length of the repair

tracts during either TS or recombinational repair (HR).

A known outcome of longer repair synthesis tracts is their

more often association with reciprocal exchanges and genetic

instability (Inbar and Kupiec, 1999). Because reciprocal

exchanges involving sister chromatids cannot be measured

genetically, we tested this idea using an assay measuring

reciprocal exchanges between two mutant alleles of a gene,

one located at its native locus while the other is inserted at an

ectopic locus in an orientation that allows the recovery of

reciprocal translocations (Figure 5A; Robert et al, 2006).

Using this system, we have shown previously that the

absence of the SIM within Srs2 (Srs2-R1 mutant) indeed

leads to an elevated percentage of reciprocal exchanges

between non-allelic homologous sequences in unchallenged

cycling cells (Le Breton et al, 2008). However, the percentage

of COs was lower than that monitored in the absence of Srs2.

Therefore, if the CO levels observed in Srs2-R1 mutants

correspond to the fraction triggered by the interaction with

S-PCNA, we should mimic this result in strains in which

PCNA is not SUMOylated, that is, cells lacking the E3 ligase

Siz1 responsible for most of the SUMOylation of PCNA

(Hoege et al, 2002) or alternatively in cells containing

mutations of PCNA that prevent the modification of the

major SUMOylated lysine residues (K127R and K164R,

pol30RR). To test this prediction, we constructed isogenic

strains carrying either the siz1D::HIS3MX6 or the pol30RR

mutations and measured the spontaneous CO levels.

We found that srs2-R1 yields CO levels that are

undistinguishable from those measured in either siz1D or

pol30RR strains. Furthermore, the combination of srs2-R1

with siz1D, pol30RR or both does not lead to any further

increase in the level of COs (Figure 5B). Our observation

strongly suggests that these mutations inactivate the same

pathway and that unchallenged cells use the Siz1-dependent

SUMOylation of PCNA to regulate genome stability by re-

cruiting and concentrating Srs2 to D-loop structures.

Importantly, the absence of Srs2 alone leads to elevated levels

of genome instability that are not reduced by siz1D, pol30RR

or both confirming that Srs2 prevents genome rearrange-

ments in both a S-PCNA-dependent and independent fashion

(Figure 5B; Le Breton et al, 2008). The S-PCNA-independent

pathway could involve the Srs2 helicase activity, since the

elevated levels observed in the null mutant are the sum of the
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combined defects of both the helicase activity and the ability

to interact with S-PCNA (Figure 5B).

Close together markers co-convert more frequently in

srs2-R1 or pol30RR mutants

Conversion tracts tend to co-convert closely spaced muta-

tions. Thus, a prediction for longer conversion tracts is that

fewer recombinants should be formed. We tested this idea by

measuring the spontaneous rates of arginine prototroph for-

mation between the chromosomal copy containing the BglII

mutation and three centromeric plasmids in which mutations

were introduced 100, 200 and 400 bp upstream of the BglII

site, respectively (Figure 6A). The constructs were introduced

into wild type, srs2-R1, pol30RR and srs2-K41A backgrounds

and subjected to fluctuation analyses. We found that srs2-

K41A and srs2-R1 exhibit elevated recombination levels com-

pared to pol30RR and the wild-type control (Figure 6B).

However, when we monitored the recombination increase

as a function of the distance from the BglII site, we found

that, as predicted, srs2-R1 and pol30RR exhibit a very modest

increase in spontaneous recombinant formation whereas the

srs2-K41A and the wild-type control show a similar robust

increase under the same conditions (Figure 6C). This result

supports the idea that failure to interact with S-PCNA yields

longer conversion tracts, a feature not observed in the

helicase-dead mutant.

