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Preface

The Richardson Extrapolation is a very powerful and popular numerical procedure, which can
efficiently be used in the efforts to improve the performance of programs by which large time-
dependent scientific and engineering problems are handled on computers. It was introduced in
Richardson (1911, 1927) and after that has been used numerous times by many scientists and
engineers in the treatment of their advanced large-scale mathematical models. Different
phenomena that arise in science and engineering are described and can successfully be studied by
applying such models. In most of the applications, this technique was until now used primarily in the
efforts either to improve the accuracy of the model results or to evaluate and check the magnitude of
the computational errors (and, thus, to control automatically the time-stepsize in an attempt to achieve
easier the required accuracy and to increase the efficiency of the computational process).

Three important items are always strongly emphasized when the application of the Richardson
Extrapolation is discussed. The first of these important issues is the following:

(1) One must accept a substantial increase of the number of the
simple arithmetic operations per time-step when this
approach is selected.

The increase of the number of simple arithmetic operations per time-step is indeed rather
considerable, but the extra computations per time-step can be compensated in most of the cases

(2) by exploiting the possibility to achieve the same degree of
accuracy by applying a considerably larger time-stepsize
during the computations (decreasing in this way the number
of time-steps)

and/or

(3) by the fact that the accuracy and, thus, also the time-stepsize,
can be controlled in a very reliable manner.

In this book, we shall additionally describe two other very important but in some cases extremely
difficult issues. The efficiency of this device could be considerably improved or, at least, some of
the problems related to the implementation of the Richardson Extrapolation can successfully be
avoided when these two issues are properly handled:

(4) It is necessary to emphasize strongly the fact that a fourth
very important item, the numerical stability of the results
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that are calculated by the new numerical method (the
method which is obtained when the Richardson Extrapolation
is implemented), is also very important. Therefore, it is
necessary to study very carefully the stability properties of
the different implementations of the Richardson
Extrapolation when these implementations are combined
with various numerical methods.

(5) If very large time-dependent mathematical models are to be
treated numerically, different splitting procedures have very
often to be introduced and used; see, for example, Farago,
Havasi and Zlatev (2010), Geiser (2008), Marchuk (1968),
Strang (1968), Zlatev (1995), Zlatev and Dimov (2006) and
Zlatev, Faragé and Havasi (2010). Therefore, it is
worthwhile to study the application of the Richardson
Extrapolations and the stability of the resulting new methods
also in the case where some kind of splitting is applied.

The last two items, the stability properties of the resulting new numerical methods and the
introduction of the Richardson Extrapolation in connection with some splitting procedures, will also
be discussed in the present book. Especially, the first of the last two important issues will be a major
topic of the further presentation.

The mentioned above five fundamental topics that are related to the Richardson Extrapolation (RE)
are readily summarized in Table 1.

No. | Property of the underlying method | What happens if RE is used? | Does that always happen?
1 | Accuracy It becomes higher Yes
2 | Arithmetic operations per time-step | They are increased Yes
3 | Stepsize control It is always possible Yes
4 | Preservation of the stability It is not clear in advance It should always be studied
5 | Combination with splitting Not very clear One must be careful
Table 1

Properties of the resulting new numerical methods obtained when Richardson Extrapolation (RE) is
used. Some desired properties of the combination with the Richardson Extrapolation (in comparison
with the properties of the underlying numerical method) are listed in the second column. The results
of using the Richardson Extrapolation (again in comparison with the underlying method) are shown
in the third column. The answers to the questions raised in the fourth column emphasize the fact that
problems may arise in connection with the last two properties, while the situation is very clear when
the first three properties are considered.

Vi
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Several important conclusions can be drawn by studying carefully the results presented in Table 1:

(A) If only the first three properties are considered (which is
very often, in fact nearly always, the case), then the
application of the Richardson Extrapolation is very straight-
forward and everything would be extremely simple when the
fourth and the fifth items are not causing troubles. It is
indeed quite true that the number of arithmetic operations is
always exceeding if the Richardson Extrapolation is used, but
a very good compensation can be achieved because the
resulting new method is more accurate and the number of
time-steps can be reduced very significantly by increasing the
time-stepsize (under the assumption, not always clearly
stated, that the stability will not cause any problems).
Furthermore, it is possible to control the time-stepsize and,
thus, to select optimal time-stepsize at every time-step.

(B) The truth is, however, that, it is necessary to ensure stability
of the computational process. This could cause very serious
difficulties. For example, the well-known Trapezoidal Rule
is a rather reliable numerical procedure (it is A-stable and,
therefore, in the most of the cases the computational process
will remain stable for large values of the time-stepsize).
Unfortunately, the combination of this numerical algorithm
with the Richardson Extrapolation results in a new numerical
method, which is not stable. This fact has been established in
Dahlguist (1963). It has been proved in Zlatev, Farago and
Havasi (2010) that some other representatives of the class of
the 8—methods (the Trapezoidal Rule is belonging to this
class and can be obtained for 8 = 0.5) will also become
unstable when these are combined with the Richardson
Extrapolation. These results are very bad, but good results
can also be obtained. It was shown in Zlatev, Georgiev and
Dimov (2014) that the combination of any Explicit Runge-
Kutta Method with the Richardson Extrapolation results in a
new algorithm, which has better absolute stability properties
than those of the underlying method when the order of
accuracy p is equal to the number of stages m. These two
facts show very clearly that the situation is indeed not clear
and it is necessary to investigate very carefully the stability
properties of the combination of the Richardson
Extrapolation with the selected numerical method.

(C) The situation becomes more complicated when some splitting
procedure has additionally to be implemented and used.
Results proved in Zlatev, Faragé and Havasi (2012)
indicate that also in this situation the stability of the

Vil
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computational process could play an important role and,
therefore, it should be studied very carefully.

Taking into account the last two conclusions, we decided to concentrate our efforts on the difficulties,
which may arise when the Richardson Extrapolation is used. In our opinion, this is worthwhile,
because these difficulties are very often (if not always) underestimated when this device is
commented and its use is advocated.

The book consists of eight chapters and the contents of these chapters can be sketched in the following
way:

Chapter 1 contains the definition of the Richardson Extrapolation for an arbitrary time-dependent
numerical method for solving systems of ordinary differential equations (ODES). The basic properties
of this computational technique are explained there and several introductory remarks are given. Two
different implementations of the Richardson Extrapolation as well as the advantages and the
disadvantages of the application of any of these two implementations are also discussed in this
chapter. Finally, the fact that it is necessary to develop and to use numerical methods, which have
good stability properties when these are combined with the Richardson Extrapolation, is strongly
emphasized.

The application of the Richardson Extrapolation in connection with Explicit Runge-Kutta Methods
(ERKMs) for solving systems of ordinary differential equations is discussed in Chapter 2. It is shown
there that for some classes of Explicit Runge-Kutta Methods the application of the Richardson
Extrapolation results always in new numerical methods with better stability properties. Any of these
new methods is the combination of the selected numerical algorithm (in this particular case, the
underlying Explicit Runge-Kutta Method) with the Richardson Extrapolation. The most important
and very useful for the practical applications fact is that, as stated above, the new numerical methods,
which are obtained by applying additionally the Richardson Extrapolation, have bigger absolute
stability regions than those of the underlying classical Explicit Runge-Kutta Methods. This is very
important, because if the absolute stability regions are bigger, then the Richardson Extrapolation can
be used with bigger stepsizes also in the cases where the restrictions due to the necessity to preserve
the stability are dominating over the requirements for achieving better accuracy. Numerical examples
are given in order to show how the improved stability properties can be utilized in order to achieve
better efficiency of the computational process.

Linear multistep methods and predictor-corrector methods (including here predictor-corrector
methods with several different correctors as those developed in Zlatev, 1984) can successfully be
used when large mathematical models are handled. The application of such methods in the numerical
solution of systems of ordinary differential equations is considered in Chapter 3. The basic properties
of these methods are described. It is explained why the use of the Richardson Extrapolation in
connection with the linear multistep methods is at least difficult. However, another approach, the use
of carefully chosen predictor-corrector schemes, can successfully be applied. It is shown that the
result achieved by using different predictor-corrector schemes is very similar to the result achieved
by using the Richardson Extrapolation. Again, as in the second chapter, we are interested first and
foremost in the absolute stability properties of the resulting combined predictor-corrector methods.

The combination of some implicit numerical methods for solving stiff systems of ordinary differential
equations and the Richardson Extrapolation is the main topic of the discussion in Chapter 4. Implicit

viii
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numerical methods are as a rule much more expensive with regard to the computational complexity
than the explicit methods, because they lead, normally in an inner loop of the well-known Newton
iterative procedure (or some modifications of this procedure), to the solution of systems of linear
algebraic equations, which can sometimes be very large (containing many millions of equations).
Therefore, such numerical methods are mainly used when the system of ordinary differential
equations that is to be treated is indeed stiff and, because of this, it is very inefficient to apply explicit
numerical methods. The absolute stability properties of the numerical methods, which are the main
topic of the discussion in the previous two chapters, are as a rule not sufficient in the efforts to achieve
good efficiency when stiff problems must be solved. Therefore, it is necessary to use several more
restrictive definitions related to the stability of the numerical methods for solving stiff systems of
ordinary differential equations. Such definitions (A-stability, strong A-stability and L-stability; see
Burrage, 1995, Butcher, 2003, Dahlquist, 1963, Dahlquist, Bjorck and Anderson, 1974, Hairer,
Norsett and Wanner, 1987, Hairer and Wanner, 1991, Hundsdorfer and Verwer, 2003,
LLambert, 1991) are introduced in the fourth chapter and used consistently in it. After the introduction
of the three more restrictive stability definitions, the selection and the application of suitable implicit
numerical methods for solving stiff systems of ordinary differential equations possessing good
stability properties is discussed. The additional treatment of the Richardson Extrapolation may cause
also in this case extra problems (because even if the underlying numerical method has the needed
stability properties, then the combined method may become unstable). Therefore, it is necessary to
investigate the preservation of the A-stability (as well as the preservation of the other and stronger
stability properties) of the chosen implicit numerical method in the essential for our study case where
Richardson Extrapolation is additionally used. These important issues are carefully investigated in
the fourth chapter. Some theoretical results are proved there and the usefulness of the obtained results
is illustrated by performing a series of calculations related to several appropriate numerical examples
(arising when badly scaled, extremely ill-conditioned and very stiff atmospheric chemical schemes
implemented in many well-known large-scale air pollution models are to be handled).

The performance of the Richardson extrapolation in connection with some splitting procedures is
described in Chapter 5. It is stressed there that, while splitting procedures are commonly used in the
treatment of large-scale and time-consuming simulations that arise in many scientific and engineering
fields, the topics of combining these splitting techniques with the Richardson Extrapolation and of
investigating the stability properties of the resulting new methods have practically not been carefully
studied until now in the literature. An exception is the paper of Zlatev, Farago and Havasi (2012).

The implementation of the Richardson Extrapolation in connection with some classes of systems of
partial differential equations is demonstrated in Section 6. It is explained there why in many cases it
is much more difficult to use the Richardson Extrapolation for systems of partial differential equations
than to apply it in the treatment of systems of ordinary differential equation. In the sixth chapter we
discuss in detail a particular application of the Richardson Extrapolation in connection with some
linear advection problems, arising, for example, in air pollution modelling, but also in some other
areas of fluid dynamics. The development of reliable combined methods (advection equations plus
Richardson Extrapolation), which have improved accuracy properties, is also described there. The
usefulness of the results obtained in this chapter in the attempts to improve the accuracy of the
calculated approximations is demonstrated by appropriate numerical examples.

Time-dependent problems are treated in the first six chapters. However, the Richardson Extrapolation
can also be used in the solution of algebraic or transcendental equations or systems of such equations
by iterative methods. In the latter case the Richardson Extrapolation can successfully be applied in
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an attempt (a) to accelerate the speed of the convergence and/or (b) to reduce the number of iterations
that are needed to achieve a prescribed accuracy. Some results about the application of the Richardson
Extrapolation in the treatment of algebraic and transcendental equations or systems of such equations
by iterative methods will be presented in Chapter 7. The application of the Richardson Extrapolation
in numerical integration is also discussed in the seventh chapter.

Some general conclusions and remarks are presented in the last chapter of the book, in Chapter 8.
The following issues (which are closely related to the presentation given in the previous seven
chapters) are summarized and emphasized once again in the last chapter of the monograph:

(a) This book is written primarily for scientists and engineers. It will
also be useful for PhD students. Finally, it can be applied in some
appropriate courses for students. Therefore, we always try, by
using the great experience obtained by us during our long
cooperation with physicists and chemists, to make the text easily
understandable also for non-mathematicians. We shall, of
course, give all the proofs that are needed for the presentation of
the results, but the truth is that we are much more interested in
emphasizing the important fact that the methods discussed in this
book can easily and efficiently be applied in real-life
computations.

(b) In the whole book it is pointed out, many times and in a very
strong way, that both the accuracy and the error control are
undoubtedly very important issues. However, the necessity to
achieve sufficiently good accuracy and/or reliable error estimates
IS, as was pointed out above, not the only issue, which must be
taken into account when the Richardson Extrapolation is used. In
many cases, it is also very important to select the right numerical
algorithms, such numerical algorithms, which will produce new
efficient numerical methods with good stability properties when
they are combined with the Richardson Extrapolation.

(c) There are two ways of implementing the Richardson
Extrapolation: passive and active. It is not clear in advance
which of the two options performs better in a given particular
situation. The performance depends on several factors; the
stability properties of the combined numerical method (the
underlying numerical method plus the Richardson Extrapolation)
being very essential. Therefore, the decision is not easy, at least
not always easy, and one must be careful in the choice of one of
these two implementations. Some recommendations related to
this important decision are given in the last chapter of the book.

It should also be mentioned, once again, that the relatively simple and easily understandable examples
describing how to implement efficiently the Richardson Extrapolations can successfully be used also
in much more complicated environments in the efforts to improve the calculated results from different
advanced and very complicated mathematical models. This is demonstrated in the book by giving
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some examples that are related to several modules of large-scale environmental models, which are
taken from Zlatev (1995) or Zlatev and Dimov (2006).

It is important to emphasize strongly the fact that the Richardson Extrapolation is indeed a very
reliable and robust technique. However, at the same time it must also be stressed that this is true only
if and when it is correctly applied for the particular problems, which are to be handled. The
implementation of this procedure seems to be very simple and straight-forward. However, the truth
is that achieving high efficiency and good results is by far not always an easy task. The convergence
and especially the stability properties of the new numerical method (consisting of the combination of
the chosen algorithm and the Richardson Extrapolation) should be carefully studied and well
understood. This is absolutely necessary, because the new numerical method will become very
efficient and reliable only if and when such an investigation is properly done or if and when the
implementation of the Richardson Extrapolation is based on well-established knowledge related to
the properties of both the selected underlying numerical algorithm and the new numerical method
obtained when one attempts to enhance the efficiency of the underlying method by additionally
applying the Richardson Extrapolation.

We hope that this book will help very much the readers to improve the performance of the Richardson
Extrapolation in the solution of their particular tasks and we must also emphasize that we do believe
that this book will be very useful for many specialists working with large-scale mathematical models
arising in different areas of science and engineering.

Moreover, it is worthwhile to mention here that

the first five chapters of the book contain different methods for solving
systems of ordinary differential equations (ODESs) and can be used in a
short course on numerical treatment of such systems for non-
mathematicians (scientists and engineers).

Some readers will be interested in reading only selected chapters of the book. For example, people,
who are interested in applying the Richardson Extrapolation together with some splitting techniques,
will prefer to start by reading the fifth chapter without studying carefully the previous four chapters.
We tried to facilitate the attempts to go directly to the most interesting for a particular reader part of
the book by making each chapter relatively independent from the others. In order to achieve this, it
was necessary to repeat some issues. We do believe that this approach would be useful in many
situations.

Xi
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Chapter 1

Basic Properties of the Richardson Extrapolation

The basic principles, on which the implementation of the Richardson Extrapolation in the numerical
treatment of the important class of initial value problems for systems of ordinary differential equations
(ODEs) is based, are discussed in this chapter. It must immediately be stressed that this powerful
approach can also be applied in the solution of systems of partial differential equations (PDESs). In the
latter case, the device is often applied after the semi-discretization of the systems of PDEs. When the
spatial derivatives are discretized, by applying, for example, finite differences or finite elements, the
system of PDEs is transformed into a system of ODEs, which is as a rule very large. Then the
application of the Richardson Extrapolation is very straight-forward, since it is based on the same rules
as those used in the implementation of the Richardson Extrapolation for systems of ODEs, and this
simple way of implementing this devise is used very often, but its success is based on an assumption
that the selected discretization of the spatial derivatives is sufficiently accurate and, therefore, the errors
resulting from the spatial discretization are very small and will not interfere with the errors resulting
from the application of the Richardson Extrapolation in the solution of the semi-discretized problem.
If this assumption is satisfied, then the results will in general be good, but problems will surely arise
when the assumption is not satisfied. Then the discretization errors caused by the treatment of the
spatial derivatives must also be taken into account and the strict implementation of Richardson
Extrapolation for systems of PDEs will become considerably more complicated than that for systems
of ODEs. Therefore, the direct application of the Richardson Extrapolation in the computer treatment
of systems of PDESs deserves some special treatment. This is why only the application of the Richardson
Extrapolation in the case where systems of ODEs are handled numerically is studied in the first five
chapters of this book, while the description of the direct use of the Richardson Extrapolation for
systems of PDEs is postponed and will be presented in Chapter 6.

The contents of the first chapter can be outlined as follows:

The initial value problem for systems of ODEs is introduced in Section 1.1. It is explained there when
the solution of this problem exists and is unique. The assumptions, which are to be made in order to
ensure existence and uniqueness of the solution, are in fact not very restrictive, but it is stressed that
some additional assumptions must be imposed when accurate numerical results are needed and,
therefore, numerical methods for treatment of the initial value problems for systems of ODEs that have
high order of accuracy are to be selected and used. It must also be emphasized here that in Section
1.1 we are sketching only the main ideas. No details about the assumptions, which are to be made in
order to ensure existence and uniqueness of the solution of initial value problems for systems of ODEs,
are needed, because this topic is not directly connected to the application of Richardson Extrapolation
in conjunction with different numerical methods for solving such problems. However, references to
several text books, where such details are presented and discussed, are given.

Some basic concepts that are related to the application of an arbitrary numerical method for solving
initial value problems for systems of ODEs are briefly described in Section 1.2. It is explained there
that the computations are as a rule carried out step by step at the grid-points of some set of values of
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the independent variable (which is the time-variable in many engineering and scientific problems) and,
furthermore, that it is possible to apply both constant and variable stepsizes (the name time-stepsizes
will often be used). A very general description of the basic properties of these two approaches for
solving approximately initial value problems for systems of ODEs is presented and the advantages and
the disadvantages of using constant or variable time-stepsizes are discussed.

The Richardson Extrapolation is introduced in Section 1.3. The ideas are very general and the
application of the Richardson Extrapolation in connection with an arbitrary one-step numerical
method for solving approximately initial value problems for systems of ODEs is described. The
combination of the Richardson Extrapolation with particular numerical methods is studied in the next
chapters of this book.

The important (for improving the performance and for obtaining greater efficiency) fact that the
accuracy of the computed results is increased, when the Richardson Extrapolation is implemented, is
explained in Section 1.4. More precisely, it is shown there that if the order of accuracy of the selected
numerical method for solving initial value problems for systems of ODEs is p, where p is some
positive integer with p > 1, then the application of the Richardson Extrapolation results in a new
numerical method, which is normally of order p + 1 . This means that the order of accuracy of the
new numerical method, the combination of the selected algorithm for solving initial value problems
for systems of ODEs and the Richardson Extrapolation, is as a rule increased by one.

The possibility of obtaining an error estimation of the accuracy of the calculated approximations of the
exact solution (in the case where the Richardson Extrapolation is additionally used) is discussed in
Section 1.5. It is explained there that the obtained error estimation could be used in the efforts to control
the time-stepsize and to select, in principle at every time-step, time-stepsizes in an optimal way (which
is important when variable stepsize numerical methods for solving initial value problems for systems
of ODEs are to be applied in the computational process).

The drawbacks and the advantages of the application of Richardson Extrapolation are discussed in
Section 1.6. It is demonstrated there, with carefully chosen examples arising in an important for the
modern society problem (in the application of air pollution modelling to study situations, which can
lead to damages for plants, animals and human beings), that the stability of the calculated results is a
very important issue and the need of numerical methods with good stability properties is again
emphasized in this section.

Two implementations of the Richardson Extrapolation are presented in Section 1.7. Some
recommendations are given there in connection with the choice, in several different situations, of the
better one of these two implementations.

The possibility of achieving even more accurate results is discussed in Section 1.8. Assume that the
order of the underlying method is p . Itis shown in Section 1.8 how to achieve order of accuracy
p + 2 when the Richardson Extrapolation is additionally applied.

Some general conclusions are drawn and listed in Section 1.9.

Research problems are proposed in the last section, Section 1.10, of the first chapter.
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1.1. Introduction of the initial value problem for systems of ODEs

Initial value problems for systems of ODEs appear very often when different phenomena arising in
many areas of science and engineering are to be described mathematically and after that to be treated
numerically. These problems have been studied in detail in many monographs and text-books in which
the numerical solution of systems of ODEs is handled; as, for example, in Burrage (1995), Butcher
(2003), Hairer, Norsett and Wanner (1987), Hairer and Wanner (1991), Henrici (1968),
Hundsdorfer and Verwer (2003) and Lambert (1991).

The classical initial value problem for systems of ODEs is as a rule defined in the following way:

d
(1.1) d—)tlzf(t,y), te[a,b], a<b, yeR’, s>1, feDc R X RS,

where
(a) t is the independent variable (in most of the practical problems arising in physics and
engineering it is assumed that t is the time variable and, therefore, we shall mainly use
this name in our book),

(b) s isthe number of equations in the system (1.1),

(c) f isagiven function defined in some domain D c R x RS (itwill always be assumed
in this book that f is a one-valued function in the whole domain D)

and
(d) y =y(t) isavector of dimension s that depends of the time-variable t and represents
the unknown function (or, in other words, this vector is the dependent variable and

represents the unknown exact solution of the initial value problem for systems of ODEs).

It is furthermore assumed that the initial value

(1.2) y@=mn

is a given vector with s components.

It is well-known that the following theorem, which is related to the exact solution of the problem
defined by (1.1) and (1.2), can be formulated and proved (see, for example, Lambert, 1991).
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Theorem 1.1: A continuous and differentiable solution y(t) of the initial value problem for systems
of ODEs that is defined by (1.1) and (1.2) exists and is unique if the right-hand-side function f is
continuous in the whole domain D and if, furthermore, there exists a positive constant L such that
the following inequality is satisfied:

(1.3) [ fty) - &Pl <L]y-yll

for any two points (t,y¥) and (t,§) from the domain D .

Definition 1.1: Every constant L, for which the above inequality is fulfilled, is called the Lipschitz

constant and it is said that function f from (1.1) satisfies the Lipschitz condition with regard to the
dependent variable y when (1.3) holds.

It can be shown that the assumptions made in Theorem 1.1 provide only sufficient but not necessary
conditions for existence and uniqueness of the exact solution y(t) of (1.1) — (1.2). For our purposes,
however, the result stated in the above theorem is quite sufficient. Moreover, there is no need (a) to go
into details here and (b) to prove Theorem 1.1. Any of these two actions is beyond the scope of this
monograph, but the above theorem as well as many other results that are related to the existence and
the uniqueness of the solution y(t) of the problem defined by (1.1) and (1.2) are proved in many
text-books, in which initial value problems for systems of ODEs are studied. As an example, it should
be pointed out that many theorems dealing with the existence and/or the uniqueness of the solution of
initial value problems for systems of ODEs are formulated and proved in Hartmann (1964).

It is worthwhile to conclude this section with several remarks.

Remark 1.1: The requirement for existence and uniqueness of a solution y(t) of the system of ODEs
that is imposed in Theorem 1.1 is stronger than the requirement that the right-hand-side function f is
continuous for all points (x,y) from the domain D, because the Lipschitz condition (1.3) must
additionally be satisfied. On the other side, this requirement is weaker than the requirement that
function f is continuously differentiable for all points (x,y) from the domain D . This means
that the requirement made in Theorem 1.1 for the right-hand function f is a little stronger than
continuity, but a little weaker than differentiability.

Remark 1.2: If the right-hand-side function f is continuously differentiable with regard to all values
of the independent variable t and the dependent variable y, i.e. inthe whole domain D, then the
requirement imposed by (1.3) can be satisfied by the following choice of the Lipschitz constant:
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(1.4) L= sup
(t,y)eDb

| of(ty) ”
ot '

Remark 1.3: The problem defined by (1.1) and (1.2) is as a rule called non-autonomous (the right-
hand-side of the non-autonomous problems depends both on the dependent variable y and on the
independent variable t). In some cases, especially in many proofs of theorems, it is more convenient
to consider autonomous problems. The right-hand-side f does not depend directly on the time-
variable t when the problem is autonomous. This means that an autonomous initial value problem
for solving systems of ODEs can be written as:

d
(1.5) d—)t’=f(y), te[ab], a<b, yeR, s>1, feDc R x R%, y@=n.

Any non-autonomous problem can easily be transformed into autonomous by adding a simple extra
equation, but it should be noted that if the original problem is scalar (i.e. if it consists of only one
equation), then the transformed problem will not be scalar anymore. It will become a system of two
equations. This fact might sometimes cause certain difficulties; more details can be found in Lambert
(1991).

It should be mentioned here that the results presented in this book are valid both for non-autonomous
and autonomous initial value problems for systems of ODEs.

Remark 1.4: The problem defined by (1.1) and (1.2) contains only the first-order derivative of the
dependent variable y . Initial value problems for systems of ODEs, which contain derivatives of
higher order, also appear in many applications. Such problems will not be considered in this book,
because these systems can easily be transformed into initial value problems of first-order systems of
ODEs; see, for example, Lambert (1991).

Remark 1.5: In the practical treatment of initial value problems for systems of ODEs it becomes
normally necessary to introduce much more stringent assumptions than the assumptions made in
Theorem 1.1 (especially when accurate numerical methods are to be applied in the treatment of these
systems). This is due to the fact that numerical methods of order of accuracy p > 1 are nearly always
used in the treatment of the problem defined by (1.1) and (1.2). Such numerical methods are often
derived by expanding the unknown function y in Taylor series, truncating this series after some term,
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say the term containing derivatives of some order p > 1, and after that applying different rules to
transform the truncated series in order to obtain numerical methods with some desired properties; see,
for example, Henrici (1968). By using (1.1), the derivatives of y can be expressed by derivatives of
f and, when such procedures are applied, one can easily established that it is necessary to assume that
all derivatives of function f uptoorder p—1 mustbe continuously differentiable. It is obvious
that this assumption is in general much stronger than the assumption made in Theorem 1.1. In fact, if
a requirement to find a reliable error estimation is additionally made, then it will as a rule be necessary
to require that the derivative of function f, whichisof order p, isalso continuously differentiable.
The necessity of introducing stronger assumptions will be further discussed to a certain degree in many
sections of the remaining part of this book, however this problem is not directly related to the
implementation of the Richardson Extrapolation and, therefore, it will not be treated in detail this book.

Remark 1.6: Only initial value problems for systems of ODEs will be studied in this book (i.e. no
attempt to discuss the properties of boundary value problems for systems of ODEs will be made).
Therefore, we shall mainly use the abbreviation “systems of ODEs” instead of “initial value problems
for systems of ODES” in the remaining sections of this chapter and also in the next chapters.

1.2. Numerical treatment of initial value problems for systems of ODEs

Normally, the system of ODEs defined by (1.1) and (1.2) could not be solved exactly. Therefore, it is
necessary to apply some suitable numerical method in order to calculate sufficiently accurate
approximate values of the components of the exact solution vector y(t) at the grid-points belonging
to some discrete set of values of the time-variable. An example for such a set, which is often called
computational mesh or grid, is given below:

b—a
N

(16) t():a, tn:tn_1+h (n=1,2,...,N), tN:b, h=

The calculations are carried out step by step. Denote by y, the initial approximation of the solution,
i.e. the approximationat t, =a. Itisoftenassumedthat y, =y(a) = n. Infact, the calculations
are started with the exact initial value when this assumption is made. However, the calculations can
also be started by using some truly approximate initial value y, = y(a) .

After providing some appropriate, exact or approximate, value of the initial condition of the system of
ODEs, one calculates successively (by using some computing formula, which is called “numerical
method”) a sequence of vectors, y; = y(t1), y2 = y(ty) andso on, which are approximations of
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the exact solution obtained at the grid-points of (1.6). When the calculations are carried out in this way,
i.e. step by step, at the end of the computational process a set of vectors {yo, V1, ...,¥n} Will be
produced. These vectors represent approximately the values of the exact solution y(t) at the selected
by (1.6) set of grid-points {ty, ty, ...ty }.

It should be mentioned here that it is also possible to obtain, after the calculation of the sequence
{vo, V1, -, ¥n} ., approximations of the exact solution at some points of the independent variable
t € [a,b], which do not belong to the set (1.6). This can be done by using some appropriately chosen
interpolation formulae.

The quantity h is called stepsize (the term time-stepsize will be used nearly always in this book).
When vy, iscalculated, the index n is giving the number of the currently performed steps (the term
time-steps will also be used very often). Finally, the integer N is giving the number of time-steps,
which have to be performed in order to complete the calculations.

In the above example it is assumed that the grid-points t,, (n=0,1,2,..,N) are equidistant.
The use of equidistant grids is in many cases very convenient, because it is, for example, possible to
express in a very simple way an arbitrary grid-point t, belonging to the set (1.6) by using the left-
hand end-point a of the time-interval (t, = a4+ nh) when such a choice is made. However, it is
not necessary to keep the time-stepsize constant during the whole computational process. Variable
stepsizes can also be used. In such a case the grid-points can be defined as follows:

(17) t():a, tn:tn_1+hn (n:1,2,...,N), tN:b

In principle, the time-stepsize h, > 0 that is used at time-step n could always be different both
from the time-stepsize h,,_; thatwas used at the previous time-step and from the time-stepsize h,,4
that will be used at the next time-step. However, some restrictions on the change of the stepsize are
nearly always needed, see, for example, Shampine and Gordon (1975) or Zlatev (1978, 1983), in
order

(a) to preserve in a better way the accuracy of the calculated approximations,
(b) to ensure zero-stability during the calculations
and

(c) to increase the efficiency of the computational process by reducing the amount of simple
arithmetic operations that are needed to obtain the approximate solution.

Some more details about the use of variable time-stepsize and about the additional assumptions, which
are relevant in this case and which have to be imposed when this technique is implemented, can be
found, for example, in Hindmarsh (1971, 1980), Gear (1971), Krogh (1973a,b), Shampine (1984,
1994), Shampine and Gordon (1975), Shampine, Watts and Davenport (1976), Shampine and
Zhang (1990), Zlatev (1978, 1983, 1984, 1989), and Zlatev and Thomsen (1979).
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The use of a variable stepsize may often lead to an improvement of the efficiency of the computational
process, because the code used in the numerical solution of the system of ODEs tries at prescribed in
some way time-steps to select optimal time-stepsizes. This procedure may result in a substantial
reduction of the computer time. However, there are cases, in which the computational process would
become unstable. This kind of stability for systems of ODEs is called sometimes zero-stability, as, for
example, in Zlatev (1981b). Some further information about the zero-stability problems, which may
arise when variation of the time-stepsize is allowed, can be found in Gear and Tu (1974), Gear and
Watanabe (1974), Zlatev (1978, 1983, 1984, 1989), and Zlatev, Berkowicz and Prahm (1984a,b).
Some discussion about the zero-stability of the computational process when it is allowed to vary the
stepsize will be given in Chapter 3.

The major advantages of using constant time-steps are two:

(a) it is easier to establish in a reliable way and to analyse the basic properties of the
numerical method (such as convergence, accuracy and stability)

and
(b) the behaviour of the computational error is more predictable and as a rule very robust.

The major disadvantage of this device (the application of a constant time-stepsize) appears in the case
where some components of the exact solution are

(A) quickly varying in some small part of the time-interval [a, b]
and
(B) slowly varying in the remaining part of this interval.

It is well-known that a small time-stepsize must be used in Case (A), while it is possible to apply much
larger time-stepsize in Case (B), but if a constant time-stepsize option is selected, then one is forced to
use the chosen small constant stepsize during the whole computational process, which could be (or, at
least, may be) very time-consuming. If it is allowed to vary the time-stepsize, then small time-stepsizes
could be used, in principle at least, only when some of the components of the solution vary very
quickly, while large time-stepsizes can be applied in the remaining part of the time-interval. The
number of the needed time-steps will often be reduced considerably in this way, which normally will
also lead, as mentioned above, to a very substantial decrease of the computing time that is needed to
solve numerically the problem.

This means that by allowing some variations of the time-stepsize, one is trying to avoid the major
disadvantage of the other option, the option where a constant time-stepsize is used during the whole
computational process, i.e. one is trying avoid the necessity to apply a very small time-stepsize on the
whole interval [a,b] . It is nearly obvious that the application of variable time-steps will often be
successful, but, as pointed out above, problems may appear and it is necessary to be very careful when
this option is selected and used (see also the references given above).

For the purposes of this book, in most of the cases it is not very important which of the two grids, the
equidistant grid defined by (1.6) or the non-equidistant grid introduced by (1.7), will be chosen. Many
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of the conclusions, which are drawn in the remaining part of this book, will be valid in both cases. We
shall always give some explanations when this is not the case.

There is no need to introduce particular numerical methods in this chapter, because the introduction of
the Richardson Extrapolation, which will be presented in the next section, and the discussion of some
basic properties of the new numerical method, which arises when this computational device is
additionally applied, will be valid for any one-step numerical method used in the solution of systems
of ODEs. However, many special numerical methods will be introduced and studied in the following
chapters.

1.3. Introduction of the Richardson Extrapolation

Assume that the system of ODEs is solved, step by step as explained in the previous section, by an
arbitrary numerical method. Assume also that approximations of the exact solution y(t) are to be
calculated for the values t, (n=1,2,.., N) eitherof the grid-points of (1.6) or of the grid-points
of (1.7). Under these assumptions the simplest form of the Richardson Extrapolation can be introduced
as follows.

If the calculations have already been performed for all grid-points t;, (i=1,2,..,n—1) by
using some numerical method, the order of accuracy of which is p, and, thus, if approximations
y; = y(t;) of the exact solution are available at the grid-points t;, (i=10,1,2,..,n—1), then
three actions are to be carried out in order to obtain the next approximation vy, :

(a) Perform one large time-step, with a time-stepsize h when the grid (1.6) is used or
with a time-stepsize h,, if the grid (1.7) has been selected, in order to calculate an
approximation z, of y(t,).

(b) Perform two small time-steps, with a time-stepsize 0.5 h, when the grid (1.6) is
used or with a time-stepsize 0.5 h,, if the grid (1.7) has been selected, in order to
calculate another approximation w, of y(t,).

_(c) calculate an approximation y, by applying the formula:

2w, —z,

(1.8) Yn = 20 — 1

The algorithm that is defined by the above three actions, the actions (a), (b) and (c), is called
Richardson Extrapolation. As mentioned before, this algorithm was introduced and discussed by L. F.
Richardson in 1911 and 1927, see Richardson (1911, 1927). It should also be mentioned here that L.
F. Richardson called this procedure “deferred approach to the limit”.
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Note that the idea is indeed very general. The above algorithm is applicable to any one-step numerical
method for solving systems of ODEs (in Chapter 6 it will be shown that it is also applicable, after
introducing some additional requirements, when some systems of PDESs are to be handled). There are
only two requirements:

(A) The same one-step numerical method should be used in the calculation of the two
approximations z, and wy, .

(B) The order of the selected numerical method should be p . This second requirement
is utilized in the derivation of formula (1.8), in which the positive integer p is
involved; this will be further discussed in the next section.

The main properties of the Richardson Extrapolation will be studied in the next sections of Chapter 1
and in the next chapters of this book.

It should be noted here that, as already mentioned, the simplest version of the Richardson Extrapolation
is described in this section. For our purposes this is quite sufficient, but some other versions of the
Richardson Extrapolation can be found in, for example, Farago (2008). It should also be noted that
many of the statements for the simplest version of the Richardson Extrapolation, introduced in this
section and discussed in the remaining part of the book, remain also valid for other versions of this
device.

1.4. Accuracy of the Richardson Extrapolation

Assume that the approximations z, and w, thathave been introduced in the previous section were
calculated by some numerical method, the order of accuracy of whichis p. If we additionally assume
that the exact solution y(t) of the system of ODEs is sufficiently many times differentiable (actually,
we have to assume that this function is p + 1 times continuously differentiable, which makes this
assumption much more restrictive than the assumptions made in Theorem 1.1 in order to ensure
existence and uniqueness of the solution of the system of ODES), then the following two relationships
can be written when the calculations have been carried out by using the grid-points introduced by (1.6)
in Section 1.2:

(1.9) y(ty) — z, = hPK+ O0(h?*1) |
(1.10)  y(t,) — w, = (0.5h)PK+ O(hP*?) .

The quantity K that participates in the left-hand-side of both (1.9) and (1.10) depends both on the
selected numerical method that was applied in the calculation of z, and w, and on the particular
problem (1.1) — (1.2) that is handled. However, this quantity does not depend on the time-stepsize h.

10
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It follows from this observation that if the grid defined by (1.7) is used instead of the grid (1.6), then
two new equalities, that are quite similar to (1.9) and (1.10), can immediately be written (only the time-
stepsize h should be replaced by h,, in the right-hand-sides of both relations).

Let us now eliminate K from (1.9) and (1.10). After some obvious manipulations the following
relationship can be obtained:

2Pwy — 2, = 0(hP*1).

(11D y(t) ~ 5

Note that the second term in the left-hand-side of (1.11) is precisely the approximation y, that was
obtained by the application of the Richardson Extrapolation, see the relation (1.8) at end of the previous
section).

The following relationship can immediately be obtained from (1.8) after the above observation:

(1.12) ytn) — Yu = O(hp+1) .

Comparing the relationship (1.12) with each of the relationships (1.9) and (1.10), we can immediately
conclude that for sufficiently small values of the time-stepsize h the approximation vy, thatis
calculated by applying the Richardson Extrapolation will be more accurate than each of the two
approximations z, and w, obtained when the selected numerical method is used directly. Indeed,
the order of accuracy of 'y, isatleast p+ 1, whileeachof z, and w, isoforderof
accuracy p .

This means that Richardson Extrapolation can be used to increase the accuracy of the calculated
numerical solution.

1.5. Evaluation of the error

The Richardson Extrapolation can also be used, and in fact it is very often used, to evaluate the leading
term of the error of the calculated approximations and after that to determine an optimal in some sense
time-stepsize, which can hopefully be applied successfully during the next time-step. Note that the
relations (1.9) and (1.10) cannot directly be used in the evaluation of the error, because the value of the
quantity K is in general not known. This means that it is necessary to eliminate this parameter in order
to obtain an expression by which the error made can be estimated and, after that, an optimal time-
stepsize determined and used during the next time-step.

An expression for K can easily be obtained by subtracting (1.10) from (1.9). It can easily be verified
that the result of this action is
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_ 2P (Wn B zn) +
(1.13) K= m+0(hp 1.

Substituting this value of K in (1.10) leads to the following expression:

W, — Z
(1.14)  y(ta) = wy = —;—=+O(hP*).

The relationship (1.14) indicates that the leading term of the global error made in the computation of
the approximation w, can be estimated by applying the following relationship:

Wp — Z,
2P -1

(1.15) ERROR, = |

If a code for performing the calculations with a variable time-stepsize is developed and used, then
(1.15) can be applied in order to decide how to select a good time-stepsize for the next time-step. The
expression:

(1.16) hew = o  |—2k _ }
' new = @ IFRROR,

can be used in the attempt to calculate a time-stepsize for the next time-step, which will (hopefully) be
better in some sense than the time-stepsize used at the current time-step. The user should be careful
when this formula is used in a computer code because the programme could be terminated by a message
that “overflow has taken place” if the calculated value of ERROR,, becomes very small.

The parameter TOL that appears in (1.16) is often called the error-tolerance and can freely be
prescribed by the user according to the desired by him or by her accuracy.

The parameter 0 < w <1 is a precaution parameter introduced in an attempt to increase the
reliability of the predictions made by using (1.16); w = 0.9 is used in many codes for automatic
variation of the time-stepsize during the computational process, but smaller value of this parameter can
also be used and are often advocated; see more details in Gear (1971), Hindmarsh (1980), Krogh
(1973), Shampine and Gordon (1975), Zlatev (1984) and Zlatev and Thomsen (1979).

It should be mentioned here that (1.16) is normally not sufficient in the determination of the rules for

the variation of the time-stepsize. Some additional (and, in most of the cases, heuristic) rules are to be
introduced and used. More details about these additional rules can be found in the above references.

12
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1.6. Major drawbacks and advantages of the Richardson Extrapolation

It must once again be emphasized that the combination of the selected numerical method for solving
systems of ODEs with the Richardson Extrapolation can be considered (and in fact must be considered)
as a new numerical method. Let us now introduce the following two abbreviations:

(1) Method A: the original (underlying) method selected for solving systems of ODEs
and

(2) Method B: the combination of the original method, Method A, and the Richardson
Extrapolation.

In this section we shall investigate some properties of the two numerical methods, Method A and
Method B. More precisely, we shall try to find out the main advantages and drawbacks of Method
B when it is compared with Method A.

Assume first that the selected Method A is explicit. In this case, Method B has one clear disadvantage:
if this method and Method A are to be used with the same time-stepsize h , then three times more
time-steps will be needed when the computations are carried out with Method B. The number of time-
steps will in general be also increased when variations of the time-stepsize are allowed, but the situation
is not very clear, because it is not easy to formulate a strategy for variation of the time-stepsize, when
Method A is used without adding the Richardson Extrapolation.

If the underlying method, Method A, is implicit, then the situation is much more complicated, because
systems of algebraic equations have to be handled at each time-step. In the general case, these systems
are non-linear. Moreover, very often the non-linear systems of algebraic equations are large, containing
millions of equations. This makes the treatment much more complicated. We shall postpone the
detailed discussion of this case to Chapter 4, where the application of the Richardson Extrapolation for
some implicit numerical methods will be studied.

The need to carry on three time-steps with Method B (instead of one time-step when Method A is used)
is indeed a clear disadvantage, but only if the two methods have to be used with the same time-stepsize.
However, it is not necessary to require the use of the same time-stepsize, because Method B has also
one clear advantage: it is more accurate, its order of accuracy is at least by one higher than the order
of accuracy of Method A. Therefore the results obtained by using Method B will in general be much
more precise than those calculated by Method A and, therefore, the same accuracy, as that obtained by
Method A, can be achieved when Method B is used with a substantially larger time-stepsize. This
explains why it is not necessary to use Method A and Method B with the same time-stepsize, when we
are interested in achieving certain prescribed in advance accuracy.

It is necessary to investigate after these preliminary remarks whether the advantage of Method B (i.e.
the possibility of achieving better accuracy) is giving a sufficient compensation for its disadvantage.
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The people who like the Richardson Extrapolation are claiming that the answer to this question is
always a clear “yes”. Indeed, the fact that Method B is more accurate than Method A will, as mentioned
above, allow us, in principle at least, to apply bigger time-stepsizes when this method is used and
nevertheless to achieve the same or even better accuracy. Denote by h, and hg the time-stepsizes
used when Method A and Method B are applied and assume that some particular system of ODEs is to
be solved. It is quite clear that if hg > 3 h,, then Method B will be computationally more efficient
than Method A (but let us repeat here that this is true for the case where Method A is an explicit
numerical method; if the Method A is implicit, then the inequality hg > 3 h, should in general be
replaced with another inequality hg > mh, where m > 3 ; see more details in Chapter 4).

Assume now that the combined method, Method B, can indeed be applied with a considerably larger
stepsize than that used when the computations are carried out with Method A. If, moreover, the
accuracy of the results achieved by using Method B is higher than the corresponding accuracy, which
was achieved by using Method A, then Method B will perform better than Method A for the solved
problem (both with regard to the computational efficiency and with regard to the accuracy of the
calculated approximations).

The big question, which must be answered by the people who like the Richardson Extrapolation can
be formulated in the following way:

Will Method B be more efficient than Method A when realistic
problems (say, problems arising in the treatment of some large-scale
mathematical models describing various scientific and engineering
problems) are solved and, moreover, will this happen even in the more
difficult case when the underlying numerical method, Method A, is
implicit?

The answer to this important question is at least sometimes positive and it is worthwhile to demonstrate
this fact by an example. The particular example, which was chosen by us for this demonstration is an
atmospheric chemical scheme, which is described mathematically by a non-linear system of ODEs.
We have chosen a scheme that contains 56 chemical species. It is one of the three atmospheric
chemical schemes used in the Unified Danish Eulerian Model (UNI-DEM), see Zlatev (1995) or
Zlatev and Dimov (2006). This example will be further discussed and used in Chapter 4. In this
chapter, we should like to illustrate only the fact that it is possible to achieve great efficiency with
regard to the computing time when Method B is used even in the more difficult case where Method
A is implicit.

The special accuracy requirement, which we imposed in the numerical treatment of the atmospheric
chemical scheme, was that the global computational error t should be kept smaller than 103 both
in the case when Method A is used and in the case when Method B is applied. The particular numerical
method, Method A, which was used in this experiment, was the well-known 6-method. It is well-known
that the computations with Method A are carried out by using the formula:
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(1.17) yu= Vo1 +h[(A —0)f(t,_1,¥n-1) + 0 f(ty yu)l for n=12..,N,

when the 6-method is applied. In this experiment © = 0.75 was selected. From (1.17) it is
immediately seen that the 8-method is in general implicit because the unknown quantity y, appears
both in the left-hand side and in the right-hand side of this formula. It is also immediately seen that the
method defined by (1.17) will become explicit only in the special case when the parameter 0 is equal
to zero. The 8-method will be reduced to the classical Forward Euler Formula (which will be used in
Chapter 2) when this value of parameter 0 is selected.

For Method B the approximations z, and w, are first calculated by applying the 8-method with
time-stepsizes h and 0.5 h respectively and then (1.8) is used to obtain y, . These calculations
are carried out at every time-step.

The atmospheric chemical scheme mentioned above was treated numerically on a rather long time-
interval [a,b] =[43200,129600]. The value a = 43200 corresponds to twelve o'clock at
the noon (measured in seconds and starting from the mid-night), while b = 120600 corresponds to
twelve o'clock on the next day. Thus, the length of the time-interval is 24 hours and it contains
important changes from day-time to night-time and from night-time to day-time (when most of the
chemical species are very quickly varying and, therefore, causing a lot of problems for any numerical
method; this will be further discussed in Section 4). The steep gradients during these special short time-
periods (changes from day-time to night-time and from night-time to day-time) are illustrated in Fig.
1.1. Itis seen that some of the chemical species achieve maximum during day-time, while the maximum
is achieved during night-time for other species. Finally, it should be noted that some of the chemical
species vary in very wide ranges. More examples will be given in the next chapters.

The exact solution of the non-linear system of ODEs, by which the atmospheric chemical problem is
described mathematically, is not known. Therefore a reference solution was firstly obtained by solving
the problem with a very small time-stepsize and a numerical method of high order. Actually, a three-
stage fifth-order fully-implicit Runge-Kutta algorithm, see Butcher (2003) or Hairer and Wanner
(1991), was used with N =998244352 and h, = 6.1307634E — 05 to calculate the
reference solution. The reference solution was used (instead of the exact solution) in order to evaluate
the global error. It should be mentioned here that the term “reference solution” in this context was for
first time used probably by J. G. Verwer in 1977; see VVerwer (1977).

We carried out many runs with both Method A and Method B by using different time-stepsizes.
Constant time-stepsizes, defined on the grid (1.6), were actually applied during every run. We started
with a rather large time-stepsize and after each run decreased the time-stepsize by a factor of two. It is
clear that the decrease of the stepsize by a factor of two leads to an increase of the number of time-
steps also by a factor of two. Furthermore, one should expect the error to be decreased by a factor of
two every time when the time-stepsize is halved, because the 8-method with 6 = 0.75 isanumerical
method of order one. This action (decreasing the time-stepsize and increasing the number of time-steps
by a factor of two) was repeated as long as the requirement t < 1073 was satisfied. Since Method
B is more accurate than Method A, the time-stepsize, for which the requirement t© < 1073 was for
first time satisfied, was much larger when Method B is used. No more details about the solution
procedure are needed here, but much more information about many different runs with the atmospheric
chemical scheme can be found in Chapter 4. Some numerical results are presented in Table 1.1. The
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computing times and the numbers of time-steps for the runs in which the accuracy requirement is for
first time satisfied by each of the two methods are given in this table.

CHEMICAL SPECIES: oP N O 3
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Figure 1.1
Diurnal variations of some of the chemical species involved in one of the atmospheric chemical

schemes used in the Unified Danish Eulerian Model (UNI-DEM) for studying air pollution levels in
Europe and its surroundings.

Compared characteristics | Method A | Method B | Ratio

Time-steps 344064 2688 128
Computing time 1.1214 0.1192 9.4077
Table1.1

Numbers of time-steps and computing times (measured in CPU-hours) needed to achieve
accuracy T < 1073 when Method A (in this experiment the 8-method with 8 = 0.75
was applied in the computations directly) and Method B (the calculations were performed
with the new numerical method, which consists of the combination of Method A and the
Richardson Extrapolation) are used. In the last column of the table it is shown by how many
times the number of time-steps and the computing time are reduced when Method B is
used.

The results shown in Table 1.1 indicate that there exist examples, for which Method B is without any
doubt much more efficient than Method A. However, it is not entirely satisfactory to establish this fact,
because the people who do not like very much the Richardson Extrapolation have a very serious
objection. They are claiming that it will not be possible always to increase the time-stepsize, because
the computations may become unstable when large time-stepsizes are used. Moreover, in some cases
not only is it not possible to perform the computations with Method B by using a bigger time-stepsize,
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but even runs with the same time-stepsize, as that used successfully with Method A, will fail when
Method B is applied. In the worst case, it will not be possible to solve the system of ODEs with Method
B even if the time-stepsize used is smaller than that used in a successful run with Method A.

This objection is perfectly correct. In order to demonstrate this fact, let us consider again the 8-method
defined by (1.17), but this time with 8 = 0.5 . The particular numerical method obtained with this
value of parameter 0 is called the Trapezoidal Rule. This numerical method has very good stability
properties. Actually, it is A-stable, which is very good for the case, in which the atmospheric chemical
scheme with 56 species is treated (this fact will be fully explained in Chapter 4, but in the context
of this section it is not very important). The big problem arises when the 8-method with 6 = 0.5
(i.e. the Trapezoidal Rule) is combined with the Richardson Extrapolation, because the stability
properties of the combination of the Trapezoidal Rule with the Richardson Extrapolation are very poor,
which was shown in Dahlquist (1963) and in Faragé, Havasi and Zlatev (2010). Also this fact will
be further clarified in Chapter 4, while now we shall concentrate our attention only on the performance
of the two numerical methods (the Trapezoidal Rule and the combination of the Trapezoidal Rule with
the Richardson Extrapolation) when the atmospheric chemical scheme with 56 species is to be
handled.

Let us again use the names Method A and Method B, this time for the Trapezoidal Rule and for the
combination of the Trapezoidal Rule and the Richardson Extrapolation, respectively. The calculations
carried out with Method A were stable and the results were good always when the number of time-
steps is varied from 168 to 44040192, while Method B produced unstable results for all of the
time-stepsizes, which were used (this will be shown and further explained in Chapter 4).

The last result is very undesirable and, as a matter of fact, this completely catastrophic result indicates
that it is necessary to answer the following question:

How can one avoid or at least predict the appearance of similar
unpleasant situations?

The answer is, in principle at least, very simple: the stability properties of Method B must be
carefully studied. If this is properly done, it will be possible to predict when the stability properties of
Method B will become poor or even very poor and, thus, to select another (and better) numerical
method and to avoid the disaster. This means that it is not sufficient to predict the appearance of bad
results. It is, moreover, desirable and perhaps absolutely necessary to develop numerical methods for
solving ODEs, for which the corresponding combinations with the Richardson Extrapolations have
better stability properties (or, at least, for which the stability properties are not becoming as bad as in
the above example where the Trapezoidal Rule was used). These two important tasks:

(a) the development of numerical methods for which the stability properties of the
combinations of these methods with Richardson Extrapolation are better than those of the
underlying methods when these are used directly (or at least are not becoming worse)

and
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(b) the rigorous investigation of the stability properties of the combinations of many
particular numerical methods with the Richardson Extrapolation

will be the major topic of the discussion in the following chapters of this book.

1.7. Two implementations of the Richardson Extrapolation

Formula (1.8) is in fact only telling us how to calculate the extrapolated approximation of y,, atevery
time-step n where n=1,2,..,N under the assumption that the two approximations z, and
w, are available. However, this formula alone is not completely determining the algorithm by which
the Richardson Extrapolation is to be used in the whole computational process. This algorithm will be
completely described only when it is clearly explained what will happen when the approximations y,
for n=1,2,..,N areobtained. There are at least two possible choices:

(a) the calculated improved approximation y, foragiven n will not participate in the
further calculations (it can be stored and used later for other purposes)

and

(b) the approximations y, foragiven n will directly be used in the computation of the
next approximations y,1.

This leads to two different implementations of the Richardson extrapolation. These implementations
are graphically represented in Fig. 1.2 and Fig. 1.3.

The implementation of the Richardson Extrapolation made according to the rule (a), which is shown
in Fig. 1.2, is called passive. It is quite clear why this name has been chosen (the extrapolated values
are, as stated above, not participating in the further computations).

The implementation of the Richardson Extrapolation made by utilizing the second rule, rule (b), which
is shown in Fig. 1.3, is called active. It is immediately seen from the plot given in Fig. 1.3 that in this
case every improved value y, ,where n=1,2,...,N—1, isactively used in the calculations of the
next two approximations z,,; and wy,q .

In Botchev and Verwer (2009), the terms “global extrapolation” and “local extrapolation” are used
instead of passive extrapolation and active extrapolation respectively. We prefer the term “Active
Richardson Extrapolation” (to point out immediately that the improvements obtained in the
extrapolation are directly applied in the further calculations) as well as the term “Passive Richardson
Extrapolation” (to express in a more straightforward way the fact that the values obtained in the
extrapolation process at time-step n will never be used in the consecutive time-steps).
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Passive implementation of the Richardson Extrapolation.
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Figure 1.3

Active implementation of the Richardson Extrapolation.

The key question which arises in connection with the two implementations is:
Which of these two rules should be preferred?

There is not a unique answer to this question. Three different situations, the cases (A), (B) and (C),
listed below, may arise and should be carefully taken into account in order to make the right decision:

(A) The application of both the Passive Richardson Extrapolation and the Active Richardson
Extrapolation leads to a new numerical method, Method B, which have the same (or at
least very similar) stability properties as those of the underlying numerical method,
Method A.

(B) The new numerical method, Method B, which arises when the Passive Richardson
Extrapolation is used, has good stability properties, while this is not the case for case
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when the Active Richardson Extrapolation is used (as in the example given above with
the Trapezoidal Rule). It should be mentioned here that it is nearly obvious that the
underlying numerical method, Method A, and the combination of this method with the
Passive Richardson Extrapolation, Method B, will always have the same stability
properties.

(C) The new numerical method, Method B, which results after the application of the Active
Richardson Extrapolation has better stability properties than those of the corresponding
Method B, which arises after the application of the Passive Richardson Extrapolation.

In the experiments related to the application of the 8-method with 8 = 0.75 (given in the previous
section, but much more numerical results will be presented in Chapter 4), Case (A) takes place and the
results obtained when the two implementations are used are in general quite similar. However, it should
be mentioned that Botchev and Verwer (2009) reported and explained some cases, in which the Active
Richardson Extrapolation gave considerably better results for the special problem, which they were
treating.

It is clear that the Passive Richardson Extrapolation should be used in Case (B). Let us reiterate here
that the example with the Trapezoidal Rule, which was given in the previous section, confirms in a
very strong way this conclusion. Some more details will be given in Chapter 4.

Case (C) is giving some very clear advantages for the Active Richardson Extrapolation. In this
situation the Passive Richardson Extrapolation may fail for some large time-stepsizes, for which the
Active Richardson Extrapolation produces stable results. Some examples will be given in the next
chapter.

The main conclusion from the above analysis is, again as in the previous section, that it is absolutely
necessary to investigate carefully the stability properties of the new numerical method, the
numerical method consisting of the combination of the selected underlying method and the chosen
implementation of the Richardson Extrapolation. Only when this is properly done, one will be able to
make the right choice and to apply the correct implementation of the Richardson Extrapolation. The
application of the Richardson Extrapolation will in general become much more robust and reliable
when such an investigation is thoroughly performed.

It must also be mentioned here that the stability properties are not the only factor, which must be taken
into account. Some other factors, as, for example, quick oscillations of some components of the solution
of (1.1) - (1.2), may also play a very significant role in the decision of which of the two implementations
will perform better. However, it must be emphasized that these other factors may play an important
role only in the case when the passive and the active implementations have the same (or, at least, very
similar) stability properties. Thus, the requirement for investigating the stability properties of the two
implementations is more essential. This requirement is necessary, but in some cases it is not sufficient
and, therefore, if this is the truth, then some other considerations should be taken into account.

The above conclusions emphasize in a very strong way the fact that it is worthwhile to consider the
classical Richardson Extrapolation not only in such a way as it was very often considered in many
applications until now, but also from another point of view. Indeed, the Richardson Extrapolation
defined by (1.8) is not only a simple device for increasing the accuracy of the computations and/or for
obtaining an error estimation, although any of these two issues is, of course, very important.
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The application of the Richardson Extrapolation results always in a
quite new numerical method and this numerical method should be
treated as any of the other numerical methods. It is necessary to study
carefully all its properties, including here also its stability properties.

Therefore, in the following part of this book, the combination of any of the two implementations of the
Richardson Extrapolation with the underlying numerical method will always be treated as a new
numerical method the properties of which must be investigated in a very careful manner. The
importance of the stability properties of this new numerical method will be the major topic in the next
chapters.

Our main purpose will be

(A) to explain how new numerical methods, which are based on the Richardson
Extrapolation and which have good stability properties, can be obtained

and

(B) to detect cases where the stability properties of the new numerical methods utilizing
the Richardson Extrapolation become poor.

1.8. Increasing further the accuracy

Consider again (1.9) and (1.10), change the notation of the calculated approximation and assume that
one additional term is kept on the right-hand side:

(1.18)  y(t,) — z!"' = hPK + hP*1L + O(hP*?) |

(1.19)  y(t,) — z¥ = (0.5h)PK+ (0.5 h)P*'L + O(hP+2) |

Assume furthermore that a third approximation zr[f] is calculated by performing four small time-

steps with a time-stepsize 0.25h:

(1.20)  y(t,) — z¥' = (0.25h)PK + (0.25 h)P*1L + O(hP+2) .
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We should like to eliminate the constants K and L from the three equalities (1.18) —(1.20). First,
the constant K could be eliminated. Multiply (1.19) with 2P and subtract (1.18) from the modified
equality (1.19). Similarly multiply (1.20) with 4P = 22P  and subtract (1.18) from the modified
equality (1.20). The result is:

(1.21) (2P — Dy(t,) — 2Pz +zIY = —0.5nP*IL + O(hP*2)

(1.22) (2% — Dy(t,) — 22Pz8 + 2z = —0.75nP*1L + O(hP+2)

The constant L should also be eliminated. Multiply (1.21) with —0.75 and (1.22) with 0.5.
(1.23)  —0.75 (2P — Dy(t,) + (0.75)2Pz/2—0.75z[" = 0.75(0.5)hP+1L + O(hP*2)
(1.24) 0.5 (22° — Dy(t,) — (0.5) 2223 + 0.5zY = 0.5(—0.75)hP*1L + O(hP*2)
Add the modified (1.21) to the modified (1.22). The result is:

(1.25) (22P1 — 3(2P2) 4+ 0.25)y(t,) — 221213 + 3(2p-2)z[2) _ 0.25z[1 = o(nP*?)

The last equality can be rewritten as

2201253 3(2r-2)2[2) + 0.252))
220-1— 3(2p2) + 0.25

(1.26) y(t,) = + 0(hP*2)

Denote

22p-1731 _ 3(2p-2)z121 | ¢ 2521

1.27 -
(1.27)  ya 22p-1 _ 3(2P-2) + 0.25

Then (1.26) can be rewritten as

(1.28) y(t,) = yn + O(hP*?)
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and it is clear that y, being of order equal at least to p + 2 is more accurate than the three

approximations zl[ll], z,[,z] and zr[,s] the order of accuracy of whichis p.

It must be pointed out that the computational cost of the improvement of the accuracy achieved in this
section is rather high. It is necessary to perform

(a) one time-step with a stepsize h in order to calculate the first approximation z,[,” ,

(b) two time-steps with a stepsize 0.5h in order to calculate the second approximation

212

and

(c) four time-steps with a stepsize 0.25h in order to calculate the second approximation
(3]

Zy

The device described in this section can be considered as a Repeated Richardson Extrapolation. Some
more details about different implementations of Repeated Richardson Extrapolation and about some
other extrapolation methods can be found in the fourth chapter of Hairer, Norsett and Wanner (1987),
see also Deuflhard, Hairer and Zugck (1987), Joyce (1971) and Christiansen and Petersen (1989).
Interesting details about some of the scientists, who initiated the work on different extrapolation
methods (including here the Richardson Extrapolations) can be found in the work of Claude Brezinski
(https://nalag.cs.kuleuven.be/research/projects/\WWOG/history/talks/brezinski_talk.pdf). The stability of
the new method (achieved when repeated Richardson Extrapolation is to be applied) must be studied
carefully.

1.9. Major conclusions related to Chapter 1

The advantages and the drawbacks of the Richardson Extrapolation used in combination with systems
of ODEs were discussed in this chapter. Two major conclusions were drawn during this discussion:

(a) the use of the Richardson Extrapolation is leading to both more accurate and new
numerical methods

and

(b) this devise can be used to organize an automatic control of the stepsize according to
some prescribed in advance accuracy, which is very important for practical
computations.

However, these two conclusions will be true only if the new numerical method, the combination of the
Richardson Extrapolation with the selected algorithm, is stable. This fact shows clearly that the
preservation of the stability of the computational process is indeed a key issue. Therefore stability
discussions will be the major topic in the next four chapters of this book.
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1.10. Topics for further research
The following topics might lead to some very interesting and useful results:

(A) Attempt to verify that it is possible to achieve even higher accuracy than
that achieved by using the device presented in Section 1.8. Assume that p
is the order of accuracy of the selected numerical method and that q is
an integer greater than one. Show that it is possible to design a numerical
scheme of order p + q by applying a procedure, which is similar to the
procedure used in Section 1.8 for q = 2. Note that the Richardson
Extrapolation device discussed in Section 1.1 — Section 1.7 will be
obtained by this general algorithm by setting q =1 .

(B) Try to evaluate the advantages and the drawbacks of the method designed
as described above for an arbitrary positive integer q.

(C) The stability properties of the methods obtained with q > 1 should also
be carefully studied.
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Chapter 2

Richardson Extrapolation
for Explicit Runge-Kutta Methods

It is convenient to start the investigation of several efficient implementations of the Richardson
Extrapolation with the case where this technique is applied together with the Explicit Runge-Kutta
Methods (ERKMSs), which are very popular among scientists and engineers. It was mentioned in the
previous chapter that the implementation of the Richardson Extrapolation with any algorithm for
solving systems of ODEs should be considered as a new numerical method. Assume now that Method
A is any numerical algorithm from the class of the ERKMs and that Method B is the new numerical
method formed by the combination of Method A with the Richardson Extrapolation. If the stability
properties of the Method B (which will be discussed in detail in this chapter) are not causing
computational problems, then the strategy needed to achieve better performance, when the Richardson
Extrapolation is used, is very straight-forward. One can easily achieve excellent efficiency in this case,
because Method B can be run successfully with a time-stepsize, which is considerably larger than the
time-stepsize used with Method A. It is possible to select large time-stepsizes and to achieve better
accuracy results, because Method B is, as was shown in the previous chapter, more accurate than
Method A. This means that in this situation, i.e. when the stability is not causing troubles, the
application of the Richardson Extrapolation will indeed always lead to a very efficient computational
process. However, the situation is, unfortunately, not always so simple. The problem is that the stability
requirements are very often putting severe restrictions on the choice of large time-stepsizes when
explicit numerical methods are selected. The difficulties are much greater when the systems solved are
very large. Therefore, it is necessary to require that at least two extra conditions are satisfied:

(a) Method A should have good stability properties
and, moreover, an additional and rather strong requirement must also be imposed,
(b) Method B should have better stability properties than Method A.

The computational process will be efficient even for mildly stiff systems of ODEs when the above two
conditions, both condition (a) and condition (b), are satisfied. It will be shown in this chapter that it is
possible to satisfy simultaneously these two requirements for some representatives of the class of
the ERKMs.

In Section 2.1 we shall present several definitions, which are related to the important concept of
absolute stability of some numerical methods for solving systems of ODEs. These definitions are valid
not only for the class of the Explicit Runge-Kutta Methods, but also for the much broader class of one-
step methods for solving systems of ODEs.

The class of the Explicit Runge-Kutta Methods is introduced in Section 2.2 and the stability

polynomials, which are induced when these methods are used to handle the classical scalar and linear
test-problem that has been introduced by G. Dahlquist in 1963, Dahlquist (1963), are presented in the

25



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

case when some numerical method for solving ODEs is directly applied in the computational process
(i.e. when the selected numerical method is applied without using the Richardson Extrapolation). Many
of the assertions made in this section are also valid for the class of one-step methods. The ERKMs
form a sub-class of the class of one-step methods.

Stability polynomials for the new numerical methods, which are combinations of Explicit Runge-
Kutta Methods with the Richardson Extrapolation, are derived in Section 2.3. Also in this case the
classical scalar and linear test-problem, which was introduced by G. Dahlquist in 1963, is used and the
results are valid for the broader class of one-step methods.

In Section 2.4, the absolute stability regions of the Explicit Runge-Kutta Methods, when these are
applied directly in the solution of systems of ODEs, are compared with the absolute stability regions
of the new numerical methods, which appear when the Explicit Runge-Kutta Methods are combined
with the Richardson Extrapolation. We assume in this section that the number m of stages of the
selected ERKM is equal to its order of accuracy p . It is verified that the absolute stability regions
of the new numerical methods (derived by applying the Richardson Extrapolation) are always larger
than those of the underlying ERKMs when this assumption, the assumption m = p, is made.

Three appropriate numerical examples are formulated in Section 2.5. By using these examples it will
be possible to demonstrate in Section 2.8 the fact that the new numerical methods resulting when
Explicit Runge-Kutta Methods are combined with Richardson Extrapolation can be used with larger
time-stepsizes than the time-stepsizes used with the original Explicit Runge-Kutta Methods when these
are applied directly and, moreover, that this is also true in the situations where the stability restrictions
are much stronger than the accuracy requirements.

The organization of the computations, which are related to the three examples introduced in Section
2.5, is explained in Section 2.6. The selected by us particular approach during the organization of the
computational process allowed us to compare in a better way both the accuracy achieved during the
numerical solution and the convergence rates when the time-stepsizes are successively decreased.

The numerical methods, the absolute stability regions of which are shown in Section 2.4, form large
classes when the order of accuracy p is greater than one. All methods within any of these classes
have the same absolute stability region. The particular Explicit Runge-Kutta Methods from these
classes, which are actually applied in the numerical experiments, are presented in Section 2.7.

Numerical results, which are obtained with the particular methods selected in Section 2.7 during the
solution process organized as explained in Section 2.6, are given and discussed in Section 2.8. It is
clearly demonstrated that the results are both more accurate and more stable when the ERKMs are
combined with the Richardson Extrapolation.

Explicit Runge-Kutta methods (ERKMSs) with even more enhanced absolute stability properties are
derived and tested in Section 2.9. In this section it is assumed that p <m and ERKMs obtained
by using two particular pairs (m,p) =(4,3) and (m,p)=(6,4) are studied under the
requirement to achieve good (and in some sense optimal) stability properties both in the case when
these methods are used directly and also in the case when their combinations with the Richardson
Extrapolation are to be applied in the solution process. The ERKMs with optimal stability regions form
two large classes. Particular methods, which have good accuracy properties, are selected from each of
the two classes and their efficiency is demonstrated by numerical experiments.
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The discussion in Chapter 2 is finished with several concluding remarks in Section 2.10. Some
possibilities for further improvements of the efficiency of the Richardson Extrapolation when this
technique is used together with Explicit Runge-Kutta Methods are also sketched in the last section of
this chapter. A conjecture, which is inspired by the results obtained in connection with the ERKMs and
their combinations with the Richardson Extrapolation, is formulated at the end of Chapter 2.

Several problems for future research are proposed in the last section, Section 2.11, of this chapter.

2.1. Stability function of one-step methods for solving systems of ODEs

Consider again the classical initial value problem for non-linear systems of ordinary differential
equations (ODEs), which was defined by (1.1) and (1.2) in the previous chapter. Assume that
approximations y, of the values of y(t,) are to be calculated at the grid-points given in (1.6), but
note that the assumption for an equidistant grid is done in this chapter only in order to facilitate and to
shorten the presentation of the results; approximations 'y, that are calculated on the grid (1.7) can
also be considered in many of the cases treated in this section and in the following sections.

One of the most important requirements, which has to be imposed during the attempts to select good
and reliable numerical methods and which will in principle ensure reliable and robust computer
treatment during the numerical solution of the problem defined by (1.1) and (1.2), can be explained in
the following way.

Let us assume that the exact solution y(t) of the initial value problem for systems of ODEs defined
by (1.1) and (1.2) is a bounded function in the whole integration interval. This assumption is not a
serious restriction. On the contrary, it is necessary, because such a requirement appears very often,
practically nearly always, and has to be satisfied for many practical problems that arise in different
fields of science and engineering. When the assumption for a bounded solution y(t) of the considered
system of ODEs is made, it is very desirable to establish the fact that the following important
requirement is also satisfied:

The approximate solution, which is obtained by the selected numerical
method for any set of grid-points (1.6), must also be bounded when the
exact solution is bounded.

The numerical solution is defined by the sequence {y;, y2, ... ,yn}, Which inthis case is computed
by some Explicit Runge-Kutta Method on the grid-points of (1.6), but this sequence may also be
obtained by using the non-equidistant grid (1.7). It is obvious that the numerical solution is bounded if
there exists a constant L < oo, suchthat ||ly,|| <L forthe selected norm and for all sets of grid-
points (1.6) or (1.7) for all indices n € {1, 2, ... , N}.
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It is obvious that such a requirement (the requirement to compute a bounded numerical solution when
the exact solution is a bounded function) is quite natural. Moreover, the natural requirement for
obtaining a bounded numerical solution, in the case when the exact solution y(t) is bounded, leads,
roughly speaking, to some stability requirements that must be imposed in the choice of the numerical
methods in an attempt to increase the efficiency of the computational process and to obtain both more
accurate and more reliable results. Dahlquist (1963) suggested to study the stability properties of the
selected numerical method for solving ODEs by applying this method not in the solution of the general
system defined by (1.1) and (1.2), but in the solution of one much simpler test-problem. Actually, in
that work, Dahlquist (1963), G. Dahlquist suggested to use the following scalar and linear test-
equation in the stability investigations:

d
2.1) d—i’:xy, te[0,0], yEC, A=a+BieC, a<0, y0)=neC.

Itis clear from (2.1) that the constant A is assumed to be a complex number with a non-positive real
part and, therefore, in this particular case the dependent variable y takes values in the complex plane.
Note too that the initial value m is in general also a complex number.

It is well-known that the exact solution y(t) of (2.1) is given by

(2.2) y(®)=mner, te [00].

It can immediately be seen that the exact solution y(t) given by (2.2) is bounded when the constraint
o < 0 thatisintroduced in (2.1) is satisfied. Therefore, it is necessary to require that the approximate
solution {y;, y2, ..., yn} computed by the selected numerical method is also bounded for any set
of grid-points (1.6).

Assume now that (2.1) is treated by using an arbitrary one-step numerical method for solving ODEs.
One-step methods are discussed in detail, for example, in Burrage (1995), Butcher (2003), Hairer,
Norsett and Wanner (1987), Henrici (1968), and Lambert (1991). Roughly speaking, only the
approximation y,_; of the solution at the grid-point t,_; is used in the calculation of the
approximation 'y, atthe next grid-point t, of (1.6) when one-step methods are selected. A more
formal statement can be derived from the definition given on p. 64 in Henrici (1968), however, this is
not very important for the further discussion in this chapter, where we shall study Explicit Runge-Kutta
Methods, and the above explanation is quite sufficient for our purposes. The important thing is only
the fact that the results presented in this section are valid for any one-step method for solving systems
of ODEs (and, thus, also for the Explicit Runge-Kutta Methods, which form a sub-class of the class of
one-step methods).

Let the positive constant (the time-stepsize) h be given and consider the following set of grid-points,
which is very similar to (1.6):

(23) t0:0, tn:tn_1+h:t0+nh (n=1,2,...).
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Approximations of the exact solution y(t) from (2.2) can successively, step by step, be calculated
on the grid-points of the set defined in (2.3). Moreover, it is very easy to show, see more details in
Lambert (1991), that the application of an arbitrary one-step method in the treatment of (2.1) leads to
the following recursive relation:

(2.4) y,=R(V)yup_1= [RMWM)]"yo, v= Ah, n=1,2,..

The function R(v) is called the stability function (see, for example, Lambert, 1991). If the applied
one-step method is explicit, then this function is a polynomial. It is a rational function (some ratio of
two polynomials, see Chapter 4) when implicit one-step methods are used.

It can immediately be concluded from (2.4) that if the relation |R(v)| < 1 issatisfied for some value
of v= hA, then the selected one-step method will produce a bounded approximate solution of (2.1)
for the applied value h of the time-stepsize. It is said that the selected one-step numerical method is
absolutely stable for this value of parameter v (see again Lambert, 1991).

Consider the set of all points v located in the complex plane to the left of the imaginary axis, for
which the relationship |R(v)| < 1 holds. The set of these points is called absolute stability region
of the one-step numerical method under consideration (Lambert, 1991, p. 202).

The absolute stability definitions related to the scalar and linear test-problem (2.1), which were
introduced above, can easily be extended for some linear systems of ODEs with constant coefficients
that are written in the form:

d
(2.5) d—{sz, te[0w], yeDccC, s=>1, y0=n, nebD.

It is assumed here that A € C* s a given constant and diagonalizable matrix with complex
elements and that m € C* is some given vector with complex components. Under the first of these
two assumptions, there exists a non-singular matrix Q suchthat Q"!AQ=A where A isa
diagonal matrix, whose diagonal elements are the eigenvalues of matrix A from the right-hand side
of (2.5). Substitute now the expression y = Q~'z in (2.5). The result is:

d _ _
(2.6) d—:zAz, te[0w], zeDcC, s=1, z0) =7fj=Qn, HED.

Assume that the real parts of all eigenvalues of matrix A are non-positive. It is clear that system
(2.6) consists of s independent scalar equations of type (2.1) when this assumption is satisfied. A
stability function R(v;), i=1,2,...,s, where v; =ha;, canbe associated with each of these
s equations when the selected one-step method is implicit. If the applied method is explicit then
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R(v;) is a polynomial. This means that the following definition for absolute stability related to
problem (2.6) with some matrix A can be introduced in both cases. It is said that the one-step method
is absolutely stable when it is applied in the numerical solution of (2.6) with some time-stepsize h if
the inequality |R(v;)| <1 s satisfied for all eigenvalues 2;, i=1,2,...,s , of matrix A.

The definition can be slightly simplified when all eigenvalues of matrix A are real (which means
that all of them are non-positive). It is necessary to assume in this case that A is an eigenvalue of
matrix A for which the relationship |A| = max (|A{], [Az], ..., |Ag]) holds. Note that if we set
v = hA, then the application of an arbitrary one-step method in the numerical solution of (2.6) will
produce a bounded numerical solution when the inequality |[R(v)| < 1 is satisfied. It is clear that this
definition relates the concept of absolute stability with only one of the eigenvalues of matrix A, with
the eigenvalue, which is largest in absolute value, i.e. with |A| = max (|A¢], |Az], ..., |A]).

The above analysis shows that the problems connected with the stability of the computations during
the numerical solution of the system (2.6) are slightly more complicated than the problems with the
stability of the computations of the scalar and linear equation (2.1), because it is necessary to introduce
arequirement that the stability polynomials must satisfy the inequality |R(v;)| < 1 for all eigenvalues
A, i=1,2,..,s,0f matrix A inthe latter case. However, the remarkable thing is that if the absolute
stability region for the scalar and linear problem (2.5) is defined in a quite similar way as it was defined
for the scalar equation (2.1), then the main ideas remain the same. The single relationship |R(v)| <
1 for some given value veC™, then v isa point of the absolute stability region of the one-step
numerical method used in the solution of (2.1) should now be replaced by a slightly more complicated
requirement. More precisely, as stated above, the computations needed to obtain a numerical solution
of the system (2.6) with a one-step method will be stable for a given time-stepsize h, if all points
v; = hA; are inside the absolute stability region of the method. Therefore, it becomes immediately
clear that for some linear systems of ODEs with constant coefficients the absolute stability region can
be introduced precisely in the same way (or at least in a very similar way) as in the case where the
scalar equation (2.1) is considered.

If matrix A is not constant, i.e. if A = A(t) and, thus, if the elements of this matrix depend on the
time-variable t, then the above resultis no more valid. Nevertheless, under certain assumptions one
can still expect the computational process to be stable. The main ideas, on which such an expectation
is based, can be explained as follows. Assume that n is an arbitrary positive integer and that a matrix
A(t,) where t, € [t,_1,t,] isinvolved in the calculation of the approximation y, = y(t,) by
the selected one-step numerical method. Assume further that matrix A(t,) is diagonalizable for all
values of t, . Then some diagonal matrix A(t,) will appear at time-step n instead of A in
(2.6). Moreover, the eigenvalues of matrix A(t,) will be the diagonal elements of A(t,) . Denote

by A;(tn), Ax(t,), ... , A (t,) the eigenvalues of matrix A(t,) . Assume that the real parts of
all eigenvalues are non-positive and consider the products of these eigenvalues with the time-stepsize
h: vi(t,) =hA (&) , va(ty) =hay(E,) , ... , ve(E,) = hay(t,). A stability polynomial

R(vi(t,)), i=1,2,..,s, can be associated with each of these quantities. It is clear that one should
not expect the appearance of stability problems during the computations when the inequalities
IR(vi(t))| <1, i=1,2,..,s, aresatisfied. It is clear that it is necessary to require that similar
inequalities are satisfied for all points t, of the grid (2.3). This procedure seems to be rather
complicated, but the heart of the matter is the fact that the system (2.6) is decoupled at every point of
the grid (2.3) into a set of independent equations; each of them of the type (2.1). After this observation,
the expectation for obtaining stable results can be expressed as follows: if the time-stepsize h is such
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that all inequalities |R(v;(E,))| < 1 are satisfied at every time-step n = 1,2, .., and for all indices
i=1,2,..,s, thenone should expect the computational process to remain stable.

Even more important is the fact that if the absolute stability region is formally defined precisely in the
same way as it was defined above, i.e. if |R(v)| <1 forsomegivenvalue v € C~, then v is
a point of the absolute stability region of the one-step numerical method used in the solution of (2.6)
when matrix A = A(t) is time-dependent. Now the requirement of a stable computational process in
the solution of (2.6) when A is a time-dependent matrix can be reformulated in the following way:
one should expect the computations in the solution of (2.6) with a one-step method to be stable, when
matrix A = A(t) istime-dependent, for a given time-stepsize h, if all points v;(t,) = ha;(t,) .
where n=1,2,.., and i=1,2,..,s, areinside the absolute stability region of the method. It is
necessary to emphasize once again here that there is no guarantee that the computational process will
necessarily be stable, but nearly all practical computations, which were carried out during more than
50 years after the introduction of the absolute stability concept in Dahlquist (1963), indicate that
stability is achieved nearly always (or at least very often).

Quite similar, and again heuristic, considerations can also be applied in connection with the non-linear
system of ODEs described by (1.1) and (1.2). In this case instead of matrix A(t) one should consider
the Jacobian matrix J = of/dy of function f(t,y) inthe right-hand-side of (1.1); see more details
for example in Lambert (1991).

The scalar and linear equation (2.1) is very simple, but it is nevertheless very useful in the investigation
of the stability of the numerical methods. This fact has been pointed out by many specialists working
in the field of numerical solution of systems of ODEs (see, for example, the remark on page 37 of
Hundsdorfer and Verwer, 2003). The above considerations indicate that it is worthwhile to base the
absolute stability theory (at least until some more advanced and more reliable test-problem is found)
on the simplest test-problem (2.1) as did G. Dahlquist in 1963; see Dahlquist (1963).

The results presented in this section are valid for an arbitrary (either explicit or implicit) one-step
method for solving systems of ODEs. In the next sections of this chapter we shall concentrate our
attention on the investigation of the stability properties of the Explicit Runge-Kutta Methods (the
ERKMs), which form a sub-class of the class of one-step methods. After that we shall show that if
some numerical methods from this sub-class are combined with the Richardson Extrapolation, then the
resulting new numerical methods will sometimes have increased absolute stability regions. For these
new numerical methods it will be possible to apply large time-stepsizes also in the case where the
stability requirements are stronger than the accuracy requirements and, thus, if the stability
requirements, and not the accuracy requirements, put some restrictions on the choice of the time-
stepsize during the numerical treatment of the system of ODEs.

2.2. Stability polynomials of Explicit Runge-Kutta Methods

Numerical methods of Runge-Kutta type for solving systems of ODEs are described and discussed in
many text-books and papers; see, for example, Burrage (1995), Butcher (2003), Hairer, Nersett and
Wanner (1987), Henrici (1968), and Lambert (1991). Originally, some particular methods of this
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type were developed and used (more than a hundred years ago) by Kutta (1901) and Runge (1895). It
should be mentioned here that the contribution of a third mathematician, Karl Heun (Heun, 1900), has
been underestimated. He also developed a numerical method belonging to this class, which is still
called Heun’s method, and it would have been much more correct to use the name Runge-Heun-Kutta
methods for the numerical algorithms from this class, but the name Runge-Kutta methods is already
firmly established in this field.

The general m-stage Explicit Runge-Kutta Method is a one-step numerical method for solving the
systems of ODEs defined by (1.1) and (1.2). This numerical method is defined by the following formula
(more details can be found, when necessary, in any of the text-books quoted above):

m
(2-7) Yn=Yn—1+hZcik{l '
i=1

The coefficients ¢; are given constants, while at an arbitrary time-step n the stages k' are
defined by

i-1
(28) 111 = f(tn—l'YH—l) , k:‘ =f th-1+ h ai, Yn-1+ hz bl] k]n , 1=2,3,..,m,
j=1

with
i-1

(2.9) ai:zbii’ i=23,..,m,
j=1

where b;; are also some given constants depending on the particular numerical method.

Assume that the order of accuracy of the chosen Explicit Runge-Kutta Method is p and, additionally,
that the choice p = m is made for the numerical method under consideration. It can be shown (see,
for example, Lambert, 1991) that it is possible to satisfy the requirement p=m onlyif m <4
while we shall necessarily have p <m when m is greater than four. Assume further that the
method defined with (2.7), (2.8) and (2.9) is applied in the treatment of the special test-problem (2.1).
Then the stability polynomial R(v) associated with the selected ERKM is given by (see Lambert,
1991, p. 202):

2 V3

(2.10) R(W)=1+v+—+ —+ -+

21 30 F p = m, m=12234.

32



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

Mainly Explicit Runge-Kutta Methods with p = m  will be considered in this chapter, but in Section
2.9 some methods with p < m and with enhanced stability properties will be derived and tested.

2.3. Using Richardson Extrapolation together with the scalar test-problem

Consider an arbitrary (explicit or implicit) one-step method for solving systems of ODEs. Assume that:

(a) the selected one-step numerical method is of order p

and

(b) an approximation y, of the exact value y(t,) of the solution of (2.1) has to be

calculated under the assumption that a sufficiently accurate approximation y,_; has
already been computed.

The classical Richardson Extrapolation, which was introduced in Chapter 1 for the system of ODEs
defined in (1.1) and (1.2), can easily be formulated for the case where the scalar and linear test-problem
(2.1), which was proposed by Dahlquist (1963), is solved. The algorithm, by which the Richardson
Extrapolation is implemented in this way, can be presented as shown below. Note that the relationship
(2.4) and, thus, the stability function R(v) (or the stability polynomial when the selected one-step
method is explicit) is used in the formulation of this algorithm.

Step 1 | Perform one large time-step with a time-stepsize h by using y,_; as a starting value
to calculate:
(2- 11) Z, = R(V) Yn-1 -
Step 2 | perform two small time-steps with a time-stepsize  0.5h by using Y,_; as a starting
value in the first of the two small time-steps:
_ v Vy vy 12
(2- 12) Wp = R(E) Yn-1, wp, =R (E) Wh = [R (E)] Yn-1-
Step 3 | Compute (let us repeat here that p is the order of accuracy of the selected numerical

method) an improved solution by applying the basic formula (1.8) by which the
Richardson Extrapolation was defined in Chapter 1:

wn_ 2R R
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Note too that in the derivation of the algorithm it is assumed that the active implementation of
Richardson Extrapolation is used (see Section 1.7).

The last relationship, equality (2.13), in the scheme presented above shows clearly that the
combination of the selected one-step numerical method and the Richardson Extrapolation can
also be considered as a one-step numerical method for solving systems of ODEs when it is used to
solve the Dahlquist scalar test-example (2.1).

Furthermore, it can easily be shown (by applying the same technique as that used in Chapter 1) that the
approximation y, calculated by (2.13) is usually of order p + 1 and, therefore, it is always more
accurate than both z, and w, when the time-stepsize is sufficiently small. The most important
fact is that the stability function (or polynomial, when the underlying numerical method is explicit) of
the combined numerical method is expressed by the stability function (the stability polynomial) R(v)
of the underlying numerical method and is given by the following expression:

\Y%

2 [R(3)] - R
20 — 1 '

(2.14) R(v) =

The above considerations are very general. As we already stated above, they are valid when the
underlying numerical formula is any explicit or implicit one-step numerical method. However, in the
following sections (2.4) — (2.8) of this chapter we shall restrict ourselves to the class of Explicit Runge-
Kutta Methods with p =m..

It is necessary now to emphasize additionally the fact that the stability functions or polynomials of the
underlying method and those of its combination with the Richardson Extrapolation, i.e. the functions
or the polynomials R(v) and R(v), are different, which implies that the absolute stability regions
of the underlying method and its combination with the Richardson Extrapolation will in general also
be different.

Our purpose will be to study the impact of the application of the Richardson Extrapolation on the
stability properties of the underlying Explicit Runge-Kutta Methods. In other words, we shall compare
the absolute stability region of each of the Explicit Runge-Kutta Methods, for which p=m is
satisfied, with the corresponding absolute stability region, which is obtained when the method under
consideration is combined with the Richardson Extrapolation.
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2.4. Impact of Richardson Extrapolation on the absolute stability properties

Let us repeat once again that the absolute stability region of a given one-step method (and also of a
given numerical method of the class of the Explicit Runge-Kutta Methods) consists of all complex
points v = hA for which the stability function (if the numerical method is explicit, the stability
function is reduced to a polynomial) satisfies the inequality |R(v)| < 1. If the method is combined
with the Richardson Extrapolation, the condition |R(v)| <1 must be replaced with the stronger
requirement |R(v)| < 1, which was derived in the previous section; see (2.14). The last requirement
is indeed stronger, also in the case where the numerical method is explicit, because as mentioned in the
end of the previous section the two stability polynomials are different. This can be demonstrated by
the following simple example. In the case, where a fourth-order four-stage Explicit Runge-Kutta
Method is used, the polynomial R(v) will be of degree four, while the degree of the corresponding
polynomial R(v) will be eight when this method is combined with the Richardson Extrapolation. The
same rule holds for all other Explicit Runge-Kutta Methods: the degree of the polynomial R(v) is
by a factor of two higher than the degree of the corresponding polynomial R(v). Therefore, the
investigation of the absolute stability regions of the new numerical methods (consisting of the
combinations of Explicit Runge-Kutta Methods and the Richardson Extrapolation) will be much more
complicated than the investigation of the absolute stability regions of Explicit Runge-Kutta Methods
when these are used directly.

The absolute stability regions of the classical Explicit Runge-Kutta Methods (ERKMs) with p = m
and m=1,2,3,4 are presented, for example, in Lambert (1991), p. 202. In this section these
absolute stability regions will be compared with the absolute stability regions obtained when the
Richardson Extrapolation is additionally used.

First and foremost, it is necessary to describe the algorithm, which has been used to draw the absolute
stability regions. The boundaries of the parts of the absolute stability regions that are located above the
negative real axis and to the left of the imaginary axis can been obtained in the following way. Let v
beequalto @+ Bi with @ < 0 andassumethat £ > 0 issome very small increment. We must
mention that from (2.1) and (2.4) it followsthat @ =ha and Bi = hBi. Start with a fixed value
a =0 ofthereal partof v=a+ Bi and calculate the values of the stability polynomial R(v)
for - @=0 andfor B=0, g 2¢ 3¢ ... Continue this process as long as the inequality
IR(v)| <1 is satisfied and denote by B, the last value for which the requirement |[R(v)| <1
was fulfilled. Set o = —& and repeat the same computations for the new value of @« and for
B=0, & 2¢ 3¢, ... Denote by B; the largest value of B for which the stability requirement
IR(v)|] <1 issatisfied. Continuing the computations, it will be possible to calculate the coordinates
of a very large set of points  { (0,Bo), (—& B1), (—2¢B2),... } located in the negative part of the
complex plane over the real axis. More precisely, all of these points are located close to the boundary
of the part of the absolute stability region which is over the negative real axis and to the left of the
imaginary axis. Moreover, all these points lie inside the absolute stability region, but if € is sufficiently
small, then they will be very close to the boundary of the absolute stability region. Therefore, the curve
connecting successively all these points will in such a case be a very close approximation of the
boundary of the part of the stability region, which is located over the real axis and to the left of the
imaginary axis.

It should be mentioned here that € = 0.001 was actually used in the preparation of all plots that are
presented in this section.
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It can easily be shown that the absolute stability region is symmetric with regard to the real axis.
Therefore, there is no need to repeat the computational process that was described above for negative
values of the imaginarypart B8 of v=hA=a+ Bi.

Some people are drawing parts of the stability regions which are located to the right of the imaginary
axis (see, for example, Lambert, 1991). In our opinion, this is not necessary and in the most of the
cases it will not be desirable either. The last statement can be explained as follows. Consider equation
(2.1) and let again v beequalto @« -+ Bi but assume now that @ is a positive number. Then the
exact solution (2.2) of (2.1) is not bounded and it is clearly not desirable to search for numerical
methods, which will produce bounded approximate solutions (the concept of relative stability, see
Lambert, 1991, p. 75, is more appropriate in this situation, but this topic is beyond the scope of the
present book). Therefore, no attempts were made to find the parts of the stability regions which are
located to the right of the imaginary axis.

The main advantages of the described in this section procedure for obtaining the absolute stability
regions of one-step methods for solving systems of ODEs are two:

(a) it is conceptually very simple
and

(b) it is very easy to prepare computer programs exploiting it; moreover, it is
very easy to carry out the computations in parallel.

The same (or at least a very similar) procedure has also been used in Lambert (1991). Other procedures
for drawing the absolute stability regions for numerical methods for solving systems of ODEs can be
found in many text-books; see, for example, Hairer, Norsett and Wanner (1987), Hairer and
Wanner (1991), Hundsdorfer and Verwer (2003) and Lambert (1991).

It should also be stressed here that the procedure for drawing the absolute stability regions of the
Explicit Runge-Kutta Methods (ERKMs) with p = m, which was described above, is directly
applicable for the new numerical methods which arise when any of the ERKMs with p=m is
combined with the Richardson extrapolation. It will only be necessary to replace the stability
polynomial R(v) with R(v) when these new methods are studied. It should be repeated here that
the computations will be much more complicated in the latter case.

2.4.1. Stability regions related to the first-order one-stage Explicit Runge-Kutta Method

The first-order one-stage Explicit Runge-Kutta Method is well-known also as the Forward Euler
Formula or as the Explicit Euler Method. Its stability polynomial can be obtained from (2.10) by

applying p=m=1:

(2.15) R(v)=1+v.

36



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

The application of the Richardson Extrapolation together with the first-order one-stage Explicit Runge-
Kutta Method leads according to (2.10) applied with p =m =1 and (2.14) to a stability polynomial
of the form:

2

(2.16) RW) = 2(1+%) —(1+V) .

The absolute stability regions, which are obtained by using (2.15) and (2.16) as well as the procedure
discussed in the beginning of this section, are given in Fig. 2.1.

S TABILITY REGIONS
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ONE-STAGE BRUNGE-KUTTA METHOD
WITH RICHARDSON EXTRAPOLATION
Figure 2.1

Stability regions of the original first-order one-stage Explicit Runge-Kutta Method and the combination
of the Richardson Extrapolation with this method.
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2.4.2. Stability regions related to the second order two-stage Explicit Runge-Kutta Methods

The stability polynomial of any second-order two-stage Explicit Runge-Kutta Method (there exists a
large class of such methods) can be obtained from (2.10) by applying p = m =2:

2

(2.17) R(v)=1+v+%.

The application of the Richardson Extrapolation together with any of the second-order two-stage
Explicit Runge-Kutta Method leads according to (2.10) applied with p=m=2 and (2.14) to a
stability polynomial of degree four, which can be written in the following form:

2 2
(2.18) R(v) = ; l1+§+%(g)zl — % <1+v+%) .

The stability regions obtained by using (2.17) and (2.18) together with the procedure discussed in the
beginning of this section are given in Fig. 2.2.

2.4.3. Stability regions related to the third-order three-stage Explicit Runge-Kutta Methods

The stability polynomial of any third-order three-stage Explicit Runge-Kutta Method (there exists a
large class of such methods) can be obtained from (2.10) by applying p = m=3:

2 V3

(2.19) R(v)=1+v+a+ 3

The application of the Richardson Extrapolation together with any of the third-order three-stage
Explicit Runge-Kutta Method leads according to (2.10) applied with p=m =3 and (2.14) to a
stability polynomial of degree six, which can be written in the following form:

3

2 21\2 31 \2

1 1+ +V2+v3
7 M TR T

@20 RW=3[1+3+2() +56)

The absolute stability regions, which are obtained by using (2.19) and (2.20) as well as the procedure
discussed in the beginning of this section, are given in Fig. 2.3.
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Figure 2.2

Stability regions of any representative of the class of the second-order two-stage Explicit Runge-Kutta

Methods and the combination of the Richardson Extrapolation with this method.

2.4.4. Stability regions related to the fourth-order four-stage Explicit Runge-Kutta Methods

The stability polynomial of any fourth-order four-stage Explicit Runge-Kutta Method (there exists a

large class of such methods) can be obtained from (2.10) by applying p = m =4:

B VZR VE S VA
R(V)—1+V+z+ §+ ?
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The application of the Richardson Extrapolation together with the fourth-order four-stage Explicit
Runge-Kutta Method leads according to (2.10) applied with  p=m =4 and (2.14) to a stability
polynomial of degree eight, which can be written in the following form:

S TABILITY R EGI ON S
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THREE-STAGE RUNGE-KUTTA METHOD —_—
WITH RICHARDSON EXTRAPOLATION
Figure 2.3

Stability regions of any representative of the class of the third-order three-stage Explicit Runge-Kutta
Methods and the combination of the Richardson Extrapolation with this method.
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The absolute stability regions, which are obtained by using (2.21) and (2.22) as well as the procedure
discussed in the beginning of this section, are given in Fig. 2.4.
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Stability regions of any representative of the class of the forth-order four-stage Explicit Runge-Kutta
Method and the combination of the Richardson Extrapolation with this method.

2.4.5. About the use of complex arithmetic in the program for drawing the plots.

The variables R (which is the value of the stability polynomial of the selected method) and v were
declared as “DOUBLE COMPLEX” in a FORTRAN program implementing the algorithm described
in the beginning of this section. After that formulae (2.15) — (2.22) were directly used in the
calculations. When the computation of the complex value of R for a given value of v is completed,
the real part A and the imaginary part B of R can easily be extracted. The numerical method under

consideration is stable for the current value of v if the condition /A2 + B2 < 1 is satisfied.
It should be noted that it is also possible to use only real arithmetic calculations in the computer

program. If such an approach is for some reasons more desirable than the use of complex arithmetic
calculations, then long transformations are to be carried out in order first to obtain directly analytic
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expressions for A and B . After that the condition A2 + B2 < 1 can again be used to check if the
method is stable for the current value of v . This alternative approach is fully described in Zlatev,
Georgiev and Dimov (2013a).

2.5. Preparation of appropriate numerical examples

Three numerical examples will be defined in §2.5.1, §2.5.2 and §2.5.3. These examples will be used to
calculate and present numerical results in the following sections. The first and the second examples are
linear systems of ODEs with constant coefficients and are created in order to demonstrate the fact that
the theoretical results related to the absolute stability are valid also when the Richardson Extrapolation
is additionally applied. Each of these two examples contains three equations and its coefficient matrix
has both real and complex eigenvalues. In the first example, the real eigenvalue is the dominant one,
while the complex eigenvalues put the major constraints on the stability of the computational process
in the second example. The third example is a non-linear system of ODEs. It contains two equations
and is taken from Lambert (1991), p. 223.

The main purpose with the three examples is to demonstrate the fact that the combined methods
(Explicit Runge-Kutta methods + Richardson Extrapolation) can be used with large time-stepsizes also
when the stability requirements are very restrictive. It will be shown in Section 2.8 that the combined
methods will produce good numerical solutions for some large time-stepsizes, for which the original
Explicit Runge-Kutta Methods are not stable.

2.5.1. Numerical example with a large real eigenvalue

Consider the linear system of ordinary differential equations (ODES) with constant coefficients given
by

d
(2.23) d_)t’ =Ay, t€[0,13.1072], y= (yu.y2y3)", y(0)=(1,02)", Ae R¥*3,

The elements of matrix A from (2.23) are given below:

(224) dq1 = 74’14, dqp = 749, 7, dq3 = —741. 7,

(225) dyq1 = —765.7, djy = —758, dp3 = 757.7,

(226) dzq = 7257, dzy = 74‘17, dzz = —734.
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The three components of the exact solution of the problem defined by (2.23) — (2.26) are given by

(2.27)  yy(t) = e 93t sin 8t + 7750,

(2.28)  y,(t) = e %3t cos 8t — e 70t

(2.29) y3(t) = e %3t (sin 8t + cos 8t) + e~ 750t

It should be mentioned here that the eigenvalues of matrix A from (2.23) are given by

(2.30) p,=-750, p,=-0.3+8i, p;=-0.3-8i.

The absolute value of the real eigenvalue p,; is much larger than the absolute values of the two
complex eigenvalues of matrix A . This means, roughly speaking, that the computations will be stable
when |v| = h|p4| is smaller than the length of the stability interval on the real axis (from the plots
givenin Fig. 2.1 - Fig. 2.4 it is clearly seen that this length is smaller than 3 for all four Explicit Runge-
Kutta Methods studied in the previous sections). In fact, one should require that all three points hpy,
hu, and huz must lie in the absolute stability region of the used method, but it is clear that the last
two points are not very important when the absolute stability is considered (these two points will be
inside the absolute stability regions, when this is true for the first one).

The plots of the three components of the solution of the example presented in this sub-section are given
in Fig. 2.5.
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SOLUTION OF THE FIRST EXAMPLE
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Figure 2.5
Plots of the three components of the solution of the system of ODEs defined by (2.23) — (2.26). The

analytical solution is known in this example and is given by the formulae (2.27) — (2.29). The real
eigenvalue of matrix A is much larger, in absolute value, than the two complex eigenvalues; see
(2.30). In the program, by which the above plot is produced, the first-order one-stage Explicit Runge-
Kutta Method is used with h = 107> and the maximal error found during this run was approximately
equalto 6.63 * 107% .

2.5.2. Numerical example with large complex eigenvalues

Consider the linear system of ordinary differential equations (ODES) given by

d
(2.31) d—’t'=Ay+b, t €[0,13.1072], y=(yuy2y3)", y(0) =(13,0)T

-

AeR¥, b=(-4e%'sin4t, —8e "*sin4t, 4e %3 sin4t)T.
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The elements of matrix A from (32) are given below:

(232) dq1 = —937. 575, dqp = 5624‘25, dq3 = 187. 575,

(233) dpq = —18765, dpyy = —18765, dy3 = —56235,

(2.34) az; = —1124.925,  az, = 375.075, as3 = —375.075.

The three components of the exact solution of the problem defined by (2.31) — (2.34) are given by

(2.35)  yy(t) = e 75% sin 750t + e %3t cos 4t,

(2.36) y,(t) = e 7% cos 750t + 2e %3t cos 4t,

(2.37)  y3(t) = e775% (sin 750t + cos 750t) — e *3t cos 4t.

It should be mentioned here that the eigenvalues of matrix A from (32) are given by

(2.38) py; =-750+750i, p,=-750—750i, p3=-0.3.

The absolute value of each of the two complex eigenvalues p; and py is much larger than the
absolute value of the real eigenvalue p3 . This means that the computations will be stable when v =
hy, is inside of the absolute stability region of the numerical method under consideration. Note that
this value is located above the real axis (not on it, as in the previous example).

The three components of the solution of the example presented in this sub-section are given in Fig. 2.6.
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SOLUTION OF THE SECOND EXAMPLE
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Figure 2.6
Plots of the three components of the solution of the system of ODEs defined by (2.31) — (2.34). The

analytical solution is known in this example and is given by the formulae (2.35) — (2.37). The complex
eigenvalues of matrix A are much larger, in absolute value, than the real eigenvalue; see (2.38). In the
program, by which the above plot is produced, the first-order one-stage Explicit Runge-Kutta Method
is used with h = 107> and the maximal error found during this run was approximately equal to
4.03x107°.

2.5.3. Non-linear numerical example

Consider the non-linear system of two ordinary differential equations (ODEs) given by

dy, 1 et’
2. =l oy, — -
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dy, 1 2 2
2.40) —t=—— e —2te",
( 0) dt y2 ¢ ¢

The integration interval is [0.9,2.21072] and the initial values are

1 2
(2.41) y,(0.9) = 09’ y. (0.9) = e 097,

The exact solution is given by

t2

1
(2.42) y1(v) = FEE £ (0.9) =e”

The eigenvalues of the Jacobian matrix of the function from the right-hand-side of the system of ODEs
defined by (2.39) and (2.40) are given by

1 1
(243) m=-—5, MWm=—--=.
Y1 y2

The following expressions can be obtained by inserting the values of the exact solution from (2.42) in
(2.43):

(2.44) )= —t3, py(t) = —e?".

It is clear now that in the beginning of the time-interval the problem is non-stiff, but it becomes stiffer
and stiffer as the value of the independent variable t grows. At the end of the integration we have
|n2(2.21072)| =~ 17581 and since the eigenvalues are real, the stability requirement is satisfied if
h|p,| < L where L is the length of the stability interval on the real axis for the numerical method
under consideration.

The two components of the solution of the example presented in this sub-section are given in Fig. 2.7.
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Plots of the two components of the solution of the system of ODEs defined by (2.39) — (2.41) with t €
[0.9,2.21072]. The exact solution is given in (2.42). The eigenvalues of the Jacobian matrix are
real; see (2.43). In the program, by which the above plot is produced, the first-order one-stage Explicit
Runge-Kutta method is used with h = 10~% and the maximal error found during this run was

Figure 2.7

approximately equal to 2.93 x 1077 .

2.6. Organization of the computations

The integration interval, which is [0,13.1072] for the first two examples and [0.9,2.21072] for
the third one, was divided into 128 equal sub-intervals and the accuracy of the results obtained by
any of the selected numerical methods was evaluated at the end of each sub-interval. Let
t; ,where j=1,2,..,128, betheend of any of the 128 sub-intervals. Then the following formula

is used to evaluate the accuracy achieved by the selected numerical method at this point:
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\/Zis=1(Yi(fj) - }_’ij)z |
\/2§=1 (yi(f,-))2 ,1.0]

(2.45) ERROR; =

max

The value of parameter s is 3 in the first two examples, while s = 2 is used in the third one. The
values y; = yi(f,-) are approximations of the exact solution that are calculated by the selected
numerical method at time t; (where t; isthe end of any of the 128 sub-intervals mentioned above).

The global (called sometimes also total) error is computed as

(2.46) ERROR= max __ (ERROR;) .
j=1,2, .., 128

Ten runs were performed with eight numerical methods (four Explicit Runge-Kutta Methods and the
combinations of any of the Explicit Runge-Kutta Methods with the Richardson Extrapolation).
The first of the ten runs was carried out by using h = 0.00512 and h = 0.000512 for the first

two examples and for the third one respectively. In each of the next nine runs the stepsize is halved
(which leads automatically to performing twice more time-steps).

2.7. Particular numerical methods used in the experiments

As already mentioned, there exists only one first-order one-stage Explicit Runge-Kutta Method (called
also the Forward Euler Formula or the Explicit Euler Method), which is given by

(2-4’7) Vn = ¥n-1 + h f(tn—li Yn—l) .

If m-stage Explicit Runge-Kutta Methods of order p with p=m and p = 2,3,4 are used, then
the situation changes. In this case, for each p =m = 2,3,4 there exists a large class of Explicit
Runge-Kutta Methods. The class depends on one parameter for p = 2, while classes dependent on
two parameters appear for p = 3 and p = 4. All particular methods from such a class have the same
stability polynomial and, therefore, the same absolute stability region. This is why it was not necessary
until now to specify which particular numerical method was selected in any of these three cases,
because in the previous sections of this chapter we were primarily interested in comparing the absolute
stability regions of any of the studied by us Explicit Runge-Kutta Methods with the corresponding
absolute stability regions that are obtained when the Richardson Extrapolation is additionally used.
However, it is necessary to select at least one particular method from each of the three classes when
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numerical experiments are to be carried out. The particular numerical methods that were used in the
numerical solution of the examples discussed in the previous sections are listed below.

The following method was chosen from the class of the second-order two-stage Explicit Runge-Kutta
Methods (it is called sometimes the Improved Euler Method; see Lambert, 1991):

(2-4‘8) k; = f(tn—li Yn—l)’

(249) kZ = f(tn—l + hr Vn-1 + hkl)r
1
(2.50) Yn =¥n-1+ E h (k; + k3).

The method selected from the class of the third-order three-stage Explicit Runge-Kutta Methods is
defined as follows (in fact, this is the numerical method derived by Karl Heun; Heun, 1900):

(2.51) Kkq =f(ty—1,¥n-1),

1 1
(2.52) ky= f(tn_l +3hya s +3hk, )

2 2
(2.53) k= f<tn_1 +3hya g +3hk, )

1
(2 54’) Yn = Vn-1 + Z h (kl + 3k3) .

One of the most popular methods from the class of the fourth-order four-stage Explicit Runge-Kutta
Methods is chosen for our study (this method is so popular that, when one sees a reference to a problem
having been solved by “the Runge-Kutta method”, it is almost certainly that the method presented
below has actually been used; see also Lambert, 1991):

(2.55) kq =f(ty_1,¥n-1),

1 1
(2.56) k= f(tn_1 +5hya s + bk )
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1 1
(2.57) ky=f ( tas + 5B Ya s + bk )

(2 58) k4- = f( tl‘l—l + hl Yn-1 + hk3 )I
1
(2 59) Vo = Vn-1 1 Z h (kl + Zkz + 2k3 + k4_) .

The numerical results, which will be presented in the next section, were obtained by using both the
introduced above three particular Explicit Runge-Kutta Methods as well as the Forward Euler Formula
and their combinations with the Richardson Extrapolation. More details about the selected by us
particular methods can be found in Butcher (2003), Hairer, Norsett and Wanner (1987) and
Lambert (1991).

2.8. Numerical results

As mentioned in the previous sections, the three numerical examples that were introduced in Section
2.5 have been run with eight numerical methods: the four particular Explicit Runge-Kutta Methods,
which were presented in Section 2.7, and the methods obtained when each of these four Explicit Runge-
Kutta Method is combined with the Richardson Extrapolation. The results shown in Table 2.1 —Table
2.6 indicate clearly that

(a) the expected accuracy is nearly always achieved when the stability requirements are
satisfied (under the condition that the rounding errors do not interfere with the
discretization errors caused by the numerical method which is used; quadruple
precision, utilizing 32 digits, was applied in all numerical experiments treated in this
chapter in order to ensure that this is not happening),

(b) it was verified that the Explicit Runge-Kutta Methods behave (as they should) as methods
of order one, for the method defined by (2.47), of order two, for the method defined by
(2.48) — (2.50), of order three for the method defined by (2.51) — (2.54), and of order
four, for the method defined by (2.55) — (2.59),

(c) the combination of each of these four methods with the Richardson Extrapolation behave
as a numerical method of increased (by one) order of accuracy

and
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Run | Stepsize Steps ERK1 ERKI1R ERK?2 ERK2R ERK3 ERK3R ERK4 ERK4R
1 0.00512 2560 N.S. N.S. N.S. 2.39E-05 N.S. 6.43E-03 N.S. 4.49E-10
2 0.00256 5120 | 2.01E-01 | 4.22E-02 | 4.22E-02 | 2.99E-06 | 5.97E-06 | 7.03E-09 | 2.46E-08 | 1.41E-11
3 0.00128 10240 | 9.21E-02 | 2.91E-04 | 2.91E-04 | 3.73E-07 | 7.46E-07 | 4.40E-10 | 1.54E-09 | 4.39E-13
4 | 0.00064 20480 | 4.41E-02 | 7.27E-05 | 7.27E-05 | 4.67E-08 9.33E-08 | 2.75E-11 | 9.62E-11 | 1.37E-14
5 0.00032 40960 | 2.16E-02 | 1.82E-05 | 1.82E-05 | 5.83E-09 1.17E-08 | 1.72E-12 | 6.01E-12 | 4.29E-16
6 0.00016 81920 | 1.07E-02 | 4.54E-06 | 4.54E-06 | 7.29E-10 1.46E-09 | 1.07E-13 | 3.76E-13 | 1.34E-17
7 0.00008 163840 | 5.32E-03 | 1.14E-06 | 1.14E-06 | 9.11E-11 1.82E-10 | 6.71E-15 | 2.35E-14 | 4.19E-19
8 0.00004 327680 | 2.65E-03 | 2.84E-07 | 2.84E-07 | 1.14E-11 | 2.28E-11 | 4.20E-16 | 1.47E-15 | 1.31E-20
9 0.00002 655360 | 1.33E-03 | 7.10E-08 | 7.10E-08 | 1.42E-12 | 2.85E-12 | 2.62E-17 | 9.18E-17 | 4.09E-22

10 | 0.00001 1310720 | 6.66E-04 | 1.78E-08 | 1.78E-08 | 1.78E-13 | 3.56E-13 | 1.64E-18 | 5.74E-18 | 1.28E-23

Table2.1

Accuracy results (error estimations) achieved when the first example from Section 2.5 is solved by the eight numerical
methods on a SUN computer (quadruple precision being applied in this experiment). “N.S.” means that the numerical

method is not stable for the stepsize used. “ERKp”,

p=1,2,3,4, means Explicit Runge-Kutta Method of order p .
“ERKpR” refers to the Explicit Runge-Kutta Method of order p combined with the Richardson Extrapolation.

Run | Stepsize Steps ERK1 | ERKIR | ERK2 | ERK2R | ERK3 | ERK3R | ERK4 | ERK4R
1 0.00512 2560 N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A.
2 0.00256 5120 N. A. N. A. N. A. 7.99 N. A. very big N. A. 31.84
3 0.00128 10240 2.18 145.02 145.02 8.02 8.00 15.98 15.97 32.12
4 | 0.00064 20480 2.09 4.00 4.00 7.99 8.00 16.00 16.01 32.04
5 0.00032 40960 2.04 3.99 3.99 8.01 7.97 15.99 16.01 31.93
6 0.00016 81920 2.02 4.01 4.01 8.00 8.01 16.07 15.98 32.01
7 | 0.00008 163840 2.01 3.98 3.98 8.00 8.02 15.95 16.00 31.98
8 0.00004 327680 2.01 4.01 4.01 7.99 7.98 15.97 15.99 31.98
9 | 0.00002 655360 1.99 4.00 4.00 8.03 8.00 16.03 16.01 32.03

10 | 0.00001 | 1310720 2.00 3.99 3.99 7.98 8.01 15.98 15.99 31.95
Table 2.2

Convergent rates (ratios of two consecutive error estimations from Table 2.1) observed when the first example from Section
2.5 is solved by the eight numerical methods on a SUN computer (quadruple precision being used in this experiment).
“N.A.” means that the convergence rate cannot be calculated (this happens either when the first run is performed or if the
means Explicit Runge-Kutta Method of
order p . “ERKpR?” refers to the Explicit Runge-Kutta Method of order p combined with the Richardson Extrapolation.

computations at the previous runs were not stable). “ERKp”,
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Run | Stepsize Steps ERK1 ERKI1R ERK?2 ERK2R ERK3 ERK3R ERK4 ERK4R
1 0.00512 2560 N. S. N. S. N. S. N. S. N. S. 4.95E-02 N. S. N. S.
2 0.00256 5120 N. S. N. S. N. S. 5.40E-08 N. S. 4.88E-13 N. S. 1.21E-17
3 0.00128 10240 | 2.37E-02 | 4.09E-06 | 6.81E-06 | 3.22E-11 | 1.54E-09 | 3.04E-14 | 7.34E-13 | 3.51E-19
4 0.00064 20480 | 2.58E-03 | 1.02E-06 | 1.70E-06 | 3.99E-12 | 1.92E-10 | 1.90E-15 | 4.59E-14 | 1.05E-20
5 0.00032 40960 | 1.29E-03 | 2.56E-07 | 4.26E-07 | 4.97E-13 | 2.40E-11 | 1.19E-16 | 2.87E-15 | 3.21E-22
6 0.00016 81920 | 6.45E-04 | 6.40E-08 | 1.06E-07 | 6.21E-14 | 3.00E-12 | 7.41E-18 | 1.79E-16 | 9.93E-24
7 0.00008 163840 | 3.23E-04 | 1.60E-08 | 2.66E-08 | 7.75E-15 | 3.75E-13 | 4.63E-19 | 1.12E-17 | 3.09E-25
8 0.00004 327680 | 1.61E-04 | 4.00E-09 | 6.65E-09 | 9.68E-16 | 4.69E-14 | 2.89E-20 | 7.00E-19 | 9.62E-27
9 0.00002 655360 | 8.06E-05 | 9.99E-10 | 1.66E-09 | 1.21E-16 | 5.86E-15 | 1.81E-21 | 4.38E-20 | 3.00E-28

10 0.00001 1310720 | 4.03E-05 | 2.50E-10 | 4.16E-10 | 1.51E-17 | 7.32E-16 | 1.13E-22 | 2.73E-21 | 9.36E-30

Table 2.3

Accuracy results (error estimations) achieved when the second example from Section 2.5 is solved by the eight numerical
methods on a SUN computer (quadruple precision being applied in this experiment). “N.S.” means that the numerical

method is not stable for the stepsize used. “ERKp”,

p=1,2,3,4, means Explicit Runge-Kutta Method of order p .
“ERKpR” refers to the Explicit Runge-Kutta Method of order p combined with the Richardson Extrapolation.

Run | Stepsize Steps ERK1 ERKIR | ERK2 | ERK2R | ERKS3 ERK3R ERK4 | ERK4R
1 0.00512 2560 N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A.
2 0.00256 5120 N. A. N. A. N. A. N. A. N. A. 1.01E+11 N. A. N. A.
3 0.00128 10240 N. A. N. A. N. A. 167.70 N. A. 16.05 N. A. 34.47
4 0.00064 20480 9.96 4.01 4.01 8.07 8.02 16.00 15.99 33.43
5 0.00032 40960 2.00 3.98 3.99 8.03 8.00 15.97 15.99 32.71
6 | 0.00016 81920 2.00 4.00 4.02 8.00 8.00 16.06 16.03 32.33
7 0.00008 163840 2.00 4.00 3.98 8.01 8.00 16.00 15.98 32.14
8 0.00004 327680 2.01 4.00 4.00 8.01 8.00 16.02 16.00 32.12
9 | 0.00002 655360 2.00 4.00 4.01 8.07 8.00 15.97 15.98 32.07

10 0.00001 1310720 2.00 4.00 3.99 8.01 8.01 16.02 16.04 32.05
Table 2.4

Convergent rates (ratios of two consecutive error estimations from Table 2.3) observed when the second example from
Section 2.5 is solved by the eight numerical methods on a SUN computer (quadruple precision being used in this
experiment). “N.A.” means that the convergence rate cannot be calculated (this happens either when the first run is
performed or if the computations at the previous runs were not stable). “ERKp”, p =1,2,3,4, means Explicit Runge-
Kutta Method of order p . “ERKpR?” refers to the Explicit Runge-Kutta Method of order p combined with the Richardson
Extrapolation.
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Run | Stepsize Steps ERK1 ERKI1R ERK?2 ERK2R ERK3 ERK3R ERK4 ERK4R
1 0.000512 2560 N. S. N. S. N. S. N. S. N. S. N. S. N. S. N. S.
2 0.000256 5120 N. S. 2.08E-02 N. S. 1.04E-09 N. S. 1.15E-03 N. S. 2.48E-10
3 0.000128 10240 | 3.76E-05 | 1.87E-03 8.23E-03 | 2.08E-10 | 4.17E-10 | 4.23E-11 | 1.03E-09 | 1.38E-11
4 0.000064 20480 | 1.88E-05 | 1.04E-09 1.26E-09 | 3.26E-11 | 5.78E-11 | 1.94E-12 | 2.68E-11 | 3.77E-13
5 0.000032 40960 | 9.39E-06 | 2.59E-10 3.14E-10 | 3.93E-12 | 6.07E-12 | 1.07E-13 | 1.29E-12 | 1.06E-14
6 0.000016 81920 | 4.70E-06 | 6.48E-11 7.85E-11 | 4.68E-13 | 6.70E-13 | 6.29E-15 | 7.08E-14 | 3.10E-16
7 0.000008 163840 | 2.35E-06 | 1.62E-11 1.96E-11 | 5.68E-14 | 7.84E-14 | 3.80E-16 | 4.13E-15 | 9.36E-18
8 0.000004 327680 | 1.17E-06 | 4.05E-12 4.90E-12 | 6.98E-15 | 9.47E-15 | 2.34E-17 | 2.50E-16 | 2.88E-19
9 0.000002 655360 | 5.87E-07 | 1.01E-12 1.23E-12 | 8.65E-16 | 1.16E-15 | 1.45E-18 | 1.53E-17 | 8.91E-21
10 0.000001 | 1310720 | 2.93E-07 | 2.53E-13 3.06E-13 | 1.08E-16 | 1.44E-16 | 9.00E-20 | 9.50E-19 | 2.77E-22
Table 2.5

Accuracy results (error estimations) achieved when the third example from Section 2.5 is solved by the eight numerical
methods on a SUN computer (quadruple precision being applied in this experiment). “N.S.” means that the numerical

method is not stable for the stepsize used. “ERKp”, p =1,2,3,4, means Explicit Runge-Kutta Method of order p .
“ERKpR” refers to the Explicit Runge-Kutta Method of order p combined with the Richardson Extrapolation.

Run | Stepsize Steps ERK1 ERKIR | ERK2 | ERK2R | ERK3 | ERK3R | ERK4 | ERK4R
1 0.000512 2560 N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A.
2 0.000256 5120 N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A.
3 0.000128 10240 N. A. N. R. N. A. 5.00 N. A. N. R. N. A. 17.97
4 0.000064 20480 2.00 N. R. N. R. 6.38 7.28 21.80 38.43 36.60
5 0.000032 40960 2.00 4.02 4.01 8.30 9.52 18.13 20.78 35.57
6 | 0.000016 81920 2.00 4.00 4.00 8.40 9.06 17.01 18.22 34.19
7 0.000008 163840 2.00 4.00 4.01 8.24 8.55 16.55 17.14 33.12
8 0.000004 327680 2.01 4.00 4.00 8.14 8.28 16.24 16.52 32.50
9 | 0.000002 | 655360 1.99 4.01 3.98 8.07 8.16 16.14 16.34 32.32

10 0.000001 | 1310720 2.00 3.99 4.02 8.09 8.06 16.11 16.11 32.17
Table 2.6

Convergent rates (ratios of two consecutive error estimations from Table 2.5) observed when the third example from Section
2.5 is solved by the eight numerical methods on a SUN computer (quadruple precision being used in this experiment).
“N.A.” means that the convergence rate cannot be calculated (this happens either when the first run is performed or if the
computations at the previous runs were not stable). “NR” means that the calculated convergence rate will not be reliable
(the stepsize is too large). “ERKp”, p =1,2,3,4, means Explicit Runge-Kutta Method of order p . “ERKpR” refers
to the Explicit Runge-Kutta Method of order p combined with the Richardson Extrapolation.
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(d) for some large stepsizes, for which the Explicit Runge-Kutta Methods are unstable
when these are used directly, their combinations with the Richardson Extrapolation
produced good results.

Some more precise information about the performed runs and about the results is given below. First, it
should be emphasized that the accuracy results, which were obtained when the eight numerical methods
for the solution of systems of ODEs are used, are given in Table 2.1 for the first example, in Table
2.3 for the second one and in Table 2.5 for the third (non-linear) example. Convergence rates
observed for the eight tested numerical methods are shown in Table 2.2, Table 2.4 and Table 2.6
respectively.

Several additional conclusions can immediately be drawn by investigating carefully the results that are
presented in Table 2.1 - Table 2.6:

(e) The non-linear example is not causing problems. As one should expect, the results for
the first and the second stepsizes are not stable when the Explicit Runge-Kutta Methods
are run, because for large values of t the inequality h|p,(t)| > L holds (L being
the length of the absolute stability interval on the real axis), and, thus, the stability
requirement is not satisfied. The condition h|p,(t)| < L is not satisfied either for all
values of t for the next stepsize, but this happens only in the very end of the integration
and the instability had not succeeded to manifest itself. The results become
considerably better when the Richardson Extrapolation is used.

(f) The combination of the first-order one-stage Runge-Kutta method and the Richardson
Extrapolation gives nearly the same results as the second-order two-stage Runge-Kutta
method. It is seen that the stability regions of these two numerical methods are also
identical. The results indicate that this property holds not only for the scalar test-
example (2.1) proposed by Dahlquist but also for linear systems of ODEs with constant
coefficients. Moreover, the explanations given in Section 2.1 indicate that this property
perhaps holds also for some more general systems of ODEs.

(q) The results show that the calculated (as ratios of two consecutive error estimations)
convergence rates of the Runge-Kutta method of order p are about 2P when the
stepsize is reduced successively by a factor of two. For the combinations of the Runge-
Kutta methods and the Richardson Extrapolation the corresponding convergence rates
are approximately equal to 2P*1 which means that the order of accuracy is increased
by one. This should be expected and, moreover, it is also clearly seen from the tables
that the obtained numerical results are nearly perfect. Only when the product of the
time-stepsize and the absolute value of the largest eigenvalue is close to the boundary
of the absolute stability region there are some deviations from the expected results. For
the non-linear example this relationship is not fulfilled for some of the large stepsizes
because the condition h|p,(t)| < L is not satisfied in the very end of the integration
interval.

(h) The great power of the Richardson Extrapolation is clearly demonstrated by the results
given in Table 2.1. Consider the use of the first-order one-stage Explicit Runge-Kutta
method together with the Richardson Extrapolation (denoted as ERK1R in the table).
The error estimation is 2.91 +10~* for h = 0.00128 and when 10240 time-
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steps are performed. Similar accuracy can be achieved by using 131072 steps when
the first-order one-stage Explicit Runge-Kutta Method, ERKZ1, is used (i.e. the number
of time-steps is increased by a factor of 128). Of course, for every step performed by
the ERK1 method, the ERK1R method performs three steps (one large and two small).
Even when this fact is taken into account (by multiplying the number of time-steps for
ERKI1R by three), the ERK1R is reducing the number of time-steps performed by
ERKT1 by a factor greater than 40. The alternative is to use a method of higher order.
However, such methods are more expensive and, what is perhaps much more important,
a very cheap and rather reliable error estimation can be obtained when the Richardson
Extrapolation is used. It is clearly seen (from Table 2.3 and Table 2.5) that the situation
is very similar also when the second and the third examples are treated.

(i) In these experiments, it was illustrative to apply quadruple precision (working with
about 32 digits) in order to demonstrate in a very clear way the ability of the methods
to achieve very accurate results when their orders of accuracy are greater than three.
However, it should be stressed here that in general it will not be necessary to apply
quadruple precision, i.e. the application of the traditionally used double precision will
nearly always be quite sufficient.

(1) The so-called active implementation (see Section 1.7 and also Farago, Havasi and
Zlatev, 2010 or Zlatev, Faragé and Havasi, 2010) of the Richardson Extrapolation is
used in this chapter. In this implementation, at each time-step the improved (by
applying the Richardson Extrapolation) value y,_; of the approximate solution is used
in the calculation of z, and w, . One can also apply another approach: the values of
the previous approximations of z,_; and w,_; can be used in the calculation of z,
and w, respectively and after that one can calculate the Richardson improvement
Vo = (2Pw, —z,)/(2P — 1) . As explained in Section 1.7, a passive implementation
of the Richardson Extrapolation is obtained in this way (in this implementation the
improved by the Richardson Extrapolation values of the approximations are calculated
at every time-step, but not used in the further computations; they are only stored in
order to be used for other purposes). It is obvious that, if the underlying method is
absolutely stable for the two stepsizes h and 0.5h, then the passive implementation
of the Richardson Extrapolation will also be absolutely stable. However, if it is not
absolutely stable (even only for the large time-stepsize), then the results calculated by
the passive implementation of the Richardson Extrapolation will be unstable. This is
due to the fact that, as stated in Section 1.7, the passive implementation of the
Richardson Extrapolation has the same absolute stability properties as those of the
underlying method for solving systems of ODEs. Therefore, the results in the first lines
of Table 2.1, Table 2.3 and Table 2.5 show very clearly that not only the underlying
method but also the passive implementation of the Richardson Extrapolation may fail
for some large values of the time-stepsize, while the active one is successful. This will
happen, because the underlying method is not stable at least for the large stepsize, but
the combined method is stable when the active implementation is used (due to the
increased stability regions).
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2.9. Development of methods with enhanced absolute stability properties

The requirement p = m was imposed and used in the previous sections of the second chapter. This
requirement is very restrictive, because it can be satisfied only for m < 4. Therefore it is
worthwhile to remove this restriction by considering Explicit Runge-Kutta Methods under the
condition p < m and to try to develop numerical methods with enhanced stability properties. If the
condition p < m is imposed, then the stability polynomial given in (2.10) should be replaced with
the following formula:

vi o3 vP vp+l ym
(2.60) RW)=1+v+—+ =+++—F+—>—+ -+ —F—.
2t 3! PLoyiPe+r vy m)!
It is seen that there are m —p free parameters ygi"f), yf)'frlzp), ooy Y in (2.60). These

parameters will be used to search for methods with large absolute stability regions. Two special cases
will be studied in this section in order to facilitate the presentation of the results:

Casel: p=3 and m=4
and
Case2: p=4and m=6.

Three major topics will be explained in this section. We shall show first that one can find large classes
of numerical methods with enhanced stability properties for each of these two cases. Each
representative of any of the two classes have the same absolute stability region as all the other
representatives. After that, we shall select particular methods in each of the obtained classes (we shall
explain carefully that this is a rather complicated procedure) and perform some numerical experiments.
Finally, some possibilities for improving further the results will be sketched.

2.9.1. Derivation of two classes of numerical methods with good stability properties.

Consider first Case 1 of the two cases formulated above, i.e. choose p=3 and m =4 . Then
(2.60) is reduced to

2 3 4

2.61 R =1 y v M
( . ) (V) +V+§+3 m

A systematic search for numerical methods with good absolute stability properties was carried out by
comparing the stability regions obtained for y(4 3) = 0.00(0.01)5.00 . It is clear that the number of
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tests, 500, was very large. Therefore, we reduced the number of the investigated tests by introducing
two requirements:

(a) the length of the stability interval on the negative part of the real axis should
be greater than 6.00

and

(b) the highest point of the absolute stability region should be at a distance not
less than 4.00 from the real axis.

The number of tests was reduced very considerably by these two restrictions and it was found that the

choice yff‘g) = 2.4 is very good. The absolute stability regions obtained by this value of the free

parameter are given in Fig. 2.8. The Explicit Runge-Kutta Methods obtained with p=3, m =4

and yf{"” = 2.4 form a large class of numerical methods. Each representative of this class has the

same absolute stability region, the absolute stability region, which is limited by the red curve in Fig.
2.8. The corresponding new methods (the combinations of any of the ERKMs with the Richardson
Extrapolation are also forming a large class of methods; each representative of the latter class has the
same absolute stability region; this region is limited by the green curve in Fig. 2.8).

Let us call Method A any of the Explicit Runge-Kutta Methods from the class determined with p =

3, m =4 and yff’s) = 2.4. The comparison of the absolute stability regions shown in Fig. 2.8 with

those which were presented in Fig. 2.3 allows us to draw the following three conclusions:

(a) The absolute stability region of Method A is considerably smaller than the
corresponding absolute stability region of the combination of Method A
with the Richardson Extrapolation.

(b) The absolute stability region of Method A is larger than the corresponding
absolute stability region of the Explicit Runge-Kutta Method obtained with
p=m=3.

(c) When Method A is combined with the Richardson Extrapolation then its
absolute stability region is larger than the corresponding absolute stability
region of the combination of the Richardson Extrapolation with the
Explicit Runge-Kutta Method obtained p = m = 3.

The stability regions could be further enlarged if the second choice, the choice with m —p =2, is
made, because the number of free parameters was increased from one to two in this case. If p = 4 and
m = 6 is applied, then the stability polynomial (2.60) can be written as

2 V3 4 5 6

(2.62) ROW) =1+V+o+t ot b 4 —
' A TR TIAY Yoh s TP
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Figure 2.8
Stability regions of any representative of the class of explicit third-order four-stage Runge-Kutta

(ERK43) methods with yff’g) = 2.4 and its combination with the Richardson Extrapolation.

Formula (2.62) shows that there are indeed two free parameters now. A systematic search for numerical

methods with good absolute stability regions was performed also in this case. The search was much

more complicated and time-consuming. It was carried out by using y§6'4) =0.00(0.01)5.00 and

yé6’4) = 0.00(0.01)5.00 . The number of tests, 250000 , was much larger than the number of

tests in the previous case. Therefore, we reduced again the number of the investigated tests by
introducing two extra requirements:

(a) the length of the stability interval on the negative part of the real axis should
be greater than 12.00

and
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(b) the highest point of the absolute stability region should be at a distance not
less than 5.00 from the real axis.

The number of tests was reduced very considerably in this way and it became possible to find out that

the choice yg"‘” =1.42 and yg”") = 4.86 gives very good results. The absolute stability regions

for the class of Explicit Runge-Kutta Methods found with these two values of the free parameters are

given in Fig. 2.9 . Also in this case, the Explicit Runge-Kutta Methods created by using the parameters

p=4, m=6, y§6'4) =1.42 and yg”") = 4.86 form a large class of numerical methods. Each

representative of this class has the same absolute stability region, the absolute stability region limited
by the red curve in Fig. 2.9. The corresponding new methods (the combinations of any of the ERKMs
with the Richardson Extrapolation) are also forming a large class of methods; each representative of
the latter class has the same absolute stability region; the region limited by the green curve in Fig. 2.9.

Let us call Method B any representative of the class of the Explicit Runge-Kutta Methods determined

by choosing: p=4, m=6, y§6'4) =1.42 and yg6’4) = 4.86 . Then the following three

statements are true:

(A) The absolute stability region of Method B is considerably smaller than the
corresponding absolute stability region of the combination of Method B
with the Richardson Extrapolation.

(B) The absolute stability region of Method B is larger than the corresponding
absolute stability region of the Explicit Runge-Kutta Method obtained with
p=m= 4

and

(C) when Method B is applied together with the Richardson Extrapolation,
then its absolute stability region is larger than the corresponding absolute
stability region of the combination of the Richardson Extrapolation with
the Explicit Runge-Kutta Method obtained with p = m = 4.

The lengths of the absolute stability intervals on the negative real axis of Method A, Method B and
two traditionally used Explicit Runge-Kutta Method (applied also in the previous sections of this
chapter) are given in Table 2.7 together with corresponding absolute stability intervals of their
combinations with the Richardson Extrapolation.
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Figure 2.9
Stability regions of any representative of the class of Explicit Runge-Kutta methods determined with
p=4, m=6, yg”") =1.42 and yg6’4) = 4.86 together with its combination with the Richardson

Extrapolation.

Numerical method | Direct implementation | Combined with Richardson Extrapolation
p=m=3 2.51 4.02
Method A 3.65 8.93
p=m=4 2.70 6.40
Method B 581 16.28

Table 2.7
Lengths of the absolute stability intervals on the negative real axis of four Explicit Runge-Kutta
Methods and their combinations with the Richardson Extrapolation.
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It is seen from Table 2.7 that

(a) the length of the absolute stability interval on the negative part of the real
axis of the new methods, which consist of the combination of any Explicit

Runge-Kutta Method obtained with p = 4, m =6, y** = 1.42 and
y(66'4) = 4.86 and the Richardson Extrapolation, is more than six times

longer than the length of the of the absolute stability interval of the Explicit
Runge-Kutta methods with p = m = 4 when this method is used directly,

(b) it follows from conclusion (a) that for mildly stiff problems, in which the
real eigenvalues of the Jacobian matrix of function f are dominating over
the complex eigenvalues, the new numerical method, the combination of a
fourth-order six-stage Explicit Runge-Kutta Method with the Richardson
Extrapolation, could be run with a time-stepsize, which is by a factor of six
larger than that for a fourth-order four-stage explicit Runge-Kutta method.

However, this success is not unconditional: two extra stages must be added in order to achieve the
improved absolute stability regions, which makes the new numerical method more expensive. It is
nevertheless clear that a reduction of the number of time-steps by a factor approximately equal to six
will as a rule be a sufficiently good compensation for the use of two additional stages.

The research for developing Explicit Runge-Kutta Methods with p < m, which have good absolute
stability properties when they are combined with the Richardson Extrapolation, is by far not finished
yet. The results presented in this section only indicate that one should expect good results, but it is
necessary
(a) to optimize further the search for methods with good stability properties,
(b) to select particular methods with good accuracy properties among the
classes of method with good stability properties obtained after the
application of some optimization tool in the search
and

(c) to carry out much more numerical experiments in order to verify the
usefulness of the results in some realistic applications.

These additional tasks will be further discussed in the remaining part of Chapter 2.

2.9.2. Selecting particular numerical methods for Case1: p=3 and m =4

It was pointed out above that the numerical methods, the absolute stability region of which were shown
in Fig. 2.8, form a large class of Explicit Runge-Kutta Methods. It is necessary now to find a good
representative of this class. We are mainly interested in finding a method which has good accuracy
properties. This is a very difficult task. Three groups of requirements must be satisfied:
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(a) four order conditions are to be derived,

(b) one must use the optimal value, yffs) = 2.4 for which the largest absolute stability

region is obtained (see the previous sub-section)
and, finally,

(c) several relations between the coefficients of the four-stage ERKMs have to be taken
into account.

This leads to the solution of a non-linear algebraic system of 8 equations with 13 unknowns. The
equations are listed below:

(263) C1+C2+C3+C4=1,

1
(264) Cza; + Czaz + Cqay = E;

(2.65) cx(an)es(an)hes(as)? =3,

1
(2.66) c3bzza; + ca(byzaz + bysas) = e

1 1
(267) C4b43b3232 = 23 190"

(2.68) by =ay,

(2 69) b31 + b32 =d4dasg.

(2 70) b4_1 + b4_2 + b43 =4dy.

The relationships (2.63)-(2.66) are the order conditions (needed to obtain an Explicit Runge-Kutta
Method, the order of accuracy of which is three). The equality (2.67) is used in order to obtain good
stability properties. The last three equalities, equalities (2.68)-(2.70), are giving some relations between
the coefficients of the Runge-Kutta methods.
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It can easily be verified that the conditions (2.63) — (2.70) are satisfied if the coefficients are chosen in
the following way:

1 1 1
) C2:§1 C3:§) C4:gl

N =

(2.71) ¢ =

1 1
(272) azzi, a3=E, a4_=1,

by1 =0, by =1 1 bys = !
11 =0, Dy = 3=5 4

1
b3; =0, b3 =5 2 4’

1
(2.73) by =2 >

2 )
It should be noted that if the last two coefficients by, and b,z in (2.73) are replaced with
(2.74) by =0, by =1,

then the classical fourth-order four stages Explicit Runge-Kutta Method will be obtained; this method
is defined by the formulae (2.55)-(2.59) in Section 2.7.

The order of the method determined by the coefficients given in (2.71)-(2.73) is lower than the order
of the classical method (three instead of four), but its absolute stability region is (as mentioned above)
considerably larger. The absolute stability regions of the derived by us optimal ERK43 method and its
combination with the Richardson Extrapolation are given in Fig. 2.8. It will be illustrative to compare
these regions with the corresponding absolute stability regions of the classical ERK33 method (the
third-order three stage Explicit Runge-Kutta Method) and with the combination of the ERK33 method
with the Richardson Extrapolation. These plots are shown in Fig. 2.3.

The first of the three numerical examples presented in Section 2.5 was used in order to test the
efficiency of the ERK43 method.

The organization of the computations applied to calculate the results given below, in Table 2.8, is
described in detail in Section 2.6. It is not necessary here to repeat these details, but it should be
mentioned that 12 runs were performed in these tests (not 10 runs as in the previous sections). We are
starting with a stepsize h = 0.02048 and reducing the stepsize by a factor of two after the
completion of each run. This means that the stepsize in the last run is again h = 0.00001 .

64



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

Run | Stepsize ERK33 ERKA44 ERKA43 ERK43+RE

1 | 0.02048 N.S. N.S. N.S. N.S.

2 | 0.01024 N.S N.S. N.S. N.S.

3 | 0.00512 N.S. N.S. 8.43E-03 4.86E-08

4 |0.00256 | 5.97E-06 2.46E-08 3.26E-06 3.04E-09 (15.99)
5 |0.00128 | 7.46E-07 (8.00) | 1.54E-09 (15.97) | 4.07E-07 (8.01) | 1.90E-10 (16.00)
6 | 0.00064 | 9.33E-08 (8.00) | 9.62E-12 (16.00) | 5.09E-08 (8.00) | 1.19E-11 (15.97)
7 | 0.00032 | 1.17E-08 (7.97) | 6.01E-12 (16.01) | 6.36E-09 (8.00) | 7.42E-13 (16.04)
8 |0.00016 | 1.46E-09 (8.01) | 3.76E-13 (15.98) | 7.95E-10(8.00) | 4.64E-14 (15.99)
9 |0.00008 | 1.82E-10(8.02) | 2.35E-14 (16.00) | 9.94E-11 (8.00) | 2.90E-15 (16.00)
10 | 0.00004 | 2.28E-11(7.98) | 1.47E-15(15.99) | 1.24E-11(8.02) | 1.81E-16 (16.02)
11 | 0.00002 | 2.85E-12 (8.00) | 9.18E-17 (16.01) | 1.55E-12(8.00) | 1.13E-17 (16.02)
12 | 0.00001 | 3.56E-13 (8.01) | 5.74E-18 (15.99) | 1.94E-13(7.99) | 7.08E-19 (15.96)

Table 2.8
(4.3)

Comparison of the third-order four stages explicit Runge-Kutta (ERK43) method vy, = 2.4 and its combination with
the Richardson Extrapolation (ERK43+RE) with the traditionally used third-order three stages and fourth-order four stages
explicit Runge-Kutta methods (ERK33 and ERK44). “N.S” means that the method is not stable (the computations are
declared as unstable and stopped when the norm of the calculated solution becomes greater than 2.4 = 107 ). The
convergence rates are given in brackets.

The results presented in Table 2.8 show clearly that following three conclusions are certainly true:

No.

Conclusions

The new numerical method (the third-order four-stage Explicit Runge-Kutta Method with

yf;"” = 2.4, the ERK43 method) is both more accurate and more stable than the classical

third-order three stages explicit Runge-Kutta method (ERK33).

The classical fourth-order four stages Explicit Runge-Kutta Method, ERK44, is more accurate
than the new method (which is very natural because its order of accuracy is higher), but the
new method behaves in a reasonably stable way for h = 0. 00256 where the classical method
fails.

The combination of the new method with the Richardson extrapolation (ERK43+RE) is both
more accurate and more stable than the two classical methods (ERK33 and ERK44) and the
new method (ERK43).
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2.9.3. Selecting particular numerical methods for Case2: p=4 and m=6

The methods, which have the absolute stability regions shown in Fig. 2.9, form (as the methods the
stability regions of which were presented in Fig. 2.8) a large class of Explicit Runge-Kutta Methods.
It is necessary now to find a good representative of this class. We are also in this sub-section interested
in finding a method which has not only a large absolute stability region but also good accuracy
properties.
A non-linear system of algebraic equations has to be solved in the attempts to find a fourth-order six-
stage Explicit Runge-Kutta Method. In our particular case this system contains 15 equations with 26
unknowns. It should be mentioned that
(a) the first eight equations are the order conditions needed to achieve fourth
order of accuracy (the first four of them being the same as the order
conditions presented in the previous sub-section; these relationships are
given here only for the sake of convenience),
(b) the next two equations will ensure good absolute stability properties
and

(c) the last five conditions are some relations between the coefficients of the
Runge-Kutta method.
The 15 equations are listed below:

(275) C1+C2+C3+C4:1,

1
(2 76) Czay + C3az + Cqa4 = E,

@77 ) res(a)tre @) =3,

1
(2.78)  c3bsza; + c4(byaz + byzaz) = %

(2.79)  cz(a2)® + c3(a3)* + c4(as)® + c5(as)* + c(ag)’ = % ,
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(2.80) c3b3zz(az)? + c4[byz(az)? + byz(az)?] + cs[bs; (a2)2+b513(a3)2 + bsa(ay)?]
+ cg[bg2(a2)? + bez(az)? + bga(ag)? + bes(as)?] = 12’

(2.81) czazbsza; + cgay(byza; + byzaz) + csas(bszaz + bszas + bggay)
+ ceag(bgzaz + bgzas + bgsay + bgsas) = 8’

(2.82) c4bysbzza; + c5[bssbzza; + bsy(byzaz + byzasz)] X
+ cg[bezbszaz + bea(byzaz + byzaz) + bgs(bszaz + bszas + bsgay)] = 24

1 1

(2.83)  cebesbsabasbzza, = o0

(2.84) Csb54bi13b321512 + c¢{bgabazbsza; + bgs[bszbsza; + bsy(byzaz + byzaz)]}

120 1.42
(2.85) by =a,
(2.86) bsz; +bs, =a3
(2.87) by +byy+byz =ay
(2.88) bg; +bey + bes + by = as
(2.89) bgq +bgy +bgz +bgy +bgs = ag

The 26 unknowns in the non-linear system of algebraic equations described by the relationships
(2.75)-(2.89) can be seen in the array representing the class of six stages Explicit Runge-Kutta
Methods, which is given below:
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a by
a3 bz, bz,
ay by by, by
as bs, bs, bs3 bsy
a6 by bs, b3 bes bes
Cq CZ C3 Cy Cs Ce

We shall need, for several comparisons, the numerical results obtained with some good and accurate
fifth-order six-stage Explicit Runge-Kutta methods. Nine additional relationships must be satisfied in
order to achieve such a high accuracy, but the two conditions (2.83) and (2.84), which were imposed
for improving the absolute stability properties are now not needed. The extra order conditions that are
needed to achieve fifth order of accuracy are:

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

1
c2(a2)* + c3(az)* + c4(a)* + c5(@s)* + cs(a)* = 5’

c3b32(az)® + c4[bya(az)? + byz(az)?] + cs[bsz(az)® + bss(az)? + bsa(ay)?]