Srs2/S-PCNA interaction as a general model for

extension regulation

As is suggested by the suppression experiments, the mechan-

ism that we have uncovered may not be restricted to DNA

synthesis during D-loop extension. To test this idea, we used

a standard primer extension assay and a singly primed

FX-174 circular ssDNA. Since wild-type Srs2 can partially

dismantle the primer extension assay substrate (Sebesta et al,

2011), we used the Srs2-K41R mutant in this experiment

(Supplementary Figure S7A). We found that Srs2-K41R in-

hibits preferentially DNA synthesis in the presence of S-PCNA

(Supplementary Figure S7A, compare lanes 7–10 with lanes

11–14). Similarly, Srs2 also inhibits DNA synthesis preferen-

tially when S-PCNA is loaded on the FX-174 substrate

(Supplementary Figure S7B, compare lanes 5–8 and 9–12).

Since Srs2-K41R and Srs2 (902–1174) are as proficient as

wild-type Srs2 in this reaction (data not shown), we rule

out the possibility that Srs2 interferes with the stability of the

FX-174 substrate.

Next, we investigated whether the S-PCNA/Srs2 interac-

tion is limited only to the extension by Pold and carried out

the D-loop extension assay using PolZ. Since PolZ does not

discriminate well the incorporation of ribonucleotides and

because ATP is present in the reaction, we used [32-P]-dCTP

to follow the D-loop extension reaction in the presence of

PCNA and S-PCNA (Supplementary Figure S7C). In lower salt

conditions where the extension of a D-loop by PolZ is PCNA

independent (Sebesta et al, 2011), Srs2 inhibits the PolZ-

dependent D-loop extension only to the level corresponding

to a PCNA-independent extension (Supplementary Figure

S7D, lanes 4–8). However, at the physiologically higher salt

conditions, Srs2 inhibits strongly the extension of the D-loop

by PolZ (Supplementary Figure S7D, lanes 9–13). The effect

is again specific for S-PCNA, since the inhibition is much

weaker in the presence of unconjugated PCNA (a five-fold
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versus a two-fold inhibition). These experiments strengthen

our view that Srs2 inhibits DNA extension by interfering with

the interaction between S-PCNA and a polymerase.

Discussion

Collision of the replication fork with other machineries,

exogenously induced damage or proteins tightly associated

with DNA is thought to occur frequently in cycling cells. Such

events can cause serious threats to the cells and need to be

quickly detected and efficiently repaired to preserve genome

integrity (Friedel et al, 2009). PCNA acts as a molecular

switch that controls how DNA lesions are processed during

replication. In the presence of DNA damage, PCNA is

modified at the conserved lysine residue 164 by either

mono-ubiquitin or a lysine-63-linked poly-ubiquitin chain,

which induce error-prone or error-free replication bypass of

the lesions, respectively (Hoege et al, 2002). PCNA can also

undergo SUMOylation during replication in the absence of

DNA damage (Hoege et al, 2002), a modification that

contributes to the recruitment of the Srs2 helicase to the

replication fork to prevent untimely recombination during

S phase (Papouli et al, 2005; Pfander et al, 2005). However,

our current understanding of how S-PCNA-dependent

recruitment of Srs2 results in decreased levels of

recombination at replication forks is not clear. In this study,

we have investigated the biochemical and biological

consequences of PCNA SUMOylation and have uncovered a

novel molecular mechanism that can modulate DNA repair

and recombination at stressed replication forks and thus

limits genome instability.

S-PCNA does not prevent polymerase activity

Since PCNA monoubiquitination promotes the recruitment of

TLS polymerases (Hoege et al, 2002), we analysed the

influence of post-translational modifications of PCNA on

the DNA synthesis activity of replicative and TLS

polymerases. S-PCNA indeed stimulates the polymerase

activity of both Pold and PolZ, but only to an extent similar

to that reported for unmodified or ubiquitinated PCNA

(Haracska et al, 2006), indicating that the presence of

ubiquitin or SUMO residues on PCNA does not affect

significantly the competence of DNA polymerases to

elongate a linear template. Since S-PCNA recruits the Srs2

antirecombinase to the replication fork where it could

regulate HR (Fabre et al, 2002; Krejci et al, 2003; Veaute

et al, 2003), we tested the direct effect of S-PCNA on a

recombination reaction. However, since previous findings

have indicated that the canonical antirecombination activity

of Srs2 is independent of its interaction with S-PCNA (Le

Breton et al, 2008), we did not expect to find a strong effect of

S-PCNA on the ability of Srs2 to dismantle Rad51 filaments.