1
+ €6[be2(a2)° + be3(az)*+bes(as)’+bgs(as)’] = 20’

czazbsy (@)% +cqas[byz(az)? + bysz(az)?] + csas[bs, (32)24‘253 (a3)? + bsy(ag)?]
+ cgag[bgz(az)? + bez(az)? + bga(ay)? + bes(ag)?] = IR
c3(b3zaz)% + c4(byzaz + byzaz)? + cs(bspa, + bszaz + bsgay)?

1

c3(az)?bszza; + c4(ay)?(byzaz + byzaz) + cs(as)?(bszaz + bszaz + bssay)

1
+ Ce(ae)z(bezaz + bgzaz + bggay + bgsas) = 10’

C4by3b32(az)? + cs{bssbsz(az)? + bsy[bya(a2)? + byz(az)?]}
+ ce{bezbsz(az)? + bea[byz(az)* + byz(az)?]

1
+ bgs[bsz(az)?+bss(az)? + bse(as)?]} = 60’
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(2.96) Csb54b43;)3232 + ce{bgabazbsza; + bgs[bszbszaz + bss(byzaz + byzaz)]}

120’

(2.97) cqasbyzbsza; + csag[bsszbsza; + bsy(byza, + byzasz)]
+ Ciae[besbnaz + bga(bsza; + byzaz)+bgs(bszaz + bszag + bsgay)]

%,

(2.98) c4byzazbsza, + cs[bszazbsza; + bssas(bsza; + byzasz)]
+ Ci [bezazbszzay + bgaas(byzaz; + byzaz) + bgsas(bszaz + bszag + bsgay)]

:E’

The coefficients of a fifth-order six-stage explicit Runge-Kutta method proposed by John Butcher
(Butcher, 2003) are shown in the array given below:

2 2
=% | ba=¢
1 11 11
33—% b31:a bszza .
A =5 | by =0 by, =0 byz = -
2 2
3, _3 |, _ 15[ 3] 9
35—4 51~ 2 52 ~ea 53~ g 54~ 16
5 6 12 8
ag =1 bg1 =0 b62=7 be3=7 b64=—7 b65=7
7 32 12 32 7
C1=% c;=0 C3—% C4=% Cs=% Ca=%

It can easily be verified that all conditions (2.75)-(2.98), except the relationships (2.83)-(2.84), by
which the stability properties are improved, are satisfied by the coefficients of the numerical method
presented by the above array. This is, of course, an indirect indication that these conditions were
correctly derived.

Let us consider now the derivation of a particular fourth-order six-stage Explicit Runge-Kutta Method.
Assume that the eleven coefficients that are listed below

(2.99) 5, €6 as, ag bzy, byy, byz, bsy, bss, bgy, b
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are fixed and have the same values as those given in the above array. Then we have to solve the system
of 15 equations with 15 unknowns, which is defined by (2.75)-(2.89). The well-known Newton iterative
procedure was used in the numerical solution. The 15 components of the initial values of the
components of the solution vector were taken from the Butcher’s method and extended precision was
used during the iterative process (also in this case quadruple precision, working with 32 digits, was
selected). The fact that we are starting with the coefficients of the fifth-order six-stage explicit Runge-
Kutta method is giving a reasonable chance to find a fourth-order six-stage Explicit Runge-Kutta which
has good accuracy properties.

The numerical solution found at the end of the Newton iterative procedure is given below:

(2.100) ¢4 =0.06636143820913713327361576677234

(2.101) c; = 0.33466439117348386167956841089170

(2.102) c¢3 = 0.06029354106292902784346079863927

(2.103) ¢y = 0.10534729622111664387002169036336

(2.104) a, =0.24412763924409282870819068414842

(2.105) ay = 0.58389416084413897975810996900256

(2.106) as = 0.74232095083880033421170727685848

(2.107) by; = 0.24412763924409282870819068414842

(2.108) b3; =0.17187500000000000000000000000000

(2.109) by, = 0.08389416084413897975810996900256

(2.110) bs; = —0.00395725816543771434700055768757

(2.111) bs3; = 0.41815320900423804855870783454605
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(2.112) bgz = 0.56792173641409352946020215117401
(2.113) bes = —1.11004191171206253231847961425022
(2.114) bes = 0.68497731815511186000113460593336

Numerical results obtained when the so derived fourth-order six-stage Explicit Runge-Kutta Method
(ERK®64) and its combination with the Richardson Extrapolation (ERK64+RE) are used in the solution
of the first example from Section 2.5 are given in Table 2.9. The corresponding results, obtained by
applying the classical ERK44 method and the ERK65B, the fifth-order six-stage method proposed in
Butcher’s book (Butcher, 2003), are also presented in Table 2.9. Additionally, results obtained by
using the fifth-order six-stage Explicit Runge-Kutta (ERK65F) Method proposed by E. Fehlberg
(Fehlberg, 1966) are given in Table 2.9. It should be mentioned that it was established that also the
coefficients of the Fehlberg’s method are satisfying all the order conditions (2.75)-(2.98), except the
relationships (2.83)-(2.84) by which the stability properties are improved, which verifies once again
the correctness of their derivation.

Run | Stepsize ERK44 ERK65B ERK65F ERK64 ERK64+RE
1 | 0.02048 N.S. N.S. N.S. N.S. 9.00E-08

2 |0.01024 N.S. N.S. N.S. N.S. 1.93E-04

3 | 0.00512 N.S. 1.18E-09 N.S. 1.16E-07 8.82E-11

4 |0.00256 | 2.46E-08 3.69E-11 (31.97) 5.51E-11 7.28E-09 (15.93) | 2.76E-12 (31.96)
5 |0.00128 | 1.54E-09 (15.97) | 1.15E-12 (32.09) | 1.72E-12 (32.03) | 4.55E-10 (16.00) | 8.62E-14 (32.02)
6 | 0.00064 | 9.62E-11(16.00) | 3.61E-14 (31.86) | 5.39E-14 (31.91) | 2.85E-11 (15.96) | 2.69E-15 (32.04)
7 | 0.00032 | 6.01E-12 (16.01) | 1.13E-15 (31.95) | 1.68E-15 (32.08) | 1.78E-12 (16.01) | 8.42E-17 (31.95)
8 | 0.00016 | 3.76E-13 (15.98) | 3.52E-17 (32.10) | 5.26E-17 (31.94) | 1.11E-13 (16.04) | 2.63E-18 (32.01)
9 | 0.00008 | 2.35E-14 (16.00) | 1.10E-18 (32.00) | 1.64E-18 (32.07) | 6.95E-15 (15.97) | 8.22E-20 (32.00)
10 | 0.00004 | 1.47E-15 (15.99) | 3.44E-20 (31.98) | 5.14E-20 (31.91) | 4.34E-16 (16.01) | 2.57E-21 (31.98)
11 | 0.00002 | 9.18E-17 (16.01) | 1.07E-21 (32.15) | 1.61E-21(31.93) | 2.71E-17 (16.01) | 8.03E-23 (32.00)
12 | 0.00001 | 5.74E-18 (15.99) | 3.36E-23 (31.85) | 5.02E-23 (32.07) | 1.70E-18 (15.94) | 2.51E-24 (31.99)

Table 2.9
Comparison of the first fourth-order six stages explicit Runge-Kutta (ERK®64) method and its combination with the
Richardson Extrapolation (ERK64+RE) with the classical fourth-order four stages explicit Runge-Kutta (ERK44) method
and the fifth-order six stages (ERK65B and ERK65F) Runge-Kutta methods proposed respectively by Butcher in his book
and by Fehlberg in 1968. “N.S” means that the method is not stable (the computations are declared as unstable and stopped
when the norm of the calculated solution becomes greater than 1.0E+07). The convergence rates are given in brackets in
the table.

Similar conclusions, as those which were valid for the results presented in Table 2.8, can also be drawn
for the new ERK64 method and its combination (ERK64+RE) with the Richardson Extrapolation.
These conclusions are listed below:
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No.

Conclusions

The new numerical method, the fourth-order six-stage Explicit Runge-Kutta (ERK64) Method,
is both more accurate and more stable than the classical fourth-order four stages Explicit
Runge-Kutta (ERK44) Method (which indicates that the choice of the particular ERK64
method with good accuracy properties was successful).

The fifth-order six-stage Explicit Runge-Kutta Method proposed by Butcher, ERK65B, is both
more accurate and more stable than the fifth-order six-stage Explicit Runge-Kutta Method
proposed by Fehlberg, ERK65F. This is the reason for using the former method as a starting
point in the Newton iterative procedure. We are trying in this way to obtain a method which
is in some sense closer to the better one of the two well-known and commonly used fifth-
order six stage methods.

Both the fifth-order six-stages Explicit Runge-Kutta Method proposed by Butcher, ERK65B,
and the fifth-order six-stage Explicit Runge-Kutta ethod proposed by Fehlberg, ERK65F are
more accurate than the new ERK64 method (which is quite natural, because their order of
accuracy is higher), but the new method has better stability properties than the ERK65F
method and, therefore, behaves in a reasonably stable way in some cases where this method
fails.

The combination of the new method with the Richardson Extrapolation (ERK64+RE) is both
more accurate and more stable than the two classical methods (ERK65B and ERK65F). Note
that ERK43+RE method is stable for all 12 runs.

It is not very clear why the numerical error for h = 0.01024 is greater than that for h =
0.02048 when the ERK64+RE is used (the opposite should be true), but some conclusions
can anyway be drawn by studying the plot presenting the absolute stability region of this
method. The border of the absolute stability region around the point —13.5 is rather close
to the negative part of the real axis and this fact might have some influence on the results
(perhaps due to the fact that two of the eigenvalues have imaginary parts). When the stepsize
becomes bigger, the real part of the largest eigenvalue multiplied by h moves to the left, but
there the border of the absolute stability region is not so close to the negative part of the real
axis and the numerical results become again more stable.

2.9.4. Possibilities for further improvement of the results

It was mentioned several times that our objective was to derive two numerical methods, which have
good stability properties and at the same time are very accurate. In order to achieve this we tried to
derive methods, which are in some sense close to a method of a higher order. This strategy was followed
in the derivation of both the ERK43 method and the ERK64 method.

For the ERK43 method we used as starting point the classical ERK44 method determined by the
formulae (2.55)-(2.59) in Section 2.7. In order to satisfy the stability condition (2.67) we had only to
modify two of the coefficients of the classical method; see (2.74).
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The ERK65B method (which is clearly better than the ERK65F method) was applied in the derivation
of an ERK64 method. Eleven of the coefficients of the ERK64 method are the same as those in the
ERKG65B method. Moreover, we started the Newton iterative procedure by using as an initial guess the
remaining coefficients of the ERK65B method. The expectation is that the vector containing the
coefficients of the so derived ERK64 method will be in some sense close to the corresponding vector
of the ERK65B method.

It is intuitively clear that if the derived numerical method is close in some sense to a method of higher
order, then the leading terms of the local truncation error will be small (because for the method of
higher order the corresponding terms are equal to zero, which is ensured by the order conditions). The
statement that the leading terms of the local truncation error are small is, of course, based on heuristic
assumptions. Nevertheless, the results, which are presented in Table 2.8 and Table 2.9, indicate very
clearly that the new numerical methods not only have enhanced stability properties, but are in addition
very accurate.

The question is:

Is it possible to apply some more strict rules by which to derive some
even more accurate methods?

Some ideas, which can be used in the derivation Explicit Runge-Kutta Methods with better accuracy
properties, are sketched below.

Let us start with the ERK64 method. It is reasonable to expect that the results for this methods could
be improved if the following procedure is used. Consider the conditions (2.90)-(2.98) needed to achieve
fifth order of accuracy. Move the constants from the right-hand-sides of these equalities to the left-
hand-sides. Denote by G; , where i = 1,2, ..., 9, the absolute values of the terms in the left-hand sides
that are obtained after these transformations. As an illustration of this process let us point out that

1
(2.115) Gy = [cp(az)* + cz(az)* + c4(ag)* + cs(as)* + cg(ag)* — T

will be achieved from (2.90) by following the sketched above rules. It is clear how the remaining eight
values of the quantities G; can be obtained from (2.91)-(2.98).

Now the following constrained non-linear optimization problem can be defined. Find the minimum of
the expression:

9
(2.116) G;
)
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under the assumption that the equalities (2.75)-(2.89) are also satisfied.

Thus, we have to solve a non-linear optimization problem with 15 constraints in order to obtain a
method with (hopefully) better accuracy properties.

It is possible to generalize slightly this idea in the following way. Introduce non-negative weights w; ,
assume that the sum of the weights is equal to 9 and minimize the sum given below:

9
i=1

again under the assumption that the equalities (2.75)-(2.89) are also satisfied. It is obvious that if all
weights are equal to 1, then (2.117) reduces to (2.116).

In our opinion the new ERK43 method is very close to the classical ERK44 method (only two of the
coefficients of the classical methods have to be modified in order to satisfy the relationship arising
from the requirement to achieve enhanced absolute stability) and it is hard to believe that some essential
improvement can be achieved in this case. Nevertheless, one can try to derive better methods. This can
be done in a quite similar way as the procedure used above. Consider the conditions (2.79)-(2.82)
needed to obtain fourth-order accuracy. Move the constants in the right-hand-sides of these equalities
to the left-hand-side. Denote by F;, where i = 1,2, 3,4, the absolute values of the terms in the left-
hand sides of the obtained after these transformations equalities. As an illustration of the outcome from
this process let us point out that

1
(2.118) F; = |cz(az)® + c3(a3)3 + c4(ay)® + cs5(as)® + c4(ag)® — 1

will be achieved from (2.79) by following the rules that were sketched above. It is clear how the
remaining three values of the quantities F; can be obtained from (2.80)-(2.82). Now the following
constrained optimization problem can be defined. Find the minimum of the expression:

4
(2.119) F,
2

under the assumption that the equalities (2.63)-(2.70) are also satisfied.

It is again possible to generalize slightly this idea. Introduce non-negative weights v; , assume that
the sum of the weights is now equal to 4 and minimize the sum given below:

74



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

4
(220) Z ViFi
i=1

under the assumption that the four equalities (2.63)-(2.70) are also satisfied. It is obvious that if all
weights v; are set equal to 1, then (2.20) reduces to (2.19).

It must be emphasized that the set of order conditions (2.75)-(2.82) + (290)-(298) is very general and
can be used for developing many kinds of different Explicit Runge-Kutta Methods, whose order is less
than or equal to five (in fact, classes of such methods). This set of relationships (actually some sub-sets
of this set) has been used in this section to search for good ERK43 and ERK64 methods, but it can
also be applied, for example, for designing good ERK63 methods: the absolute stability properties of

these methods will probably be considerably better that those of the two classes considered above,

because the number of free parameters will be increased by one to become three (yff”?’), yg”?’), yg”?’)) :

but the search for particular values of these constants which ensure greater absolute stability regions
will be much more complicated.

Explicit Runge-Kutta Methods containing more than six stages can also be used. One can, for example,
use relation (2.60) with m = 11 and some p < 8 (it can be proved that no EPRM of order greater
than 8 can be constructed when the number of stages is 11; see p.182 in Lambert, 1991). The number
of free parameters will be greater than or equal to three when such a choice is made and it will be
possible to create accurate ERKMs with even larger stability regions. However, the procedure will
become much more difficult. It will not be easy to derive the order conditions, but some packages for
automatic differentiation and symbolic computations, such as Maple and Mathematica, can be applied
to facilitate the derivation. Even after utilizing these packages, many other problems remain. These
problems are related mainly

(a) to the formulation of large underdetermined non-linear systems of algebraic equations
(or, even better, large constrained non-linear optimization problems)

and

(b) to finding solutions of these problems that will ensure good accuracy properties of the
derived Explicit Runge-Kutta Methods.

It is nevertheless worthwhile to try to derive sufficiently accurate methods with better stability
properties, because in this way it may become possible to avoid the application of implicit numerical
methods for solving systems of ODEs (which leads to the necessity to handle very large non-linear
algebraic systems) and, thus to reduce very considerably the computational work when some classes
of large-scale scientific problems are to be treated.

It must also be emphasized that we are not interested so much in finding accurate Explicit Runge-Kutta
Methods with good stability properties, but first and foremost in ERKMSs, which applied together with
the Richardson Extrapolation result in new numerical methods with even better stability properties.
This is important, because it is well-known that the application of the Richardson Extrapolation may
sometimes result in new numerical methods, which have worse stability properties than those of the
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underlying method. The most terrible example is the application of the Richardson Extrapolation
together with the well-known Trapezoidal Rule. While the Trapezoidal Rule has excellent stability
properties (it is A-stable), its combination with the Richardson Extrapolation leads to an unstable
computational process. Some other examples can be found in Zlatev, Faragé and Havasi (2010). It
must be strongly emphasized here that all Explicit Runge-Kutta Methods which were considered
above, also the methods in the previous sections, were designed so that their combinations with the
Richardson Extrapolation have bigger absolute stability regions than the underlying methods (see Fig.
2.8 and Fig. 2.9). In this way, larger time-stepsizes can be used when the Richardson Extrapolation
is added not only because the resulting method is more accurate, but also because it is more
stable.

The conclusion made above is indeed very important: we tried until now to design accurate ERKMs
with good stability properties and after that to show that their combinations with the Richardson
Extrapolations have even larger regions of absolute stability (they will in addition be necessarily more
accurate). The order should probably be reversed. Indeed, as we pointed out several times, our major
objective is to use the Richardson Extrapolation in an attempt to improve the efficiency of the
computational process. Therefore, it might be much more profitable to search directly for
combinations of ERKMs with the Richardson Extrapolation, which have good stability and accuracy
properties. This problem is, of course much, more complicated (first and foremost, because the degree
of the stability polynomials of the combinations of ERKMs and the Richardson Extrapolation is twice
greater than the degree of the underlying ERKMs), but the results of this much more difficult search
might be significantly better. Therefore, it is worthwhile to try to resolve this very challenging problem.

2.10. Major concluding remarks related to Explicit Runge-Kutta Methods

Specific conclusions based on numerical results from three examples (introduced in Section 2.5) were
drawn in the previous sections. Several additional general conclusions will be drawn below. These
conclusions are based not only on numerical results, but also on the established, in Section 2.4 and
Section 2.9, facts that the Richardson Extrapolation does lead to a considerable improvement of both
the stability properties and the accuracy of the calculated approximations (in comparison with those of
the underlying Explicit Runge-Kutta Methods when these are used directly). It was established in
Section 2.4 that the stability regions were always increased when the Richardson Extrapolation is used
and when the number of stages m is equal to the order of accuracy p . However it was also shown,
in the previous section, that even better results can be achieved for some other classes of Explicit
Runge-Kutta Methods. We shall try now to summarize these results.

It is well known that the application of the Richardson Extrapolation leads always to an improvement
of the accuracy of the underlying numerical method when the stability properties are not restricting the
choice of the time-stepsize. This statement holds not only for the Explicit Runge-Kutta Methods, but
for any numerical method for solving systems of ODEs (see Chapter 1). The remarkable thing for the
class of Explicit Runge-Kutta Methods with p =m, m = 1,2, 3,4 is, as mentioned above, that the
application of the Richardson Extrapolation leads to new numerical methods with considerably larger
absolute stability regions. In fact, the results shown in Section 2.4 (and more precisely, the results
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presented in the plots drawn in Fig. 2.1 — Fig 2.4) could be considered as a graphical proof of the
following theorem:

Theorem 2.1: Let us consider an arbitrary Explicit Runge-Kutta Method, for which the condition
p=m, m=1,2,3,4 issatisfied. If p=m =1, then there exists only one such method (the
Forward Euler Formula), while large classes of Explicit Runge-Kutta Methods exist for each p = m,
when p is greater than one. Combine the selected method with the Richardson Extrapolation. Then
the obtained in this was new numerical method has always a larger absolute stability region than that
of the underlying Explicit Runge-Kutta Method.

In the previous section we have demonstrated that two other results, which are in some sense even
stronger, hold:

Theorem 2.2: A large class T‘Z‘ji of Explicit Runge-Kutta Methods depending on the three parameters

p=3,m=4 and yff’S) =2.4 can be derived. Two statements are true for this class:

a) every representative of class F¥3 (i.e. any Explicit Runge-Kutta Method from class
24
T‘z‘ji) has the same absolute stability region that is optimal in some sense (which

implies, of course, that all combinations of methods from the class F53 and the
Richardson Extrapolation have the same absolute stability region)

and

(b) the combination of any representative of class Fy5 with the Richardson Extrapolation
has larger absolute stability region than the absolute stability region of the underlying
numerical method.

Theorem 2.3: A large class Tﬁﬁu% of Explicit Runge-Kutta Methods depending on the three
parameters p=4, m=26, y§6’4) =142 and yé6’4) =4.86 can be derived. Two statements

are true for this class:

(a) every representative of class Fy73, 4g¢ (i.. any Explicit Runge-Kutta Method from

class Tﬁ“_%) has the same absolute stability region that is optimal in some sense
(which implies, of course, that all combinations of the methods from the class
Tijm% and the Richardson Extrapolation have the same absolute stability region)
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and

(b) the combination of any representative of class ?(15'.:2,4.36 with the Richardson
Extrapolation has a larger absolute stability region than the absolute stability region
of the underlying numerical method.

The validity of the statements in Theorem 2.2 and Theorem 2.3 were verified in Section 2.9.

During the search for ERKMs with large absolute stability regions, we investigated many methods. For
all these ERKMs, the new methods obtained when the Richardson Extrapolation is additionally used
had bigger absolute stability regions than the underlying method. This fact justifies the formulation of
the following conjecture:

Conjecture: The combination of the Richardson Extrapolation with
any Explicit Runge-Kutta Method leads to a new
numerical method, which has a larger absolute stability
region.

Finally, at the end of this chapter it should also be emphasized that non-stiff and moderately stiff
systems of ODEs, for which the methods studied in this chapter can be very useful, appear after some
kind of discretization and/or splitting of mathematical models appearing in different areas of science
and engineering.

As an example, large-scale air pollution models should be mentioned; see Alexandrov, Sameh,
Siddique and Zlatev (1997), Alexandrov, Owczarz, Thomsen and Zlatev (2004), Zlatev (1995) and
Zlatev and Dimov (2006). Large-scale air pollution models can be used in many important
environmental studies. The most important of the different studies is perhaps the investigation of the
impact of climate changes on the high air pollution levels. Such investigations were carried out by
using the Unified Danish Eulerian Model (UNI-DEM) in Zlatev (2010), Zlatev and Christensen
(1989), Zlatev, Georgiev and Dimov (2013b) and Zlatev, Havasi and Farago6 (2011). The advection
terms (the terms containing first-order spatial derivatives in the systems of partial differential equations
by which large-scale air pollution models are described) can be treated with explicit methods for
solving systems of ODEs after applying some splitting procedure and discretization; see again
Alexandrov, Sameh, Siddique and Zlatev (1997), Alexandrov, Owczarz, Thomsen and Zlatev
(2004), Zlatev (1995) and Zlatev and Dimov (2006).

An attempt to implement combinations of the Explicit Runge-Kutta Methods discussed in this chapter

with the Richardson Extrapolation in the non-stiff sub-models of UNI-DEM will be carried out in the
near future.
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2.11. Topics for further research
The following topics might lead to some very interesting and useful results:

(A) Explicit Runge-Kutta Methods of order up to four were studied in this
chapter. It will be worthwhile to try to extend the results for methods of
order five, six and seven and to find some classes of methods with enlarged
absolute stability regions. There will be some free parameters when such
methods are considered. Will it be possible to find values of these
parameters, which are in some sense optimal?

(B) It will not be a very easy task to obtaine some particular methods within
the classes of methods mentioned in (A). The determination of these
methods will lead to the solution of non-linear algebraic equations in which
the number of equations is smaller than the number of unknowns. Will it
be possible to find particular methods which have optimal properties (or at
least some good properties)?

(C) It is commonly accepted that the ERKM’s with many stages are very
expensive. However, if the numerical problems solved are moderately stiff,
then such methods can be useful if they have good stability properties (they
will be cheaper than numerical methods for stiff systems of ODE’s,
because there is no need to solve large systems of linear algebraic equations
during the Newton iterative procedure; see Chapter 4). Therefore, it is
worthwhile to construct ERKM’s with many stages and good stability
properties.
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Chapter 3

Linear multistep and predictor-corrector methods

The linear multistep methods are very popular numerical tools, which are often used in the numerical
solution of systems of ODEs, especially in the case where the solved problems are non-stiff. However,
some difficulties appear when one attempts to apply the Richardson Extrapolation in conjunction with
these numerical methods. These difficulties will be shortly discussed in this chapter, but the major
objective will be the presentation of another useful computational approach, the development and the
usage of easily applicable, efficient and reliable predictor-corrector methods with improved
stability properties. It will be demonstrated that these devices can successfully play the same role as
the role of the Richardson Extrapolation when it is used in the calculation of approximate solutions of
the non-stiff systems of ODEs by Explicit Runge-Kutta Methods. By applying predictor-corrector
schemes, one will be able both to improve the accuracy of the calculated results and to control in a
sufficiently robust way the time-stepsize selection during the whole integration process. This means
that the application of these alternative computational schemes, of the predictor-corrector methods,
will have precisely the same computational effect as the effect achieved when the Richardson
Extrapolation is applied in the numerical solution of systems of ODESs together with the Explicit Runge-
Kutta Methods.

The class of the linear multistep methods will be introduced in Section 3.1. Some basic information
about this large class of numerical algorithms, including some discussion of the important topics of
consistency, zero-stability and convergence, will also be presented there. The advantages and the
drawbacks of the linear multistep methods will be outlined. The most frequently used methods from
this class will be introduced at the end of the first section.

Variation of the time-stepsize is not always improving the efficiency of the computational process, but
may sometimes lead to a very substantial reduction of the computing time. If the variation of the time-
stepsize will result in an improvement of the efficiency of the computational process and, thus, if it is
desirable to introduce such a device in connection with the selected linear multistep methods, then at
least one extra requirement appears. This additional requirement is the necessity to preserve the zero-
stability of the selected linear multistep methods during the computations. The loss of zero-stability
when the time-stepsize is varied may cause serious computational problems. This important topic will
be treated in Section 3.2.

The absolute stability properties of the linear multistep methods also deserve some special treatment.
The definition of absolute stability will be given in Section 3.3 and the problems related to this concept
will be shortly discussed there.

The difficulties connected to the application of the Richardson Extrapolation together with the linear

multistep methods and the necessity to apply some alternative approach in the computer treatment of
systems of ODEs will be shortly discussed in Section 3.4.
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Predictor-corrector methods will be presented in Section 3.5. After a brief discussion of these schemes,
several special predictor-corrector methods with improved absolute stability properties will also be
presented. It will be emphasized that the predictor-correctors schemes are explicit numerical
algorithms.

One of the most important and most useful properties of the predictor-corrector schemes is the fact that
an estimation of the local truncation error can easily be calculated when these computational tools are
used. An efficient device for estimating the local truncation error will be introduced and discussed in
Section 3.6. Other ways to control the accuracy of the computed approximations and to select an
optimal step-size, or at least a good one, for the next time-step will also be presented there.

The absolute stability properties of the predictor-corrector methods will be studied in Section 3.7. The
necessity of improving the absolute stability properties of some commonly used classes of predictor-
corrector schemes will be justified in this section and some predictor-corrector schemes with improved
absolute stability properties will be presented.

Predictor-corrector schemes with several different correctors can sometimes be successfully used in
the efforts to develop algorithms with improved absolute stability properties for some special
situations, which appear when large-scale scientific and engineering models are to be handled on
computers. This topic will be discussed in Section 3.8.

A stronger stability requirement, the requirement to achieve A-stability, will be briefly discussed in
Section 3.9. In fact, only implicit numerical methods can be A-stable and, the predictor-corrector
schemes are not A-stable, because as mentioned above, these schemes are explicit. The A-stability
concept is applicable for a few implicit linear k-step methods (in fact, only linear k-step methods with
k < 2 can be A-stable). Weaker (but very useful for some applications) stability concepts are
applicable to some numerical methods belonging to the class of Backward Differentiation Formulae.
Some results will be presented in Section 3.9, but these concepts, especially the A-stability, will be
discussed in detail in the next chapter, in Chapter 4.

For some readers, who wish to apply linear multistep methods, it will be useful to have access to a list
of the coefficients of the most popular linear multistep methods. Such a list is given in Section 3.10. It
is not easy to find such a list in the commonly used text-books, where as a rule only methods of lower
orders are given.

Some general conclusions related to the linear multistep methods are listed in the last section, Section
3.11, of the third chapter.

Some proposals for a future research in this field are given in Section 3.12.

3.1. Linear multistep methods for solving systems of ODEs

Consider again the system of ODEs, which was defined by equalities (1.1) and (1.2) in Chapter 1. A
general linear k-step method, where k >1 is a given integer, can be defined by the following
formula:
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k k
(31) yn+ Zai Yn—i:hZBifn—i» |ak|+|Bk| >0, n=k, k+1,, N,
i=1 i=0

where «a; and @B; arereal constantsand N is, as in Chapter 1, the number of grid-points in (1.6).
Furthermore, for every value of the integer n >0 the abbreviation f, is introduced by the
following formula:

(3.2) f,=f(t,,y,), n=0,12,. ,N.

If Bo =0, thenthe computational formula defined by (3.1) is an explicit numerical method, because
the right-hand-side does not depend on the unknown vector y, , while this formula is representing
an implicit numerical method for B, # 0 .

If k=1, then the calculations with formula (3.1) can be started directly. It will be sufficient in this
case to use the initial value y, = y(a) =1 from (1.2) at the first time-step and after that to carry
on successively, step by step, the further computations. In principle, some approximation y, = 1
can also be applied during the first time-step. It must be mentioned here that one-step formulae are
actually obtained when the choice k=1 is made in (3.1) and that some of these formulae, as the
Forward Euler Method, were studied in the previous chapter.

If k> 1, thenitisnot possible to start directly the computations with formula (3.1). In the beginning
of the computations it will be necessary to calculate sufficiently accurate approximations of the first
k — 1 values of the exact solution at the equidistant grid defined by (1.6) by using some other
numerical methods of an appropriate order (as, for example, with some Runge-Kutta methods). More
precisely, it will indeed be necessary to calculate sufficiently accurate approximations of the
following vectors y; = y(t1), y2 = y(t2), .., Yk—1 = y(tx_1) . These approximations are
often called starting values. This can be done, as mentioned above, by using some one-step numerical
method of an appropriate order of accuracy in the beginning of the computational process (the order of
accuracy of the auxiliary numerical method used to obtain the starting values must at least be equal to
the order of accuracy of the selected linear multistep method that will be used in the further
calculations). The need to prepare sufficiently accurate starting values is one of the serious drawbacks
of the linear multistep methods (see also §3.1.4). More details about the calculation of the starting
values, when linear multistep methods with k > 1 are to be used in the solution of systems of ODEs,
can be found, for example, in Henrici (1968) and Lambert (1991).

Two polynomials, which are often called characteristic polynomials (see Lambert, 1991), are usually
associated with the coefficients of the linear multistep method defined by (3.1):

K K
3.3) p@m=1+ A o(z) = Bz, z€C.
2 2
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Many important properties of the linear multistep methods, such as order conditions, attainable order
of accuracy, consistency, zero-stability and convergence, can efficiently be studied and will be studied
in the remaining part of this chapter by using these polynomials.

3.1.1. Order conditions

If the numerical method defined by (3.1) is of order of accuracy p = 1, then the coefficients «;
and B; must satisfy the following relationships (see Lambert, 1991):

k
(3.4) 1+Zai=0,
i=1
k k
(35) Zial = ZBI )
i=1 i=0
k Kk
36 ~Y i 1 z ja-18 2.3
) — 90, =——— i . q=2,3,..,p .
] 1 —1)! 1
T i=1 (q-1)! i=0

Note that, by applying the characteristic polynomials given in (3.3), the equalities (3.4) and (3.5) can
be rewritten as

3.7 p(1)=0

and

dp(1
(3.8) %=a(1)

respectively. Note too that the linear multistep method is of order one when the relationships (3.7) and
(3.8) or, which is the same, when (3.4) and (3.5), are satisfied.

More details about the order conditions and their application in the efforts to design efficient linear
multistep methods and different predictor-corrector methods can be found in Butcher (2003), Hairer,
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Norsett and Wanner (1987), Hundsdorfer and Verwer (2003), Lambert (1991) and Shampine
(1994).

3.1.2. Basic definitions

The following definitions are related to three fundamental properties of the linear multistep methods:
to the concepts of consistency, zero-stability and convergence. These concepts are important not only
for the linear multistep methods, but also for many other numerical methods for solving systems of
ODE:s (as, for example, for the Explicit Runge-Kutta Methods that were presented and discussed in the
previous chapter).

Definition 3.1: The linear multistep method (3.1) is said to be consistent if (3.3) and (3.4) hold or, in
other words, if (3.7) and (3.8) hold and, thus, if the method (3.1) is at least of order one.

Definition 3.2: The linear multistep method (3.1) is said to be zero-stable if no root of the first
characteristic polynomial p(z) is greater than one in absolute value and if every root that is equal to
one (in absolute value) is a simple root (i.e. there are no multiple roots equal to one in absolute value).

Definition 3.3: The linear multistep method introduced by (3.1) is said to be convergent if for all
initial value problems for systems of ODEs defined by (1.1) and (1.2), for which the exact solution
y(t) exists and is unique on the interval [a,b] (which means that the conditions of Theorem 1.1 in
Chapter 1 are satisfied), the relationship

(3.9) o /l\lrl;{nl=tn—a Yn = y(tn)

holds for all t, € (a,b] and for numerical solutions {y,}, n=k, k+1, .. , N of the
difference equation (3.1) satisfying starting conditions y; =n;th), i=1, 2, .. , k-1, for
which
(3.10) lim n;(h) =7.

|
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Now the following theorem holds (see, for example, Lambert, 1991).

Theorem 3.1: The linear multistep method defined by (3.1) is convergent if and only if it is both
consistent and zero-stable.

The statement of Theorem 3.1 is often abbreviated as

consistency + zero-stability < convergence

This means that both consistency and zero-stability are needed in the efforts to design convergent linear
multistep methods. Note too that in the definitions related to these important concepts it was implicitly
assumed that a constant time-stepsize is used on the grid (1.6) defined in Chapter 1. The variation of
the time-stepsize causes some problems when the linear multistep methods defined by (3.1) are used;
this is a rather serious drawback of these methods.

It follows from Theorem 3.1 that the concept of zero-stability is very important, because combined
with consistency it guarantees convergence. It turns out, however, that problems with the preservation
of the zero-stability of the linear multistep methods may arise when variations of the time-stepsize are
allowed. Some classes of linear multistep methods for which the zero-stability is preserved also in the
case when the time-stepsize is varied will be introduced in Section 3.2.

3.1.3. Attainable order of linear multistep methods

It is natural to ask the following question:

What is the maximal order of a convergent linear k-step method?

The order conditions, which are given by (3.4) — (3.6), depend on the coefficients «; and @; of the
linear multistep method. It is immediately seen that the number of these coefficients is 2k when the
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method (3.1) is explicit (i.e. when By = 0)and 2k+1 when the method (3.1) is implicit (i.e. when
Bo # 0). This means that in principle either 2k or 2k+1 order conditions of type (3.4) — (3.6)
arise and are to be satisfied for the explicit and implicit linear k-step methods respectively. It is
furthermore clear that these relationships (the order conditions, which have to be satisfied) form a
system of linear algebraic equations. Therefore, one should expect that linear k-step methods of
orders p=2k and p = 2k+ 1, which are both reliable and efficient, can be constructed when
explicit and implicit linear multistep methods are selected. Unfortunately, such a conclusion is not true
when the requirement for constructing convergent numerical methods is additionally imposed. This
requirement, the requirement to ensure convergence, must necessarily be imposed and it leads to the
famous first Dahlquist barrier. In fact, the restriction of the attainable order for convergent linear k-
step methods that is caused by the first Dahlquist barrier is a consequence of the following theorem;
see p. 55 in Lambert (1991):

Theorem 3.2: No zero-stable k-step linear method can have order of accuracy exceeding k+1 when
k isoddand k+2 when k iseven.

Since a convergent linear k-step method must be zero-stable (according to Theorem 3.1) and a method
of order greater than or equal to one is consistent, it is clear that “zero-stable” can be replaced with
“convergent” in the statement of Theorem 3.2.

A statement similar to the assertion of Theorem 3.2 has been proved by G. Dahlquist in 1956 (see
Dahlquist, 1956, 1959).

3.1.4. Drawbacks and advantages of the linear multistep methods

Some of the major drawbacks of the linear multistep methods were already mentioned in the previous
sub-sections. We shall list the major drawbacks below.

(a) Need to calculate starting values. If k > 1, then itis necessary to calculate k—1
starting values. Several different approaches can be used to resolve this problem. It is
simplest, in principle at least, to apply some one-step method in the calculation of the
needed starting values. However, one must remember that it is necessary to calculate
sufficiently accurate starting values and this requirement can cause additional
difficulties. This means that the order of accuracy of the one-step method selected for
the computation of the starting values should be at least equal to the order of accuracy
of the linear multistep method, which will be used in the remaining part of the
calculations.

(b) Difficulties with the variations of the time-stepsize. The use of variable time-

stepsizes might be very useful in some situations. This fact was explained in Chapter
1. The variation of the time-stepsize will certainly be very efficient when some
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components of the solution vector are quickly varying in a short part of the time-
interval [a,b], while all its components are slowly varying in the remaining part of
this interval. In such a case, it will be efficient to use small time-steps as well as more
accurate formulae when some components of the solution vector have steep gradients
and large time-stepsizes when all its components are smoothly and slowly varying. The
straight-forward development and implementation of a suitable technique for an
automatic variation of the time-stepsize and/or of the integration formula during the
solution process results in a method with variable coefficients depending on the time-
stepsizes that were used before the current time-step (more details can be found, for
example, in Zlatev, 1978, 1981b, 1983, 1984). The calculation of the coefficients of
the linear multistep formula can cause some problems when variable time-stepsizes are
used and especially if in addition a variation of the formulae used is also allowed. This
important topic will be further discussed in Section 3.2.

(c) The absolute stability regions of the linear multistep methods are small in
comparison with those of the Explicit Runge-Kutta Methods. Moreover, the
absolute stability regions are in general becoming smaller when the order of accuracy
is increased (while the opposite is true for the Explicit Runge-Kutta Methods). The
decrease of the size of the absolute stability regions is especially true for the explicit
linear multistep methods. The fact that there are problems (or at least that problems
may appear) in connection with the stability of the computational process is another
serious drawback of the linear multistep methods. This is especially true in the case
when mildly-stiff systems of ODEs are to be handled. The problems related to the
absolute stability regions of the linear multistep methods will be treated in some more
detail in Section 3.4 for linear multistep methods as well as in Section 3.7 and Section
3.8 for some special classes of predictor-corrector schemes.

(d) Only very few of the linear multistep methods are A-stable. A-stability is important
when stiff systems of ODEs are to be treated. A-stable linear multistep method can be
developed only for k < 2. The A-stability and some related stability concepts will
be described in Section 3.9. It should be mentioned here that the Backward
Differentiation Formulae, see the end of the next sub-section, §3.1.5, have reasonably
good stability properties and are very useful in the treatment of some special systems
of ODEs.

The linear multistep methods have also some very important advantages:
(A) The formulae, by which these methods are defined, are very simple and as a rule it is
easy to implement them in different parts of large-scale scientific and engineering

models.

(B) The leading terms of the truncation error can be evaluated in a relatively straight-
forward and very efficient way.

(C) These methods can be implemented in a very straight-forward manner as predictor-

corrector schemes, which are very efficient when non-stiff or even mildly-stiff systems
of ODEs are to be solved numerically.
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The predictor-corrector schemes will be discussed in the next sections.

3.1.5. Frequently used linear multistep methods

The most frequently used linear multistep methods are the Adams formulae, which are defined in the
following way:

k
3.11) v, =yn_1+hZBifn_i, Bl >0, n=k k+1,., N.
i=0

This means that
(3.12) o= -1, o =0, i=2 3, .., k

when the Adams formulae are used.

If Bo =0, ie. if the linear multistep methods defined by using (3.11) and (3.12) are explicit, then
they are called Adams-Bashforth Formulae (Adams, 1883, Bashforth, 1883).

If By # 0, i.e.if the methods defined by applying (3.11) and (3.12) are implicit, then they are called
Adams-Moulton Formulae (Adams, 1883, Moulton 1926).

Some people claim that both the Adams-Bashforth Formulae and the Adams-Moulton Formulae were
invented by J. C. Adams in 1855.

The linear multistep methods from two other classes, the Nystrom methods and the generalized Milne-
Simpson methods, are not so popular as the Adams methods. However, some interesting properties of
these methods when they are combined with the Adams methods can be derived in the important case
when variation of both the time-stepsize and the formulae are allowed.

The Nystrom and the generalized Milne-Simpson methods are defined in the following way:

k
(3.13) v, =yn_2+hZBifn_i, Bl >0, n=k k+1,.. 6 N.
i—0

This means that
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(3.14) a; =0, oap=-1, =0, i=3 4, .., k

when the Nystrom methods and/or the generalized Milne-Simpson methods are used.

If Bo =0, i.e.ifthemethods defined by using (3.13) and (3.14) are explicit, then they are called
Nystrom methods (Nystrom, 1925).

If Bo+# 0, i.e.if the methods defined by using (3.13) and (3,14) are implicit, then they are called
generalized Milne-Simpson methods (Milne, 1926, 1953).

If the problem solved, i.e. the system of ODEs defined by (1.1) and (1.2), is stiff, then some methods
from the class of the Backward Differentiation Formulae can often be successfully used. The
Backward Differentiation Formulae form a sub-class of the class of the linear multistep methods, which
is defined by:

k
(3.17) yn+Zaiyn_i=hB0fn, ] >0, IBol >0, n=k k+1,.., N.
i=1

The methods of this sub-class have relatively good stability properties (at least in the case when the
order of accuracy is not greater than six), but they are implicit and, thus, in general large non-linear
systems of algebraic equations are to be solved at every time-step when these methods are used.

The well-known and very popular first-order Backward Differentiation Formula, which is called also
the Implicit Euler Method, can be obtained from (3.17) by setting there k = 1. This method is also
an implicit Runge-Kutta method of order one. It will be further discussed in Chapter 4.

More details about the Backward Differentiation Formulae can be found, for example, in Gear (1971),
Hairer and Wanner (1980), Hundsdorfer and Verwer (2003) and Lambert (1991).

3.2. Variation of the time-stepsize for linear multistep methods

It was pointed out in the previous section (and also in the previous chapters) that it is worthwhile in
some situations to be able to vary the time-stepsize during the computational process. Indeed, it is
intuitively clear that if some of components of the exact solution vector y(t) are rapidly varying in
some parts of the integration interval [a,b], while all components of y(t) are slowly varying in
the remaining parts of the integration interval [a,b], then it will be more profitable to use small
time-stepsizes in the parts where there are quickly varying components and large time-stepsizes in the
remaining part of the time-interval. Furthermore, it will be efficient to use more accurate (and more
expensive) formulae in the first case and less accurate, but considerably cheaper, formulae in the second
case. These considerations lead to the idea of developing linear multistep variable stepsize variable
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formula methods (LM VSVFMs). While the potential advantage of these methods is obvious, it is
clear that two major difficulties arise and must be resolved during the development of such methods:

(a) the coefficients of the linear multistep methods will not remain constant anymore (they
will be dependent on several of the last used time-stepsizes when this approach is
applied)

and

(b) the zero-stability properties of the linear multistep method might be affected when it is
allowed to vary the time-stepsize and also the formulae.

It will be shown, in the remaining part of this section, how the above two difficulties can be overcome.

3.2.1. Calculation of the coefficients of an LM VSVEM

Consideraset F ={F;, F,, .., Fn} of m linear multistep methods with constant coefficients.
Formula F; ofthis set can be represented by the following expression, where index j is expressing

the fact that precisely the j™® formula from set F is used:

kj kj
(3 18) Yn + Z aii Vn-i = h Z B]l fn—i , j = 1, 2, .., M, n > k] .
i=1 i=0

Assume that methods of type (3.18) from the set F are to be used in the development of a variable
stepsize variable formula procedure and that precisely the formula F,  isused at time-step n .

Denote by Fgare € F  the first linear multistep formula, which has been used after the calculation of
the starting values, and consider the time-stepsize

(3.19) h,=x,—x,_1, n = Kgart, Kstart +1,--, N,

that is to be used at time-step n, with n > Kg.¢. Set hg = h;, assume that some formula
F; € F isto be applied and consider the vector:
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Under these assumptions, formula F; , the coefficients of which are not constants but depend on the
time-stepsizes used during the last k; time-steps, can be written in the following form:

kj k

j
(3.21) y,+ Z i(hpj) Ynoi = ) hpiBjiChp) fosi
i-1 0

Assume again that n > K; and introduce the quantities:

i—-1
(322) by=) b, i=12 ., k, n>k, h=o,
q
and
_ h'_. h h h,_. _
3.23) h'_ =-"d_qq-nl 2, om0t 512 . ki, h: &0,
( ) i = +hn+hn++hn i i .

The basic question now is: how to calculate the coefficients of formula (3.21)? It can be proved
(see, for example, Zlatev, 1983) that if formula (3.18) is of order p;, then formula (3.21) is of the

same order of accuracy and its coefficients can be obtained by the solving the system of linear algebraic
equations formed by the equalities (3.24)-(3.26), which are listed below. It is immediately seen that
these equalities are very similar to the equalities (3.4)-(3.6).

K;

(3.24) 1+ Z oji(hy) = 0,
i=1

K K
o hoi o -
(3.25) Zhn—iaii(hn]’) = h_Bji(hnj) )
i=1 i=0 "
K K
1 = . q — 1 h 3 = q—1 —
(3.26) EZ(hn_i) oji(hyy) = CEE] l‘l‘ ~(h;_;)"  Bjithyy), q=2,3,..,p; .
= =0 "
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Moreover, it can also be shown that if the same time-stepsize has been used during the last k; time-
steps or, in other words, if h, =h,_{ == hn_ki =h, then equalities (3.24)-(3.26) will be
reduced to equalities (3.4)-(3.6) and formula (3.21) will be reduced to formula (3.18).

No proof has been given in this paragraph, but all proofs of the above statements can be found in Zlatev
(1983).

3.2.2. Zero-stability properties of an LM VSVFM

We have shown in the previous paragraph how to calculate the coefficients of the formulae (these
coefficients depend on a sequence of several of the last time-stepsizes) that are to be used in an LM
VSVFM. However, this does not solve all problems related to the development of reliable and efficient
LM VSVFMs. The biggest of the remaining problems is caused by the fact that the variation of the
stepsize and/or of the formula may affect the zero-stability of the computational process. This
phenomenon was first pointed out by Nordsieck in 1962, see Nordsieck (1962). After that many
investigations were carried out, for example by Piotrowski (1969), Gear and Tu (1974) and Gear
and Watanabe (1974). Two important results were established during these investigations:

(a) it is necessary to impose some restrictions in the variation of the time-stepsize and/or
the formulae

and
(b) zero-stability can be guaranteed (under an assumption that several restrictions on the
variation of the time-stepsizes and/or the formulae were properly introduced) when the

Adams methods are used.

The last result, established in Gear and Tu (1974) and Gear and Watanabe (1974) for the Adams
type formulae, was extended in Zlatev (1978, 1981b, 1983) for some more general methods.

Rather general restrictions on the time-stepsize can be introduced by the following relationships, where
aconstant Kg.pe 1S defined in (3.19) and in the text before this formula:

(A) Assume that h = max h, . Then the inequality hN < ¢ must be

n=Kstart, Kstart+1,...,N

satisfied for some positive constant c.

(B) There exist two constants @ and B suchthat 0 <@ < h,/h,.; < B <o for
all pairs of time-stepsizes, i.e. for n = Kgart, Kstart +1,... , N—1.

(C) If N- oo, then lim(Nh) =c.
Similar restrictions were introduced first by Piotrowski (1962) and after that used in different proofs

by Gear and Tu (1974), Gear and Watanabe (1974) and Zlatev (1978, 1981b, 1983). In the first two
of these papers, it was proved that if the restrictions (A)-(C), or some similar restrictions, are satisfied,
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then the Adams formulae are zero-stable. The major result proved in the papers of Zlatev was related
to LM VSVFMs defined by the following more general formulae:

k;

(3.27)  yn + &1 (hy;)yn-1 + [1 — &1 (hyy)[yn—2 = Z h,_iBji(hyy) faoi, D> K.
i=0

The LM VSVFMs based on formulae of type (3.27) are zero-stable when the restrictions (A)-(C) are
satisfied.

Itis clear that if oq(hy;) =1 and Bjo(hy;) = 0 forall values of hy;, then formula (3.27) will
be reduced to an Adams-Bashforth method. This means that the results proved by Gear and Tu (1974)
and Gear and Watanabe (1974) are a special case of the results proved in Zlatev (1978, 1981Db, 1983).

Furthermore, it is immediately seen that if o4 (hy;) =0 and Bjo(hy) =0, then the formula
(3.27) is reduced to a Nystrom method. Thus, formula (3.27) can be considered as a linear combination
of Nystrdm and Adams-Bashforth methods in this case. Similarly, if aj1(hy;) =0 and Bjo(hy;) #

0, thenthe formula (3.27) is reduced to a generalized Milne-Simpson method. It follows that formula
(3.27) can be considered as a linear combination of generalized Milne-Simpson and Adams-Moulton
methods in this case.

More results as well as the proofs of the results given above can be found in Zlatev (1983).

3.3. Absolute stability of the linear multistep methods

Convergence, consistency and zero-stability are fundamental requirements of the numerical methods
for solving systems of ODEs defined by (1.1) and (1.2), which are unconditionally needed. If these
requirements are satisfied, then the numerical solution 'y, ata given grid-point t,, will be close
to the corresponding value y(t,) of the exact solution when time-stepsize h is sufficiently small.
However, in many situations, especially when large-scale scientific models are to be handled, it is much
more important and useful to achieve sufficiently accurate results also when relatively large time-
stepsizes are used during the solution of the system of ODEs defined by (1.1) and (1.2) with explicit
numerical methods. Good absolute stability properties of the selected numerical method should
additionally be required in the efforts to be able to perform successfully the computations and to reach
the end-point ty of the time-interval by using sufficiently large time-stepsizes.

Consider the linear multistep method defined by (3.1) and assume (as in Chapter 2) that it is applied
in the numerical solution of the scalar and linear Dahlquist test-equation:

d _
(3.28) d—}tlzly, te[0,], yeC, A=a+Bie C, a<0, y(0) =neC.

94



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

The following stability polynomial, which is formulated by the use of
(a) the two characteristic polynomials p(z) and o(z) that were defined in equalities
(3.3)
and
(b) the complex quantity v = ha,

can be associated with the Dahlquist test-equation (3.28):

(3.29) mn(z,v)=p(z)—vo(z), Z€C, v=a+BieC, a<0

Now several absolute stability definitions are very useful in connection with the treatment of systems
of ODEs by linear multistep methods.

Definition 3.4: The linear multistep method is said to be absolutely stable for a given v = hA if for
that value of v the inequality |z;] <1 holds forallroots z;, i=1, 2, .., k, ofthe
stability polynomial (3.29).

Definition 3.5: The setof all valuesof v € C™, forwhich the linear multistep method is absolutely
stable, forms the absolute stability region of this method.

Note that the absolute stability concept is defined in different ways for linear multistep methods and
for Explicit Runge-Kutta Methods. In the first case a linear multistep formula is called absolutely stable
foragiven v=a+ Bi € C ifall the roots of its stability polynomial are within the unit disc. In the
second case, an Explicit Runge-Kutta Method is absolutely stable for a given v=a+ i€ C™ if
the value of the absolute stability polynomial is less than or equal to one. It is intuitively clear that the
first requirement is more restrictive than the second one and this explains the fact that the absolute
stability regions of the linear multistep methods are in general smaller than those of the Explicit Runge-
Kutta Methods of the same order of accuracy. However, it should be emphasized here that the reason
for introducing this concept is exactly the same in both cases: one wishes to ensure that if the exact
solution is bounded, then the numerical solution is bounded too (or at least one has some good reasons
to expect that the numerical solution remains bounded).

The absolute stability regions of different linear multistep methods (both explicit and implicit) are

given in many text-books treating the numerical solution of linear multistep method. These regions are
not very impressive, especially when the linear multistep methods are explicit. They are, as mentioned
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in the previous paragraph, in general considerably smaller than the absolute stability regions of the
corresponding Explicit Runge-Kutta Methods, which were studied in the previous chapter. More
precisely, they are smaller than for the Explicit Runge-Kutta Methods of the same order of accuracy.
Furthermore, the absolute stability regions are becoming smaller when the order of accuracy of the
linear multistep methods is increasing. For six explicit linear multistep methods, more precisely for the
Adams-Bashforth methods of order less than or equal to six, this fact is demonstrated in Fig. 3.1.

The absolute stability regions presented in Fig. 3.1 should be compared with the corresponding absolute
stability regions given in Fig. 2.1 — Fig. 2.4 (the regions limited by the red curves) in the second chapter.
Two major conclusions can be drawn when such a comparison is made:

(a) The absolute stability regions of the Adams-Bashforth methods are smaller than the
corresponding absolute stability regions of the Explicit Runge-Kutta Methods. The
only exception is the case k = 1 resulting in the Explicit Euler Method (the Forward
Euler Formula) both when the class of the linear multistep method is considered and
when the class of Explicit Runge-Kutta Methods are studied. It should be mentioned
here that the computational work needed to perform a time-step by the ERKMs is
increased considerably when the order of accuracy becomes greater, because more
function evaluations are needed, while the number of function evaluations remains the
same (one only) when explicit linear multistep methods are used. This gives some
compensation for the necessity to use smaller step-sizes, because of the stability
restrictions, when explicit linear multistep methods are used.

(b) If k> 1, then the absolute stability regions of the Adams-Bashforth methods are
becoming smaller when the order of accuracy is increased, while the opposite effect is
observed when the Explicit Runge-Kutta Methods are studied.

The length of the absolute stability intervals on the negative part of the real axis are also quickly
decreasing when the order is increased. This fact is illustrated in Table 3.1. The results in this table
should be compared with the corresponding results for the Explicit Runge-Kutta Methods presented in
the previous chapter.

It should be noted here that the results related to the absolute stability restrictions, which were derived
under the assumption that the Dahlquist scalar and linear test-problem is treated by the selected
numerical method, can be generalized, precisely as in Chapter 2, for some linear systems of ODEs
with constant coefficients. One should furthermore expect that, under some assumptions, the results
will remain stable also in the case when linear systems of ODEs with variable coefficients and even
for non-linear systems of ODEs (more details about the argumentation of these statements can be found
in Chapter 2).

Some further details related to the absolute stability will be presented in Section 3.7, where this concept

will be discussed in relation to the very important from a practical point of view predictor-corrector
schemes.
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S TABILITY REGIONS

FOR SIX ADAMS-BASHFORTH METHODS
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Figure 3.1
The absolute stability regions of the first six Adams-Bashforth formulae.

Order | Length of the absolute stability interval
1 2.000

1.000

0.545

0.300

0.163

0.086

Table3.1
Lengths of the absolute stability intervals on the negative parts of
the real axis for six Adams-Bashforth methods.

OO WIN

The absolute stability regions of the implicit Adams-Moulton methods are larger than those of the
corresponding explicit Adams-Bashforth methods. The Backward Differentiation Formulae have
pretty good stability properties. We shall not discussed these two classes of linear multistep methods
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here, because our major objective in this chapter will be the description of the most important properties
of the predictor-corrector schemes, which are in some sense similar to the Richardson Extrapolation.
However, more details about the Backward Differentiation Formulae can be found in many text-books
on the numerical solution of systems of ODEs as, for example, in Butcher (2003), Gear (1971),
Hairer, Norsett and Wanner (1987), Lambert (1991) and Shampine (1994).

3.4. Difficulties related to the implementation of Richardson Extrapolation

Let us assume that an attempt to introduce the Richardson Extrapolation together with a given linear
multistep method is to be carried out in a similar way as described in Chapter 1. More precisely, if the

calculations have already been performed for all grid-points t;, (i=1, 2, ... , n—1) byusing
an arbitrary linear k -step method of order p, and, thus, if approximations y; = y(t;) of the exact
solution are available at the grid-points t;, (i=1, 2, .., n—1), then the following three

actions are to be carried out in order to obtain the next approximation y, :

(a) Perform one large time-step, with a time-stepsize h when the grid (1.6) is used or
with a time-stepsize h,, if the grid (1.7) has been selected, in order to calculate an
approximation z, of y(t,).

(b) Perform two small time-steps, with a time-stepsize 0.5 h , when the grid (1.6) is
used or with a time-stepsize 0.5 h,, if the grid (1.7) has been selected, in order to
calculate another approximation w, of y(t,).

(c) calculate an approximation y, by applying the formula:

2Pw, —z,

(3.30) yu=—5p—

No problems appear during the first action if the grid (1.6) is used (at least, if a constant time-stepsize
h is selected), but the second action is causing some technical problems, because some values of the
approximations at several extra points, which do not belong to the grid (1.6), will be needed. The
additional points are: t,_¢o5 =t, —0.5h, t,_15=t,—1.5h, ..., t,_ o5k = tn —K(0.5h) .
The need of approximations at these points means that even if it is possible to carry on the procedure
that was described above, its implementation will increase very considerably the storage requirements.

The solution of the other problem, the problem related to the fact that a procedure as that described by
the above three actions can be applied only when an assumption that the grid used is equidistant is
made, is also very problematic. The attempt to allow the usage of a variable time-stepsize strategy will
be extremely difficult.
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Because of these difficulties, we shall not try to implement the Richardson Extrapolation together with
linear multistep methods. This seems not to be necessary either, because there exists an alternative
approach which is

(A) rather efficient

and

(B) easily applicable.

Moreover, the major advantages of the Richardson Extrapolation are preserved when the alternative
approach, the application of predictor-corrector schemes, is carefully implemented: (a) the accuracy
can be improved, (b) the local truncation error can be estimated and (c) the time-stepsize can be
controlled. It should be stressed also that the computational cost of a predictor-corrector scheme is
considerably cheaper than the computational cost of the Richardson Extrapolation, which is an
additional advantage of the predictor-corrector schemes.

In the following part of this chapter we shall show that predictor-corrector schemes can successfully

be used instead of the Richardson Extrapolation. The predictor-corrector methods will be introduced
in the next section of this chapter.

3.5. Introduction of some predictor-corrector schemes

The linear multistep methods are mainly used in the practical computations as predictor-corrector
schemes. Consider a pair of an explicit and an implicit linear k-step methods written in the following
form:

k k
0 0 0
@30 '+ Y ayi=h ) BV, || + [BL] >0
i=1 =

and
k

3.32) yl +Za Yas =B 1 Y B, ol (B >0 A B 20,
i=1

where the quantities f,,_; and f,[lo] are abbreviations of f(t,_;, yn—;) and f (tn, y,[,o]) respectively
fori=1, 2, .., k.
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In fact the implicitness of the second formula, formula (3.32), disappears when it is combined with
equality (3.31) in the manner shown above. Indeed, it is immediately seen that both (3.31) and (3.32)
are explicit methods, because vector f,[,O] =f (tn, y,[,o]) , Which appears in the right-hand-side of
(3.32), can be computed by using the vector yl[,o] that was calculated by (3.31). The fact that (3.32) is
an explicit formula is more clearly expressed in the very popular scheme consisting of four steps, which
is shown below.

Step | Process Formula used

k k
Step 1 | Prediction | (3.33) y[ + z oy, i =h Z B, ,

Step2 | Evaluation | (3.34) % =f(t,, y,[,o])

K
Step 3 | Correction | (3.35) yl! + Z ai[llyn_i - hﬁl[(l]fr[no] +h Z BP] £
i i=1

Step4 | Evaluation | (3.36) fl! = f(tn, y,[ll])

One should set y, = yl[lﬂ and f, = fl[,l] , When the fourth step of the above computational scheme is
completed and, after this action, everything is prepared for the calculations at the next time-step, i.e.
for the calculation (by using the same scheme) of y,,.; . The scheme given above is very often called
PECE scheme, where PECE is an abbreviation of “prediction - evaluation (of the right-hand-side
function f ) — correction-evaluation (again of the right-hand-side function f )”.

Sometimes the second evaluation of the right-hand-side function f is not carried out and the
calculations at the time-step n are finished after the performance of the third step. The calculations

for the next time-step n+1 are prepared by setting y, = y,[ll] and f, = f,[,O] . The resulting scheme
is called PEC (which is an abbreviation of prediction-evaluation-correction). The amount of the
computational work is reduced in this way: only one function evaluation is used in the PEC scheme
instead of the two function evaluations which have to be performed when the PECE is selected.
However, one should take into account the fact that some price has often to be paid for the reduction
of the computational work, because the absolute stability regions of the PEC schemes are often
considerably smaller than the corresponding absolute stability regions of the PECE schemes (see, for
example, Lambert, 1991). This may sometimes require considerable reductions of the time-stepsize
when the PEC scheme is selected.

The corrector formula (3.35) can be used not only once, but several, say r, times, where r is some

integer greater than one. In this case the schemes P(EC)"E and P(EC)" can be used instead of PECE
and PEC respectively. However, these schemes are obviously more expensive and one must
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furthermore be careful with the stability of the computational process also in this choice, because the
absolute stability properties of the P(EC)"E and P(EC)" schemes with r > 1 are in some cases
poorer than those of the PECE and PEC schemes (but these may also be better, especially in the
case where P(EC)"E schemes are used) .

It will be more informative sometimes to show the orders of accuracy of the involved in the above
abbreviations of the different predictor-corrector schemes. Assume, for example, that the orders of
accuracy of the predictor and the correctorare p and p+ 1 respectively. Then the abbreviations

can be rewritten as follows: P,EC,,;, P,EC,4E, Pp(ECpH)r and Pp(ECpH)rE.

One can also apply predictor-corrector schemes with several different correctors in an attempt to
improve the absolute stability properties of the resulting predictor-corrector schemes. This approach
will be discussed in the Section 3.8.

3.6. Local Error Estimation

The possibility of estimating in a sufficiently accurate way and in an easy manner the local truncation
error at every time-step is one of the most important advantages of the predictor-corrector schemes
based on linear multistep methods. Some examples, which demonstrate how the local error can be
estimated, are given in this section. Much more examples and a more general presentation of the results
can be found in Lambert (1991).

Consider a P,EC,E (which means that it is assumed that the predictor formula and the corrector

formula are of the same order of accuracy, of order p ). Then the following relationships can be
derived, see again Lambert (1991):

(3.37)  y(ta) —yy = CyhP*ly® D (g,) + O(hP*2)
and

(3.38)  y(ty) —ys" = CLY;hP*ly® () + O(hP*2),

where the constants Cl[ﬂl and Cl[,ljl do not depend on the time-stepsize h and can be calculated
by using the equalities:
1 < 1 <
(339) o =———= > Pt -= " irpl”
p+1 (p+ 1)! L i p! L i
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and

k k

1 1
1 _ E : (1] § :p (1l
(34‘0) Cp+1 = (p n 1)| 1p+1 o — p| iP Bi .

i=1 i=0

Subtracting (3.38) from (3.37) we obtain:

3.41) (], - ) erty®ee) =y - yl0 4 o).

Multiply both sides of (3.41) with clt and neglect the term  O(hP*2) .

i (0] (1]
pt+1 .+ divideby C 0, —C
The result is:

p+1 +1

[1]

C
pt1 (11 _ _[0]
0] [ (y,, ~Vn )

Cp+1 _'Cp+1

(3.41) C hPly® (e =

Substitute this value of Cﬂl hP*+1 y®+D(t ) in (3.38) to obtain the following expression for the

evaluation of an approximate value of the local truncation error:

(1]

C
1 +1 1 0
342yt -y~ g e (! - ).
p+1~ “p+1

It is seen that the expression on the right-hand side of (3.42) can be computed and, therefore, the above
procedure is very similar to the Richardson Extrapolation. Moreover, we can introduce:

[1]
— C +1
3.43) 7=y + e (v - )
C[O] _C[1]
p+1 p+1

and it follows, from (3.42) and (3.43), that the new approximation 371[,1] has of order of accuracy

p + 1, which is by one higher than the order of accuracy of both yr[,l] and 37,[10] . Note too that if
the Richardson Extrapolation is to be carried out, then one has to perform three time-steps (one large
time-step with a time-stepsize h and two small time-steps with a time stepsize 0.5h ) in order to
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achieve the same effect. The corresponding computational work with the predictor-corrector scheme
IS equivalent to the performance of two time-steps (one with the predictor formula and the other with
the corrector formula). This means that not only is the use of a predictor-corrector scheme very similar
to the application of the Richardson Extrapolation, but it will often require a smaller amount of
computations.

The device for calculating an approximation of the local truncation error by (3.42) and for computing
a more accurate numerical solution by using (3.43) was derived by Milne (1953) and was the major
motivation for the further development of predictor-corrector schemes. Note that it was derived in this
section for schemes of the type P,ECLE , but it can easily be extended also for predictor-corrector

schemes of the type P,EC, , P,(EC,) E and P,(EC,)’, see, for example, Lambert (1991) . The

requirement is that the order of accuracy of the predictor formula must be equal to the order of the
corrector formula. However, this is not a serious restriction, because

(a) there is obviously no meaning to use predictor formulae the order of accuracy of which
is higher than that of the corrector formulae,

and

(b) if the order of the corrector formulae is higher than that of the predictor formulae it is
very easy to obtain a reliable approximation of the local truncation error (for example,

the difference yr[,l] — y,[f’] is giving a sufficiently good approximation of the local
truncation error in the case where predictor-corrector schemes of the P,EC,.{E are
used).

The above discussion demonstrates the fact that by using appropriate predictor-corrector schemes we
can indeed achieve in an efficient way the same two effects, which were derived during the
presentation of the Richardson Extrapolation in the previous sections:

(a) it is possible to calculate an estimation of the local truncation error, by using the term
in the right-hand-side of (3.42)

and

(b) it is possible to calculate a new approximation y,[ll] ,Which is more accurate than

both y¥ and yl”.

However, one important question is still remaining and it has to be answered:

Will it be possible to apply the results presented above in the
calculation of a good guess for the time-stepsize, which has to be
applied during the next time-step or, in other words, is it possible to
implement efficiently a variable stepsize variable formula predictor
corrector schemes based on linear multistep methods?
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It is not very easy to answer this question. The major problem is related to the fact that the quantities

CI[,Ojl and Cl[fjl from (3.39) and (3.40) will not be constants anymore when it is allowed to vary
the time-stepsize (and also to vary the formulae if this will additionally increase the efficiency of the

computational process). The solution of this difficult problem is presented below.

Consider, as in Section 3.2, aset F ={F;, F,, ..., Fy}, which now consists of m predictor-
corrector schemes with constant coefficients and assume that the predictor-corrector scheme F; is of

thetypea PL,ECLE . By using the same notation as that introduced in Section 3.2 and the relationship
(3.26), the equalities (3.39) and (3.40) can be replaced by the following two relationships:

k k
_ 1 1 _
[0 _ p41 (0] b l0]
(3.44) Cp+1(hni) = P+ 1) Z iP*t1 ;4 (hy;) — E Z i? Bii (hy;)
i=1 i=0
and
1 < 1%
Mg 41 1] 7 b alll i
(3.45) i) = o, z ol (hy) Z i B (hyy)
i=1 i=0

It is seen that the quantities Cl[ﬁl(iln]-) and Cl[,lﬂl(flni) depend on the time-stepsizes that were used

during the last j time-steps. However, in the present special situation this is not very important. The
important thing is that the coefficients in the terms participating in the right-hand-sides of (3.44) and
(3.45) can be calculated (as was shown in Section 3.2). Therefore, the total quantities on the left-hand-
side of the last two equalities can also be calculated and used in (3.42) and (3.43). This means that the
following two relationships can be obtained when the stepsize can be varied:

C[l] (B )
p+1\"m ( 1] _ [0])

(3.46)  ClY (hy) (M )P+ y®*O(t,) = —— _
[0] [1] n n
Cp+1(hni) - Cp+1(hni)

and

Cr[)l-gl (Bni) (y[1]

(3.47) y(ty) -y = . . —yi%) + O[(h,)P*].
[0] [1] n n n
Cp+1(hni) - Cp+1(hni) )

104



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

It is clear now that an approximation of the norm E,, of the local truncation error at time-step n is
given by

Cl[ﬂl (hyy)
Cl[)Tl(Bni) - C;[)1431(Bni)

(3.48) E, =

| vt -y

Assume now that some error tolerance TOL has been prescribed. Then three possibilities arise and
must be analysed carefully:

(a) E, > TOL,

(b) E,=TOL
and

(c) E, <TOL.

If (a) is satisfied, then the accuracy requirement introduced by the error tolerance has not been satisfied
at time-step n . The conclusion is that the time-step n was not successful and therefore it must be
rejected, because the time-stepsize h,, was too big and should be reduced in order to calculate a more
accurate approximation. In many codes based on the use of a variable stepsize, the time-stepsize is
reduced by some constant factor. Very often it is halved and the time-step is repeated. It is not very
recommendable to trytouse E, inanattemptto calculate more precisely the reduction factor, because
the fact that E, > TOL indicates that the results from the calculations at the current time-step are
not very reliable.

In the case where (b) is satisfied, everything is fine and it is best to perform the next time-size with
time-stepsize  h,,; = h, . Of course, in the practical computations one should require that the
quantity |E, — TOL| is in some sense small instead of the stringent requirement E, = TOL ,
which will practically never satisfied in computer arithmetic. The introduction of |E,, — TOL| leads
to some obvious modifications of (a) and (c).

Case (c) isthe most interesting one. The relationship E, < TOL indicates that it is possible to perform
the next time-step with a larger time-stepsize. An attempt to find a good guess for the time-stepsize,
which can successfully be used in the next time-step, can be carried out as follows. Assume that the
following two equalities are satisfied:

(3.49) E, =y TOL and E, = §(h,)P*1

with some constant y < 1 and some other constant & . It is clear that the constants y and & can
easily be computed. E, can be calculated by using (3.48), TOL is prescribed by the user and h,, is
the last-time-stepsize. Therefore, y = E,/TOL and & =y TOL/(h,)P*! , where the quantities
participating in the right-hand-sides of the two equalities are known. It is clear now that the largest

105



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

guess for a time-stepsize h,,;, which is suitable for the next time-step, time-step n+ 1, canbe
calculated by imposing a requirement to achieve

(3 50) En+1 =TOL = 8(hn+1)p+1

when the next time-step is completed.

By using the relations E, = 8(h,)P*! and TOL = &(h,,{)?*! one can find out that the following
number is a good guess for an optimal time-stepsize, which can be used at the next time-step:

1
TOL)p+1

E,

(3.51) hpi1 =hy (

There is no guarantee, of course, that the time-step n + 1 will be successful when the time-stepsize
h,.; calculated by (3.51) is applied. Therefore, the right-hand-side of (3.51) is multiplied by some
precaution positive factor less than one in many practical codes for solving systems of ODEs with
predictor-corrector schemes with a variable time-stepsize.