Indeed, we detected normal removal of Rad51 by Srs2 in the

presence of PCNA or S-PCNA. Concomitantly, when we

loaded S-PCNA on streptavidin-biotin blocked DNA

substrates we observed a decrease in the ability of Srs2 to

dismantle Rad51 protein from ssDNA, most probably due to a

titration of Srs2 by the S-PCNA-loaded DNA substrate. This is

supported by the pull-down experiments showing that the

interaction with Rad51 and PCNA is independent of each

other. Therefore, S-PCNA sequesters Srs2 at a position or in a

state that outcompetes the interaction with Rad51. Altogether

this indicates that recruiting Srs2 to replication forks could

serve yet another purpose in the HR process.

Specific S-PCNA interaction with Srs2 leads to the

inhibition of repair synthesis

Since D-loop formation and its extension is a prerequisite for

the Rad51-dependent fork rescue and because the TS me-

chanism shares similarities with HR (Higgins et al, 1976;

Goldfless et al, 2006), we expected the Srs2/S-PCNA complex

to inhibit repair synthesis. The D-loop reaction linked with

primer extension (Sebesta et al, 2011) is insensitive to the

presence of unmodified or ubiquitinated PCNA. On the

contrary, under the same conditions, the Srs2 protein fully

inhibits D-loop extension in the presence of S-PCNA. This

observation indicates that, rather than displacing Rad51

filaments, targeting Srs2 to the fork through PCNA

SUMOylation confers an inhibitory effect on D-loop

extension. Several independent experiments further support

this conclusion. First, introduction of the deSUMOylating

enzyme Ulp1 into the reaction mixture restores the

extension by Pold. Second, an Srs2 protein missing its SIM

loses the ability to inhibit the D-loop extension reaction,

indicating a requirement for direct protein–protein interac-

tion between Srs2 and S-PCNA. Third, the ability of Srs2 to

dismantle Rad51 filaments might not be essential during the

rescue of stalled replication forks since the interaction of Srs2

with S-PCNA is dispensable for this activity (Le Breton et al,

2008). Fourth, our data show that the helicase activity

and ability to interact with Rad51, the hallmark of

antirecombinase activity (Krejci et al, 2004; Antony et al,

2009; Colavito et al, 2009), are neither required for the

inhibitory effect observed in the D-loop extension assay nor

involved in the suppression of the sensitivity to UV of a

RAD18 deletion. This also explains the findings of a previous

genetic screen for suppressors of rad18D UV sensitivity

(Palladino and Klein, 1992). Two classes of srs2 alleles have

been described, one of which affects recombination.

Interestingly, out of the five alleles suppressing the UV

sensitivity, four are located outside the helicase domain,

farthermost at the C-terminus of the protein that we show

to be responsible for the inhibitory effect on DNA extension

(Palladino and Klein, 1992). Fifth, since Srs2 is capable of

inhibiting RecA-mediated D-loop extension, the Srs2

inhibition is independent of the interaction with Rad51 and

Rad54.

Srs2 disrupts S-PCNA/Pold elongation complex

A possible mechanism by which Srs2 mediates the inhibition

of DNA synthesis could be by disrupting the interaction

between Pold and S-PCNA. In agreement with this hypoth-

esis, addition of saturating concentrations of unmodified

PCNA to the reaction relieves the Srs2 inhibition, allowing

free Pold to engage in de novo DNA synthesis, a result

confirmed by pull-down experiments with purified proteins.

This observation suggests that the interaction of Srs2 with

S-PCNA could affect the accessibility of the interdomain

connector loop (IDCL) of PCNA (Eissenberg et al, 1997).

The IDCL serves as an interaction surface of the PIP box

containing proteins and hence could also affect the binding of

PCNA to other proteins through this motif. Indeed, Srs2 does

not only inhibit Pold, the DNA polymerase involved during

repair synthesis (Maloisel et al, 2008; Li et al, 2009; Brocas
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et al, 2010), but also specifically inhibits extension of

S-PCNA/PolZ complex, indicating that this regulatory

mechanism could be more general.

Model of stalled fork repair

Based on genetic evidence, several models for repair of

stalled replication forks have been proposed (Unk et al,

2010). The data presented here extend these models in

several ways and put forward a possible molecular

mechanism for the role of S-PCNA and Srs2 during

replication. It is widely accepted that PCNA and its post-

translational modifications serve as a molecular switch that

can regulate the processing of stalled or collapsed replication

forks. Under undisturbed conditions, both PCNA and

S-PCNA stimulate the processivity of the replicative DNA

polymerases. We do not know the nature of the signal that

triggers PCNA SUMOylation during S phase, however in the

presence of DNA damage, PCNA undergoes mono- or poly-

ubiquitination (Hoege et al, 2002; Torres-Ramos et al, 2002;

Haracska et al, 2004). Mono-ubiquitination of PCNA on

residue K164 directly promotes the Rad18-dependent

damage tolerance repair pathway (Haracska et al, 2004). In

addition, polyubiquitination of PCNA results in error-free

damage tolerance mediated by Rad5-dependent TS/gap

repair mechanism (Blastyák et al, 2007; Branzei et al, 2008;

Unk et al, 2010). On the other hand, SUMOylation of PCNA on

residues K164 and K127 also promotes replication through

damaged DNA, and targets Srs2 to the replication fork to

downregulate the HR pathway (Papouli et al, 2005; Pfander

et al, 2005). However, in light of several recent observations,

we believe that the ability of Srs2 to dismantle the Rad51

filament might be required preferentially at recombination

foci rather than at replication forks since this activity is not

dependent on the interaction with S-PCNA (Le Breton et al,

2008; Burgess et al, 2009). In addition, it has been shown that

both Rad18/Rad5 and Rad51-dependent pathways promote

the formation of X-shaped structures that resemble pseudo

double Holliday junctions at damaged replication forks

(Liberi et al, 2005; Branzei et al, 2006; Minca and Kowalski,

2011). Furthermore, Rad18 and Rad51 cooperate to promote

TS and the Ubc9-dependent SUMOylation pathway regulates

this cooperation (Branzei et al, 2008). Interestingly, the Rad51

recombinase is important for proper replication in Xenopus

extracts and is required for the formation of intermediates

that accumulate in rad5 and rad18 mutants during the repair

of stalled or collapsed replication forks (Postow et al, 2009;

Hashimoto et al, 2010). Our data also show that interaction of

Srs2 with S-PCNA can outcompete the interaction with Rad51

and thus limit the ability of Srs2 to dismantle the filament. In

such a scenario, S-PCNA targets Srs2 to the stalled fork and

limits the extent of Rad51-dependent repair synthesis by

releasing Pold from its complex with S-PCNA, thus blocking

the further extension of the 30 end of the invading primer

strand and limiting the extent of conversion (Figures 6 and 7).

Since CO formation is more dependent on homology length

than gene conversion (Inbar and Kupiec, 1999; Prado and

Aguilera, 2003) shorter DNA repair stretches keep reciprocal

exchanges at a low level. Indeed, as PCNA becomes

increasingly SUMOylated, Srs2 turns out to be gradually

concentrated at D-loops where it can block the extension of

repair synthesis, providing a mechanism limiting the extent

of conversion tracts. As proposed earlier (Ira et al, 2003;

Robert et al, 2006), Srs2 promotes SDSA and limits the

occurrence of potentially harmful COs, but the direct mole-

cular mode of action is not clear. First, Srs2 can promote

SDSA by blocking second end capture. Alternatively, Srs2

could directly unwind D-loops (Dupaigne et al, 2008) or

promote an even more efficient D-loop unwinding by

targeting the efficient Mph1 helicase (Prakash et al, 2009;

Sebesta et al, 2011). Finally, through its direct interaction Srs2

could also mark/target the D-loop for an effective dissolution

by Sgs1 or further processing by the Mus81/Mms4 proteins

(Fabre et al, 2002; Chiolo et al, 2005; Robert et al, 2006; LK,

unpublished data).