The approach described above can be used successfully when only one predictor-corrector scheme
based on linear multistep methods, a predictor-corrector scheme of the type P,ECLE, is used inthe
solution of the system of ODEs defined by (1.1) and (1.2). In many situations, it is worthwhile to vary
also the predictor-corrector scheme. Assume that two other predictor-corrector schemes from the set
F={F;, F,, .., F,} areappropriate candidates for the performance of the next time-step. In many
practical codes, one selects as candidates for the next time-step predictor-corrector schemes of the types

P, 1EC, ;E and P,.;EC,E. Replace h,,; by h') in(351). Use

—_ P
3.52) EP =TOoL and EP =8(h“’ )

n+1 n+1 n+1

instead of (3.50). Apply now equalities (3.52) and (3.49) to calculate a good guess for the time-

stepsize th[ll] when the next time-step n+ 1  will be carried out with the predictor-corrector

scheme P,_{EC,_{E. The resultis:

1
_ TOL\
3.53) hPH—h, (hnE—)p .

n+1
n

Use
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p+2
3.54) EXP=ToL and EX=s5(nlY)

n+1 n+1 n+1

instead of (3.50). Use now equalities (3.54) and (3.49) to calculate a good guess for the time-stepsize

th++11] when the next time-step n+ 1  will be carried out with the predictor-corrector scheme

P, 1EC,1E. The resultis:

(3.55) hPU=p

n+1

1
( 1 TOL)W
n hn En

A good guess for the time-stepsize h,,; that can be used to perform the next time-step n+ 1 can
be obtained when the quantities on the right-hand-sides of (3.51), (3.53) and (3.55) are calculated. One
can choose:

(3 56) hn+1 = max ( h[p_l] h[p] h[p+1] )

n+1 ’ n+1’ n+1

and use this time-stepsize during the next-time step together with the respective predictor-corrector
scheme.

It is possible to involve more than three predictor-corrector schemes in the search for the scheme, which
will produce the largest possible time-stepsize for the next time-step.

To simplify the presentation of the results, we used above aset F = {F,, F,, ..., F,} of predictor-
corrector schemes of the type P,EC,E where parameter p is varied in the different schemes in

this set. Other sets of predictor-corrector scheme can also be applied in a quite straight-forward way;
see more details in Lambert (1991).

The difficult problem related to the preservation of the zero-stability arises also when predictor-
corrector schemes are used in a variable stepsize variable formula manner. It can be proved that in this
case the method will be zero-stable if the last corrector formula in every scheme F,€F, j=1,
2, .., m, s zero-stable (Zlatev, 1985a, 1987, 1988, 1989). This implies that the last corrector
formula should be of the type:

Kk;

)
(3.57) yn+t ajl(Bni)Yn—l + [1 - ail(ﬁni)]Yn—Z = Z hn—iBji(Bn]') foi,
i=0
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with Bio(ﬁnj) # 0 and, furthermore, the same restrictions on the time-stepsize as those proposed in
Section 3.2 must be imposed. Zero-stable methods based on sets of predictor-corrector schemes, where
both the time-stepsize and the scheme can be varied during the computational process, were proposed
in Thomsen and Zlatev (1979) and Zlatev and Thomsen (1979). In the development of these methods
an attempt to improve the absolute stability properties of the predictor-corrector schemes has been
carried out. The absolute stability of predictor-corrector schemes will be studied in the next section.

It should be pointed out here that variable stepsize variable order schemes based on the use of Adams
methods (Adams-Bashforth methods for the predictors and Adams-Moulton methods for the
correctors) are normally used in efficient codes for solving non-stiff systems of ODEs defined by (1.1)
and (1.2); see, for example, Enright, Bedet, Farkas and Hull (1974), Gear (1971), Hindmarsh
(1971), Krogh (1973a, 1973b), Shampine and Gordon (1975), Shampine, Watts and Davenport
(1976).

3.7. Absolute stability of the predictor-corrector schemes

We shall start the discussion in this section in the same way as in the beginning of Section 3.2, i.e. by
pointing out that convergence, consistency and zero-stability are fundamental requirements, also when
predictor-corrector schemes are to be used, related to the numerical solution of systems of ODEs
defined by (1.1) and (1.2). These three properties are unconditionally needed, because only if such
requirements are satisfied, then the numerical solution 'y, ata given grid-point t, will be close to
the corresponding value y(t,) of the exact solution when time-stepsize h is sufficiently small.
However, in many situations, especially when large-scale scientific and engineering models are to be
handled numerically on computers, it will be much more important and useful to achieve sufficiently
accurate results even when relatively large time-stepsizes are used during the treatment of the systems
of ODEs defined by (1.1) and (1.2) with explicit numerical methods. Therefore, good absolute
stability properties of the selected predictor-corrector schemes should additionally be required in the
efforts to be able to perform successfully the computations and to reach the end-point ty of the time-
interval by using larger time-stepsizes.

Consider a predictor-corrector scheme of type P,EC,E and assume (as was assumed in Chapter 2

and in Section 3.2) that this numerical device is applied in the numerical solution of the scalar and
linear Dahlquist test-equation:

d _
(3.58) d—}t,=ly, te[0,©], yeC, A=a+Bie C, a<0, y(0)=neC.

Denote by p*(z) and o*(z) the two characteristic polynomials of the predictor formula and use
the notation p(z) and o(z) for the characteristic polynomials of the corrector formula. Use again
as in Section 3.2 the notation v = hA . Assume that both the predictor and the corrector are linear
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k-step methods given by (3.33) and (3.35) respectively. Then the following stability polynomial can
be associated with the selected ~ P,EC,E  scheme:

(3.59)  Tppce(z V) = p(z) —v5(z) + vBL [p*(2) — v o' (2)] .

Now several absolute stability definitions that are very similar to those introduced in Section 3.2 are
very useful in connection with the treatment of systems of ODEs by predictor-corrector schemes.

Definition 3.6: The predictor-corrector scheme PECE consisting of the two linear k-step formulae
given by (3.33) and (3.35) is said to be absolutely stable for a given v = hA if for that value of v
the inequality |z;| <1 holds forallroots z;, i=1, 2, .., k, ofitsstability polynomial
(3.59).

Definition 3.7: The set of all valuesof v € C~, for which the predictor-corrector scheme PECE
consisting of the two linear k-step formulae given by (3.33) and (3.35) is absolutely stable, forms the
absolute stability region of this method.

It should be noted here that the orders of both the predictor formula and the corrector formula are not
very important when absolute stability properties are studied. Therefore, p was omitted in formula
(3.59) and this parameter will not be used in the remaining part of this section. Another parameter, the
parameter Kk, is much more important in this situation, because this parameter determines the degrees
of the four polynomials p*(z), o*(z), p(z) and o&(z), which areinvolved in the absolute
stability polynomial mpgce(z,v) . All these five polynomials are of degree k and the important
issue is the requirement the absolute values of all zeros of the absolute stability polynomial
Tpece(z,v)  to be less than or equal to one.

The absolute stability regions of different predictor-corrector schemes consisting of two linear k-step
formulae are given in several text-books treating the numerical solution of systems of ODEs; see for
example, Lambert (1991). The above presentation is related to predictor-corrector schemes of the type

PECE . Absolute stability polynomials for other types of predictor-corrector methods can be
introduced in the following way. Define the two quantities:

(3.60) &= yplt!

and
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w517 .
(361) wi(E)szi, i=1 2 .., r.

It is worthwhile to note here that w4 (§) = .

In this notation, the absolute stability polynomials for predictor-corrector schemes of types
P (ECx;1)" and Pg(ECk,.1)"E are given by

(3.62) oy (zv) = BYZK[P(Z) — vE(2)] + 0, B)[p*(2) 5(z) — p(z)0"(2)]
and
(3.63) TpEere(m V) = p(2) —v5(2) + w, (§)[p*(2) — vo'(2)]

respectively.
Itis clear that (3.63) will be reduced to (3.59) by setting r=1.

Much more details can be found in Lambert (1991). Two important facts should be stressed here
instead of giving a full description of the derivation of the above absolute stability polynomials:

(A) The absolute stability regions for the predictor-corrector schemes are not very
impressive, especially when predictor-corrector schemes of type P(EC)" are used.
Even if P(EC)"E schemes are selected, all regions are in general considerably smaller
than the absolute stability regions of the corresponding Explicit Runge-Kutta Methods
(the Explicit Runge-Kutta Method of the same order of accuracy), which were studied
in the previous chapter. Furthermore, the absolute stability regions are normally
becoming smaller when the order of accuracy of the predictor-corrector schemes is
increasing. Some results, which demonstrate the fact that the absolute stability regions
of the predictor-corrector schemes are as a rule becoming smaller when the order of
accuracy in increased, are shown in Fig. 3.2. The orders of the predictors is varied from
one to six in Fig. 3.2. The corresponding orders of the correctors are varied from two
to seven. This means that PyECy,.{E schemes were used with k=1,2,...,6.

(B) The conclusion made in (A) indicates that it is worthwhile to try to improve the absolute
stability properties of the predictor-corrector schemes. It must be emphasized here that
one should try not only to improve the absolute stability properties but also to preserve
the zero-stability properties of these numerical methods when these are to be used as
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variable stepsize variable formula methods. The results of the efforts made in this

directions will be described in the following part of this section.
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Figure 3.2

Absolute stability regions of six Adams P ECy,{E schemes.

Consider the following four formulae:

k

(3.68) Yo =va1+h ) BV6 k=2 3,
i=1
k

(3.65) Yo =Yao+h ) BV6 k=2 3,
i=1
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k

(3.66) Yo =Youth Y Bfn,, k=23 ., 12,
i=0
k

(3.67) yy =yup+h Zﬁ{” f,,, k=2 3 ., 12.
i=0

Adams-Bashforth formulae, Nystrom formulae, Adams-Moulton formulae and generalized Milne-
Simpson formulae are represented by (3.64), (3.65), (3.66) and(3.67) respectively. We shall
additionally assume that the formulae (3.64) and (3.65) are of order of accuracy p = k, while the
order of accuracy of the other two formulaeis p=k+1.

Multiply (3.64) by a and (3.65) with 1 —a . Add the two equalities obtained after performing
these two actions. The result is:

k

(3.68) Yo+ @1+ A-Qypr=h ) [@@+A-0B" s, k=23 .., 12,
i=1

Multiply (3.66) by a and (3.67) with 1 —a . Add the two equalities obtained after performing
these two actions. The result is:

k

(3.69) y,+ayyq+(1—a)y,p=h z B + (1 - 0B foi, k=2, 3, ., 12
i=0

It is clear that the two formulae (3.68) and (3.69) form a predictor-corrector scheme of PyECy,1E
type for k=2, 3, .., 12. Moreover, it is also clear that each of these predictor-corrector
schemes depend on the two free parameters o and o . These parameters were used in Thomsen
and Zlatev (1979) and in Zlatev and Thomsen (1979) to design predictor-corrector schemes with
improved absolute stability properties and to implement the so obtained schemes in a code for
automatic integration of systems of ODEs. Some information about the properties of the improved
predictor-corrector schemes are given in Table 3.2. Plots of the of six PyECy,1E schemes with
k=3, .., 8 aregiveninFig. 3.3.

Much more details about the predictor-corrector schemes with enhanced absolute stability properties
can be found in the above two references. Plots, which show that the absolute stability regions of the
P EC,.1E thatare combinations of Adams-Bashforth predictors and Adams-Moulton correctors with
Nystrom predictors and Generalized Milne-Simpson correctors respectively are larger than those of
predictor-corrector schemes based on Adams formulae, are also given there.
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Absolute stability regions of six PgEC,,.{E schemes, which are combinations of Adams-Bashforth

predictors and Adams-Moulton correctors with Nystrom predictors and Generalized Milne-Simpson
correctors respectively.

3.8. Application of several different correctors

The results in Table 3.2 show clearly that the lengths of the absolute stability intervals on the imaginary
axis are much smaller than the intervals of the absolute stability on the real axis when predictor-
corrector schemes, which are based on linear multistep formulae, are used. Therefore, it is desirable
sometimes to have longer absolute stability interval on the imaginary axis and near this axis. This is
the case for many applications from different fields of science and engineering. This will be
demonstrated in this section by taking an example arising in the field of environmental modelling.
After that we shall show how to design special schemes, which have longer intervals of absolute
stability along the imaginary axis.
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K| a o Interval on the real axis | Interval on the imaginary axis
3 | 140 | 136 2.39 (1.92) 1.24 (1.18)
4 1190 | 1.87 1.92 (1.41) 1.16 (0.93)
5 195 | 1.90 1.41 (1.04) 0.92 (0.64)
6 | 150 | 0.55 1.06 (0.76) 0.63 (0.52)
7 190 | 1.70 0.77 (0.58) 0.51 (0.37)
8 190 | 150 0.58 (0.44) 0.37 (0.26)
9 180 | 0.50 0.45 (0.34) 0.25 (0.18)
10 | 1.50 | -2.50 0.36 (0.26) 0.16 (0.12)
11 | 1.80 | -0.60 0.27 (0.21) 0.11 (0.07)
12 | 1.80 | -1.00 0.21 (0.17) 0.07 (0.04)
Table 3.2

Lengths of the absolute stability intervals on the real and imaginary axes of ten predictor-
corrector schemes of the type PyECy,.1E with improved absolute stability properties.
The values of the two free parameters o« and o, for which the improved predictor-
corrector schemes were obtained, are listed in the second and the third columns
respectively. The corresponding lengths of the traditionally used Adams-Bashforth-
Moulton predictor-corrector P ECy,.{E schemes are given for comparison in brackets.

3.8.1. An example from the field of environmental modelling

Consider the following systems of partial differential equations (PDEs), which can be used to study
long-range transport of air pollutants, mainly sulphur and nitrogen pollutants) in the atmosphere:

(370) X € [all bl]l y € [aZF bZ]I YIS [a3I b3]! te [al b]

The quantities involved in (3.70) can be defined as follows:

(a) ¢ =c(x,y,zt) isthe unknown function, a vector containing the concentrations of the
studied by the model pollutants; it will be assumed here that the chemical part of the
model is very simple, and more precisely that either SO, and SO, or NO, and
NO; are studied by the above model, i.e. the model can be used to study transport of
either sulphur pollutants (sulphur di-oxide and sulphate) or nitrogen pollutants
(nitrogen di-oxide and nitrate), which means that the model consists of two equations,

b)) u=uixyzt), v=v(xyzt) and w=w(xyzt) are given functions
representing the components of the wind velocity vector along the coordinate axes

and
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(c) the chemical reactions are described by the function Q = Q(x,y,zt,c) , in factitis
assumed in connection with (3.70) that the chemical reactions are linear and that there
are only two chemical species (this assumption is made only in Chapter 3).

The model described mathematically by the system of PDEs (3.70) must be considered together with
some initial and boundary conditions. It is assumed that periodic boundary conditions are specified and
that the values of function c(x,y,z t) are given for t =a and for all values of the spatial variable
in the beginning of the time-interval.

It is also assumed (this is typical for the large-scale air pollution models) that the spatial domain is a
parallelepiped and an equidistant grid is introduced by Gy = Xu, X Yu, X Zy, where Xy , Y,

and Zy, are defined by

et . (by —ay)
(371) XMx =14Xq = a4, Xj =Xj_1+ AX, 1= 1, 2, ...,ZMX, Ax = T, XZMX = b1 ,
X

b, —a
(3.72) Yy & {yl =ay, Vi =Yyi1+4y, i=12,.,2M, Ay= M, Xom. = bz},

2M, y

and

et B . . _ (b3 —aj3) B
(3.73) Iy, ¥i{z4=a3, z;=2i_1+Az, i=1,2,..,2M,, Az= oM. Zym, = b3y
z

Assume that the pseudospectral method is used to discretize the spatial derivatives in (3.70) and to
transform the system of PDEs into a large system of ODEs of the type:

d
(3.74) d—f — f(tg) .

The number of equations in this systemis M = 2M, x 2M,, X 2M, . This number can indeed be very
large. If we assume that 2M, =96, 2M, =96 and 2M, =10, then M =92160. This
number is already very large, but if the spatial domain has to cover the whole of Europe together with
its surroundings, i.e. if long-range transport of air pollutants in different European countries is to be
studied, then the surface cells will be 50 km X 50 km , which is rather crude. It is clear that much
smaller surface cells are needed in order to improve the reliability of the model results. Therefore, it is
much more reasonable to take 2M, =480, 2M, =480 and keep 2M, =10 and this second
discretization will results in a system of 4608000 ODEs when the three grids (3.71), (3.72) and

115



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

(3.73) are applied in connection with (3.70). The time-integration interval is very long (covering
normally a year) and many thousands of time-steps have to be carried out. Moreover, many different
scenarios have to be performed in order to study the sensitivity of the model results to the variation of
different key parameters, such as emissions, temperature variations, boundary conditions, etc. It should
be mentioned here that such grids and much more chemical species were used in connection with
several studies related to the impacts of future climatic changes on high air pollution levels, see for
example, Csomos et al. (2006), Zlatev (2010), Zlatev, Georgiev and Dimov (2013b), Zlatev, Havasi
and Faragé (2011), Zlatev and Moseholm (2008).

The above discussion shows clearly that it is necessary to try to solve the system of ODEs appearing
in some environmental problems by using as large as possible time-stepsizes. In the remaining part of
this section we will show that this is not an easy task and that the development of some special methods
is needed in order to resolve it. The major problem is that the Jacobian matrix of (3.74) has eigenvalues
close to the imaginary axis.

3.8.2. Some absolute stability considerations related to environmental modelling

Consider again (3.70) and assume u is a constant. Assume furthermore that the following conditions
are additionally satisfied:

(3.75) v=0, w =0, Q=0.

Finally, assume that the pseudospectral method, see, for example, Fornberg (1975, 1996) or Zlatev,
Berkowicz and Prahm (1983a,b,c), is applied in the discretization of the so simplified equation
(3.70). The result (see Zlatev, Berkowitcz and Prahm, 1984a,b) is:

3.76) B_ _us
' at - OB

where S isa 2M, x 2M, skew-symmetric matrix and thus all its eigenvalues lie on the imaginary
axis. In fact, the eigenvalues are given by theset A ={—-M +j)i, j=0,1,..., 2M,i? = —1} and it
can be proved, Zlatev, Berkowicz and Prahm (1984c), that the computations will be stable when
(3.76) is solved by the pseudospectral method if the time-stepsize satisfies the following inequality:

himag M
3.77 h < — | AX,
( ) l lult M—1 X

where hjy,g is the length of the absolute stability interval on the imaginary axis of the selected
numerical method.
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If other discretization methods, as, for example, methods based on the application of finite elements or
finite differences, are used instead of the pseudospectral method, then (3.76) has to be modified, but
the major parameters, Ax, h;yn,s and some quantities depending on the way in which the spatial
derivatives are discretized and on the particular problem solved, would be represented also in the
modified formula.

The inequality (3.77) shows that the stability of the computational process when (3.76) is solved
numerically depends on

(a) the problem solved (because of the presence of u in the inequality),
(b) the spatial discretization used (mainly because of the presence of Ax)
and

(c) on the time-integration algorithm (because of the presence of the length  h;p,, of the
stability interval on the imaginary axis).

When the problem is given and the spatial discretization is chosen, it will be important to select a
numerical scheme with as large as possible length of the stability interval on the imaginary axis. It
turns out, however, that this is not an easy task.

Assume that linear multistep methods, either single formulae or predictor-corrector schemes combining
several formulae, are to be used. Then the following theorem, which can be deduced from a more
general result proved in Jeltsch and Nevanlinna (1981), see also Jeltsch and Nevanlinna (1982) and
Zlatev (1984a, 1985b), is establishing a barrier for the size of h;p,,g for the linear multistep methods.

Theorem 3.3: Consider a numerical method consisting either of a single linear multistep formula or of
a predictor-corrector scheme with r correctors, where both the predictor and the correctors are linear
multistep formulae. The length of the absolute stability interval of this methods satisfies the inequality:

(3.78) O0<hjp<r+1,

assuming herethat r =0 when the numerical method consists of a single explicit linear multistep
formula.

The statement of Theorem 3.3 is rather restrictive. It is telling us that we must use several linear
multistep formulae if we wish to increase the length of the absolute stability interval of the predictor-
corrector scheme over a certain level. The requirement to ensure zero-stability of the selected predictor-
corrector scheme is imposing another restriction: it is necessary to use the special predictor-corrector
schemes derived in the previous section. Let us reiterate here that these predictor-corrector schemes

depend on two parameters, o« for the predictor and o for the corrector. This means that the number
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of free parameters that can be used in the efforts to increase the length of the absolute stability interval
on the imaginary axis is only two for all values of r both when zero-stable predictor-corrector
schemes of type Pp(ECpH)r and of type Pp(ECp+1)rE are used. This number is increased from

2 to r+ 1, whenitis allowed to use different correctors in the predictor-corrector schemes. The
increased number of free parameters will give us more freedom in the search for better predictor-
corrector schemes.

It is worthwhile now to change a little the notation in this section. We shall replace @ with «al®
when we refer to the predictor formulaand o with !l | where i = 1,2, ...,r, when we refer to the

it corrector. The i™ corrector will be denoted by Cl[,i], where the lower index is showing the order

of accuracy, while the upper index is indicating the position of the formula in the predictor-corrector
scheme.

An optimization process was organized by using the subroutine VA10AD from the Harwell Library of
Fortran programs. This subroutine is discussed in Fletcher (1972). We found out during the search that
the predictor-corrector schemes with best h;y,,g have normally poor accuracy properties. A similar
problem is also discussed in Jeltsch and Nevanlinna (1982). Therefore, we had to make a compromise
in order to obtain predictor-corrector schemes, which have both good absolute stability properties on
the imaginary axis (but not the best possible) and which are sufficiently accurate.

Some results which were obtained during the search are listed in Table 3.3.

No. Type of the predictor-corrector scheme e
F1 (—0.0041,1.9884) — P,EC.'E 1.995
F2 (—0.8440,1.8841) — P;ECLE 1733
F3 (—1.5909,0.3748,0.7710) — P,EC"ECI”E 2.330
F4 (—1.7631,0.5577,0.0044) — P,EC."ECV'E 2.462
F5 (—0.0026,1.9919,0.0050) — P,EC."EC”'E 2.842
F6 | (0.2885,0.9980,0.3446,1.0233) — P,EC."EC'EC]’E | 3.345
F7 | (0.0375,0.3510,0.7124,0.0336) — P,EC,'ECEC’/E | 3.296
F8 | (~2.1687,0.2109,0.3695,0.2191) — P,EC'ECPECIE | 3.147

Table 3.3
Eight predictor-corrector schemes with long absolute stability intervals  hjy,, on the
imaginary axis. The values of the free parameters, for which these schemes were found,
are given in brackets.

The predictor-corrector schemes with long absolute stability intervals on the imaginary axis were
derived under the assumption that the analogue (3.76) of the famous Dahlquist scalar and linear test-
equation (3.28) is solved. In fact, we are interested in the solution of the simplified air pollution model
(3.70). Absolute stability cannot be guaranteed when the system of PDEs (3.70) has to be treated
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numerically. However, by applying arguments similar to those used in Section 2.1 and in Section 3.3,
one can conclude that stable computational process should be expected when all eigenvalues of the
Jacobian matrix are close to the imaginary axis. To enhance this expectation care was taken (during
the derivation of the predictor-corrector schemes listed in Table 3.3) to ensure that absolute stability
regions of these schemes contain also some parts of the complex half-plane C~ that are located
close to the imaginary axis. When this additional task was accomplished, we can expect the
computational process to be stable, assuming additionally for this special case that the pseudospectral
method is used to discretize the spatial derivatives in (3.70) on the grids (3.71)-(3.73), if the following
condition is satisfied:

himag u' (M, —1) V*(My -1) N w'(M;—-1) !

(3.79) h< n M, Ax M, Ay M, Az ’
with

(3.80) w'= xe[agbyl, yelagbyl, selagbs], telt:t*] Huxy,z 013,
(3.81) v = x€la,bq], ye[az,bzl]l,laz‘é([a3,b3], te[t 1] v Y20l b
(3.82) w'= x€[aq,bq], yE[az,bz??é([ag,bg], te [t*,t*] twxy,z 013,

where the interval [t*,t**] contains the current integration point (typically denoted by t,, ).
It was assumed until now that a constant stepsize is used. This requirement can be removed if some

restrictions on the variation of the stepsize, as those imposed in § 3.2.2, are imposed. If this has been
done, then h should be replaced by h,,, where n is the time-step that has to be performed.

3.8.3. Numerical Experiments

Some of the predictor-corrector schemes presented in Table 3.3 were applied to develop variable
stepsize variable formula methods in Zlatev (1984) and Zlatev, Berkowicz and Prahm (1984a,b). It
IS not necessary to describe in detail the experiments, but it is worthwhile to emphasize two important
facts:
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(A) It was necessary to introduce some diffusion terms in (3.70) in order to obtain more
reliable results. This is not causing additional stability problems because the advection
terms are dominant and restricting the choice of the time-stepsizes.

(B) The calculated results were compared with measurements collected in many European
countries within the project EMEP (European Monitoring and Evaluation Program),
which is still functioning; see the EMEP Home Web-page in the reference list, where
detailed information about this program, including numerous reports, can be found. It
should be mentioned too that also input data (meteorological data and emission data)
for the model were obtained from EMEP.

The usefulness of selecting predictor-corrector schemes with several different correctors is shown by
comparing these methods with methods in which the same correctors are used in the predictor-corrector
schemes. Let us call the method obtained when the first approach is used as a variable stepsize variable
formula method Algorithm 1, while the name Algorithm 2 is used for the second approach, where the
correctors remain the same.

Three predictor-corrector schemes are used in Algorithm 2. These formulae are given in Table 3.4.
The predictor-corrector schemes used in Algorithm 1 are given in Table 3.5. These predictor-corrector
schemes have not the best possible stability intervals, but they are more accurate than those with

optimal lengths of the absolute stability intervals along the imaginary axis, which were listed in Table
3.3.

No. | Type of the predictor-corrector scheme | hjyag
G1 (—0.05,1.85) — P,EC.E -9
G2 (=0.85,1.80) — P;ECLE il
G3 (1.00,1.00) — P;EC,''E il

Table 3.4
The three more traditional predictor-corrector schemes, which are used in Algorithm 2 and
their absolute stability intervals  hjyn,g 0N the imaginary axis. The values of the free
parameters, for which these schemes were found, are given in brackets. The third scheme
is based on the commonly used Adams- Bashforth predictor and Adams-Moulton corrector.

No. Type of the predictor-corrector scheme e

H1 | (—0.3412,0.3705,0.5766,0.4548) — P,EC./EC'EC}IE | 326

H2 (0.6500,1.500,1.0000) — P,EC."EC/’'E 2.51

H3 (—0.0900,1.600) — P;EC.'E 1.62
Table 3.5

The three predictor-corrector schemes used in Algorithm 1, in which an attempt to balance
the requirement for long absolute stability intervals h;y,g, 0n the imaginary axis with a

requirement for achieving better accuracy is made. The values of the free parameters, for
which these schemes were found, are given in brackets.
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A careful comparison of the predictor-corrector schemes presented in Table 3.4 with those presented
in Table 3.5 shows that schemes in Table 3.4, which is based on the use of only two formulae, are
computationally cheaper than the first two schemes in Table 3.5 involving three and four formulae
respectively. On the other hand, all predictor-corrector schemes used in Algorithm 1 have better
stability properties than the stability properties of the corresponding schemes of Algorithm 2; compare

the values of himag in the two tables.

Both a stability control and an accuracy control was carried out at every time-step in the runs of the
model with Algorithm 1 and Algorithm 2. The stability control is based on the condition (3.79), while
the accuracy control is based on the results presented in Section 3.6.

Some numerical results obtained in a long run, covering meteorological data for one year, are presented
in Table 3.6. It is seen that the algorithm based on several different correctors performs better,
especially in the three-dimensional case.

Version of Two-dimensional version Three-dimensional version
the model Time-steps CPU-times Time-steps CPU-times
Algorithm 1 | 636 (60.3%) | 341.5(92.6%) | 638 (60.3%) | 2574.9 (78.0%)
Algorithm 2 | 1055 368.9 1058 3299.3

Table 3.6
Numbers of time-steps and CPU-times (measured in seconds) when Algorithm 1 and
Algorithm 2 are run over a long time-interval with meteorological and emission data for
one year. The reductions (measures in percent) when Algorithm 1 is used are given in
brackets.

3.9. A-stability of the linear multistep methods

One must require more than absolute stability of the numerical method that should be applied when
the solved system of ODEs is stiff or very stiff. A-stability is more appropriate in this case.

Definition 3.8: A linear multistep method is said to be A-stable if its absolute stability region contains
all points in the negative part of the complex plane (i.e. if all roots of the stability polynomial
n(z,v) = p(z) —vo(z) satisfythe inequality |z;| <1 for i=1, 2, .., k always when
ve C).

Unfortunately, only very few linear multistep methods are A-stable. The result showing that this is true
has been established by G. Dahlquist in 1963, Dahlquist (1963). It became well-known in the literature
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about numerical solution of systems of ODEs as the second Dahlquist barrier; see, for example,
Lambert (1991).

Theorem 3.4: The following three statements are true:

(A) an explicit linear multistep method cannot be A-stable,

(B) the order of accuracy of an A-stable linear multistep method cannot exceed
two

and

(C) the second order linear multistep method with a smallest error constant is
the Trapezoidal Rule.

The Trapezoidal Rule and the linear multistep method with k = 1 belong also to the class of the 6-
methods and will be studied in the next chapter. Some other stability concepts will also be introduced
and discussed in Chapter 4.

Theorem 3.3 indicates that the use of linear multistep methods in the solution of stiff systems of ODESs
is connected with many problems, but as mentioned in the previous sections of this chapter the
Backward Differentiation Formulae can be applied in the solution of certain classes of stiff problems
and there are several well written packages of computer programs based on these methods; see, for
example, Hindmarsh (1980).

3.10. Coefficients of some popular linear multistep methods

Some of the readers might wish to apply suitable linear multistep methods either in their research or in
the treatment of their applications. The coefficients of the most popular linear multistep methods, which
are listed below, will be very useful for such readers. It must be emphasized here that it is not very easy
to find such a list in the commonly used text-books, where as a rule only methods of lower orders are
given.

It is worthwhile to present also in this section the formulae for the Adams-Bashforth Methods, the
Nystrom Methods, the Adams-Moulton Methods and the Generalized Milne-Simpson Methods:

k
(3.83) Yo =ya1+h ) B,
i=1
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k
5[0
(388 v =yaa+h ) BV,
i=1
k
51
(3.85) ya =ya1+h ) B0,
i=0
k
51
(3.86) Yo =yaz+h ) BE0 .
i=0
The coefficients of the Adams-Bashforth, Nystrom, Adams-Moulton and the Generalized Milne-

Simpson methods are also listed for 1 <k <10 in Table 3.7, Table 3.8, Table 3.9 and Table 3.10
respectively.

k By By By £y By £py) B By By By 3
1 1 1
2 3 -1 2
3 23 -16 5| 12
4 55} -59 37 -9 24
5 1901 -3774 2616 -1274 251 720
6 4277 -7923 9982 -7298 2877 -475 1440
7 198721 -447288 705549 -688256 407139 -134472 19087 60480
8 434241 -1152169 2183877 -26664477 21002243 -1041723 295767 -36799 120960
9 140097247 -43125206 95476786 -139855262 137968480 -91172642 38833486 -9664106 1070017 3628800

10 30277247 -105995189 | 265932680 -454661776 | 538363838 -444772162 | 252618224 -94307320 20884811 -2082753 | 7257600

Table 3.7

The products of the coefficients of the Adams-Bashforth k-step methods, where 1 < k < 10, with
the multipliers &, which are given in the last column. This means that the coefficients are the ratios of
the numbers given in columns 2-11 and the corresponding multipliers & (the multipliers & located
in the same rows). The order p of each formula is equal to k. The first two of the coefficients «
areequal to 1 and —1 respectively, while the remaining coefficients a areequalto 0.

The Backward Differentiation Formulae are given by
k
(3.87) yn+Zaiyn_i —hBofs, lal >0, Bl >0, n=k k+1,.., N.
i=1
These formulae are zero-stable up to sixth order of accuracy, while for k > 7 all Backward
Differentiation Formulae are zero-unstable. This fact was established in Cryer (1972). Therefore, in
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Table 3.11, which is given below, only the coefficients of the Backward Differentiation Formulae with
1 <k<6 arelisted.

KTy [y [ | ey [ | e | @ | o | @ |y | °
2 2 0 1
3 7 -2 1 3
4 8 5 4 ) 3
5 269 -266 294 -146 29 90
6 297 -406 574 -426 169 -28 90
7 13613 -23886 41193 -40672 24183 -8010 1139 3780
8 14720 -31635 64440 -79417 62928 -31257 8888 -1107 3780
9 439777 -1208066 2839756 -4195622 4155230 -2750822 1173196 -292226 32377 113400

10 505625 -1492898 3979084 -6854054 8141878 -6738470 3831628 -1431554 317209 -31648 113400

Table 3.8

The products of the coefficients of the Nystrom Kk-step methods, where 2 <k <10 , with the
multipliers &, which are given in the last column. This means that the coefficients are the ratios of the
numbers given in columns 2-11 and the corresponding multipliers & (the multipliers § located in
the same rows). The order p of each formula is equal to k. The first and the third coefficients «

areequalto 1 and —1 respectively, while the remaining coefficients a are equalto 0.

k By B, £py £py’ £y By £pL B, By £py’ By
1 1 1
2 5 8 -1
3 9 19 -5 1
4 251 646 -264 106 -19
5 475 1427 -798 582 -173 27
6 19087 65112 -46461 37504 -20211 6312 -863
7 36799 139849 -121797 123133 -88547 41499 -11351 1375
8 1070017 4467094 -4604594 5595358 -5033120 3146338 -1291214 312874 -33953
9 2082753 9449717 -11271304 16002320 -17283646 13510082 -7394032 2687864 -583435 57281
10 134211265 | 656185652 -890175549 1446205080 -1823311566 1710774528 -1170597042 | 567450984 -184776195 36284876 -3250433
Table 3.9

The products of the coefficients of the Adams-Moulton k-step methods, where 1 <k < 10, with
the multipliers &, which are given in the last column. This means that the coefficients are the ratios
of the numbers given in columns 2-11 and the multipliers € (the multipliers & corresponding to the
ten rows of the tables are: & =2, & =12, & =24, §, =720, & = 1440, § =
60480, &, = 120960, £ = 3628800, & = 7257600, £, = 479001600 ). The order p
of each formula is equal to k+ 1 . The first two of the coefficients a areequalto 1 and -1
respectively, while the remaining coefficients a areequalto O .
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kg B, B, B, B, By B, it By B, | B §
2 1 4 1 3
3 1 4 1 0 3
4 29 124 24 4 -1 90
5 28 129 14 14 -6 1 90
6 1139 5640 33 1328 -87 264 -37 3780
7 1107 5864 -639 2448 -1927 936 -261 32 3780
8 32377 182584 -42494 120088 -116120 74728 -31154 7624 -833 113400
9 31648 189145 68738 181324 -207974 166582 -92390 33868 -7394 729 113400

10 2046263 12908620 -6449433 17067984 -22652334 21705672 -15023790 7335888 -2400729 473164 -42505 7484400

Table 3.10
The products of the coefficients of the generalized Milne-Simpson Kk-step methods, where 2 < k <
10, with the multipliers &, which are given in the last column. This means that the coefficients are
the ratios of the numbers given in columns 2-11 and the corresponding multipliers & (the multipliers
& located in the same rows). The order p of each formulais equal to k + 1 . The first and the third
coefficients a areequalto 1 and —1 respectively, while the remaining coefficients « are equal
to 0.

k oy oy o3 oy o5 o Bo
1 -1 1
2 -4/3 1/3 2/3
3 -18/11 9/11 -2/11 6/11
4 -48/25 36/25 -16/25 3/25 12/25
5 -300/137 300/137 -200/137 75/137 -12/137 60/137
6 -360/147 450/147 -400/147 225/147 -72/147 10/147 60/147
Table 3.11

The coefficients of the Backward Differentiation k-step methods
with 2 <k < 6. Theorder p ofeachformulaisequalto k.

3.11. Some general conclusions related to the third chapter

It was shown in this chapter that predictor-corrector schemes can successfully be used instead of the
Richardson Extrapolation in conjunction with linear multistep methods. The computational work per
time-step is reduced when the predictor-corrector schemes are used, but the stability requirements
could cause problems, because the absolute stability regions of the traditionally used predictor-
corrector schemes are smaller than the corresponding absolute stability regions for the Explicit Runge-
Kutta Methods. Moreover, it was verified that the absolute stability regions are as a rule becoming
smaller when the order of accuracy of the predictor-corrector schemes is increased. Therefore, it is
necessary to search for special predictor-corrector schemes with increased absolute stability regions.
Some results obtained in such a search were presented, but an important question remains:
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Will it be possible to improve further the results and to obtain
predictor-corrector schemes which have even bigger absolute
stability regions?

Such an aim could probably be achieved, but something has to be paid for it. Two approaches can be
used.

The first possibility is to use more general predictor-corrector schemes of the type:

k k
388) w+ > alyi=h ) 6y,

i=1 i=

k

k
(3.89) yil+ Za Yoot = hBSIEY +h > Bl E,
i=1

where 2 <k < k. The price that has to be paid is the need of extra storage, because the vectors
Vo_i, 1=3,4,..,k, must be stored and used in the computation of the approximations y,[,o] and

1
Vi

In principle, one can obtain something for the extra storage used. Assume that the coefficients Bi[”,
j=0,1, were used to achieve order of accuracy k for the predictor formula and k+ 1 for the

corrector formula. Then the extra free parameters (a['] ,i=3,,4,..,k, j=0,1) cannot be used to
increase the order of accuracy of the formulae (3.88) and (3.89), because of the first Dahlquist barrier
(see § 3.1.3). They could be applied in an attempt to improve the absolute stability properties of the
scheme defined by these two formulae. Such an attempt might be successful, but one should take care
for the preservation of the zero-stability in the case when these formulae are used with variable time-
stepsize, which has been established only for k < 2. Therefore, it will additionally be necessary to
prove that the formulae of the predictor-corrector scheme are zero-stable when these are used in a
variable time-stepsize mode (at least the corrector formula must be zero-stable). This may be a very
difficult task.

The second approach seems to be more promising. One can use the formulae (3.88) and (3.89) with
k < 2, butdrop the requirement for achieving the maximal orders of accuracy: k for the predictor
formulaand k + 1 for the corrector formula. Assume that the required order of accuracy is j for
the predictor formulaand j + 1 for the corrector formula. Then there will be  k —j free parameters
in the predictor formulaand k —j free parameters in the corrector formula, which can be used in the
efforts to improve the stability of the computational process. Thus, the accuracy of the results will be
lower, but the stability might be increased.
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There will be no problems with the zero-stability in this case.

Both the first approach and the second approach rely on some compromise: it may be possible to
achieve some positive result (improved stability), but for some price (one accepts to use more storage
in the first case, while the accuracy requirements are relaxed in the second case). The need of finding
a good compromise during the selection of a numerical algorithms is not surprising. The fact that there
arise many difficulties related to the choice of efficient numerical methods was well understood from
the very beginning of the development of the numerical analysis and the scientific computing.
Moreover, it was also well-known that it is very difficult to find the most efficient numerical method
and to justify fully its application in the solution of large-scale scientific and/or engineering problems.
Finding the best possible algorithm is practically impossible in many of the complicated situations that
have often to be handled in practice and this fact was also well-known from the very beginning of the
development of the numerical analysis. This is why R. W. Hamming wrote in one of the first books on
numerical methods, Hamming (1962), that the choice of a good numerical method is in nearly all cases
a question of finding a good compromise. The resolution of the stability problems in relation to
predictor-corrector schemes is one of the areas where a compromise is needed in the efforts to improve
the stability properties of the studied algorithms.

3.12. Topics for further research
The following topics might lead to some very interesting and useful results:
(A) Consider the second approach from the previous section. Will it be possible
to design some linear multistep methods, whose order of accuracy is j
with j < k, with increased absolute stability regions? Could one select
some appropriate pairs (j,K) with good absolute stability properties?

(B) Will the approach sketched above in (A) be applicable also in the case
where predictor-corrector schemes are used?
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Chapter 4

Richardson Extrapolation for some implicit methods

The implementation of the Richardson Extrapolation in connection with several selected for our book,
but also often used in many applications, implicit numerical methods for solving systems of ODEs is
discussed in this chapter. Actually, representatives of the well-known 8-methods, which were already
mentioned in the first chapter, and some Implicit Runge-Kutta Methods are studied. The main topic of
the discussion will again be the investigation of the stability properties of all these methods in the
case when they are combined with the Richardson Extrapolation. All details that are needed in order
to implement and to use efficiently the Richardson Extrapolation for the 8-methods are fully explained
in the first part of this chapter. Then, when the basic rules are well explained, the same technique is
applied in connection with some other implicit numerical methods for solving systems of ODES, more
precisely in connection with Fully Implicit Runge-Kutta (FIRK) Methods and with Diagonally Implicit
Runge-Kutta (DIRK) Methods.

The 6-methods will be introduced in Section 4.1. It will be explained there that the name “6-method”
is often used by many researchers, but it causes confusion in some situations, because in fact the “0-
method” is not a single numerical scheme, but a considerably large class of methods depending on the
parameter 0 , which can freely be varied.

The stability properties of most popular numerical schemes from the class of the 8-methods, which
are often used by scientists and engineers, will be presented and discussed in Section 4.2.

The implementation of the Richardson Extrapolation in combination with the class of the 8-methods
will be described in Section 4.3. The presentation will be very similar to that given in Section 1.3 and
Section 2.3, but in this section the specific properties of the numerical schemes from the class of the 6-
methods will be taken into account.

The stability properties of the resulting new numerical methods (which are combinations of numerical
schemes from the class of the 8-methods with the Richardson Extrapolation) will be studied in Section
4.4. It will be shown in this section that the stability properties of the underlying 6-methods are not
always preserved when these are combined with the Richardson Extrapolation. Some recommendations
related to the choice of robust and reliable combinations of the Richardson Extrapolation with
numerical schemes from the class of the 8-methods will be given.

The computational difficulties, which arise when numerical schemes belonging to the class of the 6-

methods are used in the solution of stiff systems of ODEs, will be discussed in the next section, Section
4.5. 1t will be explained there that the schemes selected for solving stiff systems of ODEs have
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necessarily to be implicit in order to ensure or, at least, to try to ensure stability of the computational
process. The implicitness of the numerical methods is causing additional difficulties and some
problems must be resolved when the numerical methods are handled on computers (both directly and
in a combination with the Richardson Extrapolation). The problems, which arise because of the need
to apply implicit numerical schemes, will be described and it will be explained how to resolve them.

Numerical results will be presented in Section 4.6. An atmospheric chemical scheme, which is
implemented in several well-known large-scale environmental models, will be introduced and
systematically used in the numerical experiments. The presented results will demonstrate clearly two
very important facts:
(a) the ability of the combined numerical methods, based on the application of the
Richardson Extrapolation, to preserve very well the stability of the computational
process (according to the results that will be proved in Section 4.3)
and

(b) the possibility to achieve higher accuracy when the new numerical methods (consisting
of combinations of selected 8-methods with the Richardson Extrapolation) are used.

The ideas used in Section 4.2 — Section 4.6, where the 8-methods are treated, will be generalized in
Section 4.7 and used there in relation to both Fully Implicit Runge-Kutta (FIRK) Methods and
Diagonally Implicit Runge-Kutta (DIRK) Methods.

Several major conclusions will be given in Section 4.8. Some possibilities for further improvements
of the results are also discussed in this section.

Some topics for future research will be sketched in the last section of this chapter, in Section 4.9.

4.1. Description of the class of 8-methods
The computations based on the use of the 8-methods will be carried out step by step as explained in
Chapter 1. Approximations of the exact solution of the initial value problem for the systems of ODEs
described by (1.1) and (1.2) are calculated at the grid-points {ty, ty, ..., th_1, t,, ..,ty} of
(1.6). Two relationships hold for all indices n fromtheset {1, 2, ..., N}:

(@) t, = t,—1 + h (where the time-stepsize h is some fixed positive number)
and

(b) yn = y(tn) .

This means that an equidistant grid will be mainly used in this chapter, but this is done only in order to
facilitate both the presentation and the understanding of the results. Most of the conclusions will remain
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valid also when variations of the time-stepsize are allowed and used during the numerical solution of
the system of ODEs. In the previous chapter it was verified that the variation of the time-stepsize is
causing some technical difficulties when linear multistep methods are used and, therefore, it was
necessary to develop and implement, at every time-step, some special devices at every time-step in
order to be able to calculate the coefficients of the chosen method and to select the optimal time-
stepsize. It should be emphasized here that the variation of the time-stepsize is in general not causing
additional technical difficulties when either the 8-methods or other one-step methods are used.

In this section and in several of the next sections of Chapter 4, the following formula is used (with
some particular value of the parameter 0 ) in the computational process:

4.1) yp=Ya1+hl(Q-0)f(ty_1,Vu-1) + 0f(t, yu)l for n=12..,6N.

As mentioned above, the algorithm defined by the above formula is nearly always or at least very often
called the 8-method. However, formula (4.1) shows very clearly that the 8-method is in fact a large
class of numerical methods, which depend on the particular parameter 8 . We shall sometimes use the
traditionally quoted in the literature name “8-method” both when we are describing some special
numerical schemes from this class and when we are discussing properties, which are valid for the whole
class. From the context it will be quite clear in what sense the term “8-method” is used.

The class of the 6-methods is normally used with @ € [0,1] . The numerical methods, which are
obtained for 6 =0, 6 = 0.5 and 6 = 1, are very popular among scientists and engineers and are
very often used by them in practical computations. It will be shown that also the method, which is
obtained when 0 = 0.75 is specified, has some nice properties. Therefore, this representative of
the class of 8-methods will also be used in this chapter.

The Forward Euler Formula (which is also well-known as the Explicit Euler Method) is obtained for
0=0:

(4 2) Yn = Yn—l + h f(tn—ll Yn—l) for n= 11 2; L} N .

This numerical scheme is a first-order one-stage Explicit Runge-Kutta Method. It can also be
considered as a representative of the linear k-step methods studied in the previous chapter, which is
obtained by the special and in fact the simplest choice k=1 . The Forward Euler Formula (4.2)
had already been used in the discussion both in Chapter 2 and in Chapter 3. It will not be further
discussed in this chapter.

The well-known Trapezoidal Rule is obtained for 8 = 0.5:

(4.3) Vn= Va1 +0.5h[f(t,_1,Vu-1) + f(t,yu)l for n=12..,N.
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This numerical algorithm was mentioned in one numerical example, which was presented in Chapter
1, but it will be discussed further and in some more detail in the next sections of this chapter. The order
of accuracy of the Trapezoidal Rule is two.

The Backward Euler Formula (known also as the Implicit Euler Method) is obtained from (4.1) for
0=1:

(4.4) yp,= Yp-1+hf(t,y,) for n=1,2 .., N.

The order of accuracy of the Backward Euler Formula is only one, but it has very good stability
properties.

As we pointed out above, the Forward Euler Method is explicit, while both the Trapezoidal Rule and
the Backward Euler Formula are implicit numerical schemes, because the unknown vector vy,
participates both in the left-hand-side and in the right-hand-side of (4.3) and (4.4). In fact, as was

mentioned in the beginning of this chapter, the only explicit numerical scheme from the class of the 0-
methods defined by (4.1) is the Forward Euler Method.

4.2. Stability properties of the 8-methods
It is both relatively easy and very convenient to study, as was done in the previous chapters, the stability

properties of the 8-method by the application of the famous scalar and linear test-problem proposed
in Dahlquist (1963):

d _
(4.5) d—{zly, te[0w], yeC, A=a+BieC, a<0, y(0)=n.

The exact solution of equation (4.5) is given by

(4.6) y®=mneM, te[0,0].

It should be mentioned also here that the exact solution y(t) of the Dahlquist test-equation (4.5) is
a bounded function, because the assumption o« < 0 was made in (4.5).

The application of the numerical algorithms that are defined by (4.1) in the solution of the special scalar

test-problem (4.5) leads to a relationship, which is of the same form as that derived in Chapter 2:

4.7) Yya=RMW)yn-1=[RW]"ye, v=hA, n=12,..
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However, if @ # 0, then the stability function R(v), is not a polynomial as in Chapter 2, but a
ratio of two first-degree polynomials. This ratio can be represented by the following formula:

1+(1-0)v

(4.8) RO = ——

It is immediately seen that if © = 0, i.e. when the Forward Euler Method is used, then the stability
function is indeed reduced to the first-degree polynomial R(v) = 1+ v and, as mentioned above,
this case was studied in Chapter 2, see (2.15) in §2.4.1.

In this chapter, we shall be interested only in the case 6 = 0. R(v) is always a rational function
and more precisely a ratio of two polynomials for such a choice of parameter 0 . In fact, numerical
methods, which have good stability properties are obtained when 0 € [0.5,1.0] and it will be
assumed in the remaining part of this chapter that © is in this interval.

As in Chapter 2, we can conclude that the numerical solution of (4.6), which is calculated by using
some numerical scheme from the class of the 8-methods with a given value of the time-stepsize h
and for some particular coefficient A, will be bounded when the stability requirement R(v) <1 is
satisfied.

In Chapter 2, we were interested in solving the problem (4.5) in the case where the parameter A was
not very large in absolute value. When this assumption is made, i.e. when || isnot very large, then
the problem defined by (4.5) is non-stiff or, at least, only moderately stiff and it can be treated
numerically with a reasonably large time-stepsize in spite of the fact that the absolute stability region
of the selected numerical scheme is finite (as were all absolute stability regions that were presented in
Chapter 2; see Fig. 2.1 — Fig. 2.4, Fig. 2.8 and Fig. 2.9).

Now we shall be interested in the case where |A| is very large (in which case the problem will
normally become stiff). If this is the case, i.e. if |A| isreally very large, then it is highly desirable to
be able to use a sufficiently large time-stepsize in the numerical solution of the (4.5). This is even
more desirable and in fact it is nearly always necessary when the problem defined by (1.1) and (1.2) is
very large and when the Jacobian matrix of function f has eigenvalues with non-positive real parts,
which are very large in absolute value.

The requirement of using a large time-stepsize in the solution of (4.5) is indeed very restrictive, when
at the same time parameter |A| is very large. This is why it is often not sufficient in this situation to
search (as we did in Chapter 2) for large but finite absolute stability regions that contain all points of
v=a+Bi with a<0 forwhich R(v) <1. Instead of this it much more is reasonable to
require that

(4.9) R(v) <1 for Vv=a+Bi with a<0.
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In other words, we shall now demand that the crucial inequality R(v) < 1 is satisfied everywhere in
the negative part of the complex plane and that the absolute stability regions of the numerical methods
are infinite (containing the whole negative part of the complex plane). This is a very strong
requirement. It can be proved that the assumption made in (4.9) can be satisfied only when a
requirement for applying some implicit numerical method is additionally imposed. This extra
requirement, the requirement to use some implicit numerical method for solving systems of ODEs, is,
as mentioned in the previous chapters, a part of a theorem proved in Dahlquist (1963), which is often
called the second Dahlquist barrier (see, for example, pp. 243-244 in Lambert, 1991).

By applying the sketched above discussion, which led us to the necessity to impose the strong
requirement (4.9) and to the conclusion that implicit methods for solving systems of ODEs must be
used, the following definition, proposed originally by G. Dahlquist, can be given.

Definition 4.1: It is said that the numerical method for solving systems of ODEs is A-stable when the
relationship R(v) <1 is fulfilled for Vv= a+fi with a<0 in the case where the
numerical method is applied in the solution of the Dahlquist scalar and linear test-example (4.5).

Because of the second Dahlquist barrier, it is clear that every A-stable numerical method is
necessarily implicit. The numerical treatment of systems of ODEs by implicit numerical methods is
much more difficult than the numerical treatment of such systems by explicit numerical methods (this
topic will be further discussed in Section 4.5).

It can be proved that the 8-method is A-stable when 0 € [0.5,1.0], see, for example Hairer and
Wanner (1991). Because of this fact, in this chapter we shall, as stated above, consider numerical
schemes from the class of the 8-methods with @ varying in this interval.

We defined the concept of A-stability in connection with the simple scalar and linear equation (4.5).
However, the results can be generalized for some linear systems of ODEs with constant matrices.
Moreover, there are some reasons to expect that the results will hold also for some more general, linear
and non-linear, systems of ODEs. These issues have been presented and discussed in Chapter 2 (see
Section 2.1) and there is no need to repeat the explanations here.

The requirement for A-stability is, as we pointed out above, very restrictive. Unfortunately, in some
situations even this requirement is not sufficient in the efforts to achieve an efficient computational
process. This can be explained as follows. Consider the Trapezoidal Rule (4.3). By using (4.7) and
(4.8) with @ = 0.5 the following relationship can be obtained:

1+ 0.5v 1+ 0.5v\"
( ) Yo

(4.10) yn = 7745, Y1 = (T 5y

Assume further that
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(a) A isavery large in absolute value negative number,

(b) h is again some fixed positive increment ( hA = v being satisfied)
and

(€) yo = 1 is the initial value of the scalar test-problem (4.5).

Then the exact solution y(t) of (4.5) will very quickly tend to zero. However, if the assumptions (a),
(b) and (c) are satisfied, then the last term in (4.10) will tend quickly to zero only when the time-
stepsize h is very small, which is clearly not desirable when large-scale scientific and engineering
models are to be handled numerically (because in such a case many time-steps are to be performed and,
therefore, the computational process will become very expensive). If the assumption for a very small
time-stepsize is not satisfied, then the term in the parenthesis in (4.10) will be still smaller than one,
but very close to one. Therefore, it is obvious that the convergence of the numerical solution to zero
will be very slow. Moreover, note that if three conditions (a), (b) and (c) hold and if h is fixed, but
|A]| > o0, then |[(1+0.5v)/(1—-0.5v)| - 1.

This example shows very clearly that in some cases the use of the Trapezoidal Rule will not lead to an
efficient and accurate computational process under the assumptions made above in spite of the fact that
this numerical method is A-stable.

The situation changes completely when the Backward Euler Formula is used. Indeed, formula (4.8)
could be rewritten for 8 =1 as

4.11 __ 1 (LY
@11 v = 77475y y"‘l_(1—o.5v) Yo

It is clear now, i.e. when 0 =1, that |y,| will quickly tend to zero when n — oo even for
rather large values of the time-stepsize h and, furthermore, also in the case where the above three
conditions (a) — (c) are satisfied. It is also clear, assuming once again that the assumptions (a) — (c)
are satisfied, that if h is arbitrary large but fixed and if |A| > o, then [1/(1-0.5v)| -0,
which in most of the cases will be quite satisfactory.

The two examples that are presented above, by deriving and applying the two formulae (4.10) and
(4.11), justify the necessity to introduce a new and more restrictive stability definition, the definition
for L-stability.

Definition 4.2: A numerical method for solving systems of ODEs is said to be L-stable when it is A-
stable and, in addition, when it is applied in the solution to the scalar test-problem (4.5), it leads to the
relationship (4.7) with |[R(v)| - 0 as Re(v) — —oo.
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The real part of the complex number v is denoted in Definition 4.2 as usual by Re(v) and it is
perhaps worthwhile to reiterate here that v= a+ i with a <0, see (4.9). This means that
Re(v) = a is a non-positive number.

Sometimes it is very useful to relax a little the requirement for L-stability, by introducing the concept
of strong A-stability.

Definition 4.3: A numerical method for solving systems of ODEs is said to be strongly A-stable when
it is A-stable and, in addition, if it is applied to the Dahlquist scalar test-problem (4.5), then it leads to
the relationship (4.7) with |R(v)] »c¢<1 as Re(v) » —x.

It is obvious that the definition for strong A-stability is a compromise between the weaker definition
for A-stability and the stronger definition for L-stability (compare Definition 4.3 with Definition 4.1
and Definition 4.2). It will be shown at the end of this chapter that for some non-linear systems of
ODEs strongly A-stable methods may perform even better than L-stable methods.

As stated above, the Trapezoidal Rule (8 = 0.5) isonly A-stable. If 0 € (0.5,1.0), then the
numerical method (4.1) is strongly A-stable. The Backward Euler Formula (©® = 1.0 ) is L-stable.
See more details related to the different concepts of stability in, for example, Hairer and \Wanner,
1991, Hundsdorfer and Verwer, 2003 or Lambert, 1991).

We are ready now first to introduce the Richardson Extrapolation for the class of the 8-methods and
after that to give an answer to the important question:

Are the stability properties of all new methods (the combinations of the
8-methods with the Richardson Extrapolation) preserved?

4.3. Combining the 8-method with the Richardson Extrapolation

The Richardson Extrapolation can easily be introduced for the class of the 8-methods by following
closely the rules, which were applied and explained in Section 1.3 (see also Section 2.3). Since we are
very interested in the preservation of the stability properties for the obtained in this way new numerical
methods, we shall explain the application of the Richardson Extrapolation directly for the case where
the Dahlquist scalar and linear test-problem (4.5) is solved (because precisely these formulae will be
needed in the study of the stability properties of the resulting new numerical methods; the
combinations of the Richardson Extrapolation with representatives of the class of the 8-methods).
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Assume that t,_; and t, are any two grid-points of the set (1.6) and that a sufficiently accurate
approximation y,_; has already been calculated. Three computational steps should successively be
carried out by using (4.7) and (4.8) in order to calculate an improved by the Richardson Extrapolation
vector y, .

Step 1: Perform one large time-step with a time-stepsize h to calculate an approximation 1z, of
the exact solution y(t,):

1+(1-0)v
(4.12) z,= ey Yn1

Step 2: Perform two small time-steps with a time-stepsize 0.5 h to calculate another approximation
w, of the exact solution y(t,):

1+ (1 -6)(0.5v))?
(4.13) w, = 1-0(0.5v) Yn-1-

Step 3: Use z, and w, to calculate an improved approximation y, ofthe exactsolution y(t,)
according to the following two rules:

(4.14) y,=2w,—1z, when 0+0.5
and

4w, — 7,
(4.15) y,= —— when 0=0.5.

3

Note that the fact that the 6-method is of first-order of accuracy when 0 # 0.5 is used in the
derivation of (4.14), while the fact that the Trapezoidal Rule, which is obtained when 6 = 0.5, isa
second-order numerical method, is exploited when (4.15) is obtained. Therefore, it is clearly seen that
formulae (4.14) and (4.15) are obtained by using (1.8) with  p=1 and p = 2 respectively.

Note too that it is assumed that the active implementation of the Richardson Extrapolation (see

Section 1.7) is used in the formulation of the above algorithm. However, this is not a restriction,
because the derivation of the passive implementation of the Richardson Extrapolation in connection
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with the B8-methods is quite similar: it will only be necessary in such a case to use z,_q in(4.12)
and w,_; in(4.13) instead of y,_;.

The following two relationships can be obtained by inserting the expressions for z, and w, from
(4.12) and (4.13) in (4.14) and (4.15) respectively:

1+(1—exusv)2_1+(1—ew

(4.16) vy, = {2 [ } Vo-1 when 0 +#0.5

1-0(0.5v) 1—-0v
and
4 1+(1-0)(0.5v]° 1+(1-8)v
1-0(0.5 1—0
(4.17) vy, = ( V)3 v Vo-1 when 0=0.5.

It is immediately seen from (4.16) and (4.17) that the combinations of the Richardson Extrapolation
with 8-methods are one-step methods (i.e. only the approximation y,_; is used in the calculation of
the improved value y, ), the stability functions of which are given by the following two expressions:

1+(1—9x05v)2_1+(1—ew

(4.18) R(v)= 2 when 0+0.5

1-0(0.5v) 1-—0v
and
4[1+025q2_1+05v
(4.19) R(v)= —1=0.25v] 1-0.5v when 0=0.05.

3

The stability properties of the new numerical methods that are combinations of the Richardson
Extrapolation with 8-methods will be studied in the next section.

4.4. Stability of the Richardson Extrapolation combined with 6-methods
It is necessary to investigate when the application of the Richardson Extrapolation together with

different 8-methods preserves the stability properties of the underlying methods and when this is not
the case. We shall show in this section that one should be careful, because stability problems may
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sometimes arise. More precisely, the following theorem holds; see also Zlatev, Faragé and Havasi
(2010):

Theorem 4.1: The new numerical method consisting of a combination of the active implementation of
the Richardson Extrapolation with any numerical scheme belonging to the class of the 8-methods is
strongly A-stable when 0 € (8y,1] with 09 =2/3.

Proof: According to Definition 4.3 that was given in Section 4.2, a strongly A-stable numerical method
must in addition be A-stable (see also, for example, Hundsdorfer and VVerwer, 2003). In Hairer and
Wanner (1991) it is shown that a numerical method for solving systems of ODEs is A-stable if and
only if

(a) it is stable on the imaginary axis (i.e. when |R(iB)| < 1 holds for all real values of B)
and

(b) R(v) isanalyticin C~ .
If we show that the two requirements (a) and (b) hold (i.e. if we show that the considered numerical
method is A-stable), then it will be necessary to show additionally that the new numerical method is
also strongly A-stable, i.e. we must prove that, according to Definition 4.3, the following basic
relationship |R(v)] > c<1 as Re(v) — —oo should be additionally satisfied.
The above analysis indicates that Theorem 4.1 can be proved in three consecutively performed steps:

Step A: Prove that the combination of the Richardson Extrapolation with the 8-methods is
stable on the imaginary axis.

Step B: Show that the stability function R(v) is analytic.
Step C: Prove that |R(v)| - ¢ <1 as Re(v) - —.

We shall start with Step A.

Step A — Stability on the imaginary axis

It is immediately seen that the stability function R(v) from (4.18) can be written in the following
form:

(4.20) RO = o)
' VEaw

where P(v) is the following polynomial:
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(4.21) P(v)= 2[1+(1-0)(0.5v)]?(1—06v)— [1+ (1 —-0)v][1—-06(0.5v)]%.

After some rather long but straight-forward transformations, (4.21) can be rewritten as a third-degree
(in v) polynomial, whose coefficients depend on the particular choice of parameter 0:

(4.22)  P(v) =(—0.250% + 0.756% — 0.50)v3 + (1.250% — 20 + 0.5)v?

+(—20+1)v+ 1.

The polynomial Q(v) from (4.20) is represented by the following expression:

(4.23) Q(v) = [1—-0(0.5v)]>? (1 —0v).

Also this polynomial can be rewritten as a third-degree (in v ) polynomial, whose coefficients depend
on parameter 0 , however it will be much more convenient to use directly (4.23) in the further
computations.

Now we shall use a result, proved in Hairer and Wanner (1991), stating that the stability of a

numerical method on the imaginary axis is ensured if for all (real) values of B from the relationship
v = «a+ if the inequality

(4.24) E@) =0

holds.

It is easy to verify that E(f) is a polynomial, which is defined by

(4.25) E(B) = QGp) Q(=ip) — P(iB) P(—ip).

Consider the first term in the right-hand-side of (4.25). By performing the following successive
transformations it can be shown that this term is a sixth-degree polynomial containing only even
degrees of f:

(4.26) Q(iB) Q(—ip) = [1—6(0.5iB)]* (1 — 8ip)[1 + 6(0.5iB)]* (1 + 6ip)
= [(1 - 0.50iB)(1 + 0.50iB)]2(1 — 0i)(1 + 0ip)
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(1+0.250%8%)2 (1 + 62%B3)

(0.062506*B* + 0.50%B% + 1)(1 + 62%p?)

= 0.06250°8° + 0.56250%* + 1.502p2 + 1

1
= 53 (0°B® + 9B* +240°8" + 16) .

Similar transformations are to be carried out in order to represent also the second term in (4.25), the
term P(ip) P(—ip) , as a sixth-degree polynomial containing only even degrees of B . Introduce
first the following three constants:

(4.27) A= -0.250%3+0.7562-0.50, B=1.250°-20+0.5, C=-20+1.

Now the second term in the right-hand-side of (4.25) can be rewritten, by several successively
performed transformations, in the following form:
(4.28) P(iB) P(—iB) = [A(iB)> + B(iB)> + C(iB) + 1][A(=iB)* + B(=ip)* + C(—iB) + 1]
= (—Aip3 — BB% + Cip + 1) (Aip® — BB% — Cip + 1)
= A%B® + ABip° — ACB* — Aip?
— ABip® + B2B* + BCip3 — Bp?
— AC B* — BCip3 + C2p2 + Cip
+ Aip3 —BB2 - Cip+1
= A?B° —2ACB*+ B2B*—2BB% +C3p%2 +1
= A%B°® + (B2-2AC)B*+ (C2-2B)B%+1.

By using the expressions for A, B and C from (4.27), the last equality can be rewritten in the
following way:

(4.29) P(ip) P(—-ip) = (—0.250% + 0.756% —0.50 )% p°
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+[(1.256%2-20+0.5)2 —2(-0.2503 + 0.756% — 0.50)(—20 + 1) |p*
+[(—20+1)% —2(1.2506% — 20 + 0.5)]p>

+1
1 6 4 2 5 4 3 6
= F(e +906* + 40% — 60° + 46* — 1263) B

1
+ [g (256* — 8003 + 8462 — 3260 + 4) — 6* + 3.50°% — 3.56? +9]34

+ (462 -40+1-2.562+40—-1) B2

+1

1
7 (6° — 60° + 1306* — 1263 + 402) g°

1
+§ (90* — 2403 + 2802 — 160 + 4) g*

+ 1,502 g2
+ 1.
Everything is prepared now for the determination of the sign of the polynomial E(B) from (4.25).

It is necessary to substitute the last terms in the right-hand-sides of (4.26) and (4.29) in (4.25). The
result is

1
(4.30) E(B) = 7 (0°B° + 9B* + 240%p2 + 16)
1 6 5 4 3 2 6
—F(e — 60° +130* — 1203 + 462) B
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= g;(695—-13944-1293—-492)B6+-52(693—-7924-49-1)34.
It is easily seen that
(4.31) E@R) =0 = (606°—130*+120%—402)B% + 4(60°—-702+40-1)=>0.
Let us introduce the following two polynomials:
(4.32) H{(©) = 603—-136%+120—4 and H,(0)= 603—-70%2+40—-1.

It follows from (4.30) and (4.31) that E(f) will be non-negative for all values of B and for a given
value of 0 if and only if both polynomials from (4.32) are non-negative for the selected value of 6.
It can easily be shown that the inequalities

dH, dH,
(4.33) E >0 and E >0

hold when 0 €[0.5,1.0], which implies that the two polynomials H;(0) and H,(@) are
increasing in this interval. Since H4(2/3) =0 and H,(2/3) > 0, the two polynomials are clearly
non-negative for 0 € [2/3,1.0] and, therefore, E(B) will certainly be non-negative for all values
of O intheinterval [0y,1.0], where 0, =2/3 is the unique zero of the polynomial H;(0)
in the interval [0.5,1.0] .

This completes the proof of the first step of Theorem 4.1, because we have shown that the combinations
of the Richardson Extrapolation with numerical schemes from the class of the 8-methods are stable on
the imaginary axis when 0 € [2/3,1.0].

Before starting the proof of the second step of the theorem, it is worthwhile to point out that the fact

that the two polynomials H;(0) and H,(0) arenon-negative for @ € [2/3,1.0] is demonstrated
graphically in Fig. 4.1.

Step B — A-stability

After the proof that the combination of the Richardson Extrapolation with the 8-method is stable on
the imaginary axis when 0 € [2/3,1.0], it should also be proved that the stability function R(v)
is analytic in €~ for these values of @ . The stability function is, according to equality (4.20), a
ratio of the two polynomials P(v) and Q(v) . It is well-known that polynomials are analytic
functions and that a ratio of two polynomials is an analytic function in C~ if the denominator has no
roots in C~. In our case, the roots of the denominator Q(v) of the stability function R(v) are
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vy = 1/0 (asingle root) and v,3=2/0 (a double root). This means that the stability function
R(v) isanalyticin C~ (because these roots are positive), which completes the proof of Step B.

STABILITY POLYNOMIALS FOR
THE RICHARDSON EXTRAPOLATION
COMBINED WITH THE THETA METHOD

2.0

1.0

0.0

Polynomial values

-1.0-

THETA VALUTES

THE ZERO OF POLYNOMIAL H1 IS: 2/3
MAXIMAL VALUES OF THE POLYNOMIALS: 2.0 1.0
MINIMAL VALUES OF THE POLYNOMIALS: 0.0 -0.5

THETA VARIES FROM 05 TO 1.0

Figure 4.1
Variations of the two polynomials H;(0) and H,(0) for 0 €[2/3,1.0] . The dotted curve

represents the polynomial H; , while the continuous curve represents the polynomial H, . It is clearly
seen that the two polynomials are non-negative in the interval [2/3,1.0] .

Step C: Strong A-stability

It remains to establish for which values of 0 in the interval [2/3,1.0] the required relationship
IR(v)] = c<1 holdsas Re(v) - —o. Since v= a+pi with a<0, itisclearthat
Re(v) = a. This fact will be exploited in the proof.

Rewrite first (4.18) as
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2
@.34) Rw)= 2 LT -O0Q5WF 1+A-8)v

1-06(0.5v) 1—-0v
_ 2
1 _os5+050] L_1+0
=2 |73 -7
—+0.50 = +0
1 os5+058] —1 140
—a — Bi : : —a — Bi
= 2 1 - 1

Assume now that B isfixedand let a = Re(v) = —oo. Theresultis:

) [9—12 0—1
0

(4.35) Re(lvl)lll—oo R(v) 8

02 -30+2
92

Since the terms in the right-hand-side of (4.35) are real, the requirement |R(v)] - c<1 as
Re(v) - —oo reducesto | (6% —30 +2)/0% | < 1. This inequality implies that the following two
relationships are simultaneously satisfied:

62 — 30 + 2 ) ) 2
(4.36) ——7—<1 = 0°-30+2<6* = 0>z,
62 — 30 + 2 )
4.37) —1<—(p— = 20°-30+2>0.

This completes the proof, because the second inequality in (4.37) holds for all real values of 0 (the
minimal value of the polynomial 202 —30 +2 is 7/8, whichisachieved for @ = 3/4).

Corollary 4.1: If 8 = 1.0 (i.e. if the Backward Euler Formula is used) then the combined method
(the Backward Euler Formula + the Richardson Extrapolation) is L-stable.
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Proof: It is immediately seen that the right-hand-side of (4.35) is equal to zero when 6 = 1.0 and,
thus, the method is L-stable.

Remark 4.1: It is much easier to prove Theorem 4.1 directly for the Backward Euler Formula. Indeed,
the stability function (4.18) becomes much simpler with @ =1.0 and the expressions for
Q@) Q(—ip) and P(ip) P(—ip) from (4.26) and (4.29) become also much simpler in this case:

(4.38) Q(ip) Q(—ip) = 0.0625B° + 0.56258* + 1.5B% + 1

and

(4.39) P(ip) P(—ip) = 0.0625B8* + 1.5B% + 1.

Theorem 4.1 was proved directly for the Backward Euler Formula in Farago, Havasi and Zlatev
(2010).

Remark 4.2: Corollary 4.1 and Remark 4.1 show that the main result in Farago, Havasi and Zlatev
(2010), the assertion that the Backward Euler Formula is L-stable, is just a special cases of Theorem
4.1, which was proved above.

Remark 4.3: Equality (4.35) shows that the constant ¢ depends on the selected value of parameter
0 . For every value of this parameter, the corresponding value of ¢ can be calculated by using
(4.35). Theorem 4.1 shows that ¢ is less than one or equal to one for all @ = 2/3 . For example, if
0=0.75, then c=5/9.

Remark 4.4: Theorem 4.1 cannot be applied directly for the Trapezoidal Rule. The problem is that the
expression for the stability function from (4.18), which is valid for the case 6 # 0.5 was used in the
proof of this theorem. It is necessary to apply the stability function from (4.17), because the Trapezoidal
Rule, which is obtained for 8 = 0.5 from (4.1), is a second-order numerical method. This is done in
Theorem 4.2, which is proved below.
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Theorem 4.2: The combination of the active implementation of the Richardson Extrapolation with the
Trapezoidal Rule (i.e. with the 8-method with 8 = 0.5 ) is not an A-stable numerical method.