Siz1 is required for genomic stability during S phase

The association of Srs2 with recombination foci seems to be

S-PCNA independent (Burgess et al, 2009). This is also

supported by the observation that deletion of SIZ1 does not

affect the elimination of toxic intermediates (Stelter and

Ulrich, 2003; Pfander et al, 2005). However, we confirm

that Siz1 is required for genome stability (Xhemalce et al,

2004; Paek et al, 2010). In its absence, ectopic recombination

intermediates formed spontaneously in the cell are no longer

resolved with a strong bias towards non-COs (NCOs), a result

similar to that observed when both lysine residues of PCNA

(pol30RR) that can become SUMOylated are replaced by

arginine residues. This result strongly argues that the effect

on genome stability in unchallenged cells is mediated

principally through PCNA SUMOylation, since the absence

of the ubiquitination pathway has no effect on the resolution

of recombination intermediates either by itself or in a siz1

and pol30RR background (SG, unpublished results). Because

the formation of a CO following a DSB induced out of S phase

is not affected by the absence of components associated with

replication forks (Supplementary Figure S8), we believe that

during S-phase S-PCNA actively prevents the formation of

double Holliday junctions and their resolution by inhibiting

or terminating the extension of the D-loop. Because they can

lead to loss of heterozygosity and chromosomal aberrations,

COs are potentially dangerous intermediates that occur much

less frequently in mitotic than in meiotic cells (Esposito,

1978; Beumer et al, 1998; Stark and Jasin, 2003). Indeed,

COs have been associated with many human disorders (Shaw

and Lupski, 2004) supporting the need for tight regulation

and control. In yeast, at least three mechanisms characterized

by three different helicases, Srs2, Sgs1 and Mph1, can operate

to suppress CO formation (Prakash et al, 2009; Marini and

Krejci, 2010).

In summary, our findings provide a novel insight into the

mechanism by which S-PCNA/Srs2 complex may operate in

the rescue of a stalled replication fork. While PCNA acts as a

molecular switch responsible for engaging the cell into a

given repair pathway through various post-translational mod-

ifications, Srs2 acts as a molecular caretaker that efficiently

transduces PCNA signalling. Together with S-PCNA, Srs2 is

an additional control point in the fork rescue mechanism

providing flexibility by limiting the amount of toxic

DNA structures and promoting the gap-filling/TS function

of Rad18-Rad5 through reversible recombination intermedi-

ates (Branzei et al, 2008).

Yet, such a mechanism involving S-PCNA and Srs2

can become toxic for the cells under certain circumstances.

Indeed, the overproduction of either Srs2 or its helicase-dead
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variant results in a synthetic lethal phenotype in combination

with many replication-associated genes, an activity that

depends on the S-PCNA interaction motif (León

Ortiz et al, 2011), and emphasizes the need for the S-PCNA-

mediated activity to be under a very tight control.

Accordingly, it has recently been reported that in the

absence of Elg1, an alternative subunit of the RFC clamp

loader that interacts preferentially with S-PCNA, both Srs2

and S-PCNA accumulate on chromatin (Parnas et al, 2010).

This raises the possibility for a role of Elg1 in unloading

S-PCNA from DNA after the completion of a repair event in

unchallenged cells, an intriguing mechanism to address

in future studies. Finally, it will be extremely interesting to

determine whether PARI or other human translocases behave

like Srs2 in a reconstituted DNA synthesis assay with

human S-PCNA.

Materials and methods

PCNA SUMOylation and purification of S-PCNA
In vitro SUMOylation reaction of PCNA was carried out in 2 ml of P0
buffer (40 mM Tris–HCl pH 7.5; 8 mM MgCl2; 100 mg/ml BSA; 10%
glycerol; 100mM ATP) in the presence of PCNA (40mg), GST-Aos1
(30mg), GST-Uba2 (30mg), GST-Ubc9 (30 mg), GST-Siz1 (1–465)
(90mg), Smt3-GG (600 mg), RFC (4 mg), DNA (50mg) for 2 h at 301C.

The crude PCNA and S-PCNA containing reaction mixture has
been applied to a 1-ml MonoQ 5/50 column (GE Healthcare) and
extensively washed with buffer A (70 mM NaCl, 40 mM Tris–HCl pH
7.5, 0.01% Nonidet P-40, 10% glycerol). Reaction enzymes have
been washed out with a 3-ml gradient to 33% of buffer B (1 M NaCl,

TS/HR (Rad5/Rad51)

Srs2

Short D-loop

Low risk of CO Elevated risk of CO

Long D-loop

 SUMO

PCNA Polδ

 SUMO

 SUMO

TLS (Rad6/Rad18)

Polη

Polδ
rad18Δ

rad18Δ srs2ΔSIM

Polη

Polδ

 Ubi

Polδ

Polη

Figure 7 Schematic view of the roles of S-PCNA and Srs2 in the rescue of stalled replication forks. Left panel, monoubiquitination of PCNA on
residue K164 promotes the Rad6/Rad18-dependent TLS pathway. Therefore, in the absence of Rad18 (boxed area) the cells become extremely
sensitive to UV damage. On one hand, absence of ubiquitination no longer triggers the replacement of Pold by PolZ while on the other hand the
unconjugated lysine K164 allows SUMOylation to recruit Srs2 that in turn dislodges either Pold or PolZ. This sensitivity is partially alleviated
when Srs2 can no longer interact with S-PCNA (srs2DSIM). The dotted arrows indicate suboptimal processes. Right panel, polyubiquitination of
PCNA results in error-free Rad5-dependent TS. Furthermore, Rad51 cooperates to promote TS regulated by the Ubc9-dependent SUMOylation
pathway (TS/HR). SUMOylation of PCNA on residues K164 and K127 targets Srs2 to the replication fork to downregulate the HR pathway.
As PCNA becomes increasingly SUMOylated, Srs2 is gradually concentrated at D-loops where it can block the further extension of repair
synthesis and limit the extent of conversion tracts by releasing Pold from its complex with S-PCNA. As a consequence, shorter stretches of DNA
synthesis are easier to become destabilized through various activities therefore promoting NCO outcomes. Finally, Srs2 could also stimulate
SDSA directly, thus lowering the risk of CO occurrence.
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40 mM Tris–HCl pH 7.5, 0.01% Nonidet P-40, 10% glycerol).
S-PCNA has been eluted with a 5-ml gradient of buffer B from 33
to 50%. The S-PCNA containing fractions have been pooled, diluted
and concentrated using a 200-ml MiniQ PC3.2 column by eluting the
S-PCNA with a 3-ml gradient to 100% of buffer B. Peak fractions
have been collected and used directly in subsequent assays. Mass
spectrometry analysis revealed that 95% of PCNA SUMOylation
is found on K164 and 5% on K127. Ub-PCNA was purified as
described previously (Haracska et al, 2006).

D-loop extension assay
The D-loop assay was performed essentially as described previously
(Krejci et al, 2004), and the details are included in Supplementary
data. The primer extension reaction was assembled as described in
Sebesta et al (2011). Briefly, standard 30ml reaction mixture
containing 12ml from the D-loop reaction was supplemented with
660 nM RPA, 10 nM PCNA or SUMO- or Ubiquitin-PCNA, and 33 nM
Pold in buffer O (20 mM Tris–HCl pH 7.5, 5 mM DTT, 0.1 mM EDTA,
150 mM KCl, 40 mg/ml BSA, 8 mM MgCl2, 5% glycerol, and 75mM
each of dGTP and dCTP). PCNA loading reaction was incubated at
301C for 5 min. Reaction was stopped by cooling on ice followed
by addition of Srs2 and other indicated proteins (Ulp1). Reaction
was continued at 301C for an additional 5 min. DNA synthesis
was initiated by addition of buffer O containing 75mM dTTP and
0375mCi [a-32P] dATP or 75 mM. After 10 min extension at 301C,
the reactions were stopped, deproteinized and loaded onto a 0.8%
(w/v) agarose gel. The gel was either directly analysed for fluor-
escent DNA species or dried on DE81 paper and exposed to a
Phosphorimager screen and imaged in Fuji FLA 9000 imager with
the Multi Gauge software (Fuji).