Proof: Consider (4.19) and perform the following transformations:

'1+0.25v]2 1+ 0.5v

4 —
- 2
1+0.2'5 1+0.5
4|3 —1
_ -6_0'25 V—O.S
3

It is obvious that
_ 5
(4.41) lim |[R(v)| ==,
V—0o 3

which means that |R(v)| > 1 when |v]| is sufficiently large and, thus, the combination of the
active implementation of the Richardson Extrapolation with the Trapezoidal Rule is not an A-stable
numerical method.

It is worthwhile to present additionally the following two remarks here:

Remark 4.5: It is perhaps necessary to explain what is the meaningof v —-o0 when v isa
complex number. It is convenient to apply the following definition in this case. If v e C, then
v —» oo will always mean that |v| grows beyond any assigned positive real number.

Remark 4.6: The numerical schemes from the class of the 8-methods have good stability properties
when 0 € [0.5, 2/3). The Trapezoidal Rule, obtained with 6 = 0.5, is A-stable, while the
numerical methods found when @ € (0.5, 2/3) are even strongly A-stable. Unfortunately the
good stability properties are lost when these methods are combined with the active implementation of
the Richardson Extrapolation for 0 € [0.5, 2/3). This means that the new methods obtained
when the active implementation of the Richardson Extrapolation is combined with the numerical
schemes from the class of the 8-methods should not be used with  © € [0.5, 2/3). However, the
new methods obtained with the passive implementation of the Richardson Extrapolation will very
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often give good results also for 0 €[0.5, 2/3)  (because the combination of the passive
implementation of the Richardson Extrapolation with any numerical method has the same stability
properties as those of the underlying method).

|

4.5. The problem with the implicitness

If the problem solved, the initial values problem for systems of ODEs defined by (1.1) and (1.2), is
stiff, then one is as a rule forced to use A-stable, strongly A-stable or L-stable methods during the
numerical solution. However, as stated in the previous sections of this chapter, all these methods are
necessarily implicit (because of the second Dahlquist barrier). The implicitness of the numerical
schemes is very often causing great difficulties when the problem solved is large. This is especially
true when combinations of numerical schemes from the class of the 6-methods with the Richardson
Extrapolation are applied in the solution of (1.1) — (1.2).

The problem of implicitness arising when stiff systems of ODEs are solved will be discussed in this
section and some recommendations and conclusions that are related to the efficient treatment of the
computational process in the case where the Richardson Extrapolation is used will be given. Three
important applications of the well-known Newton iterative method, see, for example, Kantorovich
and Akilov (1964), in connection with the numerical treatment of stiff systems of ODEs by implicit
numerical schemes from the class of the 8-methods will be described in this section. After that the
implications, which arise when these schemes are combined with the Richardson Extrapolation, will
be explained.

4.5.1. Application of the classical Newton iterative method

Assume that some A-stable, strongly A-stable or L-stable numerical scheme from the class of the 6-
methods with 0 € [0.5,1.0] is to be used. When such a scheme, which is implicit, is used in the
solution of the system of ODEs defined with (1.1) and (1.2), the following non-linear system of
algebraic equations or system of transcendental equations has to be solved at every time-step:

(4.42) y,—hof(t,y,) —8,-.1=0 for n=1,2,..,N.

The solution of (4.42), which in general must be found by solving a large (or even very large, see, for
example, Zlatev and Dimov, 2006) non-linear system of algebraic equations and/or system of
transcendental equations, is y, , while

(4-43) 8n-1= —Yn-1— h (1 - e)f(tn—lf Yn—l)
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is a known vector.
Itis clear that (4.42) and (4.43) can easily be obtained by using (4.1).

It is convenient now to introduce the following notation:

(4.44) F(yn) =yn —h 0 f(ty,yn) — 8n-1 for n=1,2,..

of(t,y) and ] = of (t,, yn)

4.45) | = f -1,2,..
( ) ] dy n oy, or n
as well as
OF
@a6) T 1 ey for n=1,2,..
a0y,

where I is the identity matrix in RS*S .

Assume that the classical Newton iterative method is used to solve (approximately, according to some
prescribed in advance accuracy) the non-linear system of algebraic and/or transcendental equations:

(4.47) F(yn) =0,

or, in other words, assume that the classical Newton iterative method is used to solve the non-linear
system of algebraic and/or transcendental equations y, —h 0 f(t,,y,) — 8,-1 = 0, which appears
when an arbitrary implicit numerical algorithm from the class of the 6-methods is used with some

0 €[0.51.0].

The major formulae that are needed at the k™ iteration of the classical Newton iterative method
can be written in the following form (assuming that the iteration numbers are given as superscripts in

square brackets):

4.48) (1-no)h) ayl =~y 4 hof (ty v ) + gucs

(4.49) yM =yt 4yl
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Some initial approximation y,[,O] IS needed in order to start the iterative process defined by (4.48)

and (4.49). The following two choices are often used in practice:
4.50) yi'= yuq
and

h,

hn—l

4.51) y =y, + (Vo1 — Yn_2)»

where it is assumed that h,, and h,_; are the last two time-stepsizes that were used in the
computational process. This means that it is furthermore assumed here that variations of the time-
stepsize are allowed. It is obvious that (4.51) is reduced to

(4.52) y =2y, ;- yua,

when h, = h,_;.

It should be mentioned that (4.51) and (4.52) are used in the experiments, results of which will be
reported in the next section.

Consider an arbitrary iterationstep k (k=1, 2, .. , k®™) of the classical Newton iterative
process applied in the solution of (4.47). It is also assumed that k™ s the last iteration step, i.e.
the iteration step at which the iterative process will be stopped by using some appropriate stopping
criteria (the choice of stopping criteria will be discussed in §4.5.4). When the iterative process is

end]

successfully stopped, ynk is accepted as a sufficiently good approximation of the exact value

end
y(t,) of the solution of (1.1) — (1.2) and 'y, is setequal to yr[,k ]

The computational work during iteration step k of the Newton iterative process consists of six parts,

which must consecutively be performed. The numerical algorithm given below is defined by using
these six parts:

Algorithm 1: Performing an arbitrary iteration of the classical Newton Method.

Part 1 — Function evaluation. Calculate the s components of the right-hand-side vector
f (ta, yi ") of (1.).
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Part 2 — Jacobian evaluation. Calculate the elements of the Jacobian matrix ],[1"_1].

Part 3 — Factorize the shifted Jacobian matrix I—h® ],[1""1]

. Calculate the elements
of the shifted Jacobian matrix and the triangular matrices L

[,i‘_l] and U,[,k_l]
such that L[,l,‘_l]Ur[,k_l] ~1-ho ],[,k_l] by using some version of the well-

known Gaussian Elimination. The symbol =~ is used here only in order to
emphasize the fact that, because of the rounding errors, in practice it is

impossible to obtain an exact factorization of matrix I—h ][k"l] when the

n
calculations are carried out on computers. However, LN Myl i

normally be a very close approximationof I—h@® ]Lk_l] . Nevertheless, one
should not discard totally the effect of the rounding errors especially when the
shifted Jacobian matrix is very ill-conditioned. We shall assume that some care
has been taken to reduce or even eliminate to a certain degree the effect of the
rounding errors (for example by applying extended, quadruple, precision as we
already did in Chapter 2) and, because of this, we shall use the notation

L[,:‘_I]U,[lk_l] =I1-ho ]I[,k_l] in the remaining part of this chapter.

Part 4 — Solve the system of linear algebraic equations. Use the computational process,
which is very often called “back substitution” (see, for example, Golub and
Van Loan, 1983, Jennings, 1977 or Wilkinson, 1963, 1965), in order to obtain

the solution Ayr[,k] of the system of linear algebraic equations
-1 -1

-ttt pylkl =yl pgf (tn,y,[lk"l]) + gn_1 . Also here because
of the rounding errors some approximation of the correction vector Ayl[,k] will
be obtained, but as a rule the calculated vector will be a very close

approximation of the exact Ay,[f‘] . As in Part 3, we shall assume that some
care has been taken in order to reduce the effect of the rounding errors (for
example by applying again, as in Chapter 2, quadruple precision arithmetic in
the computational process).

Part 5 — Update the solution. Use formula (4.49) to calculate the components of vector
(k]
Yn -

Part 6 — Perform stopping checks. Apply some stopping criteria in order to decide

whether the calculated approximation yl[,k] is acceptable or not.

One of the three actions listed below are to be taken in Part 6 after the check of the stopping criteria:
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Action 1: If all stopping criteria are satisfied, then

(a) declare k as ke"d

(b) set y, equal to y,[lkend]

and

(c) stop the iterative process.

Action 2: If some of the stopping criteria are not satisfied, but the code judges that
the convergence rate is sufficiently fast, then

(@) set k=k+1
and

(b) go to Part 1 of the above algorithm in order to start the next
iteration.

Action 3: If there are stopping criteria, which are not satisfied and if the iterative
process is judged to be either divergent or very slowly convergent, then

(@) set k:=1,
(b) reduce the time-stepsize h
and
(c) restart the Newton iteration.
The most time-consuming parts when large or very large systems of ODEs are solved are Part 2, Part
3 and Part 4 of the above algorithm for performing an arbitrary step of the Newton iterative process.

Very often Part 1 is also time-consuming.

Different modifications of the algorithm are to be introduced in order to achieve a more efficient
computational process. Some of the modifications will be discussed in the following two sub-sections.

4.5.2. Application of the modified Newton iterative method
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The first attempt to improve the efficiency of the computational process is made by calculating the
Jacobian matrix and factorizing it only during the first iteration step of the Newton iterative process.
In other words, the first iteration step, when k = 1, is carried out by Algorithm 1, while the algorithm

given below is used in the next iteration steps, i.e. in the iteration steps with k> 1.

Algorithm 2: Performing an arbitrary iteration of the modified Newton Method.

Part 1 — Function evaluation. Calculate the s components of the right-hand-side vector
f (tn, y,[,“‘“) of (1.1).

Part 2 — Solve the system of linear algebraic equations. Use the computational process,
which is called, as mentioned in the previous sub-section, “back substitution”,

in order to obtain the solution Ay,[lk] of the system of linear algebraic equations
1 1 k k-1 k-1
Il Ayl = -y U 4o f (i) +gaa

Part 3 — Update the solution. Use formula (4.49) to calculate the components of vector
(k]
Yn -

Part 4 — Perform stopping checks. Apply some stopping criteria in order to decide
whether the calculated approximation y,[,k] is acceptable or not.

Some modifications of the actions used in the stopping criteria are also needed. The modified actions,
which are to be taken in Part 4 of Algorithm 2 (after the check of the stopping criteria) are listed below:

Action 1: If all stopping criteria are satisfied, then

(a) declare k as ke"d

(b) set y, equal to y,Ekend]

and

(c) stop the iterative process.
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Action 2: If some of the stopping criteria are not satisfied, but the code judges that
the convergence rate is sufficiently fast, then

(@) set k:==k+1
and

(b) go to Part 1 of the above algorithm in order to start the next
iteration.

Action 3: If there are stopping criteria, which are not satisfied, if k > 1 and if the
iterative process is either divergent or very slowly convergent, then

(@) set k:=1,
and

(b) restart the Newton iteration (i.e. perform one iteration step by
using Algorithm 1 and continue after that with Algorithm 2).

Action 4: If there are stopping criteria, which are not satisfied, if k=1 and if the
iterative process is either divergent or very slowly convergent, then

(a) reduce the time-stepsize h
and

(b) restart the Newton iteration.

The advantages of this algorithm are two: the expensive (in terms of the performed arithmetic
operations) Part 2 and Part 3 of Algorithms 1 are carried out as a rule only during the first iteration step
(and omitted at the next iteration steps as long as the process is converging and the convergence rate is
sufficiently fast). However, one has to pay something for the reduction of the number of arithmetic
operations. The problem is that, while the classical Newton iterative process is of second order of
accuracy, the modified one is of first order only (see more details in Chapter XVIII of Kantorovich
and Akilov, 1964). This will often lead to an increase of the number of iterations. Nevertheless, the
gains are achieved because of the reductions of the numbers of Jacobian evaluations and matrix
factorizations is normally greater than the increase of the number of iterations.

4.5.3. Achieving better efficiency by keeping an old decomposition of the Jacobian matrix
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The efficiency of the computational process could in many cases be further improved by trying to keep
the factorized, at some previous time-step, Jacobian matrix as long as possible. Let j<n and i>1
be the time-step and the iteration number at which the last evaluation of the Jacobian matrix and the

last factorization of this matrix were performed. One can attempt to apply the triangular factors L[ii]

and Ui[i] of the Jacobian matrix I—h® ]].[i] also when time-step n is carried out.

The advantage of using this approach is due to the fact that very often there will be no need to calculate
the elements of the Jacobian matrix at step n and no need to factorize it. The disadvantage is the same
as that mentioned in the previous sub-section: the convergence rate may become slow. However, as in
the case with the modified Newton iterative process, the experimental results indicate that often this
algorithm works rather well in practice and this approach is implemented in many standard codes for
solving stiff systems of ODEs.

It should be emphasized that, as mentioned in the previous sub-section, the computational scheme
described below is normally very effective when the solved problems are large. Some discussion about
the convergence of the Newton iterative process in this case is given in Zlatev (1981a).

More details about the implementation of this algorithm as well as many numerical results obtained in

the treatment of many problems can be found for example in Hindmarsh (1980), Krogh (1973),
Shampine (1984, 1994), Shampine and Gordon (1976) or Zlatev and Thomsen (1979).

Algorithm 3: Further improvement of the performance of the Newton Method.

Part 1 — Function evaluation. Calculate the s components of the right-hand-side vector
f (tn, y,[,“‘”) of (1.1).

Part 2 — Solve the system of linear algebraic equations. Use the computational process,
which is normally called “back substitution”, in order to obtain the solution

Ay,[lk] of the system of linear algebraic and/or transcendental equations
Llul Ayl = —yiY+hef (tn, yr[,k‘”) +8,1 Where j<n and
j=1.

Part 3 — Update the solution. Use formula (4.49) to calculate the components of vector
(k]
Yn -

Part 4 — Perform stopping checks. Apply some stopping criteria in order to decide
whether the calculated approximation yl[,k] is acceptable or not.

155



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

Also in this case some modifications of the actions used in the stopping criteria are needed. The
modified actions, which are carried out in Part 4 of Algorithm 3 are listed below:
Action 1: If all stopping criteria are satisfied, then

(a) declare k as ke,

[kend]
(b)set y, equalto y,

and

(c) stop the iterative process.

Action 2: If some of the stopping criteria are not satisfied, but the code judges that
the convergence rate is sufficiently fast, then

(@) set k:==k+1
and

(b) go to Part 1 of the above algorithm in order to start the next
iteration.

Action 3: If there are stopping criteria, which are not satisfied, if j<n or j=n
but k> 1, andif the iterative process is either divergent or very slowly
convergent, then

(a)set j:=n aswellas k:=1,

and

(b) restart the Newton iteration (i.e. perform one iteration step by
using Algorithm 1 and continue after that with Algorithm 3).

Action 4: If there are some stopping criteria, which are not satisfied, if j=n and
k=1 and if the iterative process is either divergent or very slowly
convergent, then

(a) reduce the time-stepsize h
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and

(b) restart the Newton iteration.

4.5.4. Selecting stopping criteria

By using different stopping criteria in the three algorithms describes in §4.5.1, §4.5.2 and §4.5.3 one
is mainly trying:

(A) to achieve sufficiently good accuracy,
(B) to avoid the use of too many iterations,
(C) to decide whether it is worthwhile to continue the iterative process
and
(D) to find out whether it is necessary to update the Jacobian matrix and its
factorization when Algorithm 2 and Algorithm 3 are used.
These four categories of stopping criteria are discussed in the following part of this sub-section.

(A) Efforts to ensure sufficiently accurate approximations. One is first and foremost interested in
achieving sufficiently accurate approximations. Therefore, the first group of the stopping checks is

related to the evaluation of the accuracy of the approximation y,[,k] calculated at iteration k of the
Newton iterative process.

Assume that the accuracy requirement is prescribed by some error tolerance  TOL , which is provided
by the user (for example, if it is required that the numerical errors are kept less than 1073 then
TOL = 10~3 should be specified). By using the error tolerance TOL one can try to control, at every
iteration step, the accuracy checking whether either

(4.53) ”Ayl[lk] | < TOL for k=1,2,..
or
| ava|
(4.54) S < TOL for k=1,2,...
w2
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The choice of a particular norm in our opinion is in many cases not very critical (because all norms in
finite spaces are in some sense equivalent).

The first check is absolute, the second one is relative. One should be careful with the choice of any of
these two checks. The absolute check can give problems when | y,[lk] | is large, because it will lead
to the performance of too many iterations. Therefore, the relative stopping check is more preferable in
such a case. However, the relative check can cause problems when | y,[lk] | — 0 and the absolute

check should be used in this situation.

One can try to combine the two check and force the code to select automatically the better check by
requiring:

|aya?
]

|
|- 1)

It is clear that the check introduced by (4.55) will work as an absolute stopping criterion when
| y,[,k] | < 1 and as a relative one otherwise. The check (4.55) is often called mixed stopping criterion.
Some positive constant (say, c) can be used instead of 1 in (4.55).

(4.55) < TOL for k=1,2,...

Kk
Y

max(l

It should be pointed out here that in all three stopping criteria, which were introduced above, it is

implicitly assumed that all components of vector yr[,k] are of the same order of magnitude.
Unfortunately, this requirement is not always satisfied when different problems arising in science and
engineering are to be treated numerically. One such example is the atmospheric chemical scheme used
in the Unified Danish Eulerian Model (UNI-DEM, see Zlatev, 1995, or Zlatev and Dimov, 2006),
which was mentioned in Chapter 1 and will be discussed in detail in the next section. The
concentrations of the chemical species involved in this scheme differ by many orders of magnitude.
Therefore, it is necessary to introduce and to use component-wise stopping criteria (instead of stopping
criteria based on norms) when such problems are to be handled.

Assume that the components of vectors yl[,k] and Ay,[lk] are denoted by y,[llfl] and Ayl[,'fl] where

q=1, 2, .. , s. By using this notation, three component-wise stopping criteria, corresponding to
the stopping criteria defined by (4.53), (4.54) and (4.55) are given below:

[K] _
(4.56)  _ max (|Aynq ) < TOL for k=1,2,...,
|AYnl({1]|
(4.57) max < TOL for k=1,2,...,
q=1, 2, .., s y[k]
nq
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Ayl

¥Ynq

(4.58) max - < TOL for k=1,2,...
a=1, 2, .., s \ max (yl[m] ’ 1)

Also here some positive constant (say, c¢) can be used instead of 1.

It should be mentioned that the check (4.56) is not very different from the checks based on the norm
of the calculated solution vector. In fact the quantity in the right-hand-side of (4.56) is a particular norm
of this vector.

It is clear that the stopping criteria based on (4.56) will cause difficulties when the absolute values of
all components of the solution vector are large numbers, while problems will appear when (4.57) is
used and all components of the solution are very small in absolute value. Therefore, stopping criteria
based on the use of (4.58) with some positive constant ¢  seems to be most reliable when the
components of the involved vectors vary in a wide range. It should be mentioned that some of the
problems arising when the stopping criteria (4.56) and (4.57) are used will disappear if appropriate
scaling could be performed.

It should also be mentioned here that the component-wise stopping criteria (4.58) is used in the
numerical experiments, which will be described in the next section.

(B) Preventing performance of too many iterations. If the convergence is too slow or if the
computational process is divergent, the computations should be stopped. A special parameter k™2*
should be used and the iterative process should be carried out as long as the iteration number Kk is
less than K™,

(C) Efforts to discover whether the computational process will be convergent. The use of
parameter K™2* only may be quite inefficient. Assume, for example, that k™ = 50 or K™ =
100 . It will not be very efficient to perform 50 or 100 iterations and only after that to find out that
the required accuracy could not be achieved (because the Newton method converges too slowly). It is
much more desirable to control, from the very beginning, whether the convergence of the iterative
process is sufficiently fast and to stop the iterations if there is a danger that this is not the case. Very
often this is done by requiring that

(4.59) ”Ayl[lk]

| <vy ”Ayl[,k_l] ” for k=2,3,..

and stopping the iterative process if this condition is not satisfied at some iteration k. Parameter y
with 0 <y <1 is some appropriately chosen factor, by which one attempts to measure the
convergence rate.
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This stopping criterion in some situations is rather stringent, because the errors sometimes may
fluctuate also when the iterative process is convergent (the fluctuations becoming smaller and smaller).
Therefore, it is relaxed sometimes by requiring that (4.59) is not satisfied several consecutive times
(say, two or three times) before stopping the iterations.

If either Algorithm 2 or Algorithm 3 is used, then (4.59) is also used to decide whether the Jacobian
matrix has to be updated and factorized (see below).

(D) Updating the Jacobian matrix and factorizing it. One has to decide when to update the Jacobian
matrix and to re-factorize it when Algorithm 2 and Algorithm 3 are used. As mentioned above the
check introduced by (4.59) is often used in this decision, i.e. if this check fails and if and old Jacobian
matrix is used, then the stepsize is not automatically reduced, but first a new Jacobian matrix is
calculated and factorized. In this way some reductions of the stepsize can be avoided.

Sometimes a much simpler check, based on the accuracy tests, is selected. If an old Jacobian matrix is
used and if the required accuracy is not achieved after some prescribed number of iterations (often this
number is set to three), then a new Jacobian matrix is calculated and factorized.

It is assumed in this subsection that the system of ODESs is non-linear. Then it is necessary to apply
some version of the Newton iterative method (or some other iterative procedure). If the systems of
ODEs is linear, then the situation is not very clear. The application of any representative of the 6-
methods with @ € [0.5,1.0] leads in this situation to the solution of systems of linear algebraic
equations. In principle, one must try to exploit the linearity by solving the system of linear algebraic
equation directly. However, if the system of ODEs is very large, then the resulting system of linear
algebraic equations is very large too. Therefore, it may be worthwhile to keep, as long as possible, an
old Jacobian matrix (calculated and factorized at some previous step) and to use again an iterative
method.

It was assumed in this sub-section that the shifted Jacobian matrix I—h 0], isa general matrix,
which has no special properties. However, shifted Jacobian matrices with special properties do appear
in many scientific and engineering problems. The shifted Jacobian matrix can, for example, be

(a) positive definite,

(b) diagonally dominant,

(c) banded
and

(d) general sparse.
The shifted Jacobian matrix could possess simultaneously even several of these properties. It is
worthwhile to try to exploit these properties. It is not necessary to discuss this topic here, but

good explanation of different techniques for exploiting these properties can be found in many
text books; see, for example, Demmel (1997), Duff, Erisman and Reid (1986), George and
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Liu (1981), Golub and Van Loan (1983), Parlett (1980), Sewell (2004), Trefethen and Bau
(1997) and Zlatev (1991). Standard well-optimized programs for the solution of systems of linear
algebraic equations in different situations can be found in Anderson et al. (1992) or in Barker
et al. (2001).

4.5.5. Richardson Extrapolation and the Newton Method

It was explained in the previous sub-section that the problem of implicitness is causing great difficulties
when numerical schemes from the class of the 8-methods with 8 € [0.5,1.0] are to be used directly
in the solution of stiff systems of ODEs. However, the difficulties become in general considerably
bigger when the 8-methods are combined with the Richardson Extrapolation. In this sub-section we
shall discuss these difficulties.

Let us assume that the underlying numerical method, i.e. the selected numerical scheme from the class
of the 8-methods with some particular value of parameter 0 € [0.5,1.0], is called (as in Section
1.6) Method A, while the new numerical method, which is obtained when Method A is combined with
the Richardson Extrapolation, is called Method B. In this sub-section we shall be interested in the
comparison of the performance of Method A and Method B, when the three versions of the Newton
iterative procedure, which were discussed in §4.5.1, §4.5.2 and §4.5.3, are used.

Assume first that the classical Newton iterative procedure from §4.5.1 is to be applied. Assume
further that Method A and Method B are used with the same time-stepsize. Then Method B will be
approximately three times more expensive with regard to the computing time needed than Method A.
Indeed for every time-step performed with Method A, three time-steps (one large and two small) have
to be carried out with Method B. In fact, the computing time needed when Method B is used will often
be less than three times the computing time needed when Method A is used in the numerical solution
of the solved systems of ODEs. The reduction is due to the fact that the number of iterations needed
when the two small time-stepsizes are carried out will often be less than the corresponding number,
which is needed in the case where the large time-stepsize is used. Nevertheless, this reduction, if it
takes place (i.e. if the number of iterations is really reduced when the halved time-stepsize is used),
will be rather small (because not the time for performing the iterations but the factorization time is as
a rule dominant) and the situation in this case is similar to the situation which occurs when explicit
numerical methods are used. As in that case, i.e. when explicit methods are used, the amount of the
computational work is increased by a factor approximately equal to three when Method B is used
instead of Method A and when additionally both methods are used with the same time-stepsize.

Assume now that the modified Newton iterative process from §4.5.2 is to be applied. Assume again
that Method A and Method B are used with the same time-stepsize. Then the situation remains very
similar to the situation, which occurs when the classical Newton iterative process is used. Also in this
case Method B will be approximately three times more expensive with regard to the computing time
needed than Method A.

The real difficulties related to the use of the Richardson Extrapolation appear when Algorithm 3 from
§4.5.3 is used. If Method A is used, then an old Jacobian matrix (in fact, its factorization to two
triangular matrices) can be kept and used during several consecutive time-steps (as long as the time-
stepsize remains constant and the convergence rate is sufficiently fast). This will, unfortunately, not be
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possible when Method B is used (because the two time-stepsizes, the time-stepsize used in the large
time-step and the halved time-stepsize used in the two small time-steps, are different and, thus, the
corresponding shifted Jacobian matrices are also different). This means that it is not very easy to
implement efficiently Algorithm 3 together with Method B.

Therefore, it is time now to point out again that it is not necessary to run the selected numerical
scheme and its combination with the Richardson Extrapolation with the same stepsize (the latter
numerical method could be run with a larger stepsize, because it is more accurate). This means that it
is much more worthwhile to try to find out by how much the stepsize should be increased in order to
make the combination of the selected method with the Richardson Extrapolation at least competitive
with the case where the selected method is used directly. We shall try to answer this question in the
remaining part of this sub-section.

Denote, as in Chapter 1, by h, and hg the maximal time-stepsizes by which the prescribed
accuracy will be achieved when respectively Method A and Method B are used. It is clear that the
computing time spent when Method B is applied will be comparable to the computing time spent by
using Method A if hg = 3h, when Algorithm 1 or Algorithm 2 is used in the treatment of the Newton
iterative method.

As stated above, Algorithm 3 cannot be used together with Method B (the attempt to use Algorithm 3
separately for the large and the small stepsizes will at least lead to a large increase of the storage
requirements). It will be more efficient to apply Algorithm 2 than Algorithm 1 with this method. It is
clear that Algorithm 2 is the best choice for Method B, while Algorithm 3 is normally the best choice
for Method A. Assume now that Algorithm 2 is used with Method B and Algorithm 3 with Method A
in the treatment of the Newton iterative method.

Then the computing time spent by Method B will be comparable to the computing time spent by using
Method A if hg~3mh, , where m >3 . Moreover, the factor m could sometimes be
considerably larger than 3 . Therefore, the big question now is:

Will it be nevertheless possible to obtain better results with regard to
the computing time when Method B is used?

It will be demonstrated in the next section, by applying appropriate numerical examples, that the answer
to this question is positive (this was also demonstrated in Table 1.1 of Chapter 1 but only as a fact,
with no explanation of the reasons for achieving the good results).

4.6. Numerical experiments

Also in this section we shall use the abbreviations Method A for the underlying numerical method (in
the next sub-sections the underlying method will be the selected numerical scheme from the class of
the 8-methods with some particular value of parameter 6 € [0.5,1.0] ) and Method B for the new
numerical method, obtained when Method A is combined with the Richardson Extrapolation.
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We shall demonstrate (by using appropriate numerical experiments) that the two methods, Method A
and Method B, have the following useful properties:

(a) Method B behaves as a second-order numerical method when the stability properties
of the underlying numerical scheme, i.e. the stability properties of Method A, are
preserved (this is the case, according to the results proved in the previous section, when
the relationship 0 € [2/3,1.0] holds).

(b) For some values of 8 < 1 the results produced by both Method A and Method B are
more accurate than the corresponding results produced when the Backward Euler
Formula (which is obtained when @ = 1) is used either directly or in a combination
with the Richardson Extrapolation.

(c) Method B is often much more efficient than Method A in terms of the computing time
needed to obtain the desired results when some prescribed but not too low accuracy is
required.

(d) If the conditions of Theorem 4.1 are not satisfied, i.e. if [0 € 0.5,2/3) , then Method
B produces, as should be expected, unstable results; the well-known Trapezoidal Rule
will be used in order to demonstrate this fact.

Several numerical experiments were carried out in order to illustrate the fact that statements (a) — (d)
hold. A representative atmospheric chemical scheme was briefly introduced and used in Chapter 1.
More details about this chemical scheme will be discussed in the following sub-section and, after that,
it will be used in the calculations, the results of which will be presented in this chapter.

4.6.1. Atmospheric chemical scheme

An atmospheric chemical scheme, in which s = 56 chemical species are involved, is applied in all
experiments, results of which will be presented in the next subsections. This scheme contains all
important air pollutants, which can be potentially dangerous when their levels are high (ozone, sulphur
pollutants, nitrogen pollutants, ammonium-ammonia pollutants, several radicals and many hydro-
carbons). This atmospheric chemical scheme is used, together with two other chemical schemes, in the
Unified Danish Eulerian Model (UNI-DEM), see, Alexandrov et al. (1997, 2004), Zlatev (1995) and
Zlatev and Dimov (2006). Similar atmospheric chemical schemes are used in several other well-
known large-scale environmental models as, for example, in the EMEP models (see Simpson et al.,
2003), in the EURAD model (see Ebel et al., 2008 and Memmesheimer, Ebel and Roemer, 1997)
and in the model system carefully adjusted for application in different studies of air pollution levels in
Bulgaria and in its surrounding countries (see Syrakov et al., 2011). In all these models the chemical
species are mainly concentrations of pollutants, which are transported in the atmosphere and
transformed under the transportation.

The atmospheric chemistry scheme is described mathematically by a non-linear system of ODEs of
type (1.1) and (1.2). The numerical treatment of this system is extremely difficult not only because

(a) it is non-linear,
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but also because
(b) it is very badly scaled
and

(c) some chemical species vary very quickly during the periods of changes from day-time
to night-time and from night-time to day-time when some quick chemical reactions
(called photo-chemical) are activated or deactivated.

The fact that the system of ODEs (by which the atmospheric chemical scheme is described
mathematically) is non-linear, badly scaled and stiff implies, as was pointed out in the previous
sections,

(A) the use of implicit numerical methods for solving systems of ODEs
and

(B) the application of the Newton iterative procedure in the treatment of the arising at every
time-step non-linear system of algebraic equations.

The greatest problems are related to the shifted Jacobian matrix, which has to be used in the Newton
iterative procedure. The shifted Jacobian matrix that appear and has to be treated during the
performance of this procedure is both very ill-conditioned and extremely badly scaled.

The bad scaling and the ill-conditioning of the Jacobian matrix J = df/dx is causing difficulties also
in the treatment of the systems of linear algebraic equations, which have to be solved at each iteration
of the Newton method.

The bad scaling is generated mainly by the fact that the concentrations of some of the chemical species
vary in quite different and very wide ranges.

The quick diurnal variation of some of the concentrations is due to the fact that the involved species
participate in the so-called photo-chemical reactions which are activated in the morning at the sun-rise
and deactivated in the evening after the sun-set. This means that the periods of changes from day-time
to night-time and from night-time to day-time are very critical for some of the chemical species.

Both the bad scaling of the chemical species and the steep gradients in the periods of changes from
day-time to night-time and from night-time to day-time are clearly demonstrated in in Table 4.1 in
connection with four chemical species. It is seen, for example, that while the maximal concentration
of ozone, 05, isabout 10'% molecules per cubic centimetre, the minimal concentration of OP is
about 103> molecules per cubic centimetre (i.e. the difference is about 47 orders of magnitude!).

Also the condition numbers of the Jacobian matrices appearing in the same period of 24 hours were
calculated at every time-step (by calling standard LAPACK subroutines, see Anderson et al., 1992, or
Barker et al., 2001). The abbreviation COND is used for the condition number calculated at any
time-step during the numerical integration. It was established that the condition numbers are varied in
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the interval COND € [4.56 x 108, 9.27 x 102 ], which shows very clearly that the condition
number of the Jacobian matrix J = @f /0t can really be very large (this topic will be further discussed
in the next sub-section).

Plots, which illustrate the diurnal variation of two chemical species as well as the sharp gradients that
appear in the periods of changes from day-time to night-time and from night-time to day-time are
given in Fig. 4.2 and Fig. 4.3. Also the fact that some of the concentrations are decreased during the
night, while others are increased in this period is demonstrated in these two figures. Moreover, the
changes of the concentrations are very quick and create steep gradients. Other examples will be given
in Chapter 5.

Chemical Maximal Minimal Mean
species concentration | concentration | concentration
0, 1.8 x 1012 1.4 x 1012 1.5 x 1012
PAN 1.3 x 1010 9.4 x 10° 2.3 x10°
ISOPRENE | 3.7 x 10° 1.1 x 10° 1.5 x 10°
oP 1.6 x 10* 1.7 x 10735 5.9 x 103
Table 4.1

The orders of magnitude and the variations of the concentrations of some
chemical species during a period of 24 hours (from twelve o’clock at the
noon on a given day to twelve o’clock at the noon on the next day). The units
are (numbers of molecules) / (cubic centimetre).

165



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

Values of the concentrations

O H

UNITS: (MOLECULES) / (CUBIC CENTIMETRES)
*10°

24—
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16

12—

rFrr "1 1>t >+ 17T 1> > 17T 17T 17 17T° 7 T7T"77"77T"1I
ALAD AR AD AD AT AD A MO AL Db N L R P® 1 2 230NN
HOUR OF DAY
Maximal concentration: 2.3E+07
Minimal concentration: 3.3E+04
Mean concentration: 6.3E+06

Figure 4.2
Diurnal variation of the concentrations of the chemical species OH .
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CHEMICAL SPECIES: ISOPRENE

UNITS: (MOLECULES) / (CUBIC CENTIMETRE)

Values of the concentrations

M r—T—T T T T T T T T T T T T T T T T T T T T T T
ALAD AR AD AD AT AD A MO AL Db N L R P® 1 2 230NN
HOUR OF DAY
Maximal concentration: 3.7E+09
Minimal concentration: 1.1E-06

Mean concentration: 1.5E+09

Figure 4.3
Diurnal variation of the concentrations of the chemical species N,Os .

4.6.2. Organization of the computations

The organization of the computations, which were carried out in connection with the atmospheric
chemical scheme, is very similar to that, which was discussed in the previous chapters, in Chapter 1,
Chapter 2 and Chapter 3. However, a more detailed description is needed here, because of the
implicitness of the applied in this chapter numerical methods. Such description will be given in this
sub-section.

The atmospheric chemical scheme, which was discussed in the previous sub-section, was treated
numerically on the time-interval [a,b]= [43200, 129600]. The value a = 43200
corresponds to twelve o’clock at the noon (measured in seconds and starting from mid-night), while
b = 129600 corresponds to twelve o’clock at the next day (measured also in seconds from the same
starting point). Thus, the length of the time-interval used in the numerical experiments in this chapter
is 24 hours and it contains the important changes from day-time to night-time and from night-time to
day-time (when most of the chemical species, as stated in the previous sub-section, are very quickly
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varying, because the photo-chemical reactions are deactivated and activated when these changes take
place).

Several long sequences of runs were carried out and some of the obtained results will be presented
below. The first run in any of these sequences was performed by using N = 168 time-steps, which
means that the time-stepsize was h ~ 514.285 seconds. Several runs were successively carried out
after the first one. As in the previous two chapters, the time-stepsize h was halved after each successful
run (which means that the number of time-steps was doubled). The behaviour of the errors made during
all the runs was studied. The error made at time €; in any of the runs was measured in the following
way. Assume that k runs are to be carried out. The errors calculated during step j of run k, k=
1, 2,.. , k are estimated by using the following formula:

|y — i)l
max(|y;|,1.0)

(4.60) ERROR® = max <

) ,j=2k12x2k1 168 x 2k 1,
i=1,2,...56

where y;; and yi'fief are the calculated values and the values of the reference solution of the i
chemical speciesattime t; =ty +jho (where j=1, 2, .., 168 and h,~ 514.285 was
the time-stepsize that has been used in the first run). The values of the reference solution were
calculated by using the three-stage fifth-order L-stable Fully Implicit Runge-Kutta (FIRK) Method
(this method will be further discussed in next section) with N = 998244352 time-steps and a time-
stepsize  hyef =~ 6.1307634 x 1075 . Also the errors made for selected chemical species were
calculated for some important pollutants (by fixing the index i). In this section we shall use (4.60),

but in the next section we shall fix index i and report results related to the important pollutant ozone.

This means that we estimate the error at the same set of grid-points in each of the k runs when (4.60)
is used. More precisely, the error is estimated at every time-step during the first run, at every second
time-step during the second run, at every fourth time-step during the third run and we continue in the
same manner after the third run. Thus, the number of grid-points, at which the error is estimated, is
168 foranyofthe k runs. It should be pointed out that Kk = 19 is used in this section.

It is clear from the above discussion that only the values of the reference solution at the grid-points of
the coarse grid (which is used in the first run) have been stored and applied in the evaluation of the
error (it is, of course, also possible to store all values of the reference solution, but such an action will
increase tremendously the storage requirements). It is much more important and must be emphasized
here that errors of the calculated approximations were always, in all nineteen runs, computed at the
same 168 grid points.

The global error made atrun k, k=1, 2,.. , k isestimated by:

(4.61) ERROR® = max (ERROR@) .
j=2k-12x2k-1 " 168x2k-1 )
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It is highly desirable to eliminate the influence of the rounding errors when the quantities involved in
(4.42) and (4.43) are calculated. This is not very easy in this situation. Normally, this task can
successfully be accomplished when double precision arithmetic is used during the computations.
Unfortunately, this is not always true when the atmospheric chemical scheme is handled. The difficulty
can be explained as follows. If the problem is stiff, and the atmospheric chemical scheme is as
mentioned above a very stiff non-linear system of ODEs, then implicit numerical methods are to be
used. The application of such numerical methods leads to the solution of systems of non-linear
algebraic equations, which are treated, as described in the previous sub-section, at each time-step by
the Newton Iterative Method (see also, for example, Hairer and Wanner, 1991). This means that long
sequences of systems of linear algebraic equations are to be handled during the iterative process. As a
rule, this does not cause great problems. However, the atmospheric chemical scheme is, as mentioned
in the previous sub-section, very badly scaled and the condition numbers of the involved in the solution
of the systems of linear algebraic equations matrices are very large. It was found, as mentioned above,
by applying a LAPACK subroutine for calculating eigenvalues and condition numbers (Anderson et
al., 1992 and Barker et al., 2001), that the condition numbers of the matrices involved in the Newton
Iterative Process during the numerical integration of the atmospheric chemical scheme with 56
chemical species on the time-interval [a,b]= [43200, 129600] vary in the range
[4.56 x 108, 9.27 x 1012 ] . Simple application of some error analysis arguments from Stewart
(1973) and Wilkinson (1963, 1965) indicates that there is a danger that the rounding errors could affect
the accuracy up to twelve of the sixteen significant digits of the approximate solution on most of the
existing computers when double precision arithmetic (based on the use of REAL*8 declarations of the
real numbers and leading to the use of about 16-digit arithmetic on many computers) is applied.
Therefore, all computations reported in the next sub-sections were performed by selecting quadruple-
precision (i.e. by using REAL*16 declarations for the real numbers and, thus, about 32-digit
arithmetic) in order to eliminate completely the influence of the rounding errors in the first 16
significant digits of the computed approximate solutions. This is done in order to demonstrate the
possibility of achieving very accurate results under the assumption that stable implementations of the
Richardson Extrapolation for the class of the 8-methods are developed and used and, furthermore, to
show that the rounding errors do not affect the accuracy of the results in our runs.

After the explanation of the organization of the computations, we are now ready to present some of the

results from the numerical experiments, which were carried out in order to demonstrate the advantages
of the application of Richardson Extrapolation.

4.6.3. Achieving second order of accuracy

Numerical results, which are obtained by using first-order numerical schemes belonging to the class of
the 8-methods in combination with the Richardson Extrapolation are given in Table 4.2. The value
0 = 0.75 isselected, which means that the relationship |[R(v)] - c¢< 1 as Re(v) — —oo holds
with ¢ =5/9, see (4.35). The results in Table 4.2 show clearly that the 6-method with 8 = 0.75
performs:

(a) as a first-order method (as it should) when it is applied directly

and
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(b) as a stable second-order method when it is used as an underlying method in the
Richardson Extrapolation.

Indeed, the decrease of the time-stepsize by a factor of two leads to an increase of the accuracy by a

factor of two when the 8-method with 06 = 0.75

is used directly and by a factor of four when this

method is combined with the Richardson Extrapolation. Moreover, it is also seen that these two
relations (increases of the achieved accuracy by factors of two and four respectively) are fulfilled in a
nearly perfect way.

Job Number of | Direct use of the -method | Richardson Extrapolation
Number | time-steps Accuracy Rate Accuracy Rate
1 168 | 1.439E-00 - 3.988E-01 -
2 336 | 6.701E-01 2.147 5.252E-02 7.593
3 672 | 3.194E-01 2.098 1.503E-03 3.495
4 1344 | 1.550E-01 2.060 3.787E-03 3.968
5 2688 | 7.625E-02 2.033 9.502E-04 3.985
6 5376 | 3.779E-02 2.018 2.384E-04 3.986
7 10752 | 1.881E-02 2.009 5.980E-05 3.986
8 21504 | 9.385E-03 2.005 1.499E-05 3.989
9 43008 | 4.687E-03 2.002 3.754E-06 3.993
10 86016 | 2.342E-03 2.001 9.394E-07 3.996
11 172032 | 1.171E-03 2.001 2.353E-07 3.993
12 344064 | 5.853E-04 2.000 6.264E-08 3.756
13 688128 | 2.926E-04 2.000 1.618E-08 3.873
14 1376256 | 1.463E-04 2.000 4.111E-09 3.935
15 2752512 | 7.315E-05 2.000 1.036E-09 3.967
16 5505024 | 3.658E-05 2.000 2.601E-10 3.984
17 11010048 | 1.829E-05 2.000 6.514E-11 3.993
18 22020096 | 9.144E-06 2.000 1.628E-11 4.001
19 44040192 | 4.572E-06 2.000 4.051E-12 4.019
Table 4.2

Numerical results that are obtained (a) in nineteen runs, in which the direct implementation

of the @8-method with 0 = 0.75

is used, and (b) in the corresponding nineteen runs in

which the combination consisting of the Richardson Extrapolation and the 8-method with
0 = 0.75 isapplied. The errors obtained by using formula (4.61) are given in the columns
under “Accuracy”. The ratios of two successive errors (the convergence rates) are given in

the columns under “Rate”.

4.6.4. Comparison of the 8-method with 8 = 0.75 and the Backward Euler Formula

It can theoretically be justified that the 8-method with

0 =0.75 should normally give more

accurate results than the Backward Euler Formula. More precisely, the following theorem holds:
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Theorem 4.3: The principal part of the local truncation error of the 0-method with 6 = 0.75 s
twice smaller than that of the Backward Euler Formula.

Proof: Consider two approximations ypRackward ang y8=0.75 of the exact solution y(t,) of the
problem defined by (1.1) and (1.2), which are obtained at time-step n by applying respectively the
Backward Euler Formula and the 8-method with 6 = 0.75 assuming that the same initial value
yn = y(t,) is applied. The equations, which are used in the calculation of the approximations
ypackward and y8=075 = can be written in the following form:

(4,' 63) yrll)ackward - Vpo1— h f(tn: yrll)ackward) =0,

and

(4.64) y¥ %75 —y 1 —0.25hf(ty_1,ya 1) — 0.75 h f(t,, y2=07%) = 0.

Replace:
(a) ylll)ackward and yr(?:0.75 Wlth y(tn)
and

(b) Yn-1 with Y(tn—l)

in the left-hand-side of (4.63) and (4.64).

Use the relationship dy(t)/dt = f(t,y(t)) and introduce, ason p. 48 in Lambert (1991), two linear
difference operators in order to express the fact that the right-hand-sides of the expressions obtained
from (4.63) and (4.64) will not be equal to zero when the above substitutions are made. The following
two relationships can be obtained when these actions are performed:

dy(t,
(4.65) Lbackward[y(tn);h] = y(tn) —y(t,-1) —h yé: )
and
(4.66) L°=%7>[y(t,);h] = y(t,) — y(t,—1) — 0.25h —dY(:;_l) — 0.75h dyé:n) '
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Expanding y(t,) and dy(t,)/dt in Taylor series about t,_, and keeping the terms containing h?
one can rewrite (4.65) and (4.66) in the following way:

_ h_z dZY(tn—l)

(4.67) Lbackward[y(¢ ). ] = > ae + 0(h3%)
and

2 2
(4.68) L=7[y(t,)h] = — o TVUn1) 4 643y

4 dt?

The terms in the right-hand-sides of (4.67) and (4.68) are called local truncation errors (see p. 56 in
Lambert, 1991). It is seen that the principal part of the local truncation error of the 8-method applied
with @ = 0.75 is twice smaller than that of the Backward Euler Formula. This completes the proof
of the theorem.

Theorem 4.3 demonstrates very clearly the fact that one should expect, as stated above, the 8-method
with @ = 0.75 to be more accurate than the Backward Euler Formula.

Several experiments were carried out to confirm this expectation. Some of the obtained results are
shown in Table 4.3. It is seen that the accuracy of the numerical results obtained by using the 8-
method with @ = 0.75 is indeed considerably better than that obtained by the Backward Euler
Formula (see the figures given in the third and the fifth columns of Table 4.3).

It is remarkable that the accuracy is improved precisely by a factor of two when the time-stepsize
becomes sufficiently small and, which is very important, when the influence of the rounding errors in
the first sixteen digits is eliminated.

It is not clear how to derive corresponding expressions for the principal parts of the local truncation
error when the Richardson Extrapolation is used together with these two numerical methods for solving
systems of ODEs (i.e. together with the Backward Euler Formula and with the 8-method with 0 =
0.75). Probably the same approach (or at least a similar approach) as that which was used in Theorem
4.3 can be applied to compare the leading terms of the local truncation error also in this case.

The results presented in Table 4.3 show that the accuracy of the calculated approximations is in general

improved by a factor, which is greater than two, when the 6-method with 8 = 0.75 is used as an
underlying method instead of the Backward Euler Differentiation Formula.
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Job Number of | Backward Euler Formula The 0-method with 6 = 0.75
Number | time-steps Direct Richardson Direct Richardson
1 168 | 2.564E-00 3.337E-01 | 1.439E-00 (0.561) | 3.988E-01 (1.195)
2 336 | 1.271E-00 1.719E-01 | 6.701E-01 (0.527) | 5.252E-02 (0.306)
3 672 | 6.227E-01 5.473E-02 | 3.194E-01 (0.513) | 1.503E-03 (0.027)
4 1344 | 3.063E-01 7.708E-03 | 1.550E-01 (0.506) | 3.787E-03 (0.491)
5 2688 | 1.516E-01 1.960E-03 | 7.625E-02 (0.503) | 9.502E-04 (0.484)
6 5376 | 7.536E-02 5.453E-04 | 3.779E-02 (0.501) | 2.384E-04 (0.437)
7 10752 | 3.757E-02 | 1.455E-04 | 1.881E-02 (0.501) | 5.980E-05 (0.411)
8 21504 | 1.876E-02 3.765E-05 | 9.385E-03 (0.500) | 1.499E-05 (0.398)
9 43008 | 9371E-03 9583E-06 | 4.687E-03 (0.500) | 3.754E-06 (0.392)
10 86016 | 4.684E-03 2.418E-06 | 2.342E-03 (0.500) | 9.394E-07 (0.389)
11 172032 | 2.341E-03 6.072E-07 | 1.171E-03 (0.500) | 2.353E-07 (0.388)
12 344064 | 1.171E-03 1.522E-07 | 5.853E-04 (0.500) | 6.264E-08 (0.411)
13 688128 | 5.853E-04 3.809E-08 | 2.926E-04 (0.500) | 1.618E-08 (0.425)
14 1376256 | 2.926E-04 9.527E-09 | 1.463E-04 (0.500) | 4.111E-09 (0.432)
15 2752512 | 1.463E-04 2.382E-09 | 7.315E-05 (0.500) | 1.036E-09 (0.435)
16 5505024 | 7.315E-05 5.957E-10 | 3.658E-05 (0.500) | 2.601E-10 (0.437)
17 11010048 | 3.658E-05 1.489E-10 | 1.829E-05 (0.500) | 6.514E-11 (0.437)
18 22020096 | 1.829E-05 3.720E-11 | 9.144E-06 (0.500) | 1.628E-11 (0.438)
19| 44040192 | 9.144E-6 | 9.273E-12 | 4.572E-06 (0.500) | 4.051E-12 (0.437)
Table 4.3

Comparison of the accuracy achieved when the Backward Euler Formula (obtained by

using 6 =1.0) and the 6-method with

0 = 0.75 are run with 19 different time-

stepsizes. The errors obtained by (4.61) are given in the last four columns in this table. The
ratios (the errors obtained when the 0-method with 6 = 0.75 is used divided by the
corresponding errors obtained when the Backward Euler Formula is used) are given in

brackets.

4.6.5. Comparing the computing times needed to obtain prescribed accuracy

Three time-steps (one large and two small) with the underlying numerical method are necessary when
one time-step of the Richardson Extrapolation is performed. This means that if the Richardson
Extrapolation and the underlying numerical method are used with the same time-stepsize, then the
computational cost of the Richardson Extrapolation will be more than three times greater than that of

the underlying numerical method (see the analysis performed in the previous section).

However, the use of the Richardson Extrapolation leads also to an improved accuracy of the calculated
approximations (see Table 4.2 and Table 4.3). Therefore, it is not relevant (and not fair either) to
compare the Richardson Extrapolation with the underlying method under the assumption that both
devices are run with equal number of time-steps. It is much more relevant to investigate how much

computational work will be needed in order to achieve the same accuracy in the cases where

(a) the @-method with 0 = 0.75

and
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(b) when the same numerical method is combined with the Richardson Extrapolation.

The computing times needed in the efforts to achieve prescribed accuracy are given in Table 4.4. If
the desired accuracy is 107% (k= 1,2,.. ,11 ), then the computing times achieved in the first
run in which the quantity ERROR from (4.43) becomes less than 107% are given in Table 4.4. This
means that the actual error, found in this way, is in the interval [10~®*D 107%) when accuracy of
order 107X is required.

Desired Application of the 6-method with Combination with the

Accuracy of the 0=0.75 Richardson Extrapolation
calculated CPU time (in | Number of the | CPU time | Number of the
approximations hours) time-steps | (in hours) time-steps
[1.0E-02, 1.0E-01) 0.0506 2688 0.0614 336
[1.0E-03, 1.0E-02) 0.1469 21504 0.0897 1344
[1.0E-04, 1.0E-03) 1.1242 344032 0.1192 2688
[1.0E-05, 1.0E-04) 6.6747 2752512 0.2458 10752
[1.0E-06, 1.0E-05) 43.0650 22020096 0.6058 43008
[1.0E-07, 1.0E-06) | Required accuracy was not achieved 1.0197 86016
[1.0E-08, 1.0E-07) | Required accuracy was not achieved 3.1219 344064
[1.0E-09, 1.0E-08) | Required accuracy was not achieved 10.3705 1376256
[1.0E-10, 1.0E-09) | Required accuracy was not achieved 35.3331 5505024
[1.0E-11, 1.0E-10) | Required accuracy was not achieved 66.1322 11010048
[1.0E-12, 1.0E-11) | Required accuracy was not achieved | 230.2309 44040192

Table 4.4

Comparison of the computational costs (measured by the CPU hours) needed to achieve
prescribed accuracy in the cases where (a) the 8-method with 6 = 0.75 isimplemented
directly and (b) the Richardson Extrapolation is used in combination with the same
underlying numerical scheme.

Four important conclusions can immediately be drawn by studying the numerical results that are shown
in Table 4.4:

e The direct use of the ©-method with 0 = 0.75 is slightly more efficient with
regard to the computing time than the implementation of the Richardson Extrapolation
when the desired accuracy is very low, for example when it is required that ERROR
from (4.61) should be in the interval [107%, 10~1) ; compare the CPU times in the
first row of Table 4.4.

e The implementation of the Richardson Extrapolation becomes much more efficient
than the direct 0-method with 0 =0.75  when the accuracy requirement is
increased (see the second, the third, the fourth and the fifth lines of Table 4.4). If it is
desirable to achieve accuracy, which is better than 107>, and more precisely if it is
required to have that the ERROR from (4.61) should be in the interval [107¢,
10~5), then the computing time spent with the Richardson Extrapolation is more than
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70 times smaller than the corresponding computing time for the 8-method with 6 =
0.75 when it is used directly (compare the CPU times in the fifth line of Table 4.4).

e Accuracy better than 107> has not been achieved in the 19 runs with the 8-method
with 0 = 0.75 when it is used directly (see Table 4.4), while even accuracy better
than 10711 s achievable when the Richardson extrapolation is used (see the last lines
of Table 4.4 and Table 4.2).

e The major conclusion is that not only is the Richardson Extrapolation a powerful tool
for improving the accuracy of the underlying numerical method, but it is also extremely
efficient with regard to the computational cost (this being especially true when the
accuracy requirement is not very low).

4.6.6. Using the Trapezoidal Rule in the computations

Consider the Trapezoidal Rule (which is a special numerical scheme belonging to the class of the 6-
methods and can be found from this class by setting 0 = 0.5 ). It has been shown (see Theorem 4.2)
that, while the Trapezoidal Rule itself is a second-order A-stable numerical method, its combination
with the active implementation of the Richardson Extrapolation is not an A-stable numerical method.
However the passive implementation of the Richardson Extrapolation together with the Trapezoidal
Rule is remaining A-stable. Now we shall use the atmospheric chemical scheme to confirm
experimentally these facts. More precisely,

(a) we shall investigate whether the Trapezoidal Rule behaves as a second-order
numerical method when it is directly applied in the solution of the atmospheric
chemical scheme,

(b) we shall show that the results are unstable when this numerical method is combined
with the active implementation of the Richardson Extrapolation

and

(c) we shall verify the fact that the results remain stable when the Trapezoidal Rule is
combined with the passive implementation of the Richardson Extrapolation.

Numerical results are presented in Table 4.5. Several important conclusions can be drawn from

the results shown in this table (it should be mentioned here that many other runs were also
performed and the conclusions were similar):
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Direct Richardson Extrapolation
Job Number | Implementation Active Passive

Number | of steps | Accuracy | Rate | Accuracy | Rate | Accuracy | Rate
1 168 | 3.605E-01 - Unstable | n.a. | 4.028E-02 -
2 336 | 7.785E-02 | 4.631 | Unstable | n.a. | 3.246E-03 | 12.407
3 672 | 1.965E-02 | 3.961 | Unstable | n.a. | 1.329E-03 | 2.443
4 1344 | 4915E-03 | 3.998 | Unstable | n.a. | 1.462E-04 | 9.091
5 2688 | 1.228E-03 | 4.001 | Unstable | n.a. | 5.823E-05| 2.510
6 5376 | 3.071E-04 | 4.000 | Unstable | n.a. | 3.765E-05 | 1.547
7 10752 | 7.677E-05 | 4.000 | Unstable | n.a. | 2.229E-05| 1.689
8 21504 | 2.811E-05 | 2.731 | Unstable | n.a. | 1.216E-05 | 1.833
9 43008 | 1.615E-05 | 1.741 | Unstable | n.a. | 6.300E-06 | 1.930
10 86016 | 8.761E-06 | 1.843 | Unstable | n.a. | 3.188E-06 | 1.976
11 172032 | 4.581E-06 | 1.912 | Unstable | n.a. | 1.600E-06 | 1.993
12 344064 | 2.345E-06 | 1.954 | Unstable | n.a. | 8.007E-07 | 1.998
13 688128 | 1.187E-06 | 1.976 | Unstable | n.a. | 4.005E-07 | 1.999
14 | 1376256 | 5.970E-07 | 1.988 | Unstable | n.a. | 2.002E-07 | 2.000
15| 2752512 | 2.994E-07 | 1.994 | Unstable | n.a. | 1.001E-07 | 2.000
16 | 5505024 | 1.499E-07 | 1.997 | Unstable | n.a. | 5.005E-08 | 2.000
17 | 11010048 | 7.503E-08 | 1.998 | Unstable | n.a. | 2.503E-08 | 2.000
18 | 22020092 | 3.753E-08 | 1.999 | Unstable | n.a. | 1.252E-08 | 2.000
19 | 44040192 | 1.877E-08 | 2.000 | Unstable | n.a. | 6.257E-09 | 2.000

Table 4.5

Numerical results obtained in 19 runs of (i) the direct implementation of the Trapezoidal
Rule, (ii) the Active Richardson Extrapolation with the Trapezoidal Rule and (iii) the
Passive Richardson Extrapolation with the Trapezoidal Rule are given. The errors
obtained by (4.61) are given in the columns under “Accuracy”. The ratios of two
successive errors are given in the columns under “Rate”. “Unstable” means that the code
detected that the computations are not stable, while “n.a.” stands for not applicable.

(a) The order of the Trapezoidal Rule is two. Therefore, it should be expected that doubling
the number N  of time-steps, which leads to a decrease of the time-stepsize h =
(129600 — 43200 )/N = 86400/N by a factor of two, will in general lead to an
improvement of the accuracy by a factor of four. It is seen that in the beginning this is
the case. However, after the seventh run the convergence rates are quickly shifting from
four to two. It is not clear why the rate of convergence is deteriorated and the method
behaves as a first-order numerical scheme for small time-stepsizes.

(b) The application of the Active Richardson Extrapolation with the Trapezoidal Rule leads
to unstable computations. As mentioned above this is a consequence of Theorem 4.2. It
is only necessary to explain here how the instability is detected. Two stability checks are
carried out. The first check is based on monitoring the norm of the calculated approximate
solutions: if this norm becomes 101° times greater than the norm of the initial vector,
then the computations are stopped and the computational process is declared to be
unstable. The second check is based on the convergence of the Newton Iterative Process.
If this process is not convergent or very slowly convergent at some time-step n, then

176



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

the stepsize h is halved. This can happen several times at the time-step n . If the reduced
time-stepsize becomes less than 10~>h , then the computational process is stopped and
declared to be unstable. If the time-stepsize is reduced at time-step n, then the remaining
calculations from t,_; to t, are performed with the reduced time-stepsize (with the
reduced time-stepsizes, if the time-stepsize has been reduced several times), however an
attempt is carried out to perform the next time-step n 4+ 1 (i.e. to proceed from t,_; to
t, ) with the time-stepsize h = (129600 — 43200 )/N = 86400/N that is used
in the currentrun j where j=1, 2, ... , 19.

(c) The order of the Passive Richardson Extrapolation with the Trapezoidal Rule should be
three. Therefore, it should be expected that doubling the number N  of time-steps,
which leads to a decrease of the time-stepsize h = (129600 —43200)/N =
86400/N Dby a factor of two, will in general lead to an improvement of the accuracy
by a factor of eight. It is seen from Table 4.2 that this is not the case, the convergence
rates are increased by a factor of two only and, therefore, the Trapezoidal Rule combined
with the passive implementation of the Richardson Extrapolation behaves as a first-order
numerical scheme (excepting perhaps, to some degree, the first three runs). However, it
is also seen that the Passive Richardson Extrapolation combined with the Trapezoidal
Rule is a stable method and gives consistently more accurate results than those obtained
when the Trapezoidal Rule is applied directly. It should be mentioned here that the
combination of the Backward Differentiation Formula with the Richardson Extrapolation
behaves (as it should) as a second-order numerical scheme (see, Farago, Havasi and
Zlatev, 2010).

4.7. Using Implicit Runge-Kutta Methods

The use of the Richardson Extrapolation together with numerical schemes from the class of the 6-
methods, which are very often used by scientists and engineers, was studied in detail in the previous
sections of this chapter. Some results about the application of Implicit Runge-Kutta Methods together
with the Richardson Extrapolation will be presented in this section. The emphasis will again be on the
stability properties of the combined methods.

4.7.1. Fully Implicit Runge Kutta Methods

Implicit Runge-Kutta Methods can be introduced by the following formulae:

m
(4‘- 69) Yn =Yn-1t h z Ci k? .
i=1

The coefficients c¢; are given constants (the requirement to achieve at least first-order of accuracy
implies that the sum of the coefficients ¢; should be equal to one) , while at an arbitrary time-step
n thestages K are defined by
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m
(4.70) K'=f| t,_;+ha;, y,_q +hzbiiki“ , i=123,.,m,
=
with
m
(4‘71) ai:Zbii ) i =1,2,3,...,m,
=

where by; are also some given constants depending on the particular numerical method.

Many alternative, but in some cases equivalent, formulations can be found in Butcher (2003), in
Hairer and Wanner (1991) or in Hundsdorfer and Verwer (2003).

The vectors KkJ' participating in the right-hand-side of (4.69) and defined in (4.70) are called stages
as in Chapter 2. Each of these vectors consists of s components where s isthe number of equations
in the system of ODEs, defined by (1.1) and (1.2). The numerical method defined by the equalities
(4.69)-(4.71) is an implicit m—stage Runge-Kutta numerical scheme (the term “fully implicit” is often
used and it is also adopted here). The implicitness arises in (4.70), because the stage vectors k'
appear in both sides of these m relationships. This means that at every time-step we have to solve a
system of ms equations, which is in general non-linear.

The major advantages of the Fully Implicit Runge-Kutta (FIRK) Methods are two:
(a) these methods are very accurate
and

(b) numerical schemes from this class, which have very good stability properties, can be
derived.

The major drawback of the Fully Implicit Runge-Kutta Methods is caused by the necessity to handle
systems consisting of ms algebraic equations at every time-step, which are in many cases non-linear.
These systems can be enormously big when s is a large integer. Serious computational problems
arise when this is true. Therefore, an attempt to design simplified numerical methods, which are based
on the same basic idea, but are not so expensive, is worthwhile. Such methods were developed and will
be discussed in the next sub-section.
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4.7.2. Diagonally Implicit Runge-Kutta Methods

It was emphasized in the previous sub-section that if the system of ODEs defined by (1.1) and (1.2) is
large, i.e. if s s large, then the solution of the system (4.70) becomes very time-consuming even
when high speed modern computers are available and efficiently used. Therefore, it is necessary to find
some way of reducing the computational complexity of the Fully Implicit Runge-Kutta Methods. This
can be done by applying the approach proposed by Alexander (1977). The truth is that there are several
other works as, for example, an institutional report written by Nersett (1974) and a conference
proceedings paper written by Cruziex (1976), where this approach or at least a very similar approach
is also introduced. The methods, which were developed by Nersett, Cruziex and Alexander as well as
by some other scientists, form the class of Diagonally Implicit Runge-Kutta Methods (DIRK
Methods). The name “diagonally implicit” has been introduced first by R. Alexander, but there is some
confusion related to these methods, because some authors use occasionally the terms “semi-implicit
methods” or “semi-explicit methods” instead of diagonally implicit methods. It should be pointed out
here that these two classes of methods are in some sense similar but not the same as the class of the
Diagonally Implicit Runge-Kutta Methods.

The DIRK Methods are based on the following formulae:

m
(4.72) ya=Ya1+h ) Gk
i=1

The coefficients ¢; are again, as in the previous sub-section, given constants (the requirement to
achieve at least first-order of accuracy implies that the sum of the coefficients ¢; should be equal to
one) , while the stages kj' are defined at an arbitrary time-step n by

i-1
(473) k:l=f tn_1+hai, yn_1+thl]kln+YkP , i =123, ..,m,
j=1
with
i-1
(4’74) aIZZb1]+Y , i:1,2,3,...,m,
j=1

where by; and y are also some given constants depending on the particular numerical method.

The sums in (4.73) and (4.74) are by definition assumed to be equal to zero when the upper index is
less than the lower one.
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It is immediately seen that (4.72) is the same as (4.69), but the equalities presented in (4.73) is different
from those given in (4.70) and the difference is indeed very essential. While the relations (4.70) have
to be handled as a large and in the general case non-linear system of ms algebraic equations that
has to be solved at every time-step, (4.73) leads to the solution of m systems, each of them consisting
of s equations. Indeed, when i = 1, the first of the m formula (4.73) contains only one unknown
vector, vector K7 . Ifthe first vector K7 is found by solving (4.73) for i =1, then the second
of the m formulae (4.73), which is obtained for i =2, will contain only one unknown vector,
vector Kkj . If this vector is also found, then for i = 3 the third of the m formula (4.73) will
contain only one unknown vector, vector k3 . It is clear that continuing the computations in this
way, we shall be able to obtain all stage vectors Kk{', i =1,2,3,..,m, by treating successively
a sequence of m smaller systems, each of them containing s equations.

A reasonable question can be asked here:

How significant is the reduction of the computational work made in the
transition from Fully Implicit Runge-Kutta Methods to Diagonally
Implicit Runge-Kutta Methods?

We shall try to answer this question in the next sub-section.

4.7.3. Evaluating the reduction of the computational cost when DIRK Methods are used

The following example indicates that the reduction obtained when a Diagonally Implicit Runge-Kutta
(DIRK) Method is used instead of a corresponding Fully Implicit Runge-Kutta (FIRK) Method could
indeed be rather large. Here “corresponding” means that the number of stage vectors used in the DIRK
Method and the FIRK Method is the same.

Consider a system of ODEs defined by (1.1) and (1.2), which is linear and for which the following
relationships hold:

d
(4.75) d—’t'=A(t)y, tefab], yeDcRS, s>1, vy@=n, neED.

It is additionally assumed that A(t) € RS s a given real matrix, which depends on the
independent variable t andthat m < RS issome given real vector with s components. Then
linear systems of algebraic equations have to be solved at every time-step when either a Fully Implicit
Runge-Kutta Method or a Diagonally Implicit Runge-Kutta Method is applied.

If a Fully Implicit Runge-Kutta Method is used in the solution of (4.75), then the coefficient matrix B

of the linear system, which is represented by formula (4.70), is dependent on matrix A(t) and it can
be partitioned into m X m  blocks. Each of these blocks isa s Xxs square matrix. It can be
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established that any of the off-diagonal blocks of matrix B can be expressed by the formulae
B = —hbyA(t,_; +ha), i=1,2,.., m, j=1,2 .., m, i#j, whilethe diagonal
blocks are given by Bj; =1 —hb;A(t,_; +ha;), j=1, 2, ..., m, where I is the identity
matrix in RS*S .

Assume furthermore that s is large and that the matrix A(t) is dense. It is clear that matrix B will
also be dense and the number of arithmetic operations that are to be performed during the most time-
consuming process in the solution of the system (4.70), i.e. during the factorization of matrix B,
will be O(m3s3) .

If a Diagonally Implicit Runge-Kutta (DIRK) Method is to be used in the solution of (4.75), then the
coefficient matrix B of the linear system that is represented by (4.73) is also dependent on matrix
A(t) and can again be partitioned into m X m  blocks, each of the diagonal blocks beinga s x's
square matrix. However, all elements in the blocks, which are over the main diagonal of the partitioned
matrix B are now equal to zero. This means that the coefficient matrix of the systems defined by
(4.73) is a lower block-diagonal matrix. The sub-diagonal blocks of matrix B are given by the
formulae By = —hbjA(t,—q +hay), i=2,3,.., m, j=1,2 .., m, i>j, while the
diagonal blocks are By =1 —hyA(t,_; + ha;), i=1, 2,.., m), where I isagain the identity
matrix in IRS*¢ . The above statements show clearly that now it is necessary to treat a sequence of m
systems of dimension s instead of one large system of dimension ms as was the case when Fully
Implicit Runge-Kutta Methods are used and (4.70) is to be handled. Therefore, the computational cost
of the factorization of the coefficient matrix in (4.73) will be  O(ms3) , i.e. a reduction of order
0(m?) is achieved when the coefficient matrix of the linear system (4.73) is factorized instead of the
coefficient matrix of the linear system (4.70). It is quite clear that this reduction will be rather
substantial when s isa large integer.

It should be noted that a very special example has been discussed above (it was assumed that the
coefficient matrix is dense). However, the situation will not change too much when other examples are
to be treated. Assume, for instance, that matrix A(t) from (4.75) has some special property and this
property is to be exploited in the treatment of both (4.70) and (4.73). In order to be more specific, let
us assume that A(t) isabanded matrix. Then the situation will not be improved because the bandwidth
of the diagonal blocks B;; in (4.73) remain the same as that of ~ A(t), while the bandwidth of matrix
B emerging from (4.70) will become much wider. This will lead to a very significant increase of the
number of arithmetic operations not only because this matrix is much bigger than the diagonal blocks
B;; of (4.73), which have to be treated when the Diagonally Implicit Runge-Kutta Method is used,
but also because much more non-zero elements will be created during the factorization of matrix B,
as a consequence of the fact that its bandwidth is much broader. Thus, the reduction of the
computational work obtained when some DIRK Method is used instead of a corresponding Runge-
Kutta Method will in most of the cases become even greater than the reduction achieved when matrix
A(t) is dense.

It is necessary to explain why a requirement that all coefficients a;;, i=1, 2,..., m, should be
equal to y is imposed for the Diagonally Implicit Runge-Kutta Methods. Consider now the general
non-linear case and assume that some version of the Newton Iterative Method is to be used in the
successive solution of the m systems that that appear in (4.73). Each of these systems contain s non-
linear algebraic equations and one have to use the LU factorizations of the shifted Jacobian matrices
Ji =1 —hy(9f/0kj") . The expectation is that if a; =y, i=1, 2,.., m, then it will be
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sufficient to factorize only the first shifted Jacobian matrix and then to use the same LU factorization
during the solution of all remaining systems. If the attempt to apply the same LU factorization in the
treatment of all m systems in (4.73) is successful, then the reduction will indeed be very significant,
but one will be able to use the same LU factorization for all systems, after the first one, only when
the shifted Jacobian matrix is slowly varying in t . However, it should be noted that a rather
substantial reduction will be achieved when a Diagonally Implicit Runge-Kutta Method is used instead
of the corresponding Fully Implicit Runge-Kutta Method even if the requirement for slow variation of
the shifted Jacobian matrix in t is not satisfied. Finally, let us mentioned here that the methods are
called semi-implicit Runge-Kutta methods if it is not assumed that a;=v, i=1, 2,..., m.

4.7.4. Applying Richardson Extrapolation for Fully Implicit Runge-Kutta Methods

The Richardson Extrapolation can be implemented in relation to Fully Implicit Runge-Kutta methods
in the same way as it was implemented for general methods for solving systems of ODEs in Chapter 1
and for Explicit Runge-Kutta methods in Chapter 2. Consider any Fully Implicit Runge-Kutta Method
defined by the formulae (4.69)-(4.71). Assume that the calculations have already been performed for
all grid-points t;, (i=1,2,...,n—1) by using some numerical method, the order of accuracy of
which is p . If approximations y; = y(t;) of the exact solution are available (i.e. these
approximations have already been calculated at the grid-points t;, (i=0,1,2,...,n—1), then
three actions are to be carried out successively in order to obtain the next approximation y, :

(a) Perform one large time-step, with a time-stepsize h when the grid (1.6) is used or
with a time-stepsize h,, if the grid (1.7) has been selected, in order to calculate an
approximation z, of y(t,) .

(b) Perform two small time-steps, with a time-stepsize 0.5 h, when the grid (1.6) is used
or with a time-stepsize 0.5 h,, if the grid (1.7) has been selected, in order to calculate
another approximation w, of y(t,) .

(c) calculate an improved approximation y, by applying the formula:

2w, —z,

(4.76) y, = 5P — 1

As was pointed out in Chapter 1 and Chapter 2, the above algorithm is applicable to any numerical
method for solving systems of ODEs (in Chapter 6 it will be shown that it is also applicable, after
introducing some additional requirements, when some systems of PDEs are to be handled). There are
only two requirements:

(A) The same numerical method should be used in the calculation of the two
approximations z, and wy,.
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(B) The order of the selected numerical method should be p . This second requirement
is utilized in the derivation of formula (1.8), in which the positive integer p is
involved; this will be done in the next section.