Recombination assays
The determination of spontaneous CO and DSB-induced CO fre-
quencies have been previously reported (Bartsch et al, 2000; Robert
et al, 2006) and are described in Supplementary data.

UV survival curves
Haploid strains were grown for 3 days in YEPD to saturation. Cells
were serially diluted and plated on YEPD. Plates with the lids
removed were exposed to the UV light source for increasing times
at 0.5 J/m2/s. To prevent photoreactivation, exposure to the UV
light source was conducted in the dark and the plates were subse-
quently kept in the dark following irradiation. Plates were
incubated at 301C for 2 days prior to determining cell survival.
The experiments were repeated three times and the results shown
for each point are the average with the standard deviation.

Determination of spontaneous recombination rates in
strains harbouring a plasmid
A colony from the strains to be tested was inoculated in synthetic
medium lacking uracil and grown to saturation for 3 days at 301C at
220 r.p.m. Next, the cultures were diluted to a concentration of 500
cells per ml and dispatched into twelve 2.5 ml cultures and grown to
saturation for 5 days at 301C at 220 r.p.m. The concentration of each
individual culture was measured by plating out appropriate
amounts of a dilution of the cultures onto synthetic medium lacking
uracil. Appropriate volumes of each culture were plated onto
synthetic medium lacking uracil and arginine. After 4 days at
301C, the number of colonies were counted and subjected to a
rate analysis (Spell and Jinks-Robertson, 2004).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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(SG). We thank Stéphane Marcand, Jiri Bartek, Karine Dubrana and
Julianne Smith for the critical reading of the manuscript.

Author contributions: LK, PB and SG designed the research;
PB performed biochemical experiments shown in Figures 1, 2 and
3A and Supplementary Figures S1, S2C, D, S4C, S5 and S7A.
MS purified proteins and performed the experiments shown in
Supplementary Figures S2A, B, S3, S4A, B, D, E and S7B–D. AS
performed experiments shown in Figure 3B and Supplementary
Figures S4F and S6. SG performed experiments shown in Figures 4,
5 and 6. PB, VS, LP and PK provided SUMO-PCNA used in the study.
NP, TR and VM contributed new reagents/analytical tool; LK, SG,
LH, MS and PB wrote the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

References
Antony E, Tomko EJ, Xiao Q, Krejci L, Lohman TM, Ellenberger T

(2009) Srs2 disassembles Rad51 filaments by a protein-protein
interaction triggering ATP turnover and dissociation of Rad51
from DNA. Mol Cell 35: 105–115

Armstrong AA, Mohideen F, Lima CD (2012) Recognition of
SUMO-modified PCNA requires tandem receptor motifs in Srs2.
Nature 483: 59–63

Bartsch S, Kang LE, Symington LS (2000) RAD51 is required for the
repair of plasmid double-stranded DNA gaps from either plasmid
or chromosomal templates. Mol Cell Biol 20: 1194–1205

Beumer KJ, Pimpinelli S, Golic KG (1998) Induced chromosomal
exchange directs the segregation of recombinant chromatids in
mitosis of Drosophila. Genetics 150: 173–188

Blastyák A, Pintér L, Unk I, Prakash L, Prakash S, Haracska L (2007)
Yeast Rad5 protein required for postreplication repair has a DNA
helicase activity specific for replication fork regression. Mol Cell
28: 167–175

Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T,
Ohta K, Foiani M (2006) Ubc9- and Mms21-mediated sumoylation
counteracts recombinogenic events at damaged replication forks.
Cell 127: 509–522

Branzei D, Vanoli F, Foiani M (2008) SUMOylation regulates
Rad18-mediated template switch. Nature 456: 915–920
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