It is clear, see Chapter 1 and Chapter 2 as well as Zlatev, Faragé and Havasi (2010, 2012), that that
order of accuracy of the improved approximation y, willbeatleast p+1.

If the stability properties of the Richardson Extrapolation are to be studied, then it will be worthwhile,
as we did in Chapter 2, to apply both the Fully Implicit Runge-Kutta Method formulated with (4.69)-
(4.71) and the Richardson Extrapolation associated with this computational scheme in the solution of
the Dahlquist scalar and linear test-equation:

d _
(4.77) d—i’:xy, te[0w], yeC, A=a+BieC, a<0, y0) =n.

It is appropriate now to select some particular Fully Implicit Runge-Kutta Method in order to facilitate
the explanation of the results. The method, which was originally proposed in Ehle (1968), see also
Hairer, Norsett and Wanner (1987) or Hairer and Wanner (1991), and which is based on the
formulae listed below, is used:

4-6 88 — 7/6 296 — 169V6
n _ EE— n 2
(4.78) 1= f<tn—1 o b, Yn-1+ 360 hky + 1800 hicz
-2+3V6
+———hk% ),
225
4+6 296 + 1696 88 + 7V6
n _ - 1+— 2
(4.79) Kkj= f<tn—1 o0 P Y1t 500 1+t 360 MK
-2 -3vV6
+—————hk}% ),
225

16 — V6 16 +6
(4.80) 3=f <tn_1 +h, y,_1+ hk} + 36

1
— hk} + = hk}
36 2+ )

9

16 — V6 16 +V6

1
4.81 = hk7} hkj + —hkj .
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This method is a very well-known three-stage five-order L-stable Fully Implicit Runge-Kutta method
(see again the above references) and can be found in many text books on numerical methods for systems
of ODEs.

If this algorithm is applied in the solution of the Dahlquist test-problem (4.77), then the following
relationship (see Hairer and Wanner (1991), p. 42) can be obtained after the elimination of the
quantities k7, k5 and Kk3:

n
%vz—%v+1 %vz—%v+1
(4‘82) Vn = 1 3 3 ) 3 Yn-1= 1 3 3 5 3 Yo -
—mv +EV —§u+1 —mv +EV —gl.l.+1

The parameter v is equal as usual to the product hA.

From (4.82) it follows that the stability function of the Fully Implicit Runge-Kutta Method defined by
the equalities (4.78)-(4.81) is determined by the following expression:

%vz—%v+1

(4.83) R(v) = 3 3 .
—EVB +ﬁ\’2 —§V+ 1

Let us turn back to the three actions mentioned in the beginning of this section. It is clear that, if the
Dahlquist test-example (4.77) is solved, then we can write:

%vz — %v +1
(4'- 84’) Z, = 1 VYn-1 = R(V) Vn-1 -

—mv3+23—0v2—%v+1

and
i(!>2_22+1 2 VA2
(4.85) = 20\2 52 _[R(Y o
s ) e

Substitute now the last terms of the above equalities in (4.76) and use the fact that p =5 for the
numerical method defined by (4.78)-(4.81). The results is:
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\Y%

32 [R (72]12 —R(V)

(4.86) Yn = Yn-1-

The last equality shows that the new method, consisting of the combination of the Fully Explicit Runge-
Kutta Method defined by (4.78)-(4.81), is a one-step method and its stability function R(v) can be
expressed by the stability function R(v) of the underlying method by the following formula:

\Y%

A

(4.87) RW) = o

It should be mentioned here that similar results that are related to the stability functions for numerical
methods, which are combinations of the Richardson Extrapolation with schemes for solving systems
of ODEs, were obtained in Chapter 2 in connection with Explicit Runge-Kutta Methods and in the
previous sections of this chapter in connection with the class of the 8-methods.

4.7.5. Applying Richardson Extrapolation for Diagonally Implicit Runge-Kutta Methods

The same rules, as those discussed in the previous section, can be used in the implementation of the
Richardson Extrapolation for DIRK methods, i.e. after the calculation of the approximations z, and
w, , the improved by applying the Richardson extrapolation value y, can again be obtained from
(6). It is again appropriate to select a particular method. We have chosen one of the two methods listed
on p. 196 in Lambert (1991):

3++3 3+3
(4 88) 111 =f <tn—1 + h, Vn-1 7+ hkn>,
3F3 V3 3+v3
(4.89) y=flty,_1+—h, yp,_1 + —hk] + ——hKkj ),
6 3 6
1 1
(4-. 90) Vn = Ehkrll + Ehklzl .

The two methods, any of them can be obtained from the above formulae by selecting one of the two
alternative signs, are two-stage third-order Diagonally Implicit Runge-Kutta Methods. The stability
functions of these methods are given by

185



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

(4.91) —1i6\/§v2$\é—§v+1
4.91 R(v) =
) 2+V3 , 3+V3
6 VvV T3 v+1

The stability function of the combined numerical method, the method obtained by using (18)-(20)
together with the Richardson Extrapolation, is given by

v 2
(4.92) R(v) = B[R (7)]7 _RW)

This function will be used to investigate the stability properties of the numerical method based on the
combination of the active Richardson Extrapolation and the Diagonally Implicit Runge-Kutta Method
described by (4.88)-(4.98).

4.7.6. Stability results related to the active Richardson Extrapolation

The three-stage fifth-order Fully Implicit Runge-Kutta Method defined by (4.78)-(4.81) is L-stable.
The two-stage third-order Diagonally Implicit Runge-Kutta Method described by the formulae (4.88)-
(4-90) is A-stable when the upper of the alternative signs is selected (and it will be assumed in the
remaining part of this chapter that precisely this choice is made).

The above statements are telling us that the computational process will remain stable when any of these
two methods, the FIRK Method and the DIRK Method, is used directly in the solution of the Dahlquist
test-equation (7). The same is true for the passive Richardson Extrapolation.

We did not succeed to establish that the combinations of the active Richardson Extrapolation with the
two selected above numerical methods have the same stability properties (L-stability and A-stability
respectively) as the underlying methods. This means that there is no guarantee that the two stability
functions from (17) and (22) satisfy the inequality |[R(v)| < 1 forall valuesof v =a+ Bi when
o < 0. However, the requirement for A-stability (as well as the requirement for the stronger concept
of L-stability) is only a sufficient condition for the preservation of the stability of the computational
process. It is not necessary and could successfully be replaced by a requirement that the absolute
stability region of the selected method is in some sense very large (absolute stability regions are
discussed in detail, for example, in Lambert (1991); see also the previous chapters).

We succeeded to establish that the important inequality |R(v)| < 1 is satisfied, for both of the two
selected numerical methods, in a huge square domain with vertices: (0.0, 0.0), (0.0, 10°1i),
(-10%i, 10°i) and (—10°, 0.0). The parts of the domains, in which the active Richardson

Extrapolation is absolutely stable when it is combined with the three-stage fifth-order Fully Implicit
Runge-Kutta Method and the two-stage third-order Diagonally Implicit Runge-Kutta Method, are
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given in Fig. 4.4 and Fig. 4.5. The procedure used to obtain these large parts of the absolute stability
regions of the two selected methods was nearly the same as that applied in the previous chapters, see
also Zlatev, Georgiev and Dimov (2014), and can be described in the following way. Assume that v
isequalto o+ Bi with @ < 0 and select some small positive increment & (in our runs the
value €= 0.01 was chosen). Start the computational procedure by setting the real part o of the
complex number v =a+ Bi equal to zero and calculate successively the values of the stability
functions (4.87) and (4.92)for @=0 andfor B =0, & 2¢ 3¢ ... Continue this process as
longas B becomes equal to 10> under the condition that |R(v)| stays less than one during all
these computations. Repeat successively the same procedure for a sequence of new values of a that
areequalto —g, —2¢g,— 3¢, ... Continue to decrease the parameter o until it becomes equal to
—10° (again under the requirement that |R(v)| stays always less than one). It is clear that one
should expect that all points within the squares plotted in Fig. 4.4 and Fig. 4.5, obtained by applying
the above algorithm, belong to the absolute stability regions of the studied numerical methods.

It is obvious that the applied approach is very robust, but, on the other hand, it is computationally very
expensive. One must calculate the values of each of the stability functions from (4.87) and (4.92) at
10* points (i.e. a lot of computations in complex arithmetic have to be performed!). However, this
task is not extremely difficult if modern high-speed computers are available. Moreover, the process
can be parallelized efficiently and in a very easy way, because the computations along the vertical lines

for each value of parameter a are independent of the computations related to the other values of this
parameter.

Only the parts of the stability regions located above the real axis are drawn in Fig. 4.4 and Fig. 4.5.
This is quite sufficient, because the stability regions of the numerical methods for solving systems of
ODEs are symmetric with regard to the real axis.

We must emphasize here that we do not claim that the two methods are unstable outside the domains
shown in the two figures. We succeeded to establish that the inequality |R(v)| <1 is satisfied in
these domains, but it might be satisfied, and it is most probably satisfied, also for some points outside
these domains (even for the whole part of the complex plane located to the left of the imaginary axis).
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PART OF THE STABILITY REGION
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WITH RICHARDSON EXTR

Figure 4.4
A part of the absolute stability region of the three-stage fifth-order Fully Implicit Runge-Kutta (FIRK)

Method defined by the equalities (4.78)-(4.81) is given. This method is stable in a very large square
whose side is 1.0 * 10° .

The solution depictured in Fig. 4.4 and Fig. 4.5 and based on finding very large absolute stability
regions is a compromise. We did not succeed to prove that the active Richardson Extrapolation
combined with the two selected algorithms results in new numerical methods, which are stable for all
valuesof v=a+ Bi when @ <0, ie.inthewhole C~. On the other hand, we did succeeded
to show that the stability of each of the selected two numerical methods is preserved in a huge domain.
R. W. Hamming claimed in one of the first monographs on numerical analysis, [Hamming, 1962],
that the choice of a numerical method is a question of finding some working compromise. Our solution
is a good compromise. Let us emphasize, however, that it will, of course, be good to prove in a strict
manner that the active Richardson Extrapolation applied either with the three-stage fifth-order Fully
Implicit Runge-Kutta Method or with the two-stage third-order Diagonally Implicit Runge-Kutta
Method results at least in an A-stable numerical algorithm. Nevertheless, from a practical point of view,
the solution sketched above is as good as a proof. It gives the user a guarantee that the computational
process will remain stable if the Dahlquist test-example is solved by applying any of the two particular
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methods discussed above with reasonably large time-stepsizes. Moreover, one should expect that the

computations remain stable also when other systems of ODEs are handled. The last statement will be

verified in the next section, where an atmospheric chemical scheme from a well-known large-scale

environmental model, fully described and tested in Alexandrov et al. (2004), Bastrup-Birk et al.
(1997), Zlatev (1995) and Zlatev and Dimov (2006), will be used in some numerical experiments.

PART OF THE STABILITY REGION
1*10°

9*10°*

8*10°*

7*10°*

[/s]
x
6*10*
<
5*10° »
[and
4*10° <
=
3*10° &
<
2*10° s

1*10*

0*10°
-1*10° -8*10* -6*10* -4*10* -2*10* 0*10°
R E AL A X I 8§
TWO-STAGE THIRD-ORDER RK METHOD
WITH RICHARDSON EXTRAPOLATION
Figure 4.5

A part of the absolute stability region of the two-stage third-order Diagonally Implicit Runge-Kutta
(DIRK) Method defined by the equalities (4.88)-(4.90) is given. This method is also stable within a
very large square domain, whose side is 1.0 * 105 .

4.7.7. Numerical experiments

Three numerical examples will be presented in this section. The first two of the selected examples are
linear systems of ODEs with constant coefficients. This means that the Dahlquist theory presented in
Dahlquist (1963) is valid for these two problems and the calculations must remain stable when

parameter v is inside the stability regions shown in Fig. 4.4 and Fig. 4.5. The third example is the
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extremely badly scaled and very stiff non-linear system of ODEs arising in atmospheric chemistry,
which was discussed in the previous sections of this chapter. The stability of the computational process
is not guaranteed for the third example when the active implementation of the Richardson Extrapolation
together with the two selected implicit Runge-Kutta methods is used (and the stability of the
calculations will not be guaranteed even if the active implementation of the Richardson Extrapolation
is A-stable or L-stable). The results presented in this section will show clearly that the computations
remain nevertheless stable even when the time-stepsizes are very large.

Numerical example 1: Jacobian matrix with a large negative eigenvalue

This example was introduced in § 2.5.1 and it is a system of three equations with constant coefficients.
The eigenvalues of its Jacobian matrix are py = —-750, p, =-0.3+8i, p3=-0.3-8i
and it is clearly seen that the real eigenvalue is the dominant one. The system was integrated over the
interval t € [0,13.1072] in § 2.5.1 and the largest time-stepsize used there was h = 0.00512 .
We shall treat the same system over a much larger time-interval, t € [0,2684.3545], and will
show that the computational process remains stable even if the time-stepsize becomes very large (time-
stepsizesupto h =20.97152 will be used in this section).

The computations were organized as follow. A sequence of 22 runs was handled. The time-stepsize
used during the first run was h = 20.97152 . The time-stepsize was reduced by a factor of two
after every run (which means the number of steps was increased by a factor of two). The last stepsize
was h = 0.00001. The error made duringstep j ofrun k, k=1, 2, 3,... ,22, isestimated

by

( | Vij — Yi(tj)|

(4.94) ERROR™ = max
) max(|yi(t]-)| , 1.0)

) , j=2K12x2k1 128 x 2K 1,
i=1,2,3

where y;; and y;(t;) are components of the calculated approximation and the exact solution
respectively. This means that we estimate the error at the same set of grid-points in each of the 22
runs. More precisely, the error is estimated at every time-step during the first run, at every second time-
step during the second run, at every fourth time-step during the third run and we continue in the same
manner after the third run. Thus, the number of grid-points, at which the error is estimated, is 128
for any of the 22 runs.

The global errormadeatrun k, k=1, 2, 3,... ,22 isestimated by:

. = max : .
(4.95) ERROR® ( ERROR(R))
j=2k-12x2k-1 " 128x2k-1 )

The obtained results are given in Table 4.6 for the three-stage fifth-order Fully Implicit Runge-Kutta
Method and its active combination with the Richardson Extrapolation.
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Job Number of | Stepsize Direct FIRK Richardson + FIRK
number steps used Accuracy Rate Accuracy Rate
1 128 | 20.97152 3.005E-02 2.216E-03
2 256 | 10.48576 | 3.004E-03 1.00 | 2.945E-03 0.72
3 512 5.24288 | 2.930E-03 1.03 | 2.959E-03 1.00
4 1024 2.62144 | 2.969E-03 0.99 | 2.959E-03 1.00
5 2048 1.31072 | 2.969E-03 1.00 | 2.959E-03 1.00
6 4096 0.65536 | 2.969E-03 1.00 | 2.216E-03 1.34
7 8192 0.32768 | 2.637E-03 1.13 | 8.043E-05 27.55
8 16384 0.16384 | 1.957E-04 13.47 1.125E-06 71.49
9 32768 0.08192 | 7.107E-06 27.54 1.544E-08 72.86
10 65536 0.04096 | 2.325E-07 | 30.57 | 2.233E-10 | 69.14
11 131072 0.02048 | 3.398E-09 | 68.42 | 3.349E-12 | 66.68
12 262144 0.01024 | 2.330E-10 | 14.58 | 5.125E-14 | 65.34
13 524288 0.00512 | 7.310E-12 31.87 7.926E-16 64.66
14 1048576 0.00256 | 2.288E-13 | 31.95 | 1.232E-17 | 64.33
15 2097152 0.00128 | 7.158E-15 | 31.96 | 1.920E-19 | 64.17
16 4194304 0.00064 | 2.238E-16 | 31.98 | 2.996E-21 | 64.09
17 8388608 0.00032 | 6.995E-18 | 31.99 | 4.678E-23 | 64.04
18 16777216 0.00016 | 2.186E-19 | 32.00 | 7.308E-25 | 64.01
19 33554432 0.00008 | 6.832E-21 | 32.00 | 1.142E-26 | 64.00
20 67108864 0.00004 | 2.135E-22 | 32.00 | 1.786E-28 | 63.94
21 134217728 0.00002 | 6.672E-24 | 32.00 | 2.787E-30 | 64.08
22 268439456 0.00001 | 2.085E-25 | 32.00 | 4.376E-32 | 62.32
Table 4.6

Numerical results obtained in 22 runs when the example with a large negative
eigenvalue of the Jacobian matrix is treated with: (i) the direct implementation and (ii)
the Active Richardson Extrapolation of the L-stable three-stage fifth-order Fully Implicit
Runge-Kutta (FIRK) Method. The errors obtained in the different runs are given in the
columns under “Accuracy”. The ratios of two successive errors are given in the columns
under “Rate” (the perfect rates being 32  for the direct method and 64 for the
Richardson Extrapolation).

The corresponding results for the two-stage third-order Runge-Kutta Method are presented in Table
4.7. It should be mentioned here that quadruple precision was used in the computations. The
following conclusions can be drawn from the results given in Table 4.6 and Table 4.7:
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Job Number of | Stepsize Direct FIRK Richardson + FIRK
number steps used Accuracy | Rate Accuracy Rate
1 128 | 20.97152 1.611E-00 1.524E-00
2 256 | 10.48576 1.132E-00 1.42 | 9.076E-01 1.68
3 512 5.24288 | 4.909E-01 231 | 2.112E-01 4.30
4 1024 2.62144 | 7.218E-02 6.80 | 1.957E-01 1.08
5 2048 1.31072 | 2.133E-02 3.38 | 5.357E-02 3.65
6 4096 0.65536 | 2.971E-03 7.18 | 2.987E-02 1.79
7 8192 0.32768 | 2.970E-03 1.00 | 6.710E-03 4.45
8 16384 0.16384 | 2.969E-03 1.00 | 2.399E-03 2.80
9 32768 0.08192 | 3.092E-03 0.96 | 2.520E-04 9.52
10 65536 0.04096 | 9.985E-04 3.10 | 1.969E-05 12.80
11 131072 0.02048 | 1.637E-04 6.10 | 2.038E-06 9.66
12 262144 0.01024 | 2.218E-05 7.38 | 1.106E-07 13.80
13 524288 0.00512 | 2.852E-06 7.78 | 8.017E-09 14.92
14 1048576 0.00256 | 3.606E-07 7.91 | 5.048E-10 15.88
15 2097152 0.00128 | 4.533E-08 7.95| 3.193E-11 15.81
16 4194304 0.00064 | 5.682E-09 7.98 | 2.007E-12 16.03
17 8388608 0.00032 | 7.111E-10 7.99 | 1.252E-13 16.03
18 16777216 0.00016 | 8.895E-11 7.99 | 7.815E-15 16.02
19 33554432 0.00008 | 1.112E-11 8.00 | 4.881E-16 16.01
20 67108864 0.00004 | 1.390E-12 8.00 | 3.050E-17 16.00
21 134217728 0.00002 | 1.738E-13 8.00 | 1.906E-18 16.00
22 268439456 0.00001 | 2.173E-14 8.00 | 1.191E-19 16.00
Table 4.7

Numerical results obtained in 22  runs when the example with large complex
eigenvalues is treated with: (i) the direct implementation and (ii) the Active Richardson
Extrapolation of the A-stable version of the two-stage third-order Diagonally Implicit
Runge-Kutta (DIRK) Method. The errors obtained in the different runs are given in the
columns under “Accuracy”. The ratios of two successive errors are given in the columns
under “Rate” (the perfect rates being 8 for the direct method and 16 for the
Richardson Extrapolation).

(a) The rates of convergence are close to the expected theoretical rates (assuming here that the
stepsize becomes sufficiently small) see the results given in Table 4.6 and Table 4.7.

(b) The rates of convergence of the three-stage fifth-order Fully Implicit Method when it is
applied directly are slightly closer to the expected rates than the rates of convergence for
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the combination of this method with the Richardson Extrapolation, but in both cases the
results are very good (see Table 4.6).

(c) The rates of convergence of the two-stage third-order Diagonally Implicit Runge-Kutta
method and its combination with the Richardson Extrapolation are closer to the expected
values than those obtained with the three-stage fifth-order Fully Implicit Method, but in the
latter case the results are much more accurate (compare the results given in Table 4.6 with
those given in Table 4.7).

(d) The results obtained by the Richardson Extrapolation are nearly always more accurate, and
very often much more accurate, than those obtained by the underlying methods (compare
again the two tables).

Numerical example 2: Jacobian matrix with large complex eigenvalues

This example was introduced in § 2.5.2 and it is also a system of three equations with constant
coefficients. The eigenvalues of the Jacobian matrix of the linear system of ODEs from § 2.5.2 are
n =-=750+750i, p, =-750-750i, p3=-0.3 and itis clearly seen that the two
complex eigenvalue are much larger than the real eigenvalue (in absolute value). This system was also
integrated in § 2.5.2 over the time-interval t € [0,13.1072] and the largest time-stepsize used
there was h = 0.00512 . We shall treat the same system over a much larger time-interval, t €
[0,2684.3545], and will show that the computational process remains stable even if the time-
stepsize becomes very large (time-stepsizesupto h = 20.97152 will be used in this section).

The computations were organized precisely in the same way as in the previous example. A sequence
of 22 runs was handled also in this case. The time-stepsize that has been used during the first run
was h =20.97152 . The time-stepsize was reduced by a factor of two after every run (which
means the number of steps was increased by a factor of two). The last stepsize was h = 0.00001 .
The error made duringstep j ofrun k, k=1, 2, 3,... ,22, isestimated by using formulae
(4.94) and (4.95).

Numerical results are shown in Table 4.8 for the three-stage fifth-order Fully Implicit Runge-Kutta
Method and in Table 4.9 for the two-stage third-order Diagonally Implicit Runge-Kutta Method.
Similar conclusions (as those drawn in the previous sub-section) can be drawn from the results given
in Table 4.8 and Table 4.9. It should additionally be noted that the accuracy obtained when the second
example was run is greater than that obtained in the runs with the first example (compare the results
shown in Table 4.6 and Table 4.7 with the results presented in this sub-section). This is not very
surprising, because the oscillations in the solution of the second example are considerably smaller than
those in the first one, see the formulae giving the exact solution of the two examples in § 2.5.1 and
§2.5.2.
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Job Number of | Stepsize Direct FIRK Richardson + FIRK
number steps used Accuracy Rate | Accuracy Rate
1 128 | 20.97152 | 7.062E-01 7.863E-02
2 256 | 10.48576 | 5.410E-02 | 13.05 | 3.871E-02 2.06
3 512 | 5.24288 | 3.887E-02 1.39 | 1.082E-02 3.58
4 1024 | 2.62144 | 9.268E-03 4.19 | 1.032E-03 10.48
5 2048 | 1.31072 | 7.098E-04 | 13.06 | 1.511E-05 68.30
6 4096 | 0.65536 | 7.544E-06 | 94.09 | 3.287E-08 459.69
7 8192 | 0.32768 | 2.039E-07 | 37.00 | 1.559E-10 21.08
8 16384 | 0.16384 | 6.221E-09 | 32.78 | 2.664E-13 58.52
9 32768 | 0.08192 | 1.942E-10 | 32.03 | 1.205E-14 22.11
10 65536 | 0.04096 | 6.079E-12 | 31.95 | 3.146E-16 38.30
11 131072 | 0.02048 | 1.903E-13 | 31.94 | 5.906E-18 53.27
12 262144 | 0.01024 | 5.952E-15 | 31.97 | 1.000E-19 59.06
13 524288 | 0.00512 | 1.861E-16 | 31.98 | 1.624E-21 61.58
14 1048576 | 0.00256 | 5.817E-18 | 31.99 | 2.585E-23 62.82
15 2097152 | 0.00128 | 1.818E-19 | 31.99 | 4.075E-25 63.44
16 4194304 | 0.00064 | 5.682E-21 | 32.00 | 6.397E-27 63.70
17 8388608 | 0.00032 | 1.776E-22 | 31.99 | 1.002E-28 63.84
18 16777216 | 0.00016 | 5.549E-24 | 32.01 | 1.567E-30 63.94
19 33554432 | 0.00008 | 1.734E-25 | 32.01 | 2.449E-32 63.99
20 67108864 | 0.00004 | 5.419E-27 | 32.00 | 1.851E-34 132.31
21 134217728 | 0.00002 | 1.693E-28 | 32.01 | 4.893E-34 0.37
22 268439456 | 0.00001 | 5.292E-30 | 31.99 | 3.824E-35 12.80
Table 4.8

Numerical results obtained in

22

runs when the example with large complex
eigenvalues of the Jacobian matrix is treated with: (i) the direct implementation and (ii)
the Active Richardson Extrapolation of the L-stable three-stage fifth-order Fully Implicit
Runge-Kutta (FIRK) Method. The errors obtained in the different runs are given in the
columns under “Accuracy”. The ratios of two successive errors are given in the columns
under “Rate” (the perfect rates being 32
Richardson Extrapolation).

Numerical Example 3: Atmospheric Chemical Scheme

An important module, taken from the Unified Danish Eulerian Model (UNI-DEM), see Alexandrov
et al. (2004), Bastrup-Birk et al. (1997), Zlatev (1995) and Zlatev and Dimov (2006), was applied,
as mentioned above, in several tests with the two selected numerical methods, the three-stage fifth-
order Fully Implicit Runge-Kutta (FIRK) Method defined by (4.78)-(4.81) and the two-stage third-
order Diagonally Implicit Runge-Kutta Method (DIRK) defined by (4-88)-(4.90) as well as with their
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combinations of the Richardson Extrapolation. We shall use in this sub-section both the active
implementation and the passive implementation of the Richardson Extrapolation.

Job Number of | Stepsize Direct FIRK Richardson + FIRK
number steps used Accuracy Rate | Accuracy Rate
1 128 | 20.97152 | 3.089E-00 1.181E-00
2 256 | 10.48576 | 1.199E-00 2.58 | 8.026E-01 1.47
3 512 | 5.24288 | 4.342E-01 2.76 | 3.575E-01 2.25
4 1024 | 2.62144 | 1.104E-01 3.93 | 9.895E-02 3.61
5 2048 | 1.31072 | 1.208E-02 9.14 | 5.669E-03 17.45
6 4096 | 0.65536 | 1.510E-04 | 80.00 | 2.632E-05 215.39
7 8192 | 0.32768 | 8.025E-06 | 18.82 | 3.891E-07 67.64
8 16384 | 0.16384 | 6.627E-07 | 12.11 | 2.191E-08 17.76
9 32768 | 0.08192 | 6.367E-08 | 10.41 | 1.921E-09 11.42
10 65536 | 0.04096 | 6.802E-09 9.36 | 8.145E-11 23.59
11 131072 | 0.02048 | 7.790E-10 8.73 | 5.061E-12 16.09
12 262144 | 0.01024 | 9.295E-11 8.38 | 3.961E-13 12.78
13 524288 | 0.00512 | 1.134E-11 8.20 | 2.772E-14 14.29
14 1048576 | 0.00256 | 1.401E-12 8.09 | 1.596E-15 17.37
15 2097152 | 0.00128 | 1.740E-13 8.05 | 8.185E-17 19.50
16 4194304 | 0.00064 | 2.168E-14 8.03 | 4.803E-18 17.04
17 8388608 | 0.00032 | 2.706E-15 8.01 | 3.001E-19 16.00
18 16777216 | 0.00016 | 3.380E-16 8.01 | 1.876E-20 16.00
19 33554432 | 0.00008 | 4.222E-17 8.01 | 1.172E-21 16.01
20 67108864 | 0.00004 | 5.278E-18 8.00 | 7.327E-23 16.00
21 134217728 | 0.00002 | 6.597E-19 8.00 | 4.579E-24 16.00
22 268439456 | 0.00001 | 8.246E-20 8.00 | 2.862E-25 16.00

Table 4.9

Numerical results obtained in 22  runs when the example with a large complex
eigenvalues is treated with: (i) the direct implementation and (ii) the Active Richardson
Extrapolation of the A-stable version of the two-stage third-order Diagonally Implicit
Runge-Kutta (DIRK) Method. The errors obtained in the different runs are given in the
columns under “Accuracy”. The ratios of two successive errors are given in the columns
under “Rate” (the perfect rates being 8  for the direct method and 16  for the
Richardson Extrapolation).

The atmospheric chemical scheme was discussed in the previous sections. It is worthwhile to add here
only the following facts. The air pollution model, UNI-DEM, in which this scheme is implemented,
has been successfully applied in many comprehensive scientific investigations related to potentially
harmful pollution levels in
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(a) the Balkan Peninsula (Zlatev, Georgiev and Dimov, 2013b),

(b) Bulgaria (Zlatev, 1995, Zlatev and Dimov, 2006, Zlatev, Dimov and
Georgiev (2016), Zlatev and Syrakov, 2004a, 2004b),

(c) Denmark (Zlatev, 1995, Zlatev and Dimov, 2006, Zlatev and Moseholm,
2008),

(d) England (Abdalmogith, Harrison and Zlatev, 2004),

(e) Europe (Ambelas Skoth et al., 2000, Bastrup-Birk et al., 1997, Csomos et
al., 2006, Geernaert and Zlatev, 2004, Zlatev, 1995, 2010, Zlatev and
Dimov, 2006),

() Hungary (Havasi and Zlatev, 2002, Zlatev, Havasi and Faragé, 2011])
and
() the North Sea (Harrison, Zlatev and Ottley, 1994).

Most of the above studies, and especially Zlatev, (2010), are related to the important topic of the
influence of the future climatic changes on the high pollution levels in different parts of Europe. The
model was furthermore used in a long sequence of comprehensive inter-comparisons of several well-
known European large-scale models (Hass et al., 2004, Roemer et al., 2004).

The computations were organized as in Section 4.6, where more details about the atmospheric chemical
scheme are given. Assume that Kk runs are to be carried out. The errors calculated during step j of
run k, k=1, 2,.. , k are estimated by using the formula (4.60). The number of grid-points, at
which the error is estimated, is 168 for any of the k  runs. Only the values of the reference
solution at the grid-points of the coarse grid (which is used in the first run) have been stored and applied
in the evaluation of the error (it is, of course, also possible to store all values of the reference solution,
but such an action will increase tremendously the storage requirements). It is much more important and
must be emphasized here that errors of the calculated approximations were always, in all nineteen runs,
computed at the same 168 grid points. The global error made atrun k, k=1, 2,.. , k is
estimated by using formula (4.61). All computations in this section were performed as in the previous
sections by selecting quadruple precision (i.e. by using REAL*16 declarations for the real numbers
and, thus, about 32-digit arithmetic) in an attempt to eliminate completely the influence of the rounding
errors in the first 16 significant digits of the computed approximate solutions. The calculations were
carried out until the rounding errors start to interfere with the truncation errors. For the three-stage five-
order FIRK method defined by (4.78)-(4.81) this happened for k = 14, while for the DIRK method
the calculations could be performed without some very visible effect of the rounding errors until k
becomes 17 . It should be pointed out, however, that the convergence rate is deteriorated when the
number of correct digits becomes about sixteen. Now, after the explanation of the organization of the
computations, we are ready to present some of the results from the numerical experiments, which were
carried out in order to demonstrate the advantages of the application of Richardson Extrapolation.
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Results obtained by using the three-stage fifth-order Fully Implicit Runge-Kutta Method are presented
in Table 4.10. Several conclusions can be drawn from the results presented in Table 4.10:

(a) the direct method behaves in the beginning as a method of order five, but the rate of
convergence becomes very slow after the run in which the accuracy becomes equal to
2.5x10716

(b) the two implementations of the Richardson Extrapolation are behaving as methods of
order six in the beginning, but also here the rate of convergence is very slow when the
accuracy becomes high, approximately equal to 1.0 x 10715,

(c) during the last runs, the interference of the rounding errors becomes clear (the accuracy
is no more increasing when the time-stepsize is reduced)

Direct Richardson Extrapolation
Job Number of | Implementation Active Passive
Number steps Accuracy Rate Accuracy Rate Accuracy Rate
1 168 | 1.041E-06 3.986E-08 3.985E-08
2 336 | 7.116E-08 | 14.64 | 5.989E-10 | 66.55 | 1.939E-09 | 20.56
3 672 | 3.451E-09 | 20.62 | 2.086E-11 | 28.71 | 3.091E-10 | 62.83
4 1344 | 9.673E-11 | 35.68 | 4.639E-12 | 44.97 | 4.649E-12 | 66.38
5 2688 | 7.527E-12 | 12.85 | 9.112E-14 | 50.91 | 9.117E-14 | 50.99
6 5376 | 2.804E-13 | 26.84 | 1.357E-15 | 67.15 | 1.357E-15 | 67.18
7 10752 | 8.515E-15 | 32.93 | 2.884E-16 471 | 2.889E-16 4.70
8 21504 | 2.508E-16 | 33.95 | 3.821E-17 7.55 | 3.871E-17 7.64
9 43008 | 5.413E-16 3.48 | 1.783E-17 2.14 | 1.796E-17 2,11
10 86016 | 1.114E-17 4.86 | 6.682E-18 2.69 | 6.682E-18 2.69
11 172032 | 6.599E-18 1.69 | 3.970E-18 1.68 | 3.970E-18 1.68
12 344064 | 2.382E-18 3.11 | 9.359E-19 4.24 | 9.359E-19 4.24
13 688128 | 1.179E-18 2.02 | 4.958E-19 1.89 | 4.958E-19 1.89
14 1376256 | 4.435E-19 2.66 | 1.596E-19 3.11 | 1.596E-19 3.11

Table 4.10

Numerical results obtained for ozone in  k = 14 runs with three algorithms: (i) the
direct implementation, (ii) the Active Richardson Extrapolation and (iii) the Passive
Richardson Extrapolation of the L-stable three-stage fifth-order Fully Implicit Runge-
Kutta (FIRK) Method defined by (8)-(11). The atmospheric chemical scheme with 56
species is handled. The errors obtained in the different runs are given in the columns
under “Accuracy”. The ratios of two successive errors are given in the columns under
“Rate” (the perfect rates being 32 for the direct method and 64 for the Richardson
Extrapolation).
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and

(a) the accuracy is rather high from the very beginning and the situation where the
rounding errors start to interfere with the truncation errors occurs quicker than for the
two-stage third-order DIRK Method.

Results, obtained when the simpler two-stage third-order Diagonally Implicit Runge-Kutta Method is
used, are given in Table 4.11.

Direct Richardson Extrapolation
Job Number Implementation Active Passive

AT R Accuracy | Rate | Accuracy | Rate | Accuracy | Rate

1 168 | 1.581E-05 8.047E-06 8.047E-06
2 336 | 5.555E-06 | 2.85| 1.390E-06 | 5.79 | 3.597E-07 | 22.37
3 672 | 7.276E-07 | 7.63 | 5.173E-08 | 26.87 | 7.674E-08 | 4.69
4 1344 | 1.528E-07 | 4.76 | 9.852E-09 | 5.25| 1.126E-08 | 6.82
5 2688 | 2.895E-08 | 5.28 | 1.353E-09 | 7.28 | 1.423E-09| 7.91
6 5376 | 4.864E-09 | 5.95| 1.419E-10 | 9.53 | 1.441E-10| 9.87
7 10752 | 7.341E-10 | 6.63 | 1.214E-11 | 11.69 | 1.217E-11| 11.85
8 21504 | 1.024E-10| 7.17 | 9.007E-13 | 13.48 | 8.977E-13 | 13.55
9 43008 | 1.359E-11 | 7.54 | 6.070E-14 | 14.84 | 6.035E-14 | 14.87
10 86016 | 1.751E-12 | 7.76 | 3.847E-15 | 15.78 | 3.812E-15 | 15.83
11 172032 | 2.222E-13 | 7.88 | 2.268E-16 | 16.96 | 2.263E-16 | 16.85
12 344064 | 2.798E-14 | 7.94 | 1.478E-17 | 15.34 | 1.473E-17 | 15.37
13 688128 | 3.510E-15| 7.97 | 6.133E-19 | 24.11 | 6.116E-19 | 24.08
14 | 1376256 | 4.393E-16 | 7.99 | 6.048E-20 | 10.14 | 6.051E-20 | 10.11
15| 2752512 | 5.493E-17 | 8.00 | 5.652E-20 | 1.01 | 5.652E-20| 1.01
16 | 5505024 | 6.844E-18 | 8.03 | 5.618E-20 | 1.01 | 5.618E-20 | 1.01
17 | 11010048 | 8.321E-19 | 8.23 | 5.618E-20 | 1.00 | 5.618E-20| 1.00

Table 4.11

Numerical results obtained for ozone in k= 17  runs with three algorithms: (i) the
direct implementation, (ii) the Active Richardson Extrapolation and (iii) the Passive
Richardson Extrapolation of the A-stable version of the Diagonally Implicit Runge-
Kutta (DIRK) Method defined by (18)-(20). The atmospheric chemical scheme with 56
species is handled. The errors obtained in the different runs are given in the columns
under “Accuracy”. The ratios of two successive errors are given in the columns under
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“Rate” (the perfect rates being 8  for the direct method and 16 for the Richardson
Extrapolation).

It is clearly seen that

(a) for sufficiently small values of the time-stepsize the direct implementation of the
algorithm (18)-(20) behaves as a third-order numerical method (i.e. reducing the
stepsize by a factor of three leads to an improvement of the accuracy by a factor
approximately equal to eight),

(b) the two implementations of the Richardson Extrapolation are giving approximately the
same degree of accuracy, which is nearly always higher that the corresponding
accuracy of the direct method,

(c) if the time-stepsize becomes rather small, then the two implementations of the
Richardson Extrapolation are gradually beginning to behave as methods of order four
(i.e. reduction of the time-stepsize by a factor of two leads to an increase of the
accuracy by a factor greater than eight, but in general less than sixteen)
and
(d) during the last runs with the Richardson Extrapolation, the interference of the rounding

errors becomes very clear (the accuracy is no more increasing when the time-stepsize
IS reduced).

4.8. Some General Conclusions related to Chapter 4

Implicit Runge Kutta Methods were discussed in this chapter. We started with full description of the
use of Richardson Extrapolation together with numerical schemes from the relatively simple class of
the 8-methods. There are several reasons to study this case in detail:

(a) these methods are very popular and are implemented in many models treating different
scientific and engineering problems,

(b) theoretical results can easily be achieved,

(c) itis clear, in principle at least, how these results can be extended for more complicated
numerical methods,

(d) numerical experiments, which confirm the conclusions derived theoretically, can easily
be organized and run.
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It has been shown that the use of some methods can be worthwhile even if important properties of the
numerical methods, such as A-stability and L- stability, cannot be established. These properties are
only sufficient conditions for achieving stable computations. Stability of the computational process can
also be achieved if the absolute stability properties of the numerical method under consideration are
sufficiently large.

Also in this chapter we were mainly interested in the application of the Richardson Extrapolation, this
time in relation to implicit numerical methods. The preservation of the stability of the computational
process was our major aim as in the previous chapters. Several results obtained in this direction were
presented and discussed. It is necessary to emphasize here the fact that all results related to the
preservation of the stability in the numerical solution of ODEs are formulated and proved only for
very special problems (as, for example, the scalar and linear test-problem proposed by Dahlquist,
1963, and some obvious generalization of this very special problem). One expects that if the numerical
method under consideration preserves the stability during the computations related to these very special
test-problems, then the calculation of the solution of much more complex systems of ODEs will also
remain stable. It is, of course, worthwhile to verify the fact that such an expectation is fulfilled. A rather
difficult from a computational point of view problem arising in atmospheric chemistry was chosen in
order to illustrate the ability of the numerical method to produce stable numerical results also when
non-linear, badly scaled and extremely ill-conditioned stiff systems of ODEs are handled.

4.9. Topics for further research

Several questions arise when the results presented in this chapter are carefully studied. It will be
worthwhile to answer these questions, which are formulated as topics for future research below.

(A) It was shown that the two particular numerical methods (the combinations
of the Richardson Extrapolation with the three-stage fifth-order Fully
Implicit Runge-Kutta Method and with the two-stage third-order
Diagonally Implicit Runge-Kutta Method), which were introduced in
Section 4.7, have very large absolute stability regions and, therefore, could
be successfully used in the solution of stiff systems of ODEs. Will it be
possible to prove that these methods are at least A-stable (probably, by
using the approach applied when the stability of the combinations of the
Richardson Extrapolation with numerical algorithms from the class of the
8-methods was studied in Section 4.4)?

(B) Will it be possible to establish that also some other Implicit Runge-Kutta
Methods (preferably methods of higher orders of accuracy) have also very
large absolute stability regions when these are combined with the
Richardson Extrapolation?
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Chapter 5

Richardson Extrapolation for splitting technigues

The application of splitting procedures in the treatment of many large scientific and engineering
problems is an excellent tool (and, very often, the only tool) by which huge computational tasks can
be made tractable on the available computers by dividing them to a sequence of tasks, which are both
smaller and simpler (see, for example, Zlatev and Dimov, 2006). The use of the Richardson
Extrapolation in connection with two well-known and commonly used splitting procedures will be
discussed in this chapter. We shall again be mainly interested in the preservation of the stability
properties when the splitting procedures are combined with the Richardson Extrapolation.

Only rather simple examples will be used in Chapter 5 in order to make the understanding of the main
ideas easier. We do believe that when these ideas are well understood, then it will be possible to apply
them in different advanced and complex scientific models. The 6-methods with 0.5<6<1.0
will be used as underlying numerical methods when the simple sequential splitting procedure is used.
Runge-Kutta methods will be used together with the Marchuk-Strang splitting procedure.

The simplest splitting technique, the so-called sequential splitting, will be introduced in the first
section.

An expression for the stability function of the sequential splitting procedure will be derived in the
second section.

Several results related to the stability properties will be proved in the third section.
Numerical results will be presented in the fourth section.

The Marchuk-Strang splitting procedure will be studied in the fifth section. Stability problems and
numerical results will also be presented there.

Several concluding remarks are given in Section 5.6.

Some suggestions for research investigations will be formulated in the last section, Section 5.7.

5.1. Richardson Extrapolation for sequential splitting

Rewrite the initial value problem given in (1.1) in the following form:
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d
(5.1) d-{:fl(t,y)+f2(t,y), t€fab], a<bh yeERS, f,e RS, LERS, s >1,

where fi(ty) +f,(ty) =f(t,y) and y(a) =n being a given initial value. It is also assumed,
only in an attempt to make the presentation of the results simpler, that the numerical solution of (5.1)
is to be calculated on an equidistant grid (non-equidistant grids can also be introduced and used):

(52) t0=a, tn:tn_1+h:t0+nh, n:1,2,...,N, tN:b

The simplest splitting procedure, the sequential splitting, can be introduced in the following way.
Consider two systems of ODEs defined by

dy!1!
(5.3) zt =f,(ty), telab], a<b, ylleRs, fieRs, s=1,

dy!?!

(5.4) T

=f,(ty?), te[ab], a<b, yP eR’, f,eR, s=1,

It is normally assumed here that it is easier (or even much easier) to solve numerically any of the two
systems (5.3) and (5.4) than to solve the original system (5.1).

Assume that approximations of the exact solution y(t) of (5.1) are calculated, step by step, at the
grid-points of the equidistant grid (5.2). Assume also that some approximation y,_1 = y(t,—1) is
available and that it is necessary to calculate the next approximation y, = y(t,) . This can be done
by carrying out three successive steps:

(a) Find an approximate solution y,[f] of system (5.2) by using the selected numerical
method and y,_; as initial value.

(b) Find an approximate solution y,[lz] of system (5.3) by using the selected numerical

method and y,[ll] as initial value.
(c) Set y, = ,[12] and consider it as an acceptable approximation to the solution y(t,)
of (5.1).

The algorithm described by the three consecutive steps (a), (b) and (c) defines fully the calculations at
an arbitrary step. It is only necessary to explain how to start the computations, i.e. how to calculate the
first approximation y; =~ y(ty), butthisis not causing problems, because the initial value y(ty) =
y(a) =n =y, isavailable.
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We are interested in the first part of this chapter to study the combination of the Richardson
Extrapolation with the sequential splitting procedure. It will be necessary, as in the previous chapters,
to calculate some intermediate results, when the Richardson Extrapolation is used together with the

sequential splitting procedure. More precisely, we shall need the vectors zr(,l) : zl(lz) : wl(ll) and

w,(lz). For the sake of simplicity we shall assume, as in the first part of Chapter 4, that the calculations

are carried out by using the @-method with @ € [0.5,1.0] . Itisappropriate to consider additionally

two approximations wl(ll_)o_5 and wr(,z_)o_5 ,  which are calculated at the point  t,_g5 = t, —

0.5h, where h s, as always in this book, the time-stepsize.

Under these assumptions, the calculations at time-step n that are related to the Richardson
Extrapolation when it is combined with the sequential splitting procedure and with the 8-method can
be carried out in the following three consecutive steps.

Step 1: Use a large time-stepsize h to calculate an approximation z, of the exact value y(t,) of
the solution of (5.1) by selecting some of the ©-methods and by starting with the
approximation y,_; of y(t,_;) obtained at the previous time-step:

(5.5) 20 =y + h[(1 = ) (ta_yg,Yar) + 0F (1, 2")]
(5.6) 27 =20 +h|[(1 - 0)f;(ty_1,2") + 0f; (1, 27)]

(5.7) z, ¥ z,(IZ) .

Step 2: Perform two small time-steps by using the same 0-method with a time-stepsize 0.5h and
by starting with the approximation y,_; of y(t,_;) obtained at the previous time-step to
calculate a second approximation w,, of the exact value y(t,) of the solution of (5.1):

(5 8) WI(11—)0.5 =¥n-1t 0.5h [(1 - e)fl(tn—l'YD—l) + efl(tn_o_s,wl(ll_)o_s)] ,
(5.9) w5 =ws+0.50[(1— ) (ty_g, Wy 5) + 0f(ta o5, W5 )]

n-0.5

(5.10)  w® = w5 +0.5h [(1 - 0)fy(ty_o5,wys) + BF; (tn, W)
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(5.11)  w® =w" +0.5h[(1 - 0)f,(ty_o5 W) + 0f (1, wP)]

(5.12) w, & w®?.

Step 3: Assume that 0.5 <0 < 1.0 and apply the formula y, = (2Pw, —z,)/(2P —-1) for
computing the Richardson Extrapolation with p = 1 to obtain an improved approximation

Yn Of y(ty):

(5.13) vy, =2w, —zZ,.

Note that if 0.5 < 0 < 1.0 then the combination consisting of the 8-method and the sequential
splitting procedure is a first-order numerical method and, as stated in Chapter 1, the formula y, =
(2Pw, —z,)/(2P — 1) for computing the Richardson Extrapolation should be used with p=1.
The order of the Trapezoidal Rule, the 8-method with @ = 0.5, is two, but the combination of the
Trapezoidal Rule and the sequential splitting is again a first-order numerical method. It is not very
clear what to do in this situation, but the decision is not very important because the new method will
anyway be unstable in this situation. One can formally apply the Richardson Extrapolation scheme
with p =2 when the Trapezoidal Rule is directly used.

The combination consisting of the Richardson Extrapolation, the sequential splitting procedure and the
0-method will be a second-order numerical method and, therefore, it should be expected that the
accuracy will be improved when the stability is preserved and the time-stepsize is sufficiently small.

5.2. Derivation of the stability function for the sequential splitting procedure

It is again (as in the previous chapters) appropriate to consider the simple scalar and linear test-problem
proposed by Dahlquist (1963), instead of the non-linear systems of ODEs (5.3) and (5.4), when the
stability properties of the combined numerical method (consisting of the Richardson Extrapolation, the
Sequential Splitting Procedure and the 8-method) is studied:

dy!?! B

(5.14) d = Ayl
' ’ dt

)Ly[Z]'
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te 0,0, yMec, yPElec, a=a+BiecC, a<0, y0) =nq.
The exact solution of each of the two systems in (2.14) is given by
(5.15) ylH®) =y ) = ne*, t e [0,0].

The three steps defined in the previous section can be rewritten in the following way under the
assumption that the equalities (5.5) - (5.7) and (5.8) — (5.12) are used to calculate the approximations
z, and w, of the exact values y!U(t) and y!2I(t) from (5.15).

Step 1A: Use a large time-stepsize h to calculate an approximation z, of the exact value y(t,) of

the solution of (5.14) by using the 6-method 0.5 <0 < 1.0  and by starting with the
approximation y,_q of y(t,_4) obtained at the previous time-step:

(5.16) z! =y,_, +h(1 - 0)Ay,_; + hoazV

z = Yn-1,
n 1—hoA

5.17) z® =zY + h(1 - 0)2z" + hoaz?

n 1—hoA n

=

@ [1+h@-en]
z = Vn-1
n 1-hea

» 1+h(1-0)A]"
(5 18) Zn = ZI(IZ) = [ 1 _ hﬁl l Yn—1 .

Step 2A: Perform two small time-steps by using the same ©-method with a time-stepsize 0.5h and
by starting with the approximation y,_; of y(t,_1) obtained at the previous time-step to
calculate a second approximation w,, of the exact value y(t,) of the solution of (5.14):
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(5.19) W% . =yu_1 + 0.5h(1 — 8)Ay,_; + 0.5h8Aw ",
5 1+0.5h(1-6)A
= W( )= Yn-1
n-05"""1_0.5h02 "
(5.20) w;=ws+0.5n(1—0)aw " ; +0.5h0aw >,
1+0.5h(1 - 0)A
@) &
7 Wa-0sTT1_05neA 05
@ 1+ 0.5h(1 — 0)A]’
= Ya-0sT |T1_o5snea | v

5.21) wi’ =w?, . +0.5n(1 - 8)Aw >, . + 0.5h0AW "

S _1+0.5hA—OR

7 Wa T T1T0.5n0A 005
LW 1+ 0.5h(1 — 0)A]°
Wn T 1T 1 ”05n0e2 | U

5.22) w® =w +0.5n(1 — 0)Aw" + 0.5h0AW?

L@ _1+0.5hA—0n
n 1-0.5h62 "

=

L @ _ [L+0.5h(1—6)2 4
Wn 1-0.5h08 | ™V
1+ 0.5h(1—0)A]*
def (2)
(5:23)  wy Ewy l 1—-0.5h0A l Yn-1

= (prn - Zn)/(zp -1)

for

computing the Richardson Extrapolation with p = 1 to obtain an improved approximation

Yn Of y(ty,):

206



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

(5- 24) Yn = 2W, —Z, = ﬁ(\)) Yn-1

where v =hA and

4 2
.25 R -z RO PO [LEO

1-0(0.5v) 1-—0v

The last two formulae show clearly that the application of the Richardson Extrapolation combined with
the sequential splitting procedure and the ©-method is resulting in a one-step numerical method for
solving ODEs with a stability function R(v) when the test-problem (5.11) is solved under the
assumptions made above. This means that all definitions used in the previous chapters are also valid
for the new numerical methods which are combinations of

(a) a sequential splitting procedure,

(b) a scheme from the class of the 8-methods with 0.5 <0 < 1.0
and

(c) the Richardson Extrapolation.
It should also be noted that the active implementation of the Richardson Extrapolation is used in the
algorithm described above. The passive implementation can also be applied. This implementation does

not cause any stability problems, but may in some situations be not very accurate.

Note that if the underlying @-method is applied directly (i.e. without combining it with the splitting
procedure and the Richardson Extrapolation), then the stability function, see (4.8) in Chapter 4, is given

by

1+ (1-0)v

(5.26) R(V) = ——

If the underlying ©-method is combined only with the Richardson Extrapolation (but not with the
sequential splitting procedure), then the stability function, see (4.18) in Chapter 4, is given by
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1+(1—ex05v)2_1+(1—ew

1-0(0.5v) 1—ov when 0 +#0.5

(5.27) RWv)= 2

and

1+025q2_1+05v

_ 4|
(5.28) R(v) =

Comparing (5.25) with (5.26) or with (5.27) — (5.28) it is seen that the stability function becomes much
more complicated when the Richardson Extrapolation is combined both with the scheme from the class
of the 0-methods and with the sequential splitting procedure. Therefore, one should expect that the
requirement |ﬁ(v)| < 1, which is imposed in the different stability definitions, will be much more
difficult than the corresponding requirements |R(v)|] <1 and |R(v)| <1 used in the previous
chapter. This fact explains why it is necessary to study the stability properties of the new numerical
methods, which are combinations of a sequential splitting procedure, a scheme from the class of the
0-methods and the Richardson Extrapolation. Stability properties will be studied in the next section.

5.3. Stability properties of the sequential splitting procedure

We shall mainly be interested in the application of the splitting procedure for stiff systems of ODEs.
Therefore, it is necessary to require that the new numerical methods, the combinations of a sequential
splitting procedure, a scheme from the class of the @-methods and the Richardson Extrapolation, are
at least A-stable. Sometimes more restrictive definitions, the definitions for strongly A-stable and L-
stable numerical methods for solving systems of ODEs, will be needed. These three definitions are
given in Chapter 4, but it is convenient to repeat them also here.

When the system of ODEs is stiff, it is reasonable to require that
(5.29) R(v) €1 for Vv=a+Bi with a<0,

where R(v) is the stability function from (5.25).

In other words, we shall again, as in Section 4, require that the crucial inequality R(v) < 1 is satisfied
everywhere in the negative part of the complex plane and that the absolute stability regions of the
numerical methods are infinitely large (containing the whole negative part of the complex plane).
More precisely, the definition for A-stability is formulated in the following way by using the concepts
defined in this chapter.
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Definition 5.1: It is said that the numerical method for solving systems of ODEs is A-stable when the

relationship R(v) < 1isfulfilled for Vv= a+Bi with a < 0 inthe case where the selected

numerical method is applied in the solution of the two Dahlquist scalar and linear test-examples (5.14).
|

It is worthwhile to emphasize again the fact that, because of the second Dahlquist barrier, which was
introduced in Chapter 4, every A-stable numerical method is necessarily implicit. The numerical
treatment of the implicit numerical methods is much more difficult than the numerical treatment of
explicit numerical methods (this topic has been discussed in detail in Section 4.5).

As mentioned in Chapter 4, the 8-method is A-stable when © € [0.5,1.0]. Because of this fact,
also in this chapter we shall, as stated above, consider numerical schemes of the class of the 8-methods
with @ varying in this interval.

We defined the concept of A-stability in connection with the simple scalar and linear equations (5.14).
However, the results can be generalized for some linear systems of ODEs with constant matrices.
Moreover, there are some reasons to expect that the results will hold also for some more general, linear
and non-linear, systems of ODEs. These issues have been presented and discussed in Chapter 2 (see
Section 2.1) and there is no need to repeat these explanations here.

As was pointed out in Section 4, the A-stability is sometimes not sufficient in the efforts to achieve an
efficient computational process (an example was also given there to justify this statement). L-stability
IS necessary in the solution of some more difficult problems. This stronger concept is defined below.

Definition 5.2: A numerical method for solving systems of ODEs is said to be L-stable when it is A-
stable and, in addition, when it is applied in the numerical solution to the two scalar and linear test-

problems (5.14) proposed by Dahlquist, it leads to the relationship y, = R(V) y,_1 = [ﬁ(v)]n Yo
with [R(v)| - 0 as Re(v) - —o.

Sometimes it is very useful to relax a little the requirement for L-stability, by introducing the concept
of strong A-stability.

Definition 5.3: A numerical method for solving systems of ODEs is said to be strongly A-stable when
it is A-stable and, in addition, when it is applied in the numerical solution of the two scalar and linear

test-problems (5.14) proposed by Dahlquist, it leads to the relationship y, = R(V) yn_1 = [RW)]" vo
with [R(v)| > ¢c¢<1 as Re(v) » —oo.
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It is obvious that the definition for strong A-stability is a compromise between the weaker definition
for A-stability and the stronger definition for L-stability (compare Definition 5.3 with Definition 5.1
and Definition 5.2). It is follows from the above statement that the class of the L-stable methods is a
sub-class of the class of the strongly A-stable methods. The strongly A-stable methods form in their
turn a class which is a sub-class of the class of A-stable methods.

It will be shown at the end of this chapter that for some systems of ODEs strongly A-stable methods
may perform better than L-stable methods.

The stability properties of the combination of the Richardson Extrapolation applied together with the

sequential splitting procedure and the ©-method when 0 € [0.5,1.0] will be studied in the
remaining part of this chapter. More precisely, the following theorem will be proved:

Theorem 5.1: The numerical method consisting of a combination of the Richardson Extrapolation
applied together with the sequential splitting procedure and the 8-method is strongly A-stable if 8 €
[09,1.0] with 85 =~ 0.638.

Proof: The same main principles, as those used in the proof of Theorem 4.1, can also be applied in the
proof of Theorem 5.1. According to Definition 5.3 that was given above, a strongly A-stable numerical
method must also be A-stable (see also, for example, Hundsdorfer and Verwer, 2003). In Hairer
and Wanner (1991) it is shown that a numerical method for solving systems of ODEs is A-stable if
and only if

(a) it is stable on the imaginary axis (i.e. when |ﬁ(iB)| < 1 holds for all real values of )
and

(b) R(v) isanalyticin C~ .

If we succeed to prove that (a) and (b) hold (i.e. if we show that the considered numerical method is
A-stable), then it will be necessary to show additionally that the new numerical method is also strongly
A-stable, i.e. that, according to Definition 5.3, the relationship |ﬁ(v)| —-c<1 holdsas Re(v) —
—00 ,

The above analysis indicates that Theorem 5.1 can be proved in three steps:

Step A: Show that the combination of the Richardson Extrapolation with the 8-methods
and the sequential splitting procedure is stable on the imaginary axis.

Step B: Verify that the stability function R(v) is analytic.

Step C: Prove that [R(v)| - ¢ <1 as Re(v) - —o.

We shall start with Step A.
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Step A — Stability on the imaginary axis

The stability function R(v) from (5.25) can be rewritten as a ratio of two polynomials:

~ P(v)

The polynomial P(v) can be represented by the following expression:
(5.31) P(v) =2[1+(1—-0)(0.5v)]*(1 —6v)?2 —[1+ (1 — 0)v]?[1 —0(0.5v)]*,

which is of order six with respectto v, depends on the parameter 6 and can be rewritten in the
following form:

(5.32) P(v) =Av® +Bv® + Cv* +Dv® + EvZ + Fv + 1,
where the coefficients are given by

0%2(1-0)2(0%2 —40 +2)
= 24 )

(5.33) A

B - 0(1-0)[-2(1-0)3+80(1-0)2+406%2(1-06) — 03]

(5.34) >3 )
2(1-0)*—-320(1-0)3+2406%(1 - 0)2 + 160%(1 — 0) — 064
(5.35) C= ( ) ( ) ( ) ( ) '
24
2(1-0)2-80(1—-0)2+20%2(1—-0)+03
(5.36) D= ( ) ( ) ( ) '
2
130% — 160 + 4
(5.37) E=

2 )
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(5.38) F=2-46.
The denominator of (5.30) can be written as
(5.39) Q(v) =[1-0(0.5v)]*(1 — 8v)?.

Assume that the complex variable v is represented as v = a + ip . It is shown in Hairer and
Wanner (1991) that the numerical method with a stability function R(v) is stable on the imaginary
axis if

(5.40) EB)=0

for all real values of B, where E(f) is defined by

(5.41) E(B) = Q(B)Q(-ip) — P(iB)P(-ip) .

After long but straight-forward transformations the following two relationships can be derived:

_ ] 012 90010 12968 290° 2764
(5.42) Q(iB)Q(—ip) =FBIZ +—7 g0 + 55 g2 + T Be + >3 B* +30%B% +1.

(5.43) P(ip)P(—ip) = A%B'2 + (B% — 2AC)B° + (C%? — 2BD + 2AE)pB®

+(D? — 2CE + 2BF — 2A)B° + (E? — 2DF + 2C)B* + (F? —2E)B? + 1.
Substitute the expressions on the right-hand-sides of (5.42) and (5.43) in (5.41):

012 — 2847 ~ 96'°-27(B%-2AC) .,
2 Pt 27 b

(5.44) E(B) =

1296° — 28(C? — 2BD + 2AE) ., 296°—2*(D? — 2CE + 2BF — 2A)
+ 28 B+ 24 B

270* — 2*(E* — 2DF + 2C) _,
+ T B*.
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Introduce the following notations:

912 _ 28A2
(5.45) H1(9) = T ’
901°-27(B% — 2A0)

(5.46) H,(0) = > ,

12968 — 28(C% — 2BD + 2AE)
28 ’

(5.47) H,(0) =

290° — 24(D? — 2CE + 2BF — 2A)

(5.48) H,(0) = - .

270* — 24(E? — 2DF + 20)
24 '

(5.49) Hs(0) =

Itis clear that E(f) will be non-negative for all values of B and for a given value of @ ifall the
five polynomials (5.45) — (5.49) are non-negative for the selected values of parameter 0. The curves
representing these polynomials for @ € [0.5, 1.0] are drawn in Fig. 5.1 — Fig. 5.5. The results
show that the combination of the Richardson Extrapolation, the sequential splitting and the 8-method
for all values of @ is stable on the imaginary axis in the interval [0y, 1.0] with 0, =~ 0.638.
Thus the first part of Theorem 5.1 is proved.
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RICHARDSON EXTRAPOLATION

WITH THE SEQUENTIAL SPLITTING

AND THE THETA METHOD
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o ]
E |
s 1
o ]
0 T T T T !
0.5 0.6 0.7 0.8 0.9 1.0

THET A VAL UTES

ALL VALUES OF POLYNIAL H1 ARE NON-NEGATIVE
MAXIMAL VALUE OF THE POLYNOMIAL: 3.91E-03
MINIMAL VALUE OF THE POLYNOMIAL: 0.00E+00
THETA VARIES FROM 05 TO 1.0

Figure 5.1
Variation of the polynomial H;(0) in the interval [0.5, 1.0].
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RICHARDSON EXTRAPOLATI
WITH THE SEQUENTIAL SPLIT
AND THE THETA METHOD
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" |
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E |
g _
2 0.025
_> 1
o i
m —
0.0 ] T T T !
0.5 0.6 0.7 0.8 0.9 1.0

THET A VAL UTES

THE VALUES OF H2 ARE POSITIVE FOR THETA GREATER THAN:
MAXIMAL VALUE OF THE POLYNOMIAL: 7.03E-02
MINIMAL VALUE OF THE POLYNOMIAL: -1.10E-03

THETA VARIES FROM 05 TO 1.0

0.638

Figure 5.2
Variation of the polynomial H,(0) in the interval [ 0.5, 1.0].
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RICHARDSON EXTRAPOLATION

WITH THE SEQUENTIAL SPLITTING

AND THE THETA METHOD
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0.0 T T T T !
0.5 0.6 0.7 0.8 0.9 1.0
T HET A V A LUE S
THE VALUES OF H3 ARE POSITIVE FOR THETA GREATER THAN: 0.611
MAXIMAL VALUE OF THE POLYNOMIAL: 5.00E-01
MINIMAL VALUE OF THE POLYNOMIAL: -1.02E-03

THETA VARIES FROM 05 TO 1.0

Figure 5.3:
Variation of the polynomial H3(0) in the interval [0.5, 1.0].
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RICHARDSON EXTRAPOLATION
WITH THE SEQUENTIAL SPLITTING
AND THE THETA METHOD
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0.5 0.6 0.7 0.8 0.9 1.0

THET A VAL UTES

ALL VALUES OF POLYNIAL H4 ARE NON-NEGATIVE
MAXIMAL VALUE OF THE POLYNOMIAL: 1.75E+00
MINIMAL VALUE OF THE POLYNOMIAL: 3.36E-03
THETA VARIES FROM 05 TO 1.0

Figure 5.4
Variation of the polynomial H,(@) inthe interval [ 0.5, 1.0].
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RICHARDSON EXTRAPOLATION
WITH THE SEQUENTIAL SPLITTING
AND THE THETA METHOD
37
| H5
i |
@ |
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> i
)
= |
0 T T T T !
0.5 0.6 0.7 0.8 0.9 1.0
T HET A V AL UE S
THE VALUES OF H5 ARE POSITIVE FOR THETA GREATER THAN: 0.558
MAXIMAL VALUE OF THE POLYNOMIAL: 3.00E+00
MINIMAL VALUE OF THE POLYNOMIAL: -8.80E-03
THETA VARIES FROM 05 TO 1.0

Figure 5.5
Variation of the polynomial Hg(0) in the interval [0.5, 1.0].

Step B — A-stability

After the proof that the combination of the Richardson Extrapolation, the sequential splitting and the
0-method is stable on the imaginary for all values of © in the interval [0y, 1.0] with 0y =
0.638 it is necessary to prove that the stability function R(v) is analytic in €~ , which will ensure
that the combined numerical method is A-stable. The stability function R(v) is a ratio of two
polynomials, P(v) and Q(v); see (5.27). It is well-known that polynomials are analytic functions
and a ratio of two polynomials is an analytic function in €~ if the denominator Q(v) of R(v) has
nozeroin C~ . Allzeros of the denominator vi =v, =1/0 >0 and vz = v, =v5 =vg =2/0 >
0 are positive, which means that R(v) is analyticin C~ and, thus, the method is A-stable. This
proves the second part of Theorem 5.1.
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Step C — Strong A-stability

Rewrite (5.25) as

1 R | 2
550 RW) S+0.5(1-6) S+(1-0)
.50) R(v)=2 -
1 1
5—0.50 =

-0

Assume that the imaginary part of v is fixed. Then the expression . l(1r)n [ﬁ(v)] can be evaluated
e(v)—0o

in the following way for any fixed value of the imaginary part of v :

0.5(1 — e)l4 ~ l(l - e)lZ _21-8)* (1-8)

(5.51) Rel(br)rim[R(V)] =2 I ~0.50 0 04 02

2 —-860+116% — 603 + 04

Since the last expression in (5.51) is real, the requirement N 1(1r)n [ﬁ(v)] <& <1 issatisfied when
e(v)—>00
the following two relationships hold:

2 -86+116% - 66° + 6* ) 3
(5.52) o3 <1 = —2+86 — 1162 + 663 > 0

and

2-86+116% - 66° + 6* ) 3 . oa
(5.53) -—-1< o = 2-86+116%-66°+6*>0.

It can easily be established that (5.52) and (5.53) are satisfied for all values of @ in the interval
[0.5, 1.0 ], but since the method should be A-stable, we have to take the interval [0y, 1.0 ] with
0, =~ 0.638 . This completes the third part of Theorem 5.1.
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Corollary 5.1 If 6 =1, i.e. if the Backward Euler Formula is used, then the new numerical method
(the combination of the underlying method, the sequential splitting procedure and the Richardson
Extrapolation) is L-stable.

Proof: It is immediately seen that the right-hand-side of (5.51) is zero and, thus, the combined method
is L-stable when the Backward Euler Formula is the underlying method.

5.4. Some numerical experiments
We shall use again, as in the previous chapter, the atmospheric chemical scheme in order to
demonstrate the usefulness of the results described in the previous sections of this chapter. More
precisely, the following actions are carried out in this section:

(a) The atmospheric chemical scheme is split into two parts.

(b) The organization of the computations is carried out as in the previous chapter.

(c) Numerical results obtained by using the sequential splitting scheme and the
Backward Euler Formula are given.

(d) Some results, which are obtained by using the sequential splitting with ©-
method with @ = 0.75 are shown.

(e) Results from runs of the sequential splitting with the Trapezoidal Rule are also
given.

(f) Some conclusions related to the numerical results are drawn at the end of
Section 5.4.

5.4.1. Splitting the atmospheric chemical scheme

The atmospheric chemical scheme with 56 species from the Unified Danish Eulerian Model (UNI-
DEM), which was considered in the previous chapter will be considered also here. In this chapter, the
atmospheric chemical scheme is split into two parts. The first part, f;(t,y), contains mainly the
chemical reactions in which ozone participates. The second part, f,(t,y) , contains all the other
chemical reactions.

5.4.2. Organization of the computations
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The same approach as in the previous chapters will be used also in this section. This means that the
computations were organized as in Section 4.6, where more details about the atmospheric chemical
scheme are given. Assume that k = 11 runs are to be carried out. The errors calculated during an
arbitrary step j ofrun k, k=1, 2,.. , k areestimated by using the formula (4.60). The number
of grid-points, at which the error is estimated, is 168 forany ofthe k= 11 runs. Only the values
of the reference solution at the grid-points of the coarse grid (which is used in the first run) have been
stored and applied in the evaluation of the error (it is, of course, also possible to store all values of the
reference solution, but such an action will increase tremendously the storage requirements). It is much
more important and must be emphasized also in this chapter that errors of the calculated approximations
were always, in all the nineteen runs, computed at the same 168 grid points. The global error made
atrun k, k=1, 2,.. , k=11 isestimated by using formula (4.61). All computations in this
section were performed as in the previous sections by selecting quadruple precision (i.e. by using
REAL*16 declarations for the real numbers and, thus, about 32-digit arithmetic) in an attempt to
eliminate completely the influence of the rounding errors in the first 16 significant digits of the
computed approximate solutions.

5.4.3. Results obtained when the Backward Euler Formula is used

The Backward Euler Formula (obtained when 6 = 1 is used) was run in combination
(a) only with the sequential splitting procedure
and
(b) with both the sequential splitting procedure and with the Richardson Extrapolation.
Results are given in Table 5.1.
Itis clearly seen that the application of the Richardson Extrapolation together with the Backward Euler

Formula and the sequential splitting procedure results in a second-order numerical method and, thus,
the results are significantly more accurate.

5.4.4. Results obtained when the 8-method with @ = 0.75 is used

The 6-method with @ = 0.75 was run as in the previous sub-section in combination
(a) only with the sequential splitting procedure
and
(b) with both the sequential splitting procedure and with the Richardson Extrapolation.
Results are given in Table 5.2. It is again clearly seen that the application of the Richardson
Extrapolation together with the 0-method with 0 =0.75 and the sequential splitting procedure results

in a second-order numerical method and, thus, in significantly more accurate results. Moreover,
comparing the results in Table 5.2 with those in Table 5.1, shows clearly that the results presented in
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this paragraph are more accurate than those presented in the previous one (in Chapter 4 it was explained
that the 6-method with ©=0.75 is more accurate than the Backward Euler Formula).

Number Only sequential Richardson
Job of time- splitting Extrapolation

Number steps Accuracy Rate Accuracy Rate

1 168 | 5.965E-00 - 7.521E-01 -
2 336 | 1.214E-00 | 4.147 | 1.261E-01 5.965
3 672 | 4.294E-01 | 2.827 | 4.542E-02 2.776
4 1344 | 2.154E-01 | 1.993 | 1.799E-02 2.525
5 2688 | 1.093E-01 | 1.970 | 5.862E-03 3.068
6 5376 | 5.509E-02 | 1.985 | 1.698E-03 3.453
7 10752 | 2.764E-02 | 1.993 | 4.598E-04 3.692
8 21504 | 1.384E-03 | 1.997 | 1.199E-04 3.835
9 43008 | 6.926E-03 | 1.998 | 3.062E-05 3.915
10 86016 | 3.464E-03 | 1.999 | 7.740E-06 3.956
11 172032 | 1.733E-03 | 2.000 | 1.946E-06 3.978

Table5.1

Numerical results that are obtained in 11 runs when the Backward Euler Formula is used
(a) only with the sequential splitting procedure and (b) with both the sequential splitting
procedure and the Richardson Extrapolation. The errors are given in the columns under
“Accuracy”. The ratios of two successive errors (calculated in an attempt to measure the
rate of convergence) are given in the columns under “Rate”.

Number Only sequential Richardson
Job of time- splitting Extrapolation

Number steps Accuracy Rate Accuracy Rate

1 168 | 4.081E-00 - 5.843E-02 -
2 336 | 5.965E-01 | 6.842 | 3.681E-02 1.587
3 672 | 2.087E-01 | 2.859 1.863E-02 1.976
4 1344 | 1.052E-01 | 1.984 | 6.797E-03 2.741
5 2688 | 5.386E-02 | 1.952 | 2.1.05E-03 3.229
6 5376 | 2.731E-02 | 1.972 | 5.921E-04 3.555
7 10752 | 1.376E-02 | 1.985 1.576E-04 3.756
8 21504 | 6.904E-03 | 1.993 | 4.073E-05 3.869
9 43008 | 3.459E-03 | 1.996 1.037E-05 3.928
10 86016 | 1.731E-03 | 1.999 | 2.620E-06 3.957
11 172032 | 8.659E-04 | 1.999 | 6.597E-07 3.972

Table 5.2

The same as Table 5.1 but for the case when the 8-method with ©=0.75 is used instead

of the Backward Euler Formula.

5.4.4. Results obtained when the Trapezoidal Rule is used
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The Trapezoidal Rule obtained with @ = 0.5 was run as in the previous two sub-sections in
combination

(a) only with the sequential splitting procedure
and

(b) with both the sequential splitting procedure and with the Richardson Extrapolation.
Results are given in Table 5.3. It is seen that the application of the second-order Trapezoidal Rule with
the sequential splitting results in a stable numerical scheme, but its order of accuracy is one. The

application of the Trapezoidal Rule with the sequential splitting and with the Richardson Extrapolation
results in an unstable numerical algorithm. This should be expected (see Theorem 5.4).

Number Only sequential Richardson
Job of time- splitting Extrapolation
Number steps Accuracy Rate Accuracy Rate

1 168 | 2.419E-00 - not stable -
2 336 | 1.881E-01 | 12.859 not stable n.a
3 672 | 2.807E-01 6.704 not stable n.a
4 1344 | 7.317E-01 3.836 not stable n.a
5 2688 | 2.670E-01 2.741 not stable n.a
6 5376 | 1.335E-02 1.999 not stable n.a
7 10752 | 6.678E-02 2.000 not stable n.a
8 21504 | 3.339E-03 2.000 not stable n.a
9 43008 | 1.670E-03 2.000 not stable n.a

10 86016 | 8.349E-03 2.000 not stable n.a

11 172032 | 4.174E-03 2.000 not stable n.a

Table 5.3
The same as Table 1 but for the case when the Trapezoidal Rule is used instead of the
Backward Euler Formula; “not stable” means that the method is not stable, “n.a” means
not applicable.

5.4.6. Some conclusions from the numerical experiments

Several conclusions can be drawn from the results of the numerical experiments that were presented in
Table 5.1 — Table 5.3:

(A) The sequential procedure behaves, when it is stable, always as a numerical method of
order one. This is also true when this procedure is used together with the Trapezoidal
Rule, the order of accuracy of which is two (although in the first runs the order of
accuracy in this case seems to be greater than one).
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(B) The 6-method with 0 = 0.75 produces more accurate results than the Backward
Euler formula. The errors are reduced approximately by a factor of two, (the reason for
this was explained in the previous chapter).

(C) The accuracy achieved by using the combination of the sequential procedure with the
Trapezoidal Rule, which is a second order numerical method, are less accurate than
those obtained when the other two methods, which are first-order numerical
algorithms, are used; compare the results in Table 5. 3 with the results in the previous
two tables. It is not very clear what is the reason for this behavior.

(D) The combination of the sequential procedure with the two first-order numerical
methods and the Richardson Extrapolation leads, in accordance with Theorem 5.1, to
a stable computational process, its order of accuracy being two.

(E) As should be expected from Theorem 5.1, the combination of the sequential procedure,
the Trapezoidal Rule and the Richardson Extrapolation leads to an unstable
computational process.

5.5. Marchuk-Strang splitting procedure

Only 6-methods were used in the previous sections of this chapter. This is justified, because the
combination of any numerical method for solving systems of ordinary differential equations with the
sequential splitting procedure results in a new combined numerical method the order of accuracy of
which is one (the additional application of the Richardson Extrapolation leading to a new combined
method of order two). In this section some results related to the application of the Marchuk-Strang
splitting procedure will be used. Its order of accuracy is two. Therefore, it is necessary to apply
numerical methods of higher order in the treatment of the systems of ODEs. Some Runge-Kutta
methods will be used in the remaining part of this section.

5.5.1. Some introductory remarks

Consider again, as in the first four chapters and as in the previous sections of this chapter, the system
of ordinary differential equations (ODES) defined by

d
(5.54) d—i,:f(t,y), tefab], a<b, yeR, feR, s=>1, y@=n.

Assume that a Runge-Kutta method, explicit or implicit, see, for example, Burrage (1995),
Butcher(2003), Hairer, Nersett and Wanner (1987), Hundsdorfer and Verwer (2003),
Lambert(1991), is used in the numerical solution of (5.54). Assume furthermore that the time-interval
is discretized by using an equidistant grid (but it should be emphasized that this assumption is made
only in order to simplify the presentation of the results; most of the results in the following part of this
chapter are also valid when non-equidistant grids are used):
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b—a

(555) t0=a, tn:tn_1+h:t0+nh, n:1,2,...,N, tN:b, h> N

Under these assumptions, the Runge-Kutta methods can be based on the following formulae:

m
(5 56) Yn = ¥n-1 + hz ciki(ff tn—1f tn; h) y
i=1

wherefor 1 =1,2,3,...,m:

bi]‘ )

m m
(5.57) Kk(F,ty_,ty:h) = f| t,_q +hay,y,_ {+ hz byk;(f ta_p th) |, a =
=1 =1

The coefficients ¢; and by, 1i,j =1,2,3,..,m, are constants dependent on the selected
particular Runge-Kutta method. If all b;; = 0 when j =i, then the selected Runge-Kutta method
is explicit, while the method is implicit when at least one by # 0 when j =i . The vectors
k;(f, t,_1, t,; h) are called stages. Simple notation, k; instead of Kk;(f,t,_q,t,;h), is often used
(and was also applied in the previous chapters). The above notation will simplify the introduction of
the combination of the Marchuk-Strang splitting procedure with Runge-Kutta methods in Sub-section
5.5.2.

We are interested in the case where the method based on (5.55)-(5.57) is used in a combination with
both the Marchuk-Strang splitting procedure, see Marchuk (1968, 1980, 1982, 1986, 1988) and
Strang (1968) and the Richardson Extrapolation, see Farago, Havasi and Zlatev (2010) and
Richardson (1911, 1927). This combination is a new numerical method and we shall study some
stability properties of the combined numerical method both in the general case when the Runge-Kutta
methods is defined by (5.56)-(5.57) and in some particular cases. The accuracy and the stability of the
obtained results will be validated by applying an atmospheric chemical scheme, which is described
mathematically by a non-linear system of 56 ordinary differential equations. It is convenient to re-
iterate here that this chemical scheme has successfully been used in the Unified Danish Eulerian Model,
UNI-DEM, which is a large-scale mathematical model for studying:

(a) transport of air pollution over Europe (Alexandrov et al., 2004, Ambelas Skjoth et
al., 2000, Bastrup-Birk et al., 1997, Hass et al., 2004, Roemer et al., 2004, Zlatev,
2010, Zlatev and Dimov, 2006,

(b) pollution distribution in different countries (Abdalmogith, Harrison and Zlatev,

2004, Harrison, Zlatev and Ottley, 1994, Havasi and Zlatev, 2002, Zlatev,
Georgiev and Dimov, 2013b, Zlatev and Syrakov, 2004a, 2004b)
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and

(c) impact of climate changes on some critical air pollution levels (Csomés et al., 2006,
Zlatev, 2010, Zlatev, Faragé and Havasi, 2010, Zlatev, Dimov and Georgiev, 2016,
Zlatev, Georgiev and Dimov, 2013b, Zlatev, Havasi and Faragé, 2011, Zlatev and
Moseholm, 2008).

The contents of this section of Chapter 5 can be outlined as follows. The application of the Marchuk-
Strang splitting procedure together with the Richardson Extrapolation is discussed in Sub-section
5.5.2. An expression for the stability function of the combination of the Runge-Kutta methods with the
Marchuk-Strang splitting procedure and the Richardson Extrapolation is derived in Sub-section 5.5.3.
Some special Runge-Kutta methods, the two-stage Diagonally Implicit Runge-Kutta (DIRK) methods
and the Implicit Mid-point Rule, will be introduced in Sub-section 5.5.4. Absolute stability regions of
the selected methods will be presented in Sub-section 5.5.5. Numerical results, based on the
application of the atmospheric chemical scheme with 56 species, will be given in Sub-section 5.5.6.
Several conclusions will be drawn in Sub-section 5.5.7.

5.5.2. The Marchuk-Strang splitting procedure and the Richardson Extrapolation

Rewrite, as in the previous sections, the initial value problem given in (5.54) in the following form:

d
(5.58) Y —f,(tLy)+f,(Ly), t€ [ab], a<b, y € RS, f;€ R, L R, s >1,
dt

where f;(ty) +f,(t,y) =f(t,y) and y(a) =n being again a given initial value. Consider two
systems of ODEs defined by

(1]

d
(5.59) Zt =f;(ty"), telab], a<b, yUeR, feR, s=>1,

dv!2!
(5.60) Zt =f,(ty®?), telab], a<b yHeR, feR, s=>1,

It is normally assumed that it is easier (or even much easier) to solve numerically any of the two systems
(5.59) and (5.60) than to solve the system of ODEs (5.58). The combined use of the Marchuk-Strang
splitting procedure and the Richardson Extrapolation consists of the following three steps:

Step 1
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Apply any algorithm from the class of the Runge-Kutta methods defined by formulae (5.56)-(5.57) and
the Marchuk-Strang splitting procedure to calculate an approximation z, = y(t,) by using the
following formulae:

m
(5.61) Z,[ll_]o_s = ¥Yn-1+0. ShZ ciki(fy, th_1, ty_o5; 0.5h)
i=1
m
(5.62) 2 =2l +h ) akilEy ty gty )
i=1

m
(5.63) 2z =210, ShZ ¢K;i(f1, ty_oss, to; 0. 5h)
i=1

(5.64) z,= z,[,g]

Step 2
Apply twice the same algorithm from the class of Runge-Kutta methods defined by formulae (5.56)-

(5.57) and the Marchuk-Strang splitting procedure to calculate another approximation w, = y(t,)
by using the following formulae:

m
(5.65) wl =y, . +0. ZShZ ¢k (f1, ty_ 1, t_os; 0.25h)
i=1

m
(5.66) w2l o =wl" __+0.5n) ck;(fy ty_1,ty_o5;0.5h)
i=1

m
3 2
(5.67) w  =w? _to. ZShZ ik (1, ta_o.75 ta_o.s; 0. 25h)
i=1
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n

m
(5.68) will  =wl o zan K (Fy, ty_os t_ops; 0. 25h)
i=1

m
(5.69) w@ =wlll _+o. ShZ cik; (£, t_o.s, ty; 0. 5h)
i=1

m
(5 70) Wl[ls] = Wl[lz] + 0.25h Z ciki(flJ tn_o_zs, tl’l; 0. 25h)
i=1

(5.71) w, = w,[ls]

| |
Step 3
Form the Richardson Extrapolation:
4w, — 2
(5.72) yp=—">—
3
| |

The Richardson Extrapolation formula y, = (2Pw, —z,)/(2P —1) isusedwith p=2 in
(5.72). This means that the order of accuracy of the selected underlying Runge-Kutta method should
be at least two.

Note that although the two auxiliary and simpler problems (5.59) and (5.60) are used in the

computations involved in the three steps described above, the calculated by (5.72) vector y, is an
approximation of the original problem (5.54).

5.5.3. Stability function of the combined numerical method

The stability properties of the combined numerical method, the combination of the selected Runge-
Kutta method with the Marchuk-Strang splitting procedure and the Richardson Extrapolation, will be
studied in this section. We shall start with the stability properties of the underlying Runge-Kutta
method, which are often studied by using the famous test-equation introduced in Dahlquist (1963), see
also Burrage (1995), Butcher (2003), Hairer, Norsett and Wanner (1987), Hairer and Wanner
(1991), Hundsdorfer and Verwer (2003), Lambert (1991):
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dy

te[0o], yecC, A=a+BieC, a@<0, yl)=neC.

Denote hA = p . Then the stability of the computations with any Runge-Kutta method is related to a
stability function R(u). If the particular Runge-Kutta method is explicit, then this function is a
polynomial, while it is a rational function (a ratio of two polynomials) when the method is implicit.
The stability function of a special class of Runge-Kutta methods will be derived in the next section.
For our purposes here, it is important to emphasize two facts:

(a) if for a given value of p € C- we have R(p) <1, then the computations with the
particular method will remain stable for the stepsize h when (5.73) is solved (and
one should expect that the computational process will remain stable also when other
problems are to be handled)

and

(b) the stability function of the combined numerical method (the particular Runge-Kutta
method + the Marchuk-Strang splitting procedure + the Richardson Extrapolation) can
be expressed by the stability function R(w) of the underlying Runge-Kutta method.

The second fact is very important. It is telling us that if we know the stability function of the underlying
Runge-Kutta method then we shall be able to calculate easily the stability function of the combined
method. We can formulate this statement in a strict manner as follows:

Theorem 5.2: Consider an arbitrary Runge-Kutta method, explicit or implicit, with a stability function
R(p) and combine it with the Marchuk-Strang splitting procedure and with the Richardson
Extrapolation. Then the absolute stability function R(u) of the combined method is given by

RO e RE)] R}

(5.74) R(w = 3

Proof: Consider first two different special problems that are quite similar to (5.73):

dy!

(5.75) T

=0y te0,0], Y ecC, Ay=a;+B4i, a; <0, y(0)=1q,
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dy!?!

i =0y?, te[0w], y2 eC, A =a,+Bi, a<0, y(©0) =17,

(5.76)

Denote hA; = p; and hA, = p, . The assumption that the selected Runge-Kutta method has a
stability function R(p) means that the relationship y, = R(Wy,-; is satisfied when a time-step
with a step-size h is carried out to obtain an approximation 'y, of the solution of (5.73) by using
Vn—1  as a starting approximation, see, for example, Lambert (1991). It is clear that a similar
relationship is satisfied, then the problems (5.75) and (5.76) are handled. By using this fact in
connection to (5.61), (5.62), (5.63) and (5.64), we can successively obtain:

m 151
G.77) 7005 =R(S) Va1,

m
(5.78) ZI[IZ_]0.5 = R(HZ)ZI[,l_]()E = R(p2)R (71) Yn-1,

(5.79) z,= Zr[lg] =R (?) Z,[,z_]o,s =R (%) R(12)R (%) Yn-1 = [R (%)]2 R(M2) Yn-1 -

In the same way, by using this time the equalities (5.65)-(5.71), it will be possible to obtain:

80 wo=[r () [ (2 o

Use now (5.72) to derive the following expression:

son g, R RO R R0

Assume that Ay = A, = A, which leadsto p; = p, = p. Then we have:

son g RO RO w0

It follows from (5.82) that the stability function of the combined numerical algorithm is
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RO REG >1 “RE R RET {e[RE)] -rav)

(5.83) R(w) = 3 ,

which completes the proof of Theorem 5.2.

Remark 5.1: Equality (5.83) shows that the stability polynomial R(u) of the combined method
depends only on the stability polynomial R(p) of the underlying method, but this does not mean
that if the underlying method is stable when the Dahlquist test-problem (5.73) is solved, then the
combined method is also stable when this equation is handled. Indeed, R(n) < 1 does not necessarily
imply R(p) < 1. Therefore, the stability properties of the combined method have to be investigated
very carefully also in the case where the underlying method is stable.

5.5.4. Selection of an appropriate class of Runge-Kutta methods

Good candidates of underlying methods when the combination a Runge-Kutta method + the Marchuk-
Strang splitting procedure + the Richardson Extrapolation is to be used are the two-stage Diagonally
Implicit Runge-Kutta (DIRK) methods, see Chapter 4 and Alexander (1977), Cruziex (1976), Nersett
(1976), which can be introduced by the following formulae:

(5.84) yy=Yn-1 thcki(f,t,_1,ty;h) + ok (Ft,_ 4,8 h)], ¢+ =1,
where

(5 85) kl(f' tn—li tn; h) = f( tn—l + hy' Yn-1 + hykl(f' tn—1' tn; h))!

kZ (fr tn—lr tlll h) = f( tl‘l—l + haz, Yn-1 + hb21k1(f, tl’l—ll tnr h) + hykz (f, tn—lr tn: h) )

The advantages of using the method introduced by (5.84) and (5.85) are three:

(a) The order of accuracy of the Marchuk-Strang splitting procedure is two and, therefore,
it is desirable to use an underlying method, which is at least of order two also. That is
easily achievable when the class of DIRK methods defined by (5.84) and (5.85) is
selected.
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(b) The implementation of any method defined by (5.84) and (5.85) leads to the solution
of two small systems of s algebraic equations while a general two-stage Runge-
Kutta method will lead to the solution of one large system of 2s algebraic equations.

(c) One has to treat s X s matrices during every time-step, while 2s x 2s have to be
treated if a general two-stage Runge-Kutta method is used.

More details about the advantages of the DIRK methods can be found in Burrage (1995), Butcher
(2003), Hairer, Norsett and Wanner (1987), Hairer and Wanner(1991), Hundsdorfer and Verwer
(2003), Lambert (1991).

The stability function of any numerical algorithm belonging to the class of the two-stage DIRK
methods defined by (5.84) and (5.85) can be derived as follows. Assume again that the Dahlquist test-

equation (5.73) is used. The following formulae can be derived by using the relation f(t,y) = Ay,
which follows from the comparison of (5.54) with (5.73) and from the notation hA = p.:

(5.86) kl(f: -1t h) = )L(Yn—l + hy kl(f' -1, th h)) =AYp-1 t YR kl(f' th-1,th; h),

(5 87) kl(fJ tn—1J tn; h) —YR kl(f: tn—lr tn; h) = AYn—l ’

1
(5 88) kl(fJ tn—l: tn: h) - 1— yu}'YIl—l '

Similar, but slightly more complicated calculations lead to

1—-yp+byp y
1-ywz

(5 89) kz (f, tn—l» tn; h) =

Insert the right-hand-sides of (5.88) and (5.89) in (5.84) to obtain the following result after some not
very complicated computations:

A —yp+ @A —yp) + cz1bzyp?
(5.90) y,= -1 »
Y (1—yp)? Yn-1

The last formula shows that the stability function of the class of the two-stage Diagonally Implicit
Runge-Kutta (DIRK) methods is the expression given below:
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A-yp+pw@A- vu)+c2b21u
(1 —yw?

(5.91) RpIEG0W =

[2—stage

According to Theorem 1, the stability function of the combined method (the two-stage DIRK method
+ the Marchuk-Strang splitting + the Richardson Extrapolation) can be obtained by using the formula:

[RE 5 (5)] 4 [RB S (5)] -~ RES 0]

3

(5.92) R (W) =

It is necessary now to select a particular method from the class of the two-stage DIRK methods. This
can be done by the following choice of the coefficients:

V2 V2
(5.93) y=1-—, az=—, by =V2—-1, ¢ =¢;=0.5 .

The resulting method is A-stable. The concept of A-stability was defined above, see more details in
Burrage (1995), Butcher (2003), Hairer, Nersett and Wanner (1987), Hairer and Wanner(1991),
Hundsdorfer and Verwer (2003), Lambert (1991). More about the particular method obtained by
the choice made in (5.93) can be found in Zlatev (1981).

We shall also use in the experiments the one-stage second-order Runge-Kutta method, which is much
better known under the name Implicit Mid-point Rule:

(5- 94‘) Yn =V¥n-1t h kl(f: tho1, s h) =Vn-1t hf(tn—O.S , 0. S(Yn + Yn-1 )) .

This method belongs also to the class of the so-called one-leg methods, it is A-stable and it is identical
with the Trapezoidal Rule when it is used to handle systems of linear ODES, see more details in
Lambert (1991). The stability function of the Mid-point Rule, which is the same as the stability
function of the Trapezoidal Rule, is

1+0.5pn

[Mid—point]
5.95 R = —_—
(5.95) (W =7— 0,51

[1—stage]

The application of the assertion of Theorem 1 to the Implicit Mid-Point Rule combined with the
Marchuk-Strang splitting procedure and the Richardson Extrapolation leads to the following
expression for the stability function:
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[1-stage] 2 [1-stage] 4 [1-stage]
3

id—poin 2 id—poin 4 id—poin
(5.96) RMid- pomt( w) = [R[Mld el (E)] {4‘ [R[Md point] (E)] _ glMid—p t]( )}

[1-stage]

The stability properties of the particular numerical algorithm from the class of the two-stage DIRK
methods, the coefficients of which are given in (5.93), and the Implicit Mid-point Rule, when these are
combined with the Marchuk-Strang splitting procedure and the Richardson Extrapolation, will be
studied in the next section.

5.5.5. Absolute stability regions of the combined numerical methods

It is difficult to investigate the stability properties of the combinations of the two selected methods with
Marchuk-Strang splitting procedure and the Richardson Extrapolation. Indeed, the stability functions
of the underlying methods are ratios of complex polynomials of degree two, while the corresponding
degrees of the complex polynomials in the combined methods are eight. This is why the same approach
as that successfully used in the first previous chapters as well asin Zlatev et al. (2016) was also applied
in this case.

It was established that the important inequality |R(v)] <1 holds in a big square domain with
vertices: (0.0, 0.0),(0.0, 10%i), (—10%i, 10°i) and (—10°, 0.0) for the two-stage DIRK
method combined with the Marchuk-Strang splitting procedure and the Richardson Extrapolation. A
part of the domain, in which the combined method is absolutely stable is given in Fig. 5.6. The same
approach as that used in Zlatev, Georgiev and Dimov (2014) was applied. It can be described as
follows. Let p beequalto @+ Bi with & < 0 and select some increment € >0 (we have
chosen € = 0.01). Start the calculations with @ = 0 and compute successively the values |R(V)]
fora=0 andfor B=0, g 2¢, 3¢ ... Continue the calculations until B becomes equal to
105 under the condition that |R(v)| stays less than one during all these computations. Repeat this
procedure for values of @« equal to —e, —2¢&,— 3¢, ... Continue to decrease a until it becomes
equalto —10° (requiring again |R(v)| stays always less than one). It is clear that one should expect
that all points within the squares plotted in Fig. 5.6 that are obtained by applying the above algorithm,
belong to the absolute stability regions of the studied numerical methods.

The same approach applied to the combination of the Implicit Mid-point Rule with the Marchuk-Strang

splitting procedure and the Richardson Extrapolation shows that the absolute stability region of this
method is finite but quite large, see Fig. 5.7.
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PART OF THE STABILITY REGION
1*10°

9*10*

8*10°
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1*10°*

0*10°
-1*10° -8*10* -6*10* -4*10* -2*10* 0*10°

Figure 5.6
Part of the absolute stability region of the two-stage second-order diagonally implicit Runge-Kutta

method defined with y =1 —+/2/2, a, =v2/2, by; =vV2—-1, c¢; = ¢, = 0.5 and combined
with the Marchuk-Strang splitting procedure and the Richardson Extrapolation.
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Figure 5.7
The absolute stability region of the Implicit Mid-point Rule combined with the Marchuk-Strang
splitting procedure and the Richardson Extrapolation.

5.5.6. Some numerical results

As mentioned in the beginning of this section, an important module, taken from the Unified Danish
Eulerian Model (UNI-DEM), see Abdalmogith, Harrison and Zlatev (2004), Alexandrov et al.
(2004), Ambelas Skoth et al. (2000), Bastrup Birk et al. (1997), Geenaert and Zlatev (2004),
Harrison, Zlatev and Ottley (1994), Hass et al. (2004), Havasi and Zlatev (2002), Roemer et al.
(200471, Zlatev (1995), Zlatev and Dimov (2006), will be used in several numerical experiments. This
module is an atmospheric chemical scheme with 56 species, which is represented by a non-linear,
badly scaled and stiff system of ODEs. The badly scaling of the components in the system of ODE’s
is demonstrated in Table 5.4. The maximal concentration of CH3;CHO is 6.9 X
1019, while the minimal concentration of OD is 6.5 x 1074% j.e., the difference is about 50 orders
of magnitude. The diurnal variations of many concentrations are both rapid and very large, which is
shown in Fig. 5.8 and Fig. 5.9. It is also seen that some of the concentrations are decreasing during the
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night, while others are increasing in this period. Furthermore, the variations of the concentrations in
these two rather short but very critical time-periods are extremely quick and create steep gradients.

Chemical Maximal Minimal Mean
species concentrations | concentrations | concentrations
CH;CHO 6.9 x 1010 6.4 x 10° 6.8 x 10°

N,O: 1.8 x 10° 5.3 x 10* 4,3 x108

OH 2.3 x 107 3.3 x 10* 6.3 x 10°

oD 4.4 x 1072 2.5 x 10740 1.1 x 1072
Table 5.4

Orders of magnitude of the concentrations of four chemical species in a period
of 24 hours; from 12 o’clock at the noon on a given day to 12 o’clock at the
noon on the next day. Units: (numbers of molecules) / (cubic centimetre).

The condition numbers of the Jacobian matrices ] = of/dt appearing in the period of 24 hours
were calculated at every time-step (by using LAPACK software from Anderson et al. (1992) and
Barker et al. (2001). Introduce the abbreviation COND for the condition number computed at any
time-step. We found out that COND € [4.56 x 108, 9.27 x 1012 ] during the time-period of
24 hours. This shows that difficulties might appear not only because the selected numerical scheme
is not sufficiently accurate, but also because the rounding errors may interfere with the truncation
errors, see, for example, Hamming (1962), Stewart (1973), Wilkinson (1963, 1965).

It is necessary for the computer programs to define the time-interval in seconds. Then the chemical
atmospheric scheme was handled on the interval [a,b] =[43200, 129600 | . The starting value
a =43200 corresponds to 12 o’clock at the noon (measured in seconds and starting from mid-
night), while b = 129600 correspondsto 12 o’clock at the next day (measured also in seconds
from the starting point).

Sequences of 19 runs were carried out and selected results are presented below. The first run was
always performed by using N = 168 time-steps, the time-stepsize being h ~ 514.285 seconds.
The time-stepsize h was halved after each run. This implies that the number of time-steps was doubled.
The local error made at t; in any of the runs was measured for k=1, 2,.. , 19 by using the
following formula:

< | yij = ¥iD

ref

(5.97) ERROR® = max
max(|y;s|,1.0)

) ,j=2k12x2k1 168 x 2k 1,
i=1,2,...56

where y;; and y{i‘*f are respectively the calculated values and the values of the reference solution

ofthe i chemical species at tj=to +jhy (Where j=1, 2, ..., 168 and hy ~ 514.285
was the time-stepsize that has been used in the first run). The values of the reference solution were
calculated, as in Chapter 4, by using a very accurate method (three-stage fifth-order L-stable Fully
Implicit Runge-Kutta (FIRK) Method), Ehle (1968), see also Burrage (1995), Butcher (2003),
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Hairer, Norsett and Wanner (1987), Hairer and Wanner (1991), Hundsdorfer and Verwer
(2003), Lambert (1991), with N =998244352 time-steps and a time-stepsize  h,s =
6.1307634 x 107> . This means that we estimate the local errors at the same set of grid-points in
each of the 19 runs. Moreover, the number of grid-points, at which the error is estimated, is 168
for any of the 19  runs. It should also be mentioned that the values of the reference solution at the
grid-points of the coarse grid used in the first run have been preserved and applied in the evaluation of
the local errors. It is possible to store all values of the reference solution, but such an action will increase
too much the storage requirements. It is more important that the local errors of the calculated
approximations were computed at the same 168 grid points.

H O 2
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Figure 5.8
Diurnal variation during the time-interval of 24 hours.
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CHEMICAL SPECIES: ISOPRENE
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Minimal concentration: 1.1E-06

Mean concentration: 1.5E+09

Figure 5.9
Diurnal variation during the time-interval of 24 hours.

The global error made atrun k, k=1, 2,... , 19 isestimated by:

5.98) ERROR® = max ERROR™) .
(
j=2k-12x2k-1 " 168x2k-1 )

An attempt was made to eliminate the influence of the rounding errors when the quantities involved in
(5.97) and (5.98) are calculated. This is indeed needed, because the Jacobian matrices involved in the
treatment of the atmospheric chemical scheme are badly scaled and extremely ill-conditioned. Accurate
results, without large rounding errors, can as a rule be obtained by using double precision arithmetic in
the calculations, but that is not always sufficient when the chemical scheme is handled. The reason for
this can be explained as follows. The atmospheric chemical scheme is a stiff non-linear system of
ODEs. Therefore, implicit numerical methods must be used, which leads to the solution of systems of
non-linear equations at each time-step by the Newton Iterative Method, see Hairer and Wanner
(1991), Hamming (1962), Hundsdorfer and Verwer (2003), Stewart (1973), and, thus, to treatment
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of long sequences of systems of linear algebraic equations during the iterative process. Let us reiterate
here that it was found, by calculating eigenvalues and condition numbers with subroutines from
Anderson et al. (1992) and Barker et al. (2001), that the condition numbers of the matrices involved
in the Newton lterative Process on the time-interval [a,b] = [43200,129600] vary in a very
wide range [4.56 x 108,9.27 x 1012 ] . If REAL = 8 declarations for the real numbers are used
in the computer programs, then computations involving about 16 significant digits are carried out.
Simple application of error analysis arguments from Stewart (1973), Wilkinson (1963, 1965) show
clearly that there is a danger that the rounding errors could appear in the last twelve significant digits
of the calculated numbers. Therefore, the computations presented in this section were carried out by
selecting quadruple precision leading to the use of REAL * 16 declarations for the real numbers
and, thus, working with about 32 significant digits during all computations). We eliminated in this
way the influence of the rounding errors at least in the first twenty significant digits of the
approximate solutions. We did this in order to demonstrate the possibility of achieving very accurate
results under the assumption that stable implementations of the Richardson Extrapolation were
developed and used.

The results obtained by using the rules discussed above are given in Table 5.5 for the two-stage second-
order Diagonally Implicit Runge-Kutta (DIRK) methods used (a) directly, (b) together with the
Marchuk-Strang splitting procedure and (c) together with both the Marchuk-Strang splitting procedure
and the Richardson Extrapolation. The corresponding results obtained when the Implicit Mid-Point
Rule are given in Table 5.6.

Several major conclusions can be drawn by studying the numerical results presented in Table 2 and
Table 3:

(A) The results obtained by the direct implementation of a second-order method are as a
rule more accurate than the corresponding results obtained when the Marchuk-Strang
splitting procedure is additionally used. The hope is that the splitting procedure will
lead to a better computational efficiency, because each of the two problems (5.59) and
(5.60) is easier or even much easier than the original problem (5.54).

(B) The application of the two-stage second-order DIRK method together with both the
Marchuk-Strang splitting procedure and the Richardson Extrapolation leads to a third-
order combined numerical method for sufficiently small stepsizes.

(C) The application of the second order Implicit Mid-point Rule together with both the
Marchuk-Strang splitting procedure and the Richardson Extrapolation is not stable for
large time-stepsizes. This fact shows clearly that one should study carefully the
stability properties of the combined method when the Richardson Extrapolation is to
be used.

(D) The application of the second-order Implicit Mid-point Rule together with both the
Marchuk-Strang splitting procedure and the Richardson Extrapolation with small
stepsizes leads to a combined numerical method which behaves as a fourth-order
numerical scheme and gives very accurate results.
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Length Direct DIRK Marchuk-Strang Richardson
Number | Number | of the method Splitting Extrapolation
of jobs | of steps | stepsize | Accuracy | Rate Accuracy | Rate Accuracy | Rate
1 168 | 514.28571 | 4.16E-01 - 4.15E-01 - 1.60E-01 -
2 336 | 257.14285 | 8.29E-02 | 5.02 | 2.01E-01 | 2.06 | 7.03E-02 | 2.28
3 672 | 128.57143 | 1.89E-02 | 4.39 | 9.52E-02 | 2.11 | 2.65E-02 | 2.66
4 1344 | 64.28571 | 455E-03 | 4.15 | 3.94E-02 | 242 | 8.61E-03 | 3.08
5 2688 | 32.14286 | 1.12E-03 | 4.07 | 147E-02 | 2.69 | 2.42E-03 | 3.56
6 5376 | 16.07143 | 2.77E-04 | 4.03 | 492E-03 | 2.95 | 5.83E-04 | 4.15
7 10752 8.03571 | 6.91E-05 | 4.02 | 1.55E-03 | 3.20 | 1.19E-04 | 4.89
8 21504 401786 | 1.72E-05 | 4.01 | 4.49E-04 | 3.46 | 1.99E-05 | 5.99
9 43008 2.00893 | 4.30E-06 | 4.00 | 1.22E-04 | 3.68 | 2.73E-06 | 7.29
10 86016 1.00446 | 1.07E-06 | 4.00 | 3.19E-05 | 3.82 | 3.30E-07 | 8.29
11 172032 0.50223 | 2.69E-07 | 4.00 | 8.17E-06 | 3.91 | 3.83E-08 | 8.62
12 344064 0.25112 | 6.72E-08 | 4.00 | 2.07E-06 | 3.95 | 4.56E-09 | 8.39
13 688128 0.12556 | 1.68E-08 | 4.00 | 5.19E-07 | 3.98 | 5.64E-10 | 8.09
14 1376256 0.06278 | 4.20E-09 | 4.00 | 1.30E-07 | 3.99 | 7.09E-11 | 7.96
15 2752512 0.03139 | 1.05E-09 | 4.00 | 3.26E-08 | 3.94 | 8.95E-12 | 7.93
16 5505024 0.01569 | 2.62E-10 | 4.00 | 8.16E-09 | 4.00 | 1.13E-12 | 7.94
17 11010048 0.00785 | 6.56E-11 | 4.00 | 2.04E-09 | 4.00 | 141E-13 | 7.97
18 22020096 0.00392 | 1.64E-11 | 4.00 5.10E-10 | 4.00 1.77E-14 | 7.98
19 44040192 0.00196 | 4.10E-12 | 4.00 1.27E-10 | 4.00 2.21E-15 7.99
Table 5.5

Running the atmospheric chemical scheme with 56 species by using the two-stage DIRK method
(directly, together with the Marchuk-Strang splitting procedure and in combination with both the
Marchuk-Strang splitting procedure and the Richardson Extrapolation). Nineteen values of the stepsize
were successively applied.

5.5.7. Concluding remarks

The implementation of some methods of Runge-Kutta type together with the Marchuk-Strang splitting
procedure and the Richardson Extrapolation was studied in the previous sections. It was shown that
the stability function of the combined numerical method can be expressed by a formula, which contains
only the stability function of the underlying Runge-Kutta method. Moreover, the accuracy order of the
resulting combined numerical methods is in general three, but may also be four in some cases. The
stability properties of the combined numerical methods should be carefully investigated, because
stability of the underlying methods cannot guarantee stability of the combined method when the
Richardson Extrapolation is also used.
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Length Implicit Mid- Marchuk-Strang Richardson
Number | Number of the point Rule Splitting Extrapolation
of jobs | ofsteps | stepsize | Accuracy | Rate | Accuracy | Rate | Accuracy | Rate
1 168 | 514.28571 | 1.30E-00 - 3.37E-00 - N.S. N.A.
2 336 | 257.14285 | 1.58E-01 | 8.23 | 1.77E-01 | 19.04 N.S. N.A.
3 672 | 128.57143 | 3.70E-02 | 4.27 | 6.54E-02 | 2.71 N.S. N.A.
4 1344 | 64.28571 | 9.12E-03 | 4.06 | 1.39E-02 | 4.72 N.S. N.A.
5 2688 | 32.14286 | 2.27E-03 | 4.01 | 3.72E-03 | 3.72 N.S. N.A.
6 5376 | 16.07143 | 5.67E-04 | 4.00 | 9.47E-04 | 3.93 | 2.44E-04 -
7 10752 8.03571 | 1.42E-04 | 4.00 | 2.38E-04 | 3.98 | 4.13E-05 | 5.91
8 21504 4.01786 | 3.54E-05 | 4.00 | 5.95E-05 | 4.00 | 8.61E-06 | 4.80
9 43008 2.00893 | 8.86E-06 | 4.00 | 1.49E-05 | 4.00 | 1.53E-06 | 5.63
10 86016 1.00446 | 2.22E-06 | 4.00 | 3.72E-06 | 4.00 | 2.10E-07 | 7.27
11 172032 0.50223 | 5.54E-07 | 4.00 | 9.31E-07 | 4.00 | 2.23E-08 | 9.42
12 344064 0.25112 | 1.38E-07 | 4.00 | 2.33E-07 | 4.00 | 1.94E-09 | 11.53
13 688128 0.12556 | 3.46E-08 | 4.00 | 5.82E-08 | 4.00 | 1.46E-10 | 13.26
14 1376256 0.06278 | 8.65E-09 | 4.00 | 1.45E-08 | 4.00 | 1.01E-11 | 14.46
15 2752512 0.03139 | 2.16E-09 | 4.00 | 3.64E-09 | 4.00 | 6.65E-13 | 15.18
16 5505024 0.01569 | 5.41E-10 | 4.00 | 9.09E-10 | 4.00 | 4.27E-14 | 15.57
17 11010048 0.00785 | 1.35E-10 | 4.00 | 2.27E-10 | 4.00 | 2.71E-15 | 15.78
18 22020096 0.00392 | 3.38E-11 | 4.00 | 5.68E-11 | 4.00 | 2.60E-18 | 10.18
19 44040192 0.00196 | 8.45E-12 | 4.00 | 1.42E-11 | 4.00 | 3.32E-17 | 7.83
Table 5.6

Running the atmospheric chemical scheme with 56 species by using the Implicit Mid-point Rule
(directly, together with the Marchuk-Strang splitting procedure and in combination with both the
Marchuk-Strang splitting procedure and the Richardson Extrapolation). Nineteen values of the stepsize
were successively applied. “N.S.” and “N.A” mean “not stable” and “not applicable” respectively.

5.6. General conclusions related to Chapter 5

Only 6-methods were used in the first four sections of this chapter. This is justified, because the
combination of any numerical method with the sequential procedure results in new numerical methods,
the order of which is one. Therefore, it will not be very useful to apply numerical methods of higher
order. Moreover, it was proved that for a larger sub-class of the class of the 8-methods, the
computational process remains stable also when stiff systems of ODEs are treated by combinations of
the sequential splitting procedure, the 8-methods for all values of 0 inthe interval [0y, 1.0] with
0y = 0.638 and the Richardson Extrapolation; see Theorem 5.1.

Implicit methods of higher order may become relevant if splitting procedures of higher order are used
in combination with the Richardson Extrapolation. This will certainly be true if the Marchuk-Strang
splitting procedure is used. This procedure, which was introduced in Marchuk (1968), see also
Marchuk (1980, 1982, 1986, 1988), and Strang (1968), is of order two. Therefore, it will be optimal
to use this procedure together with second-order numerical methods. Then the combination of the
Marchuk-Strang splitting procedure with second-order numerical methods and the Richardson
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Extrapolation will be a numerical method of third-order of accuracy. It should be noted however, that
the Marchuk-Strang splitting procedure is more expensive computationally than the sequential
splitting.

It has been shown in Theorem 5.1 that the combination of the sequential splitting procedure, the 8-
methods for all values of © inthe interval [0y, 1.0] with 0, = 0.638 and the Richardson
Extrapolation, see Theorem 5.1, is a new numerical method, which is strongly A-stable. However, it
should be emphasized also in this chapter that the requirement of strong A-stability is only a sufficient
condition for achieving stable computations. Numerical methods, which do not possess this property
should not automatically be discarded. Such methods could be very useful if one can show that their
absolute stability regions are very large, as was done in the end of the previous chapter.

It was assumed that the right-hand-side of the system of ODEs is a sum of two operators only. The
results can be generalized for the case where more operators are presented.

5.7. Topics for further research
The following topics might lead to some very interesting and useful results:

(A) It was mentioned in the previous section that the Marchuk-Strang splitting
procedure is of order two and, therefore, it might be a good candidate for
combined methods, also when the Richardson Extrapolation is used. Some
stability results for the combinations (the Marchuk-Strang splitting
procedure, some classes of second order implicit numerical methods and
the Richardson Extrapolation) will be very useful.

(B) If the Marchuk-Strang splitting procedure is used, then the use of the
numerical schemes from the class of the 6-methods will not be a good
choice, because these numerical schemes are of first order of accuracy
when 0 # 0.5, while the Marchuk-Strang splitting procedure is of
second order of accuracy. Therefore, the use of numerical schemes, the
order of accuracy of which is two, will be optimal in this case. It should
be noted, however, that the Trapezoidal Rule, which belongs to the class
of the 8-methods and can be found by setting 6 = 0.5, is not a good
choice, because it will lead to unstable computations. Some second-order
Implicit Runge-Kutta method should be selected.

(C) It is also possible to apply first order numerical scheme to each of the
problems (5.3) and (5.4) obtained after applying splitting in relation to
problem (5.1). Some numerical schemes from the class of the 6-methods
can be selected (different numerical schemes can be used). The Richardson
Extrapolation can be used for each of the two sub-problems. Thus, second
order of accuracy will be obtained during the computations with each of
the two sub-problems and it will be appropriate to apply the Marchuk-
Strang splitting procedure.
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(D) Some other splitting procedures can also be applied together with the
Richardson Extrapolation in a similar manner as the sequential splitting
was treated in this chapter.
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Chapter 6

Richardson Extrapolation for advection problems

The application of the Richardson Extrapolation in connection with initial value problems for systems
of ODEs was studied in the previous five chapters. Some applications of this approach in the case
where partial differential equations (PDEs) are to be handled numerically on computers will be
presented and discussed in this chapter. There are two ways to apply the Richardson Extrapolation in
the treatment of PDEs:

(A) One may first semi-discretize the partial differential equation (or the system of partial
differential equations). This is often performed by applying either finite elements of finite
differences in relation to the spatial derivatives. Then the Richardson Extrapolation can
be applied to the resulting (normally very large) system of ordinary differential equations.

(B) One can apply the Richardson Extrapolation directly to the partial differential equation
(or to the system of partial differential equations).

The implementation of the Richardson Extrapolation in Case (A) is in principle the same as the
implementation of this device, which was studied in the previous chapters. It is only necessary first to
discretize the spatial derivatives: the result of this semi-discretization will be a system of ODEs of the
same type as the systems of ODEs studied in Chapter 1 — Chapter 4. Therefore, it is not necessary to
consider again this case here. Only two important facts must be stressed:

(a) the system of ODEs that is obtained after the semi-discretization of the system of PDEs
is normally very large, which causes or at least may very often cause serious technical
difficulties

and

(b) the accuracy of the results will be improved when the Richardson Extrapolation is
implemented only if the errors due to the spatial discretization are considerably smaller
than the error due to the use of the selected time-integration numerical method.

The short discussion in the previous paragraphs shows clearly that it is necessary to study here only
Case (B). This will be done in connection with some special partial differential equations, the advection
equations, which are a very substantial part of large-scale air pollution models and in these applications
describe mathematically the transport of air pollutants in the atmosphere (see Alexandrov et al., 2004,
Zlatev, 1995 or Zlatev and Dimov, 2006), but such equations appear in many other problems arising
in science and engineering.

One-dimensional advection equations will be introduced in Section 6.1. The discretization of these
equations by using the Crank-Nicolson numerical scheme will be briefly discussed there. The Crank-
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Nicolson numerical scheme is of second order of accuracy in regard both to the time variable and to
the space variable (see, for example, Strikwerda, 2004).

In Section 6.2 it will be shown how the Richardson Extrapolation can be combined with a rather
general numerical method for solving PDEs.

Four different implementations of the Richardson Extrapolation in connection with the Crank-Nicolson
scheme will be introduced and discussed in Section 6.3.

In Section 6.4 it will be proved that the new method (the combination of the Richardson Extrapolation
with the Crank-Nicolson scheme) is of order four.

Three numerical examples will be given in Section 6.5 in order to illustrate the fact that under certain
assumptions the accuracy is indeed increased by two orders when the Richardson Extrapolation is used.

In the next section, in Section 6.6, the result proved in the fourth section for the one-dimensional
advection will be generalized for the multi-dimensional case. Several special cases, one-dimensional
advection, two-dimensional advection and three-dimensional advection will also be presented and
discussed in Section 6.6.

Some conclusions and remarks will be presented in Section 6.7.

Some topics for further research in this area will be suggested in Section 6.8.

6.1. The one-dimensional advection problem

In the first five sections of this chapter, we shall mainly consider a very simple one-dimensional
advection equation, which appears (very often after performing some kind of splitting) in many
advanced mathematical models describing different processes arising in fluid dynamics; see, for
example Zlatev, 1995, Zlatev and Dimov, 2006), but it should immediately be emphasized that this
simplification is made only in order to facilitate the understanding of the main ideas. Most of the results
can easily be extended for other and more complicated cases. One particular example for such an
extension will be presented in Section 6.6.

We are interested in applying the Richardson Extrapolation for the following scalar partial differential
equation:

dc dc
(6 1) a = -u & , XE [a1, bl] = (_Ool OO) ’ te [al b] = (_ooi 00) .

It will be assumed that u = u(x,t) is a given function, which varies both in time and in space. The
physical meaning of this function depends on the particular area in which equation (6.1) arises. For
example, in many fluid dynamics applications it is interpreted as a velocity field. More specifically, in
atmospheric modelling of long-range transport of air pollutants, wu(x,t) represents the wind velocity
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field in the considered spatial domain (see, for example, Alexandrov, 2004, Zlatev, 1995, Zlatev and
Dimov, 2006). It should be mentioned here that in this special case the unknown function c(x,t) is
the concentration of some air pollutant, which could be dangerous for humans, animals and plants.

The well-known Crank-Nicolson numerical scheme (see, for example, Strikwerda, 2004, page 63) can
be used in the treatment of (6.1) on computers. The calculations are carried out by applying the
following formula:

(6.2) 0in+05Ci+1n+1 T Cin+1 — Oin+05 Ci—tn+1 T Oin+05 Ci+1n — €in — Oin+05Ci—1n = 0,

when the Crank-Nicolson numerical scheme is used (more details about this particular numerical
scheme as well as for other numerical schemes can also be found in Crank and Nicolson, 1947,
Lapidus and Pinder, 1982, Morton, 1996, Smith, 1978).

Equation (6.1) must always be considered together with some appropriate initial and boundary
conditions. In principle, it is only necessary to provide a boundary condition at the left-hand-side end-
point of the spatial interval [a;,b;] when wu(ay,t) is positive. However, the use of the Crank-
Nicolson numerical scheme (6.2) requires also a boundary condition on the right-hand-side end-point
of this interval. Therefore, it will always be assumed that Dirichlet boundary conditions are available
at the two end-points of the interval [a, b4] .

Particular initial and boundary conditions will be discussed in Section 6.4, where some numerical
examples will be introduced and handled.

The quantity 6,495 IS defined by

(6.3) Ointos = an u(x;, thios)

where t,,o5 =t, + 0.5k and the increments h and k of the spatial and time variables
respectively are introduced by using two equidistant grids:

. by —a,;
(64’) GX:{Xil Xo = 41, Xi:Xi_1+h, 121,2, . NX' h = N ) XNX:bl}
X
and
b—a
(6.5) Gtz{tn|t0=a, th=thatk n=12 ., Ny, k=——, tNt=b}
t
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It should be possible to vary the increments h and k (for example, the relationships h — 0 and
k — 0 must be allowed when the convergence of the numerical method and the convergent rates of
the calculated approximations are to be studied). However, it will be assumed that the ratio h/k
remains always constant when the increments are varied. This implies a requirement that if, for
example, h ishalved, then k is also halved. More precisely, it will be assumed that if an arbitrary
pair of increments (hq, ky) is replaced with another pair (h,, k;), then the following relationship
must hold:

hy h;

where vy is a constant which does not depend on the increments. The requirement to keep h/k
constant is not a serious restriction.

Assume that c(x;,t,) Iis the exact solution of the advection equation (6.1) at an arbitrary grid-point
(x;,t,) belonging to the two sets of points defined by the equidistant grids (6.4) and (6.5). Then the
values Cn (i=0,1, .., Ny and n=1,2, ., N;) calculated by (6.2) will be
approximations of the exact solution at the grid-points (x;,t,), i.e.the relationships ¢;, = c(x;, t,)
will hold for all grid-points. Our major task in the following part of this chapter will be to show how
the accuracy of the calculated approximations c;, can be improved essentially by using additionally
the Richardson Extrapolation.

The application of the Richardson Extrapolation, when an arbitrary one-dimensional partial differential
equation (not only the particular equation which was introduced in the beginning of this section) is
treated by any numerical method, will be described in Section 6.2.

Four different implementations of the Richardson Extrapolation will be presented in Section 6.3.
The order of accuracy of the new numerical method consisting of the combination of the Crank-
Nicolson scheme and the Richardson Extrapolation will be established in Section 6.4. The error
constants in the leading terms of the numerical error for the Crank-Nicolson scheme will also be
calculated there.

Numerical results will be presented in Section 6.5 in order to demonstrate the applicability of the

theorems proved in Section 6.4 and the fact that the application of the Richardson Extrapolation leads
always to more accurate results. Several concluding remarks will also be given there.

6.2. Combining the advection problem with the Richardson Extrapolation

Assume that a one-dimensional time-dependent partial differential equation is treated by an arbitrary
numerical method, which is of order p > 1 with regard to the two independent variables x and t.
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Ny . . .

Let {Zi,n}i= 0 be the set of approximations of the solution of (6.1) calculated for t=t, € G, atall
. . Ny .
grid-points X; € G,, where i=0, 1, .., N, . Assume furthermore that the set {z;,}." s
calculated by using the numerical method chosen and consider the corresponding approximations

Ny . . ) .
{Zin-1},_, calculated at the previous time-step, i.e. for t=t, 4 € G, . Introduce the following

. Ny
three vectors €(t,), Zin_q and Z, the components of whichare {c(x; ta)}N, . {Zi,n—1}i=0
Ny . . . . .
and {Zi,n}i=0 respectively. Since the order of the numerical method is assumed to be p with regard

bothto x and t, we can write:

(6.7) &(ty) = Zj, + hPKy + KPK; + O(kP*1),

where K; and K, are some quantities, which do not depend on the increments h and k. In
fact, the last term in (6.7) will in general depend bothon hP*! and kP*!. However, by using the
assumption (6.6), we can write hP*1 = yP*1kP*+1 andsince y is a constant which does not depend
ontheincrements h and k, itisclearthatin our case, i.e. when the assumption (6.6) is made, the
last term in (6.7) depends essentially onlyon k.

It is convenient to rewrite, by using once again (6.6), the last equality in the following form:
(6.8) c(t,) =Z, + kPK + O(kP*1) .

where

69 K=(L) K +K,.

If the increments h and k are sufficiently small, then the sum hPK,; + KPK, , which occurs in
(6.7) will be a good approximation of the truncation errors in the calculated values of the numerical

solution {Zi,n}?:o . Of course, if the relationship (6.6) is satisfied and if again h and k are
sufficiently small, then kPK from (6.8) will also be a good approximation of the error of the numerical
solution Z;,, . This means that if we succeed to eliminate the term KkPK in (6.8), then we shall
obtain approximations of higher order, of order at leastequal to p + 1. The Richardson Extrapolation
can be applied in the attempt to achieve such an improvement of the accuracy. In order to apply the

Richardson Extrapolation it is necessary to introduce an additional grid:

2 h b; —a,
(6 10) GX = {Xi | Xo = A1, Xj=Xj-1 +=, 1= 1, 2, ZNX ) h = N
X

o, =B,
2 X2N, 1
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N 2Ny : .

Assume that approximations {Wi,n—l}i= 0 (calculated at the grid-points of G2 for t=t,_; € G,)

are available and perform two small time-steps with a stepsize k/2 to compute the approximations
2Ny . - . .

{wi'“}i=0 . Use only the components with even indices i, i=0, 2, ..., 2N,, to form the vector

W, . Itiseasily seen that the following equality holds for this vector:

k P
6.11) &(t,) = W, + (E) K + O(kP*1) .

where the quantity K is defined as in (6.9).

Now, it is possible to eliminate the quantity K from (6.8) and (6.11). This can successfully be done
in the following way:

(a) remove the last terms in (6.8) and (6.11),

(b) multiply (6.11) by 2P
and
(c) subtract (6.8) from the modified equality (6.11).

The result is:

2Pw, —Z
(6 12) E(tn) = ﬁ + O(kp+1) .
Denote:
_ 2P wn —Zy
(6 13) Ch = ﬁ

It is clear that the approximation ¢, , being of order at least equal to p + 1, will in general be
more accurate than both z, and W, when the increments h and k are sufficiently small. The
device used to construct the approximation ¢, is obviously the Richardson Extrapolation, which is
applied this time in order to improve the accuracy of a numerical method of order p for solving
partial differential equations, not necessarily the particular equation (6.1). Indeed, if we assume that
the partial derivatives of the unknown function c(x,t) uptoorder p + 1 existand are continuous,
then it should be expected that the approximation calculated by using (6.13) will produce more accurate
results than the two approximations z, and W, thatare obtained by applying directly the underlying
numerical method.
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Remark 6.1: No specific assumptions about the particular partial differential equation or about the
numerical method used to solve it were made in this section excepting only the requirement that the
order of the applied numerical method is p with regard to the two independent variables x and
t. This approach was used in order to demonstrate how general is the idea, on which the Richardson
Extrapolation is based. It must be emphasized, however, that in the following part of this chapter we
shall consider the case where

(a) equation (6.1) is solved under the assumptions made in the previous section
and

(b) the underlying numerical algorithm applied to handle it numerically is always the second-
order Crank-Nicolson scheme.

6.3. Implementation of the Richardson Extrapolation

When the advection equation (6.1) is solved by using the Crank-Nicolson scheme, Richardson
Extrapolation can be implemented in four different manners depending on the way in which the
computations at the next time-step, step n+ 1, will be carried out.

(1) Simplified Active Richardson Extrapolation: Use ¢, as initial value to

_ 2Ny e .
compute Z,,;. Use the set of values {wi:"}i=o as initial values to compute

2Ny ~ . ..
{wi,nﬂ}:l ! and after that to form W, . Since we assumed that Dirichlet

boundary conditions are available on both end-points of the spatial interval, the

values of {wi,nﬂ}iZ_N;‘ for i=0 and i= 2N, arealso available.

(2) Passive Richardson Extrapolation: Use 1z, as initial value to compute the
approximation Z,,; . Use, in the same way as in the Simplified Active

. . 2N ..

Richardson Extrapolation, the set of values {Wi'n}i= (;‘ as initial values to

2Nx—1

i=1

{wi,nﬂ}iz:'(;‘ for i=0 and i = 2N, areagain known, because it is assumed

that Dirichlet boundary conditions are available on both end-points of the

spatial interval.

compute  {Wjni1} and after that to form W,,; . The values of

(3) Active Richardson Extrapolation with linear interpolation on the finer
spatial grid (9): Use ¢, as initial values to compute Z,.q . Set wy, =
cin for i=0, 1,.., Ny. Use linear interpolation to obtain approximations
of the values of wy;,, for i=1, 3,..., 2N, — 1. Usethe updated in this
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X

2N
way set of values {w;,} .

and the boundary conditions as initial values to

2N ~
compute {wi,nﬂ}i:;‘ and to form W1 .

(4) Active Richardson Extrapolation with third-order interpolation on the
finer spatial grid (6.9): Apply again ¢, as initial values to compute z,, .
Set wyi,=¢, for i=0,1,.,N,. Use third-order Lagrangian
interpolation polynomials to obtain approximations of the values of wy;,, for

2Ny

i=0
and the boundary conditions as initial values to compute {wi,nﬂ}izj: and to

form Wy,,q .

i=0,1,.., 2N, — 1. Use the updated in this way set of values {w;,}

The improvements obtained by applying (6.11) are not used in the further computations when the
Passive Richardson Extrapolation is selected. These improvements are partly used in the calculations
related to the large step (only to compute Z,.,) whenthe Simplified Active Richardson Extrapolation
is used. An attempt to produce and exploit more accurate values also in the calculation of W, is
made in the last two implementations.

Information about the actual application of the third-order Lagrangian interpolation is given below.
Assume that wp;, = ¢;, for i=0, 1,.., Ny. This means that the improved (by the Richardson
Extrapolation) solution on the coarser grid (6.44) is projected at the grid-points with even indices 0,
2,..., 2N, ofthe finer grid (6.9). The interpolation rule used to get better approximations at the grid-
points of (6.9) which have odd indices can be described by the following formula:

3 9 9 3 _
Ewi_:;’n + ~Z- Wi-1n + Rwi_l_l'n - Ewi_l_g'n , i=3, 5,.., ZNX -3.

(6.14) w;, = — T

Formula (6.14) is obtained by using a third-order Lagrangian interpolation for the case where the grid-
points are equidistant and when an approximation at the mid-point x; of the spatial interval
[X;_3, Xj+3] isto be found. Note that only improved values are involved in the right-hand-side of
(6.14).

Formula (6.14) cannot be used to improve the values at the points x; and Xy ;1 oOf the finer grid
(6.9). It is possible to use second-order interpolation at these two points:

3 3 1
(6- 15) wl,n = - §w0,n + sz,n - §W4,n )

3 3 1

W2N,-1n = ~ g WaNgn + 2 WaN-2n ~ g WaN,-an-

Some other formulae can be used instead of (6.14) and (6.15) in an attempt to achieve better accuracy
at the grid-points w; , of set (6.10) with odd indices.
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6.4. Order of accuracy of the combined numerical method
Before starting the investigation of the accuracy of the combination of the Crank-Nicolson scheme
with the Richardson Extrapolation, it is necessary to derive a formula showing the leading terms of the
errors made when the Crank-Nicolson scheme is used directly.
Consider formula (6.2). Following Lambert (1991), we shall replace the approximations contained in
this formula with the corresponding exact values of the solution of (6.1). The result is:
(6.16) Llc(xjtpro50K)] = 6ini05Cc(Xiy1, tay1) + (X tarq) — €(Xi—g, tayq)

+6in+05 C(Xir1, tn) — €(Xj, ty) — c(Xj_q, tp)

Gin+0.5 [€C(Xit1, tne1) — €(Xi—q, tns1)]

e, tar1) — €Xy tp)] + Ginsos [€(Xip1, tn) — (X1, tn)] .
The term  L[c(x;,t,405; h,K)] on the left hand side of (6.16) appears because the approximations
participating in equality (6.2) are replaced by the corresponding exact values of the solution of (6.1).
The following theorem can be proved by using this notation:

Theorem 6.1: The quantity L[c(x;,th05;h,K)] can be written (assuming that all involved
derivatives exist and are continuous) as:

yh3 03c(xj, thyos) K3 03c(x; thios)
(6.17) LIe( tusosi M) = Lotk tyags) o208 4 2 C T nr05)
k3 63c(x-, t 0_5)
+ ?u(xi'tn+0.5) #tn; + O(ks) .

Proof: Use Taylor expansions, of the functions in two variables involved in (6.16) around the point
(X;,thros) ,» Where, as in Section 6.1, we have t,,o5 =t, + 0.5k and keep the terms containing
k", where r=0, 1, 2, 3, 4. After some rather long but quite straight-forward transformations
(6.17) will be obtained.
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Theorem 6.1 ensures that the Crank-Nicolson scheme is a second-order numerical method, which is,
of course, well-known. It is much more important for our study that

(A) it provides the leading terms of the error of this method (which are needed in the
proof of Theorem 6.2)

and

(B) it shows that there are no fourth-order terms in the expression for the numerical error.

After presenting the above preliminary results connected to
(a) the problem solved,
(b) the Crank-Nicolson scheme
and
(c) the Richardson Extrapolation,
everything is now prepared for the proof of a theorem showing that the use of the combination of the

Crank-Nicolson scheme and the Richardson Extrapolation leads to a fourth-order numerical method
when the problem (6.1) is solved. More precisely, the following theorem holds:

Theorem 6.2: The combination of the Crank-Nicolson scheme and the Richardson Extrapolation
behaves as a fourth-order numerical method when (6.1) is solved and all derivatives of the unknown
function c(x,t) up to order four exist and are continuous.

X

Proof: Assume that all approximations {ci_n}io attime-step n have already been found. Then the

Richardson Extrapolation is carried out by using the Crank-Nicolson scheme to perform one large time-
step with stepsize k and two small time-steps with stepsize 0.5k . The major part of the
computations during the large time-step is carried out by using the formula:

(6.18) 0in+05Zi+1n+1 T Zin+1 — Oin+0.5 Zi—1n+1 T Oin+05 Ci+1n — Cin — Oin+05Ci-1n = 0.

The major part of the computations during the two small time-steps is based on the use of the
following two formulas:

(6.19)  0in+025Wi+05n+05 T Win+05 — Oin+025 Wi—0.5n+0.5

+06in+025 €Ci+05n — Cin — Oin+025 Ci—05n = 0
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and

(6.20)  0Oin+0.75 Wit05n+1 T Win+1 — Oin+0.75 Wi—0.5n+1

+06in+075 Wi+0.5n+05 — Win+05 — Oin+0.75 Wi—0.5n+05 = 0.

Let us start with (6.18). Equality (6.17) will obviously be obtained when all approximate values in
(6.18) are replaced with the corresponding values of the exact solution. This means that the assertion
of Theorem 6.1, equality (6.17), holds for the large time-step.

The treatment of the two small time-steps is more complicated. Combining (6.19) and (6.20) leads to
the formula:

(6.21)  0in+075 Wi+05n+1 T Win+1 — Oin+0.75 Wi—05n+1
10 n+075 Wi+0.5n+05 — Win+05 — Oin+0.75 Wi—0.5n+0.5
10in+0.25 Wi+0.5n+0.5 T Win+0.5 — Oin+0.25 Wi-0.5n+0.5

+06in+025 €Ci+05n — Cin — Oin+0.25 Ci—05n = 0

Replace all approximate values participating in (6.21) with the corresponding exact values of the
solution of (6.1) to obtain an expression for the local approximation error L in the form:

(6.22) L=1L;+1L,,
where

(6.23) L; = 6int+075 [€Xiros tnr1) — €Xi—os5 tar1) + €(Xiros taros) — €Xi—o5 tnros)]

+ (X, th+1) — €(Xj, thro5)

and

(6.24) L, = 6in1025 [€(Xitos thros) — CXi—os taros) + €(Xizos ta) — €(Xi_os) tn)]

+ (X, thios) — (X ty) .
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Our aim is to derive an expression for L.

First, we consider the terms participating in Li. weuse Taylor expansions of the involved functions
around the point (Xj, tnt+o.75) and apply a similar transformation as in the proof of Theorem 6.1. In

this way we can obtain the relation:

" yh? 3c(X; thrors) K3 03c(x;, tyrors)
3 83c(xj, tyio7s)
+ au(xi, thr075) a;artl; + O(ks)'

We repeat the same kind of transformations also when L, is considered. Now we apply Taylor
expansions around the point (x;, t,4+025) Of the involved functions. Then we obtain:

. yn 3c(X; throzs) K3 03c(x;, throzs)
(6.26) L, = Eu(xir thro25) %3 + 192 ot3
k3 0%c(X;, tyo25)
+ au(xi, thi025) a;artl; +0(k®).
The following result can be found by combining (6.25) and (6.26):
N th [ asc(xi; tn+0,75) a3c(xil tl’l+0.25)
(6.27) L= 18 _U(Xi’ tht0.75) %3 + u(X;, thio2s) a3
N k3 [83c(xi thro7s)  03c(Xi tpioz2s)
192 | ot3 ot3
3 a3C(X',t 0_75) 63C(X-,t 0.25)
+ P u(x;, thio.75) a;artl; + u(x;j, th+o2s) a;artl; + 0("5) .

Now, by expanding all terms in the right-hand-side of (6.27) around the point (x;, t,+05) and after
some very long but straight-forward transformations, we obtain

yh? 93c(x;, tpros) k_3 93c(x;, thios)

——u(Xj, thios)

6.28) L= _—
( ) 24 ox3 96 ot3
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k3 agc(xiﬁtn+0.5)

+ == u(X;, thtos)

32 axoe T Oo0k).

It should be noted here that a detailed derivation of the important relationship (6.28) can be found in
Zlatev et al. (2011b).

Since the order of the Crank-Nicolson scheme is p =2, itis clear that the improved by the
Richardson Extrapolation approximate solution at time-step n + 1 is obtained by

(a) multiplying the result obtained in (6.28), i.e. at the end of the second small time-step,
by 4/3,

(b) multiplying the result obtained in (6.17), in fact the result found at the end of the large
time-step, by 1/3

and
(c) subtracting the two results obtained in (a) and (b).

Performing operations (a) —(c) will give:

(6.29) 3L FLIct traosih 0] = %< tnsos) %t) 1;_2 a%(x;,t taso)
T ; “(Xi'tn+o.5)%
—Eu(xi tn+os)w—k—3 M
18 ’ ' ox3 72 at3
- g u(x;, tios) —630(;2;:;0_5) +0(Kk%).

It is immediately seen that the first six terms in the right-hand-side of (6.27) vanish. Therefore, the
order of accuracy of the combined numerical method (the Crank-Nicolson scheme + the Richardson
Extrapolation) is four, which completes the proof of the theorem.

It should once again be emphasized that a full proof of Theorem 6.2, containing all needed details, can
be found in Zlatev et al. (2011c), see also Zlatev at al. (2011b).
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6.5. Three numerical examples
In this section it will be verified numerically that the following two statements are true:

(a) if the solution is continuously differentiable up to order two, then the direct application
of the Crank-Nicolson scheme gives second-order accuracy

and

(b) if the solution is continuously differentiable up to order four, then the combined method
consisting of the Crank-Nicolson scheme and the Richardson Extrapolation behaves
normally as a fourth-order numerical algorithm.

Furthermore, we shall also demonstrate the fact that if the above requirements are not satisfied, then
neither the direct use of the Crank-Nicolson scheme leads to second-order accuracy, nor the new
numerical method based on the combination of the Crank-Nicolson scheme with the Richardson
Extrapolation behaves as a fourth-order numerical algorithm.

6.5.1. Organization of the computations

It is convenient for the purposes in this chapter, but not necessary, to divide the time-interval [a, b]
into 24 equal sub-intervals and to call each of these sub-intervals “hour”. By this convention, the
length of the time-interval becomes 24 hours in all three examples given in this section and we shall
study the size of the numerical errors at the end of every hour. It should also be added that this
convention is very useful in the air pollution model UNI-DEM where the advection scheme is
considered together with the atmospheric chemical scheme considered in the previous chapter and the
calculations have to be synchronized (more details can be found in Zlatev, 1995 or in Zlatev and
Dimov, 2006).

In each experiment the first run is performed by using N, = 168 and N, = 160 . Ten additional
runs are performed after the first one. When a run is finished, both h and k are halved (this means
that both N, and N, are doubled) and a new run is started. Thus, in the last run, in the eleventh
run, we have N, =172032 and N, = 163840, which meansthat 172032 systems of linear
algebraic equations, each of them containing 163840 equations, are to be solved. This short
description is giving some ideas about the size of the problems that have to be handled in numerical
examples, which were selected by us. It is also becoming quite clear that the problems related to the
treatment of partial differential equations are in general much bigger than the problems related to the
solution of systems of ODEs, which were treated in the previous chapters.

It is worthwhile to reiterate here that the ratio h/k is kept constant, i.e. the requirement, which was

introduced by (6.6) in Section 6.1, is satisfied, when the two increments k and h are varied in the
manner described above.
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We are mainly interested in the behavior of the numerical errors. As mentioned above, these errors
must be evaluated at the end of every hour (i.e. 24 times in each run). Moreover, the errors are
evaluated at the grid-points of the coarsest spatial grid.

The evaluation of the errors, which is based on these two assumptions, is described below.

Assume that run number r, where r=1, 2, ..., 11, istobecarried outand let R =271
Then the error made at the end of hour m is calculated by using the following formula:

Ciw — CNegact
(6.30) ERROR,, = max e — cii ,
1.0)

j=0,1,..,160 max(lcf%aa ,

m=1,2..,24, i=jR, n=7mR,

where ¢;z and ¢fX** are the calculated approximation and the exact solution of the solved problem
at the end of hour m and at the grid-points of the coarsest spatial grid (i.e., the spatial grid with
Ny =160 ). It should be mentioned here that in the three experiments, which will be presented in
this section, the exact solution is known.

The global error made during the computations is estimated by using the following formula:

(6.31) ERROR= max (ERROR,,).
m=0,1,...,24

It is necessary to point out that the numerical values of the unknown function, which are improved by
the Richardson Extrapolation, i.e. by applying (6.13) with p = 2, are available only on the coarser
spatial grid (6.4). It is necessary to get appropriate approximations for all values on the finer spatial
grid (6.10). Several devices for obtaining such approximations that have been suggested and tested in
Zlatev et al. (2011a) were described in Section 6.3.

It was emphasized in Zlatev et al. (2011a) that the application of third-order interpolation polynomials

gives best results. This device has been used also in the next three paragraphs, but it will also be
compared with the other options in §6.5.5.

6.5.2. Construction of a test-problem with steep gradients of the unknown function

Assume that the spatial and the time intervals are given by

(6.32) x€[0,50000000], te[43200,129600].

and consider a function u(x,t) defined by
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(6.33) u(x,t)=320.

Let the initial condition be given by

(6.34) f(x) = &[1+99.0 e @(x~10000000%] = ¥ — 1 4679 x 1012, w = 1071%,
The exact solution of the test-problem, which is defined as above, is:

(6.35) c(x,t) =f(x—320(t—43200)).

It is not very important in the treatment of the numerical example defined by (6.1), (6.32), (6.33) and
(6.34), but it should nevertheless be pointed out that both this example and the next two examples were
used to test the reliability of the results obtained by using several modules of the Unified Danish
Eulerian Model (UNI-DEM), see Alexandrov et al. (2004), Zlatev (1995) and Zlatev and Dimov
(2006). This is why the same units, as those used in UNI-DEM, are also used here and, more precisely,
the distances are measured in centimetres, while the time is measured in seconds.

The test-problem introduced in this sub-section was run both by using the Crank-Nicolson scheme
directly and by applying the combination of this scheme and the Richardson Extrapolation (actually,
as mentioned above, the fourth implementation of the Richardson Extrapolation, the Active Richardson
Extrapolation with third-order interpolation on the finer spatial grid was used in this sub-section).

Numerical results are presented in Table 6.1. The following conclusions can be drawn by studying the
results presented in Table 6.1:

e The direct application of the Crank-Nicolson scheme leads to quadratic convergence of the
accuracy of the numerical results (i.e. halving the increments k and h leadsto a
decrease of the error by a factor of four). This behaviour should be expected according to
Theorem 6.1.

e The combination of the Crank-Nicolson scheme and the Richardson Extrapolation behaves
in general as a numerical method of order four (or, in other words, halving the increments
k and h leads to a decrease of the error by a factor of sixteen). This behaviour should
also be expected (according to Theorem 6.2).

e At the end of the computations with the combined numerical method (the Crank-Nicolson

scheme + the Richardson Extrapolation) the convergence rate deteriorates. Two facts are
very important when this happens:
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(A) the computed solution is already very accurate
and
(B) the rounding errors start to affect the calculated results.

The use of quadruple precision (as in the previous chapters) will eliminate the effect of the
rounding errors. However, this action will be too expensive in this case.

Direct Solution Richardson Extrapolation
No. NT NX Error Ratio Error Ratio
1 168 160 | 7.373E-01 - 1.454E-01 -
2 336 320 | 4.003E-01 1.842 1.741E-02 8.350
3 672 640 | 1.254E-01 3.142 1.224E-03 14.220
4 1344 1280 | 3.080E-02 4.135 7.730E-05 15.837
5 2688 2560 | 7.765E-03 3.967 4.841E-06 15.970
6 5376 5120 | 1.954E-03 3.974 3.026E-07 15.999
7 10752 | 10240 | 4.892E-04 3.994 1.891E-08 16.004
8 21504 | 20480 | 1.224E-04 3.999 1.181E-09 16.011
9 43008 | 40960 | 3.059E-05 4.000 7.609E-11 15.519
10 86016 | 81920 | 7.648E-06 4.000 9.848E-12 7.726
11 172032 | 163840 | 1.912E-06 4.000 4.966E-12 1.983
Table 6.1

Results obtained when the test-problem defined by (6.32)-(6.34) is handled directly by the
Crank-Nicolson scheme and by using the combination of the Crank-Nicolson scheme and
the fourth implementation of the Richardson Extrapolation. The numerical errors
calculated by (6.30) and (6.31) are given in the columns under “Error”. In row i, where
i=2, 3, .., 11, theratios of the errors in this row and in the previous row are given
in the columns under “Ratio”.

Three plots are presented in Fig. 6.1 — Fig. 6.3. These plots show:
(a) the initial values,
(b) the solution in the middle of the time interval (i.e. after 12 hours)

and

(c) the solution at the end of the time interval

for the test-problem defined by (6.1) and (6.32) - (6.34).
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Remark 6.2: A similar test-example was used in Zlatev, Berkowicz and Prahm (1983). It should
also be noted that a very similar advection module is a part of the large-scale air pollution model UNI-
DEM (Alexandrov et al. 2004, Zlatev, 1995, and Zlatev and Dimov, 2006) and the quantities used
in (6.32) - (6.34) are either the same or very similar to the corresponding quantities in this model. Note
too that the values of the unknown function are of the same order of magnitude as the ozone
concentrations in the atmosphere when these are measured in (number of molecules) / (cubic
centimetre).

PURE ADVECTION: HOUR = 0

Values of function ¢

0 25 50 75 100 125 150

VALUES OF VARIABLE X

Figure 6.1
The initial value of the solution of the one-dimensional advection equation, which was defined in §6.5.2

and the solution of which has steep gradients.
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PURE ADVECTION: HOUR = 12

Values of function ¢
T

0 25 50 75 100 125 150

VALUES OF VARIABLE X

Figure 6.2
The calculated solution at the end of the twelfth hour of the one-dimensional advection equation, which

was defined in §6.5.2 and the solution of which has steep gradients.
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Figure 6.3
The calculated solution at the end of the twenty fourth hour of the one-dimensional advection equation,

which was defined in §6.5.2 and the solution of which has steep gradients.

6.5.3. Construction of an oscillatory test-problem

Define the spatial and time intervals of the advection problem (6.1) by

and consider a function u(x,t) defined by

(6.37) u(x,t)=0.5.
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Let the initial values be defined by

(6.38) f(x) = £[100 + 99 sin(10x)], &= 1.4679 x 10'2.

The exact solution of the test-problem, which is defined as above, is:

(6.39) c(x,t) =f(x—0.5t).

As in §6.5.2, the test-problem introduced above was run both by using the Crank-Nicolson scheme
directly and by applying the combination of this scheme and the fourth implementation of the
Richardson Extrapolation.

Numerical results are presented in Table 6.2.

Direct Solution Richardson Extrapolation
No. NT NX Error Ratio Error Ratio
1 168 160 | 7.851E-01 - 1.560E-02 -
2 336 320 | 2.160E-01 3.635 1.227E-03 12.713
3 672 640 | 5.317E-02 4.062 1.072E-04 11.432
4 1344 1280 | 1.327E-02 4.007 1.150E-05 9.333
5 2688 2560 | 3.319E-03 3.997 1.193E-06 9.641
6 5376 5120 | 8.299E-04 4.000 1.478E-07 8.071
7 10752 | 10240 | 2.075E-04 4.000 1.618E-08 9.136
8 21504 | 20480 | 5.187E-05 4.000 1.965E-09 8.233
9 43008 | 40960 | 1.297E-05 4.000 2.387E-10 8.233
10 86016 | 81920 | 3.242E-06 4.000 3.241E-11 7.365
11 | 172032 | 163840 | 8.104E-07 4.000 1.267E-11 2.557
Table 6.2

Results obtained when the oscillatory test-problem defined by (6.36) - (6.38) is handled
directly by the Crank-Nicolson scheme and by using the combination of the Crank-
Nicolson scheme and the fourth implementation of the Richardson Extrapolation. The
numerical errors calculated by (6.30) and (6.31) are given in the columns under “Error”. In
row i, where i =2, 3, ..., 11 , theratios of the errors in this row and in the previous
row are given in the columns under “Ratio”.

The conclusions, which can be drawn from the results presented in Table 6.2, are quite similar to those
given in §6.5.2. However, for the oscillatory test-problem the actual convergence rate achieved in the
eleven runs is less than four (greater than three in the beginning and after that equal to or less than
three). It is not very clear what the reason for this behaviour is. Perhaps, the second-order interpolation
rule, see (6.15) in Section 6.3 and Zlatev et al. (2011a), which is used to improve the precision of the
values of the solution at grid-points of the finer spatial grid that are close to the boundaries is not
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sufficiently accurate for this example, because the solution varies very quickly also there. Nevertheless,
it is clearly seen that the achieved accuracy is nearly the same as the accuracy achieved in the solution
of the previous test-problem (compare Table 6.1 with Table 6.2).
Plots, which show

(a) the initial values,

(b) the solution in the middle of the time interval (i.e. after 12 hours)
and

(c) the solution at the end of the time interval

for the oscillatory test-problem, are given in Fig. 6.4 — Fig. 6.6, respectively.

6.5.4. Construction of a test-problem with discontinuous derivatives of the unknown function

Assume that the spatial interval, the time-interval and function u(x,t) are defined as in §6.5.2,, i.e.
by (6.32) and (6.33), and introduce initial values by using the following formulae:

(6.40) f(x) =&, £=1.4679 x 10>, when x <5000000 or x>=>15000000,

x — 5000000

(6.41) f(x) =% [1 +99.0 X — o0 o—| . when 5000000 < x < 10000000,
15000000 — x

(6.42) f(x) =% [1 +99.0 x — o o—/|, when 10000000 < x < 15000000,

The exact solution of the test-problem, which is defined as above, is given by (6.35).

As in the previous two sub-sections, the test-problem introduced above was run both by using the
Crank-Nicolson scheme directly and by applying the combination of this scheme and the Richardson
Extrapolation.

Numerical results are presented in Table 6.3.
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Figure 6.4
The initial value of the solution of the oscillatory one-dimensional advection equation, which was

defined in §6.5.3.
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Figure 6.5
The calculated solution at the end of the twelfth hour of the oscillatory one-dimensional advection

equation, which was defined in §6.5.3.

268



Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

PURE ADVECTION: HOUR = 24
*10"
36
32-
o 5] (\
c 24
L |
N
g 20
E  16-
q_4 _|
o 12—
N _
S 8-
'E _|
LUV VPV VU
rr 11| 1.1 T1.[ 1 11| 1.1t 1. 1 11t T 1 171711
0 25 50 75 100 125 150
VALUES OF VARIABLE X

Figure 6.6
The calculated solution at the end of the twenty fourth hour of the oscillatory one-dimensional

advection equation, which was defined in §6.5.3.

Two major conclusions can be drawn from the results presented in Table 6.3:

(a) neither the direct Crank-Nicolson scheme, nor the combination of the
Crank-Nicolson scheme with the Richardson Extrapolation gives the
prescribed by the theory accuracy (orders two and four, respectively)

and
(b) also in this case, i.e. in the presence of discontinuities, the combination of
the Crank-Nicolson scheme and the Richardson Extrapolation is

considerably more accurate than the direct application of the Crank-
Nicolson scheme.
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Direct Solution Richardson Extrapolation
No. NT NX Error Ratio Error Ratio
1 168 160 | 1.353E-01 - 4.978E-02 -
2 336 320 | 7.687E-02 1.760 2.761E-02 1.803
3 672 640 | 4.424E-02 1.737 1.551E-02 1.780
4 1344 1280 | 2.555E-02 1.732 8.570E-03 1.810
5 2688 2560 | 1.636E-02 1.561 4.590E-03 1.867
6 5376 5120 | 1.051E-02 1.5652 2.318E-03 1.980
7 10752 10240 | 5.551E-03 1.899 1.188E-03 1.951
8 21504 20480 | 2.921E-03 1.900 6.575E-04 1.807
9 43008 40960 | 2.644E-03 1.105 2.379E-04 2.746
10 86016 81920 | 1.619E-03 1.633 1.501E-04 1.585
11 172032 | 163840 | 1.145E-03 1.414 2.787E-05 4.941

Table 6.3

Results obtained when the test-problem defined by (6.32), (6.33) and (6.40)-(6.42), i.e. the
test with discontinuous derivatives of the unknown function c(x,t) is handled directly
by the Crank-Nicolson scheme and by using the combination of the Crank-Nicolson
scheme and the fourth implementation of the Richardson Extrapolation. The numerical
errors calculated by (6.30) and (6.31) are given in the columns under “Error”. In row i,
where i=2, 3, ..., 11 , the ratios of the errors in this row and in the previous row
are given in the columns under “Ratio”.

Plots, which show

(a) the initial values,

(b) the solution in the middle of the time interval (i.e. after 12 hours)

and

(c) the solution at the end of the time interval

for the oscillatory test-problem, are given in Fig. 6.7 — Fig. 6.9, respectively.
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Figure 6.7
The initial value of the solution of the one-dimensional advection equation, which was defined in

§6.5.4, i.e. the example with discontinuities in the derivatives of the unknown function .
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Figure 6.8
The calculated at the end of the twelfth hour solution of the one-dimensional advection equation, which

was defined in §6.5.4, i.e. the example with discontinuities in the derivatives of the unknown function.
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Figure 6.9
The calculated at the end of the twenty fourth hour solution of the one-dimensional advection equation,

which was defined in §6.5.4, i.e. the example with discontinuities in the derivatives of the unknown
function.

6.5.5. Comparison of the four implementations of the Richardson Extrapolation

Only the fourth implementation of the Richardson Extrapolation was used in §6.5.2, §6.5.3 and §6.5.4.
Now we shall compare this implementation with the other three. Some results, which are obtained by
applying the oscillatory test-problem from §6.5.3, are given in Table 6.4.

The following conclusions can be drawn from the results presented in Table 6.4:

e The fourth implementation of the Richardson Extrapolation, which is based on
the use of the third-order interpolation rule described in Section 6.3, is
performing much better than the other three (giving accuracy which is by
several orders of magnitude better than that obtained by the first three
implementations).
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e The first three implementations give accuracy which is slightly better, but
anyway of the same order as that obtained when the Crank-Nicolson scheme is
used directly (compare the results given in columns four, five and six of Table
6.4 with the results in the fourth column of Table 6.2).

e The results show very clearly that one must be very careful when implements
the Richardson Extrapolation.

More numerical results can be found in Zlatev et al. (2011a).

Richardson Extrapolation

No. NT NX Active Passive | Lin. Interp. | Third-order Interp.
1 168 160 | 2.044E-01 | 2.789E-01 | 3.829E-01 1.560E-02
2 336 320 | 4.948E-02 | 7.135E-02 | 1.185E-01 1.227E-03
3 672 640 | 1.254E-02 | 1.760E-02 | 2.466E-02 1.073E-04
4 1344 1280 | 3.145E-03 | 4.334E-03 | 6.250E-03 1.150E-05
5 2688 2560 | 7.871E-04 | 1.074E-03 | 1.567E-03 1.193E-06
6 5376 5120 | 1.968E-04 | 2.671E-04 | 3.921E-04 1.478E-07
7 10752 | 10240 | 4.922E-05 | 6.659E-05 | 9.806E-05 1.618E-08
8 21504 | 20480 | 1.230E-05 | 1.663E-05 | 2.452E-05 1.965E-09
9 43008 | 40960 | 3.076E-06 | 4.154E-06 | 6.129E-06 2.387E-10

10 86016 | 81920 | 7.960E-07 | 1.038E-06 | 1.532E-06 3.241E-11

11 172032 | 163840 | 1.923E-07 | 2.595E-07 | 3.831E-07 1.267E-11

Table 6.4

Running the oscillatory advection test-example from §6.5.3 by using the Crank-Nicolson
scheme directly and in combination with four implementations of the Richardson

Extrapolation.

6.6. Multi-dimensional advection problem

The results obtained for the one-dimensional advection problem can be extended for the multi-

dimensional case. This will be done in this section.

6.6.1. Introduction of the multi-dimensional advection equation

The multi-dimensional advection equation (Zlatev et al., 2014) can be represented by the following

formula;
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Q
dc dc
(6.43) o = —Zuq —— . X€lagh], a=1,2, ., Q telabl.
q=1 1
It is assumed that the coefficients uq = uq(t, x4, X2, .. ,Xo), q=1, 2, .., Q, before

the spatial partial derivatives in the right-hand-side of (6.43) are some given functions.

Let D be the domain in which the independent variables involved in (6.43) vary and assume that:
(6.44) (t,xq, Xz, .. ,Xq) ED = tefab] A xq€[agby], a=1,2,..,Q .

By applying the definition proposed in (6.44), it is assumed here that the domain D is rather special,
but this is done only for the sake of simplicity. In fact, many of the results will also be valid for some
more complicated domains.

It will always be assumed that the unknown function ¢ = c(t, X1, X2, .. ,xQ) is continuously
differentiable up to some order 2p with p >1 in all points of the domain D and for all
independent variables. Here p is the order of the numerical method which will be used in order to
obtain some approximations of the unknown function at some mesh defined somehow in the domain
(6.44). For some of the proofs it will also be necessary to assume that continuous derivatives up to
order two of all functions ug exist with respect of all independent variables.

The multi-dimensional advection equation (6.43) must always be considered, as the one-dimensional
advection equation (6.1), together with appropriate initial and boundary conditions.

The following abbreviations will be useful in the efforts to facilitate the presentation of the results in
this section. Note that some given positive increments hg appears in the equalities (6.46) — (6.49).

(6.45) )_(=(X1, Xy, .. ,xQ),

(6.46) XUD=(xy, Xz, .. ,Xq-1, Xq+hq, Xq41, - ,Xq), =1, 2, .., Q,
(6.47) xCD=(xy, X2, . ,Xq-1, Xq—hNq, Xqs1, - ,Xq), 9=1, 2, .., Q,
(6.48) x(050 = (x,, X3 ,..,Xq-1, Xq+0.5hg, xq+1,...,xQ), q=1, 2, .., Q,
(6.49) X%V = (x4, X3,..,Xq1, Xq—0.5hy, Xgq41,..,X¢), q=1, 2, .., Q,
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6.6.2. Expanding the unknown function in Taylor series

By using appropriate expansions of the unknown function c¢(t, x4, X5, .. ,Xq) = c(t,X) in
Taylor series it is possible to find an expression that contains only even degrees of the increments k
and hg . More precisely, the following theorem holds.

Theorem 6.3: Consider the multi-dimensional advection equation (6.43), assume that (t,X) € D is
an arbitrary but fixed point and introduce the positive increments k>0 and hg >0 such that
t+ke [ab], xq—hg € [agb,] and x,+hg € [ag,by] forall q=1, 2, .., Q. Assume
furthermore that the unknown function c¢(t,X) is continuously differentiable up to some order 2p
with regard to all independent variables. Then there exists an expansion in Taylor series of the unknown
function c(t,X) around the point (t+ 0.5k,X) which contains terms involving only even degrees
of the increments k and hqy (q=1, 2, .., Q).

Proof: It is clear that the following two formulae hold when the assumptions of Theorem 6.3 are
satisfied:

k 6c(t+ 0.5k, X)

(6.50) c(t+Kk,X)=c(t+0.5k,X)+

at
= k® 9%c(t+0.5k,%)
c(t+ X
2
Z 25 s! ots + 0k,
k dc(t + 0.5k, %)
(6.51)  c(t, %) =c(t+0.5k,0 — 3 =
-~ ks as (t + 0.5k, %)
C X
+ Z (-1)° 00 4 0k

Eliminate the quantity c(t + 0.5k,X) from (6.50) and ((6.51), which can be achieved by subtracting
(6.51) from (6.50). The result is:

dc(t + 0.5k, %)

(6.52) c(t+k,%)—c(t,%) =k -
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p-1
o z k?2s+1 0%s*1¢(t + 0.5k, X)
25+1

k?P)
2s+ 1) a2+ 0™
The last equality can be rewritten as
dc(t+ 0.5k ,X) c(t+k,X)—c(t,X)
(6.53) 3t = "
p-1 st aZs+1 ( 0.5k )
c(t+ 0. , X
+ z + 0o(k?r 1),
4 25 (2s+1)! ot2s+1
S=
Consider the following two relationships:
dc(t+k,X 6ct+0 5k, X s 65+1ct+0 5k, X
(6.54) ( ) _ 3 ) 4 Z ( )+ o(k?P),
(i) o 25s iladi) o
ac(t,X) 6c(t+ 0.5k x) . K 9°c(t+0.5Kk,%) 5
P
(6.55) 0xq Z( D 25 s! otsox, + O™
Add (6.54) to (6.55). The result is:
oc(t+k,X dc(t,X dc(t+ 0.5k, X
(6.56) ( )+ ( )=2 ( )
x4 0xq 0xq
—~ k2 9%*1c(t+0.5k,%)
) Zp
+ 2 Zl 275 (2s)! atax, o).
S=

The last equality can be rewritten as:

(6.57)

dc(t+0.5k,X) 1 [0c(t+k,X) 0c(t,X)
== +
ox 2 ox

q q
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P~ KZs  g2s+l =
c(t+ 0.5k ,x
Z ( ) + 0(k?P).

2s (2s)! 0t2s0x,

Now the following four relationships can be written:

Jc(t+Kk,X)

(6.58) c(t+k,xY)=c(t+k,x)+h ox

q

2p-1

hg d%c(t+k,X
n Z # o(h?),
s! oxs X3
s=2

Idc(t+k,X)

(6.59) c(t+k,xC9)=c(t+k,x)—h ox

q

2p-1

s g #%c(t+ Kk, x) 2
o e g T o0,

dc(t,X)
ox

(6.60) c(t,xV) = c(t,X) +h,
q

2p
N Z h 0 c(t X) (th)

s!
s=2

dc(t,X)
ox

(6.61) c(t,xCV) =c(t,x) —h,
q

2p-1

N Z( by hT RE c(t 0, o(n),

Subtract (6.59) from (6.58) to obtain:

dc(t+k,x)  c(t+k,x*V) —c(t+k,xD)

(6.62) =
axq th
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+0(h? ™).

p-1
Z hZ  8%*lc(t+k,X)
pa (2s +1)! ox2s+1

Similarly, the following relationship can be obtained by subtracting (6.61) from (6.60):

ac(t,®)  c(t,x D) — ¢(t,xCD)

(6.63) ax, 2h,
p-1 hZs  92s*1c(t,X)
- Z . e+ 0(hP ).
(2s+1)! oaxg* 1
s=2
Assume that (t+ 0.5,kX) = (t + 0.5k, xq, X1, .. ,xQ) is some arbitrary but fixed point in
the domain D . Then use the abbreviation ug(t+0.5,KkX) = ug(t+ 0.5k, x4, X1, .. ,Xq)

in order to obtain, from (6.43), the following formula:

Q
= ) ug(t+0.5k)

q=1

dc(t+0.5k%)

oc(t+ 0.5 kX)
ot '

(6.64) ™

q

Use (6.53) and (6.57) in (6.64) to obtain:

Q
c(t+k,X) —c(t,X) B {1 lac(t + 0.5k, X) oc(t, i)l}
6.65 = — t+ 0.5k — +
(6.65) K Z Ma( Nz ax 9%,

a=1 a
Q p-1
N z (t40.5.k%) z Kk?2s 9%s*1¢(t + 0.5k, X)
Yq R 225 (2s + 1)! at258x,
q:l s=1
p-1 st aZs+1 0.5k
c(t+ 0. , X
£ ( ) o2ty
4 225 (25 +1)! ot2s+1
Ss=

The last equality can be rewritten as
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_ _ Q ~ ~
(6.66) ct+k,%) —c(t,®) Z g (64 0.5, k) {1 lac(t +0.5k%) | ac(;,x)l}
q

k = 2 x4 i)
p-1 _
k?2s 1 98%*¢(t+0.5k,X)
+ Z 225 (2s)! |(2s+ 1) atzs+l
s=1
2 0% 1c(t+ 0.5k, X)
< Sl 2p-1
£ ) ug(t+0.5,k%) e + O(KZ1).
q=1
Denote:
(6.67) K&
B 1 1 0%*1c(t + 0.5k, X)
-~ 225(2s)! |(2s+ 1) at2s+1
Q
s Z (€4 0.5k ) 9%*1¢(t + 0.5k, %)
ottt TR X atZ50x,
q=1
Then (6.65) can be rewritten as:
c(t+k,X) —c(t,Xx) 2 1 [dc(t+ 0.5k, X) Odc(t,X)
!X - PX _ . ,X ,X
(6.68) - - —Zuq(t+0. 5,kx){il T ox l}
q=1
p-1

£ KRR +0a )
s=1

Use (6.63) and (6.64) in the expression in the square bracket of (6.67) to obtain

c(t+k,%) —c(t,) 2 c(t+k,x0D) — ¢(t+ k,x9)

” - Z uq(t + 0.5k, X) ah,
q=1

(6.69)
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Q
_c(t,x¢Y) —¢(t,x7 D)
=) uy(t+ 0.5k %) —
q=1 a
Q p-1
L1 3 ug(t+ 0.5k hg [0 e(t k%) 8% e(t®)
2/, M X (2s +1)! ox2s+1 ox2s+1
q=1 =1
p-1
n Z k25 K®) + 0(k2-1) + 0(h2P*1) .
s=1

The last equality can be rewritten in the following form:

Q
c(t+Kk,x) —c(t,X c(t+k,x¢9) —¢(t+k,x @
6.70) < 11 ©0_ = > uy(t+0.5k,9) ( lh ( )
a=1 4
Q _ _
Z t+ 0.5k X (6, xT) — oft, x70)
2, ug( .5k, X) ah,
Q p-1
Z h2s z (64 0.5k5) 9%5t1¢(t + Kk, X) s 925+1¢(t, %)
& (2s+1)! fa ORX ox2st1 ox2st1
p-1
s=1
Denote:
1 0% lc(t+ k,X) 0%*1c(t,%)
29) _ -~ - ) )
6.7 Kg® =Gy, Ya(t+0.5k%) o+ oo

Substitute this value of Kflzs) in (6.70). The result is:

c(t+k,X) —c(t,Xx)
k

(6.72)
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Q _ _ _ _
c(t+ Kk xFD) —¢(t + kK, D) + ¢(t, D) — ¢(t, -V
:_Zuq(t+0.5k,)_() ( ) —<( )+ <( ) —<( )
4h,

=1

p-1 Q

£ (R KRED 4+ B2 P+ 002 + 0(heP )

s=1 q=1

The last equality can also be rewritten as:

c(t+k,x) —c(t,x)

(6.73) ”
Q _ _ — —
c(t+ Kk xFD) — ¢(t + K, D) + ¢(t, D) — ¢(t, P
= _Zuq(t+0.5k,>‘() ( )~ ) ( ) < )
4h,
a=1
p-1
+ ) KEKED 4 0k,
s=1
where
20, NP2
2 — S S
(6.74) K® =K; +Zﬁ Ky
q=1
Assume that all ratios hq/k, q=1, 2, .., Q, remain constants when k — 0 (which can

easily be achieved, for example, by reducing all hg by a factor of two when k is reduced by a

factor of two). Then, the last two equalities, equalities (39) and (40), show that the assertion of Theorem
6 3 holds.

6.6.3. Three special cases

Multi-dimensional advection equations arise when many physical processes are described
mathematically (for example, in some of the sub-models of a complex large-scale environmental
model; see Alexandrov et al. (2004), Farago, Havasi and Zlatev (2010), Zlatev (1995) and Zlatev
and Dimov (2006). In most of these cases we have Q =1, 2, 3. Therefore, the following three
corollaries of Theorem 6.2 are important for many applications in science and engineering.
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Corollary 6.1 (the one-dimensional case): If Q = 1 then (6.43)) can be written as

dc dc
(6.75) — =

3t —“1a—xl , X1 €lag,bs], te[ab].

and (6.73) reduces to the following equality:

C(t+ k,Xl) - C(t,Xl) _ C(t"‘ k,X1 + hl) - C(t+ k,X1 - hl)

.7 — .5k
(6.76) K uy(t+ 0.5k, x4) 4h,

c(t,x; +hy) —c(t,xy —hy)
4h,

—ul(t + 0. Sk, )_()

+k2K® + K*K@® + ... + k2P72K(@P~2) 4 Q(k?2P71)

where the values of K@%, s=1,2,..,2p—2 for the one-dimensional case can be obtained in
an obvious way from (6.66), (6.71) and (6.74).

Corollary 6.2 (the two-dimensional case): If Q = 2 then (6.43) can be written as

dac dac dac
(6.77) —

3t - TWn %, — Uy ax, x; € [ag, by], x; €[az,bz], te[ab].

and (6.73) reduces to the following equality:

C(t + k rxlr XZ) - C(t lel XZ)
Kk

= —ul(t + 0. 5k,X1,X2)

(6.78)

C(t + k,Xl + hl,XZ) - C(t + k,x1 — hl,Xz)
4h,

c(t,xq + hy,x3) — c(t, xq —hy,x;)
4h,

—U1(t + 0. 5k,X1,X2)

C(t + k,Xl,XZ + hz) - C(t + k,Xl,XZ — hz)

—u,(t + 0.5K, X4, X5) 4h
2
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C(t,Xl,XZ + hz) — C(t,Xl,Xz — hz)
4,

—Uy (t + 0. Sk,xl,XZ)

+kZK® + K*K® + ... 4 k2P2K@P-2) 4 (k2P 1),

where the values of K®$), s=1,2,..,2p—2 for the two-dimensional case can be obtained in
an obvious way from (6.66), (6.71) and (6.74).

Corollary 6.3 (the three-dimensional case): If Q = 3 then (6.43) can be written as

dac dac dac dc

(679) a = —ula—X1 llza—x2 ll3a—X3,

X1 € [a1,bq], X; € [az,by], X3 €[a3 bs], te€][ab].
and (6.73) reduces to the following equality:

C(t + k'X1'XZJX3) - c(t;XI;XZ;X3)

(6.80) K

C(t + k' X1 + hll XZ'X3) - C(t + k) X1 — hl) X27X3)
4h,

c(tl X1 + hll XZIX3) - C(tlxl - hlr XZ’X3)

—uy (t + 0.5K,x4,X5,X3) 4h
1

C(t + k,xl,XZ + hz,X3) - C(t + k,Xl,XZ — hz,Xg)

—u,(t + 0.5K,Xq,X,,X3) 4h
2

c(t,x1,X2 + hy, x3) — c(t,xq,X; — hy,X3)
4h,

—uZ(t + 0. 5k,X1,X2, X3)

C(t + k,xl,Xz,X3 + h3) - C(t + k,Xl,Xz,Xg - h3)

—uz(t + 0.5K, X3, X5, X3) 4h
3

c(t,X1,X,X3 + h3) — c(t,x4,X5,X3 — h3)
4h,

—U3(t + 0. 5k,X1,X2, X3)
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+KkZK® + K*K® + ... + k2P72K(@P~2) 4 Q(k2P~1)

where the values of K@%, s=1,2,..,2p—2 for the three-dimensional case can be obtained in
an obvious way from (6.66), (6.71) and (6.74).

6.6.4. Designing a second-order numerical method for multi-dimensional advection

Consider the grids:

6.81) G, = {tn| ty=a t,=t,, +k n=12 ., N, k= b};a, tx, =b}

and (for q=1, 2, .., Q and hy = (bg—ay)/Ng)

(6.82) G ={xig=01,..,Ny|x§ =2, x’ =x; +hg, ig=1,2,..,Ng, x3" = by}
Consider (assuming that jq € {0,1, ...,Ng}):

(6.83) iz(lel, X2, . x%), q=1,2, .., Q,

(6.84) 09 = (xill,xiz2 , ...,xl;;‘_l, X];;l + hy, xl;;'ﬂ, . x];;) , q=1, 2, .., Q,

(6,85) %9 = (xill,xizz e X0 X0 g, X x’g) , q=1,2, .., Q,

where xL"eG,((q) for q=1, 2, .., Q.

In this notation the following numerical method can be defined:

é(tn+1J i) B é(tnf i)
k

(6.86)
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Q
o Z uy(t, + 0.5k )

q=1

E(tn g, *Y) — E(tn 10, XTY) + €ty XHP) — (1, x79)
4h, :

where €(tyy1,%), €(ty, %), €(tni1, XHP), &(tyy1, RCY), €(t,, x4Y) and €(t,, 8CY) are
some approximations of the exact values of the solution of multi-dimensional equation (6.43 calculated
at appropriate grid-points of (6.81) and (6.82). It is clear that (6,86) can be obtained from (6.73) by
neglecting the terms in the last line and by considering only values of the independent variables, which
belong to (6.81) and (6.82). It is clear (see the assertion of Theorem 6.3) that the method defined by
(6.52) is of order two with respect to all independent variables.

Assume that the values of ¢€(t,,X) have been calculated at some time t=t, € G, forall grid-
points of (6.82). Then the values  €(t,,1,X)  of the unknown function at the next time-point

t=t,,1 =t, +KEeE G, can be obtained by solving a huge system of linear algebraic equations of
dimension N, where N is defined by

Q
(6.87) N=| |(Ng—1).

It should be mentioned that the numerical method defined by (6.86) is called the Crank-Nicolson
schemewhen Q =1, see, for example Strikwerda (2004).

6.6.5. Application of Richardson Extrapolation

Consider (6.86) with € replaced by z when t = t,,1:

Z(th+1,X) — E(ty, %)

(6.88)

k
Q
Z(the1, KED) — 2(t,,1, D) + &(t, xHV) — &(t, x@
= _Zuq(tn+0.5k,f<) (tns1 ) = 2t )+t G )
4h,
q=1
Suppose that 0.5k and 0.5h, are considered instead of k and hy (q=1, 2, .., Q)

respectively. Consider the formulae (6.47) and (6.49), but assume that the independent variables are
restricted to the grid-points of the grids (6.81) and (6.62). Then, by using the notation introduced in
(6.84)and (6.85) for q=1, 2, .., Q, thefollowing two formulae can be derived:
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w(t, + 0.5k, ) — &(t,, %)

(6.89) 0.5k
Q
w(t, + 0.5k, x(+059) — w(t, + 0.5k, (050
=—Zuq(tn+0.25k,f() (ta ) — w(ta )
4(0.5h,)
q=1
Q
é(tn,f((+0.5q)) _ é(tn’i(—O.Sq))

- .25k, X
Z u,(t, +0.25K,X) 4050 '
q=1

w(tyi1,%X) — w(t, + 0.5k, %)
.9
(6.90) 0.5k
Q 3 w(tn+1,i(+°'5q)) - w(tn+1'i(—0.5q))
—_ Z ug(t, + 0.75k %) 1005

q=1

Q
w(t, + 0.5k, x+059) — w(t, + 0.5k, %59
—Zuq(tn+0.75k,)_() (t ) —w(ts ).
4(0.5h,)
q=1

Add (6.89) to (6.90) and multiply by 0.5 the obtained equation. The result is:

w(tn+1; i) - é(tn: i)
k

(6.91)

Q
- W(tyy g, KEO5D) — w(t,, 4, X(O5D)
= - Z ugy(t, +0.75k,%) T

q=1 q

Q
w(t, + 0.5k, &(+059) — w(t, + 0.5k, x(-0-5D
—Zuq(tn+0.75k,f() (& )4h (ta )

q=1 q

Q
_ w(ty + 0.5k x*+059) — w(t, + 0.5k, x059)
- Z u, (t, + 0.25K,%) m

q=1 q

Q
- 2 uq(t, +0.25k,X)

q=1

&(ty, X*05D) — &(t,, X(-05D)

4h,
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Multiply (6.88) by 1/3 and (6.91) by 4/3 . Subtract the modified equality (6.88) from the modified
equality (6.91). Then the following equality will be obtained:

4 W(tn.;,.l,X) - é(tn) i) 1 Z(tn+1')~() - é(tnﬂ)N()
(6.92) 3 k 3 Kk

Q
4
= —= ) u,(t, +0.75k %)
q=1

W(ty, KFOSD) — w(ty,,, RCO5D)
4h

q

Q

4
~3 ) gty +0.75k %)
q=1

w(t, + 0.5k x+050) — w(t, + 0.5k x(-050)
4h

q

Q

4
_52 ug(t, + 0.25k %)
q=1

w(t, + 0.5k £+050) — w(t, + 0.5k, x(05D)
4h

q

Q
4 ~ E(tn, X'(+0.5q)) _ é(tnﬂ i(—O.Sq))
_52 ug(t, + 0.25Kk,X) i

q=1

q

z(tn+1, )’Z("’q)) — z(tn+1‘ i(_q))
4h

Q
1
+3 ) gty + 0.5k %)
a=1 1

é(tn» §(+Q)) - é(tn, g(—Q))
4h '

Q
1 -
+§Z uq(t, + 0.5Kk,X) )
q=1

Replace the approximate values z, w and € in (6.92) with the corresponding exact values of the
unknown function to derive the following formula:

4 c(tnn 0 = c(tn D) _ 1 cltnn ® = c(tn D)
3 k 3 k

(6.93)

Q

4
_ _52 ug(t, + 0.75K,%)
q=1

C(ts 1, RFOSD) — ¢(ty, 4, RO5D)
4h

q

Q

4
—3 ) gty +0.75k %)
q=1

c(t, + 0.5k x*+050) — ¢(t, + 0.5k, x05D)
4h

q
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Q
4 c(t, + 0.5k, §+05®) — ¢(t, + 0.5k, (05D
_§Z“q(tn +0.25K,%) (t )4h (t )

a=1 a

Q
4 ) c(tn’§(+o.5q)) _ c(tn,i(‘°'5q))
—§Z u,(t, +0.25Kk,X) ah

q=1

q

Q

1 .C
+§Z llq(tn + 0.5k, X)
q=1

(tn+1» f((+Q)) - C(tn+1' )N((—Q))
4h

q

(tn: §(+Q)) — C(tn, g(—Q))
4h

1 2 . C
+§Z u,(t, + 0.5Kk,X) .
q=1

4 _ _ 1
+3 k%(0.5K® + 0.5K®) — §k21<<2> +0(k") .

Equation (6.73) with p = 2 can be used, together with transformations similar to those made in
§6.6.2 (some of the needed transformations will in fact be performed in the remaining part of this
section), in order to obtain the last terms in (6.93). Note too, that the assumed in §6.6.2 after equation
(6.74), relationship hg/k = const s used to get the last term in (5.93).

Subtract (6.92) from (6.93) and use the notation € for the differences between the corresponding
exact and approximate values of the unknown function. The result is:

(6.94)

4 £t 0 — £t D) _ 1 £(tns1 %) — £t D
3 k 3 k

Q

4
- _52 g (t, + 0.75K, %)
q=1

£ty + k XEOSD) _ g(t, + k x(-059)
4h

q

Q

4
—§Z ug(t, + 0.75k %)
q=1

g(ty + 0.5k x+050) — ¢g(t, + 0.5k, g(7050)
4h

q

Q

4
—52 ug (t, + 0.25Kk %)
q=1

g(t, + 0.5k, x(F050) — g(¢, + 0.5k, x(“05D)
4h

q
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Q £(tn, KOS — g(t,, (-05D)

4 _
—§Z u,(t, + 0.25Kk,X) ah
q=1

q

1 ~ S(tn+1, f((+q)) - s(tn+1; i(_q))
+ §Z u,(t, + 0.5Kk,%) ah
q:

q

Q
1 ~ s(tn,f((“’)) — s(tn,g(—q))
+ §Z u,(t, + 0.5K,X) ah

q

2 _ ~ 1
+ k2 [5 (K® + K®) - §K<2)] +0(k%).
The interesting term is the expression in the square brackets in the last line of (6.94):

o2 1
(6.95) K= E(K(Z) +K®@) - §K<2)

2
— @ 9 () g@ q (2) 2 9 @
LS +zk21( +| K +Zk RP |t - | K¢ +Zk K

q= q=

1 1 o h?

_1Lg® 4 9@ _ k@ 1[o2® | 2R@ _ @
=5 [2KP + 2K - K| + 3 > 5 [2KP + 2K - kD).
q=1

In the derivation of (6.95) it is assumed that the quantities K39 and K@% have the same structure
as the expression for K@% in (6.74). It is immediately clear that this assumption is true (some
additional information will be given in the remaining part of this section). Furthermore s = 1 isused
to obtain all three quantities involved in the last line of (6.95).

It is quite clear that if K = O(k?) then the Richardson Extrapolation will be a numerical method of
order four. Consider now the last row of (6.95). It obvious that it will be quite sufficient to prove that
both the terms of the expression in the first square brackets and the terms in the second square brackets
of (61) areof order 0O(k?), in the latter case for all values of q.

The following equality can easily be obtained from (6.66) by setting s =1 and replacing t with
t, and X with X:
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Q
) ug(ty +0.5k,%)

a=1

d3c(t, + 0.5k, %)
ot3

d3c(t, + 0.5k, %)
0t20x,

1|1
2! |3

1
(6.96) K& = 2

Similar expressions for the other quantities occurring in the last line of (6.95); i.e. for the quantities

K?, K®, K, KP and K, are derived below by following very closely the procedure

applied in §6.6.2. In fact, Kff) can be obtained directly from (37) by setting s = 2 and replacing
t witht,, t+k with t,,; and X with X

Consider the two points (t, + 0.5k,x) and (t, + 0.25k,x). The following two relationships
can be written in connection with these points:

5 .k oc(t, + 0.25Kk,X)
(6,97) c(t, + 0.5k X) = c(t, + 0.25Kk,X) + z

at
o K® 9%c(t+0.25k %)
c(t+ 0. X
+ Z 45 g! ots +0(k™) ,
s=

k dc(t, + 0.25k, %
(6.98) c(t,,X) =c(t, +0.25Kk,X) — 7 ( )

at
-~ k% 05¢( 0.25K,X)
c(t, +0. , X
—1)s 2p
+ EZ( 1) s 3t + O(k“P).
s=

Eliminate the quantity c(t, +0.25k,X) from (6.97) and (6.98), which can be achieved by
subtracting (6.98) from (6.97). The result is:

k dc(t, + 0.25k, X
(6.99) c(t, + 0.5k X) —c(t,,X) = > ( o )

p—-1
k2st1 9%5*t1¢(t, + 0.25K, X
+2 z o (t ) 1 o) .
s=1

1(2s+1)! ot2s+1

The last equality can be rewritten as

oc(t, + 0.25k,X)  c(t, + 0.5k, %) — c(t,,%X)
ot B 0.5k

(6.100)
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p-1
k?s 9%5+1c(t, + 0.25Kk, %
— z (L )+ o(k*»1) .
s=1

425(2s + 1) t2s+1

It can easily be seen that (6.100) can be obtained from (6.50) by replacing t + 0.5k with t, + 0. 25K,
t + k with t,, + 0.5k, t with t,, , X with X and 225 with 4%, which is quite understandable.

Consider the following two relationships:

2p-1
ac(t, + 0.5k, %)  dc(t, + 0.25K,%) s 95t1c(t, + 0.25Kk,%)
6.101 = Z o(k?P),
( ) axq axq + 4sg! atsaxq + 0k
s=1
2p-1
dc(t,, X) odc(t, +0.25k,%) k® 95tlc(t, + 0.25k,%)
.102 = Z —1)8 k?P) .
(6.102) axq axq + 1( ) 4sg) atsaxq +0(k™)
S=

Add (6.101) to (6.102). The result is:

dc(t, + 0.5k, X) N dc(t,, %) _5 dc(t, + 0.25K,X)

(6.103)
0xg4 ) i) x4
p—
k2  9%5t1c(t, + 0.25Kk,%)
2 ’ k?P) .
* Z 42s(2s)! ot2s0x, + 0™
s=1
The last equality can be rewritten as:
dc(t, + 0.25Kk,X 1 |dc(t, + 0.5k, X dc(t,, X
6104 O )=_l (t, ), 0ty %)
i) 2 i) x4
p1 kZS 62s+1 ( 0.25k )
c(t, + 0. , X
— Z . + 0(k?P)
4 42s(2s)! ot2s9x,
s=

Note that (6.104) can be obtained from (6.57) in a similar way as (6.100) can be obtained from (6.53),
i.e., byreplacing t+k with t,+ 0.5k, t+ 0.5k with t,+0.25k, Xwith & and 22%s
with 42%, which is again quite understandable.
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Now the following four relationships can be written:

h dc(t, + 0.5k, X)
ox

(6.105)  c(t, + 0.5k, X(+050) = ¢(t, + 0.5k, %) +
q

2p-1

o 05c(t, + 0.5k, %)
q n ' 2p
Z 25 s! ox$ +0(hy"),

hg dc(t, + 0.5k, X
(6.106)  c(t, + 0.5k X050) = c(t, + 0.5k ) — 22 oo %5 D)

q

= hi @%c(t, + 0.5k %)

__47S q n ' ) 2p
" g g o),

s=2

h, ac(t ,x) o 0%c(t,,X)
5(+0.5 _ S n q n 2p
(6.107)  c(t,, XFO5D) = ¢(t,, )+— s ox: +0(hy’),

(6.108)  c(t,, x05D)

hg ac(t,, X) hy 0° (tn, )
= c(tn, )_? caTqX + SZZ (_1)5 q C X (th)

Subtract (6.106) from (6.105) to obtain:

dc(t, +0.5K,%)  c(t, + 0.5k x+05D) — ¢(t, + 0.5k, x("05D)
0%, B 2(0.5hg)

(6.109)

p-1
h2s 0%*1c(t, + 0.5k, %)
q n ’ 2p-1
- E 5 +0(h" ).

25(2s + 1)! axzs+1

Similarly, the following relationship can be obtained by subtracting (6.108) from (6.107):

ac(tn: )N() _ c(tn,)’z(+0.5q)) — C(tn,i(—O.Sq))
0x, 2(0.5h,)

(6.110)
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p—1
hés aZs+1c(tn’i)

L2325+ 1)1 9xZst
s=1

+0(h ™).

It can easily be seen how (6.109) and (6.110) can be obtained from (6.62) and (6.63) respectively: it is
necessary to replace t+k with t,+0.5k, t with t,, X with X, (+q) with
(+0.5q), (—q) with (—0.5q), hq with 0. 5hq and, finally, 1 with 22%s in the denominators

of the sums)-

Consider formula (6.43). Replace twith t, +0.25k and X with X. The resultis:

dc(t, +0.25k,%) dc(t, + 0.25k, %)

Q
_ Z ug(t, + 0.25k, %)

(6.111) o ox,
q=1
Use (6.100) and (6.104) in (6.11) to obtain:
c(t, + 0.5k X) — c(t,,X)
(6.112) "
2 1 [dc(t, + 0.5k,X) Odc(t, X)
_ ~ - n . ) n’
= Z:uq(tn + 0.25K,X) {2 [ ox, + ox, l}
q=1
p-1
N Z k?2s 0%5*t1c(t, + 0.25Kk,%)
s 475(2s + 1)! ot2s+1
s=

Q p-1
. z (t, + 0.25k ) z Kk2s aZs+1c(tn + 0.25Kk,X) + O(K2P1)
) Ugltn + 5. 20K, X , 45(29)! at250x, '
q= s=

The last equality can be rewritten as

c(t, + 0.5k, X) — c(t,,X)
0.5k

(6.113)
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Q

1 |0c(t, + 0.5k, X) Odc(t,,X
=—Zuq(tn+0.25k,f() 1]9c %) 2t X
2 x4 x4
q=1
p-1

N Z k?2s 1 98%*1c(t, + 0.25Kk,%)
4 425(2s)! |2s + 1 ot2s+l
S=

Q
9%t 1¢(t, + 0.25Kk, X

+ z uy(t, + 0.25Kk,%) ( “2 ) + o(k?r 1),

4 ot Saxq

q=

Denote:

7 (25)
(6.114) K~
B 1 1 9**lc(t, + 0.25Kk,%)
 425(2s)! |25 +1 ot2s+1

0%5*1¢(t, + 0.25k, %)
0t2s0x,

Q
+ Z u,(t, + 0.25k, %)
q=1

Note that (6.114) can be obtained from (6.66) by performing similar replacements as those made in
connection with formulae (6.100) and (6.104).

Then (6.113) can be rewritten as:

c(t, + 0.5Kk,X) — c(t,,X)

(6.115) "
2 (1 |9c(t, +0.5k,X) 0dc(t,,X)
_ —qzluq(tn+0.25k,x) {E[ o, s l}
p-1

+ Z k2K + o(k2P 1),
s=1

Use (6.109) and (6.110) in the expression in the square bracket from (6.115) to obtain
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n . ) - C tn,X : :
uq(tn 0. 25k' x)

c(tn,f((+0-5‘l)) _ c(tn,i(‘°-5‘ﬂ)

(6.116)
0.5k =1 4(0.5h,)
Q
c(t, + 0.5k, x(+05D) — ¢(t, + 0.5k, x(“05D
= gty +0.25k %) (&, ) — c(ta )
4(0.5h,)
q=1
Q p—l
+ 12 (tn + 0.25K, %) Z hZ  9%*c(t, +0.5Kk,%)
2 Uq n . , X 225(23-+-1)! axés+1
q=1 s=1
Q -1
* IZ (ty + 0.25K, %) "Z he®  9%"1c(t, %)
2 Uq(ty . , X 225(2s + 1)! axéﬁl
q=1 s=1
p-1
25z (2s) 2p-1
+ Z k=K, + 0(k*P71).
s=1
The last equality can be rewritten in the following form:
Q
c(t, + 0.5k, X) — c(t,,X) ~ c(tn,f((“"sq)) _ c(tn,i(“’-s‘l))
(6.117) — =— Zl ug (ty + 0.25k %) oSy
q:
Q
c(t, + 0.5k, x(+059) — ¢(t. + 0.5k, x("0-59
= gty +0.25k %) G ) — <(ta )
4(0.5h,)
q=1
< (< Zs 2s+1 < 2s+1 .
hy [8%*le(t, + 0.5k, %)  925*lc(t,, )
+ Z ZZS+1(ZS n 1)| uq(tn + 0. 25k, X) 3x25+1 + P
s=1 \q=1 ’ q i
p-1

+ ) K=K + ok 1),
=1

S

Denote:
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Q
_ 1 9%5*1c(t, + 0.5k, %) 9%*1c(t,, %)
(25) —_ ~ n ) n’
(6.118) K® = Z Ficas Ty et 0-25K 9 Tens e
q=
Substitute this value of K‘(]zS) in (6.117). The result is:
Q
c(t, + 0.5k, %) — c(t,, %) c(ty, HO5D) — (¢, x(-059)
(6.119) _— Z ug (t, + 0.25k %)
0.5k L 4(0.5h,)
Q
_ z wa(t + 0.25K.9) c(t, + 0.5k, x+0590)) — ¢(t, + 0.5k, x059)
ams ’ 4(0.5h,)
a=1 1
p-1 Q
+ ) (KR + Y B2 RS | + 0.
s=1 q=1

Performing similar transformations around the point t, + 0.75k the following two equalities can
be obtained:

72(25)
(6.120) K~

B 1 1 9%*lc(t, + 0.75Kk,%)
~ 4%5(2s)! s+ 1 ot2s+1

0%5*1¢(t, + 0.75k, %)
ot2s0x,

Q
+ Z u,(t+ 0.75k,%)
q=1

1 0%5*1c(t, + 0.5k, %) 0% lc(t, 1, %
; u, (t + 0.75k, %) (t ) (tns1,%)
22s+1(2s + 1) 1 dx2s+1 ox2s+1

(6.121) K =

Consider now the expression 2K® +2K® — K@ in (6.95).

(6.122) 2K +2K® —k®

1 d3c(t, + 0.25Kk,%) d3c(t, + 0.75k, %) d3c(t, + 0.5k, X)
0.5 +0.5 -

24| ot3 ' ot3 ot3
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Q

1
+1—62 ug (t, + 0.25k, %)
q=1
Q

1
+22 ) gty +0.75k %)
q=1

d3c(t, + 0.25K,%)
ot2ox,

d3c(t, + 0.75Kk,%)
ot2ox,

Q

1
- § llq(tn + 0.5k, )~()
q=1

d3c(t, + 0.5k, %)
ot2ox,

Since

d3c(t, + 0.25Kk,%) N d3c(t, +0.75K,%) ) d3c(t, + 0.5k, %)
ot3 ot3 B ot3

(6.123) + 0(k?),

it is clear that the expression in the square brackets in (6.122) is of order 0(k?) .

Consider now the following relations:

dug(t, + 0.5Kk,%)

(6.124) ugy(t, +0.75Kk,%X) = uy(t, + 0.5k %) + 0.25k Bt + 0(k?),
~ ~ dug(t, + 0.5k, %)
(6.125) ug(t, + 0.25K,%X) = uy(t, + 0.5k %) — 0.25k 3t + 0(k?),
d3c(t, + 0.75k,%) d3c(t, + 0.5k, %) d*c(t, + 0.5k, %)
6.126 = : 2
(6.126) at7ox, otax, 02K T Gmay, T O
d3c(t, + 0.25k, %) 93c(t, + 0.5k %) d*c(t, + 0.5k, %)
6.127 = —0 2y
( ) 0t20x, ot20x, 0 ot30x, +0(K%)
Denote

dug(t, + 0.5k %)

(6.128) A= uy(t,+0.5k,%), B=0.25 Pn :
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d3c(t, + 0.5Kk,%) d*c(t, + 0.5Kk,%)
6.129) C= , D=0.25
( ) 0t2ox, ot30x,

Then for an arbitrary value of q it is possible to obtain from the last three terms of (1.22) the
following relationship by omitting always the terms containing the multiplier k2:

1 1 1
6.130) — (A — kB)(C—KkD) + — (A + kB)(C + kD) — = AC
( ) 16( )( )+16( + kB)(C + kD) 3
_1 (AC — KAD — kBC) + 1 (AC + KAD + KBC) 1Ac—o
16 16 . R

This shows that the sum of the last three terms of (6.122) is also of order k2.

Consider now the expression Zl_(flz) + Zl~(((12) - Kflz) in the last line of (6.95). The following three
equalities can be obtained by using (6.71), (6.118) and (6.123) with s = 1:

1
@ _
(6.131) K = - uq(ty +0.5k, 5 oxd

D la?’c(t +k %) 63c(tn, x)l
Xq

1 (6. + 0.5k 8 63c(tn+0.5k,5i)+0 2
= 6 uq n . ,X aX(sl ( ) )

_ 1 d3c(t, + 0.5k, %) 03c(t,, X
(6.132) RP = — uy(t, +0.25K, ~)[ (“a ) (t )l

q 48 x3 ox;3
1 d3c(t, + 0.25Kk,%) 5
24_uq(t + 0.25k, X)[ ox3 + 0(k?)

1 3c(t, +k %) 03c(t, +0.5k %
(6.133) KP = — uy(t, +0.75k ~)[ ( 53 ) ( )
q

48 axg
1 __[83c(t, + 0.75k,%) 5
= 5 Uq(ta +0.75k, )[ ox2 +0(k?)| .

The following two relationships are used in the derivation of (6.131):
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c(t, + k%)  d%c(t, + 0.5k %) 0 d*c(t, + 0.5k, %)

2
(6.134) a3 o3 : 3t0x] + 0(k?),
03c(t,,X) 83c(t, + 0.5Kk,%) d*c(t, + 0.5Kk,%) 5
(6.135) axd 33 - 0. 3t0x3 + 0(k?).

Now (6.134) and (6.135) should be added to obtain:

c(t, + k%)  d%c(t, %) 5 d3c(t, + 0.5Kk,%)

3 3 3
axq axq axq

(6.136) + 0(k?).

Equality (6.136) shows how (1.31) can be obtained. Similar operations are to be used to obtain (6.132)
and (6.133).

By using (6.131), (6.132) and (6.133) and by omitting terms containing O(k?) it is possible to
transform the expression 2K + 2K — K& in the following way:

d3c(t, + 0.25Kk,%)
axg

Q
_ N 1 3
(6.137) 2KP +2K® -k = EZ ugy(t, + 0.25k,%)
=1

d3c(t, + 0.75Kk,%)

Q
1
+ EZ ug (ty + 0.75k %)

= ox3
Q
1 __03c(t, + 0.5Kk,%)
- g llq(tn + 0. Sk, X) o0x3
a=1 1

It is now necessary to apply (6.124) and (6.125) together with the following two equalities:

d3c(t, + 0.75k, %) d3c(t, + 0.5k, X d*c(t, + 0.5k, X
(t ): (tn )+0.25k (t )+0(k2)-
axg axg ataxg

(6.138)

d3c(t, + 0.25k, %) d3c(t, + 0.5k, %) d*c(t, + 0.5k, %)
= —0.25k

(6.139) .
i)x;°'l f)x?l (')ti)X?l

+ 0(k?).
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Denote:

_ 8%c(t, + 0.5k,%) F = 0.25 d*c(t, + 0.5k, %)
h 0x3 ' - otox3

(6.140) E

Then for an arbitrary value of q it is possible to obtain the following relationship from (6.137) by
omitting always the terms containing multiplier k?:

(6.141) %(A — kB)(E — KF) + 1—12(A + kB)(E + KF) —%AE

1 1 1
= = (AE — KAF — kBE) + - (AE + KAF + kBE) — AE = 0.

Therefore, the expression in (6.137) is of order k2 This means that the expression K in (6.95) is
of order 0O(k?) and it can be concluded that if the multi-dimensional advection is treated by the
second-order numerical method defined by (6.86) and combined with the Richardson Extrapolation,
then it results in a numerical method of order four (not of order three as should be expected). In this
way the following theorem has been proved:

Theorem 6.4: Consider the multi-dimensional advection equation (6.43). Assume that the coefficients
u, before the spatial derivatives in (6.43) are continuously differentiable up to order two with respect

to all independent variables and continuous derivatives of the unknown function c¢(x,t) up to order
four exist, again with respect to all variables. Then the combination of the numerical method (6.86)
and the Richardson Extrapolation is of order four.

Remark 6.3: It is clear that Theorem 6.2 is a special case of Theorem 6.4, which can be obtained by
setting q =1 in(6.43).

6.7. General conclusions related to the sixth chapter

The simple one-dimensional advection problem was considered in the first five sections of this chapter.
This case was described in detail in an attempt to make the main ideas very clear. The hope is that if
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this is done, then it will be easy to generalize the results. As an illustration, the generalization of the
results, obtained for the one-dimensional advection problem, for the multi-dimensional advection
problem is presented in Section 6.6. It is worthwhile to generalize further the results for other classes
of partial differential equations.

It is proved that for the advection problem treated by the second-order Crank-Nicolson scheme the
application of the Richardson Extrapolation leads to a rather accurate new numerical method, the order
of accuracy is increased from two to four. It should be emphasized, however, that normally the order
of accuracy is increased by one, i.e. if the underlying method is of order p, then its combination with
the Richardson Extrapolation is of order p+ 1.

As mentioned in the beginning of this chapter, the most straight-forward way of implementing the
Richardson Extrapolation for partial differential equations or for systems of partial differential
equations is based on a preliminary application of some kind of discretization of the spatial derivatives.
In this way the partial differential equations (or the system of partial differential equations) is
transformed to a system (normally very large) of ordinary differential equations. Then the Richardson
Extrapolation can be applied to the system of ODEs as in the first four chapters of this book. However,
one must be aware of the fact that the errors arising during the discretization of the spatial derivatives
must somehow be taken into account, especially in the case where the Richardson Extrapolation will
be used to check the error made during the computations.

Stability problems were not discussed in Chapter 6. However, it must be emphasized here that the
stability of the computational process is a very important issue also in the case where the Richardson
Extrapolation is used together with partial differential equations (or systems of partial differential
equations).

6.8. Topics for further research
The following topics might lead to some very interesting and useful results:

(A) It was mentioned in the previous section that the stability of the
computational process should also be studied. It is worthwhile to try to
establish some stability result in connection with the use of the Richardson
Extrapolation for the advection problems discussed in the first six sections
of this chapter. One can start perhaps with the simple one-dimensional
advection.

(B) The accuracy of the Richardson Extrapolation applied together with the
simple problem (6.43) was studied in Section 4.6. The same results can
probably be proved for the slightly more complex and more realistic
problem:

dc 2 9 (ugqc)
at Z 0xq '
q=1
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Even results for the case of the one-dimensional advection problem,
obtained for q =1, might be useful.

(C) The application of the Richardson Extrapolation in conjunction with other
problems (e.g. parabolic partial differential equations or some systems of
parabolic partial differential equations) may lead to some useful results.

(D) Some comprehensive studies of the application of the Richardson
Extrapolation in conjunction with some important particular problems that
occur often in practice (as, for example the famous rotation test, see, for
example, Chock, 1985, 1991, Chock and Dunker, 1983, Crowley, 1968,
LeVeque, 1992, Molenkampf, 1968, Zlatev, Berkowicz and Prahm,
1983) are also desirable.

Chapter 7

Richardson Extrapolation for some other problems

Systems of ordinary differential equations as well as some special partial differential equations were
handled in the previous chapters by applying the Richardson Extrapolation in order both to improve
the accuracy of the numerical solution and to increase the efficiency of the computational process (or
at least to achieve one of these two important aims). However, the Richardson Extrapolation can also
be used in the solution of many other problems as, for example, in the solution of systems of algebraic
and transcendental equations as well as in numerical integration.

In this chapter we shall first assume that a system of algebraic and transcendental equations is written
in the form:

(7.1) f(uy=0, ueDcR’ s>1.

We shall furthermore assume that (7.1) has at least one solution u* and that some iterative method is
used to calculate a sufficiently accurate approximation of this solution. The application of the selected
iterative method leads, when it is convergent, to the calculation of a sequence of approximations to the
solution u* given by

(7.2) u;, U, .., u,, ... where n - o and lim{u,} =u".
n —o00

If the iterative process is convergent, then the following relationship will clearly hold:
(7.3)  lim{lu, —w} =0,
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where [|x|| is some appropriately chosen vector norm in RS .

In all practical situations, one is primarily interested in stopping the iterative process when certain
prescribed in advance accuracy, say €, where € is some small positive number, is achieved. This
means that we should like to stop the iterative process after n iterations if, for example, the following
criterion is satisfied:

(7.4)  |lu,—u’|| < e.

The great problem is that (7.4) cannot be directly applied, because the exact solution u* is unknown.
Therefore different stopping criteria must be carefully designed and consistently used. These criteria
will, of course, depend on the particular method selected for the solution of (7.1). Some stopping
criteria will be introduced for several particular methods in the remaining part of this chapter. We are
primarily interested in the answer to the following two general questions:

If an arbitrary numerical method is selected for the computer
treatment of (7.1), then will it be possible to design some general device,
similar to the Richardson Extrapolation, the application of which will
lead to an acceleration of the speed of convergence?

Moreover, will it be possible to apply precisely the Richardson
Extrapolation?

The above problems were studied in many papers and books; see, for example, Brezinski (1985, 2000),
Brezinski and Matos (1996), Burden and Faires (2001), Dutka (1984), Joyce (1971), Osada (1993)
or Waltz (1996). The solutions of some of the problems were discovered and re-discovered several
times (see the above references again).

Consider the sequence (7.2) with s =1 and assume that lim{u,} = u*. Suppose that another
n —»>oo

sequence {U,},=; is created by using some expressions containing elements of the first sequence
{fup}a=q. Itissaid that the second sequence is accelerating the convergence of the first one if and
only if the following relationship holds: r!i})‘}o{(ﬁn —u")/(u, —u*)} =0; see Brezinski (2000).
Several transformations leading to an acceleration of the rate of convergence of sequences will be
considered in this chapter. It will be assumed, as we have already done above, that s =1, i.e. we
shall consider sequences of real numbers, but most of the ideas discussed in this chapter are also
applicable for more general cases.

It must be noted here that equations of the type (7.1) appear when systems of ordinary differential
equations are handled by using implicit numerical methods (see Chapter 4) as well as when the spatial
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derivatives of a system of partial differential equations are discretized and the resulting system of
ordinary differential equations is handled by implicit methods. That means that efficient methods for
the numerical treatment of equations of type (7.1) might be useful also in connection with the material
presented in the previous chapters.

The applications of iterative methods in the solution of (7.1) leads to sequences of real vectors (7.2),
but we shall often assume that the treated problems are scalar and will consider the task of accelerating
the rate of convergence of the resulting sequences of real numbers.

The contents of the seventh chapter can be sketched as follows:

Some very simple examples, describing how the speed of convergence can be accelerated, will be given
in the first section, Section 7.1.

Some information about the use of Romberg methods in the numerical integration will be presented,
together with some numerical results, in Section 7.2.

Several major conclusions will be drawn in Section 7.3, while several topics for further research will
be presented in Section 7.4.

7.1. Acceleration of the speed of convergence for sequences of real numbers

In this section we shall mainly consider sequences of real numbers, i.e. we shall again use (7.1) under
the assumption that s = 1 has been selected.

We shall start, in Sub-section 7.1.1, with a simple example related to the calculation of approximations
of the famous number . The algorithm sketched in this sub-section was used (several hundred years
ago) by the Japanese mathematician Takakazu Seki (1642-1708), see Hirayama, Shimodaira and
Hirose (1974).

Some definitions that are related to the rate of convergence of the selected iterative method in the case
where s = 1 will be introduced and discussed, together with some simple examples, in Sub-section
7.1.2.

Then we shall proceed, in Sub-section 7.1.3, with the introduction of the algorithm proposed by A.
Aitken and an improvement of this algorithm suggested by J. F Steffensen; see Aitken (1926) and
Steffensen (1950).

Some short remarks about the use of Richardson Extrapolation in connection with sequences of real
numbers will be given in Sub-section 7.1.4.

7.1.1. Improving the accuracy in calculations related to the number T
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Takakazu Seki, see again Hirayama, Shimodaira and Hirose (1974), defined wu, as the perimeter
of the regular polygon with 2™ sides that is inscribed in a circle with a diameter d =1 and
calculated three consecutive approximations of the number Tt :

(7.5) uy5 =3.1415926487769856708, u;¢ = 3.1415926523865913571,
uq7; = 3.1415926532889927750 .

Then he applied the formula:

(ug6 — uy5)(Ug7 — ugg)

(7.6) U5 =uqe + ,
15 16 (ug6 —ug5) — (Ug7 — uyq)

to calculate an improved approximation:

(7.7) 45 =3.1415926535897932476.

Twelve digits in the approximation U5 are correct, while the number of the correct digits in
u;s, Uge and uq; are seven, eight and nine respectively; the correct digits in (7.5) and (7.7) are
marked in green. This illustrates very clearly the fact that the computational devise introduced by
formula (7.6) leads to a very considerable increase of the accuracy.

7.1.2. Definitions related to the convergence rate of some iterative processes

Consider (7.4) with s =1 and introduce the abbreviation e, = |u, —u*|. It is clear that
lim{e,} = 0 when the iterative process is convergent. Then, the following definitions related to the
n —>oo

concept of convergence for sequences of real numbers can be introduced:

Definition 7.1: We say that the convergence of (7.4) with s = 1 is linear if there exists some real
number K € (0,1) for which the equality lim{e,,;/e,} =K holds. If lim{e,,1/e,} =1
n —»oo n—-oo

or lim{e,,1/e,} = 0 issatisfied, then the convergence is sub-linear or super-linear, respectively.
n —»>oo

If both lim{e,,{/e,} =1 and lim{|u,;, —u,4q|/|uy+1 —uyl} =1 hold, then it is said that
n —»oo n-—-o

the sequence (7.4) with s = 1 is converging logarithmically to u*. The rate of convergence will
be of order p, where p =1 isan integer, when the relationship lim{e,,{/(e,)P} =K is
n —»oo

satisfied.
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In the case of linear convergence the error e,,; Wwill become approximately K times smaller than
the error e, when n issufficiently large. The sequence (7.2) with s = 1 is similar to a geometric
sequence with acommon ratio K when it converges linearly. It is clear that the convergence becomes
slow when K isapproaching 1. The sub-linear convergence may be very slow.

Several examples are given below.

Example 7.1: Consider a smooth function f: [a,b] — [a,b] with M & lg[a{)(]{lf’l} <1. Then
u€ja,

according to Banach’s fixed point theorem, see Banach (1922), this function has a unique fixed point
u*, which can be found by applying a simple iterative process u,,q = f(u,) for n=1, 2,...,
starting with an arbitrary real number u, € [a,b] . It can be shown that the convergence rate of this
iterative process is linear.

The following relationship, based on the application of a truncated Taylor expansion, obviously holds
for some given T = ¢(u) € [a,u]:

— * I (g% * f”(Z) *) 2
(7.8) f(w)=fu)+f(u)(u—u*) + 20 (u—u")
By substituting u with u, we can obtain:
()

(7.9) f(u,) = f(u*) +f'(w)(u, —u*) + T(u“ —u*)?

Apply here the relations wu,,; = f(u,) and u* = f(u*) to obtain:

Upt1 — u’ . f”(() %
(710) W =f (ll ) + 21 (l.ln u )
It is clear that
Uy, q—u’ "'
(7.11) lim {L} = lim {f’(u*) + ﬁ (u, — u*)}
n-oo (U, —u* n—oo 2!

The second term on the right-hand-side of (7.11) tends to zero, while the first one is constant. Therefore,
we have
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(7.12)  lim {%} = f'(u")

n—>o0o
It is clear now that the following relationship can be obtained from (7.12):

Uy — U’
(7.13)  lim { L L

n—>oo

OS]

n

Therefore the convergence is linear because |[f'(u*)|<M < 1.

Example 7.2: Consider the sequence defined by u, =1/n for n=1, 2, ...,. Itisclear that
lim{u,} =0 and lim{u,,,;/u,} =1 . This means that the convergence is only sub-linear.
n—oo n—oo

Furthermore, it is easy to show that lim{|u,,;, — uy41]/|uy+1 — uyl} =1, which shows that the
n—>o0o
sequence u, = 1/n converges logarithmically.

Example 7.3: Consider Example 7.1 with the additional assumption that f'(u*) =0 . Use the
equality:

fll(u*)
2!

flll(z)

(u—u"? + 31 (u—u*)3

(7.14) f(w) = f(w)+f(uW)(u—u*) +

Substitute u with u,, f(u,) with u,,; and f(u*) with u* to obtain:

fll(u*)
2!

flll(()

31 (un - ll*)3

(7.15) u,= u + (u, —u*)? +

Simple transformations lead to the relations:

Uy — U’ } ()| <M
N 2

(7.16) lim{ R S <

n—-oo

)
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which show that we have a second-order (quadratic) convergence in this example.

7.1.3. The Aitken scheme and the improvement made by Steffensen

Assume again that (7.1) is a scalar equation, i.e. s =1, and consider the sequence (7.2). Assume

furthermore that the convergence is linear, which means, according to Definition 7.1, that the

relationship  lim{(u,,; —u*)/(u, —u*)} = K holds for some value of K with |K| € (0,1) .
n —»oo

This means that we can expect that the two relationships

Upyq — u’ Upy2 — u’
(7.17) ———— ~K and —— =K
u, —u Uppqg — U

hold for sufficiently large values of n, which implies that

2
Upiqg — U Upiz — U UyUygz — (Upyq)

(7.18) = — = = - = wr —= = .
u, —u Upig — U Upiz — 2un+1 +u,

Then a new approximation 1, can be defined by setting:

2
Up 22Uy — (un+1)
Upiz — 2Up4q + Uy

(7.19) W, &

Let us introduce the operators:
(7.20) Au, = up,q — u, and  A%u, = A(Au,) = Uy —2Upyq + Uy, -
Then simple transformations lead to the following expression for U, :

(Aun+1) (Aun)

(7-21) Uy = Upq — Azlln
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The two equalities (7.19) and (7.21) will produce the same results when the calculations are carried out
in exact arithmetic, but on computers (7.21) will often produce more accurate and more reliable results,
because it is less sensitive to rounding errors.

Two alternative versions of (7.21) can also be introduced and used:

_ (Au,)?

~ _ (Aun) (Aun—l)
A%u, '

and U, = u, 1 A2y
n

(7.22) T, = u,

The algorithm for calculating improved approximations that is based on any of the formulae in (7.21)
and (7.22) was proposed by A. Aitken in 1926, see Aitken (1926). The fact that this algorithm is
converging faster is clear from the following theorem proved in Aitken (1926):

Theorem 7.1: Assume that the convergence of the sequence (7.2) is linear, i.e. assume that
lim{|u” —u,,4|/|u* —u,|} = K with some K € (0,1). Then the sequence {ii,},—o defined in
n —»>o0o

(7.22) converges to the same limit u* and the rate of convergence is super-linear, which means that
lim {Ju" = Wy |/lu" — Ty} = 0.

Remark 7.1: The scheme, proposed by Takakazu Seki in the seventeenth century and discussed
shortly in the beginning of this chapter, is obviously an Aitken process; compare (7.6) with (7.19).

The Aitken scheme can be applied in conjunction with the fixed point methods discussed in Example
7.2. Consider again the equation u = f(u) with wu € [a,b] and with gef lg[a)é]{f’} <1.
ue€ja,

Assume that the solution of this equation is u* . Consider also the sequence obtained by using the
recurrent relationship w,,q =f(u,) for n=1, 2,.., starting with an arbitrary wuy € [a,b] .
Since the sequence {u,},=o is linearly convergent to the solution u*, the Aitken process defined
by any of the relationships in (7.19), (7.21) and (7.22) will in general accelerate the convergence.
However, this will not always be the case. Example 7.3 shows that the convergence of the sequence
{up}a=o to u* will be quadratic in the case f(u*) = 0 . Therefore, the Aitken process will not
accelerate the convergence in this case.

Steffensen’s method (Steffensen, 1950) is a combination of the fixed-point iteration and the Aitken
method. The algorithm can be introduced in the following way. Start with an arbitrary real number u,
and calculate u; = f(uy) and wu, = f(u;) by using the Aitken scheme. Then a new and better
approximation U, can be calculated by using the three approximations uy, u; and u, and the
formula Ty = ug— (u; — ug)?/(uz — 2uy + ug) . This new value can then be applied to restart
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the Aitken scheme by using the three approximations. More precisely perform the following three
actions: (a) denote vy =1, and calculate v; =f(vy) and v, =f(vy), (b) compute a new
Aitken approximation by using: Vo = v — (v; — vg)?/(v2 — 2v; + vg) and (c) set iy = ¥V, . The
same process can be continued in a quite similar manner: for i =1, 2, ... perform the three actions:
(A) denote vy =1U; andcalculate vy =f(vy) and v, =f(vy), (B) compute a new Aitken
approximation by using: Vo = v — (v; — vg)%/(vy — 2vy + vg) and (C) set Uiyq = Vp .

The convergence of the numerical algorithm, obtained as sketched above, is in general quadratic, but
for some special problems, see the example given below, could be even higher.

It is worthwhile to compare qualitatively the Steffensen method that has been described above with the
well-known Newton method (see Chapter 4). Both algorithms lead to a quadratic convergence.
Function f must be three times continuously differentiable in order to achieve the quadratic
convergence when the Steffensen method is used, while the existence of a continuous second derivative
of this function is sufficient when the Newton method is used. One function evaluation and one
derivative calculation per iteration are needed when the Newton method is used, while two functions
evaluations and some more complex algebraic computations are used at every iteration when the
Steffensen method is used. The fact that no derivative evaluation is needed when the Steffensen method
is used can be considered as an advantage of this method.

A simple numerical example is given below.
Example 7.5: Consider the problem of finding the unique fixed point of the trigonometric function
f(u) = cos(u) intheinterval [0,1]. The problem has been solved by

(a) using directly the fixed-point iteration,

(b) applying the Aitken scheme
and

(c) using the Steffensen method.
The starting approximation was u, = 0.5 . A reference solution u*®f was calculated by using
fixed-point iterations until the difference between two successive approximations became
luirq — u;] < 1073% . This requirement was satisfied for i = 174 . It must be mentioned here that
extended (quadruple) precision was used in the calculation on the computer used.

The reference solution found in this way was u™f = 0.7390851332151606416553120877 .

After that the three methods were run until the difference between the current approximation and the
reference solution became less (in absolute value) than 1072% or, in other words, until the inequality
|u“*f - ui| < 10729 was satisfied, which happened after 115, 52 and 4 iterations for the fixed-
point algorithm, the Aitken scheme and the Steffensen method respectively.

Numerical results are given in Table 7.1.
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Fixed-point iteration

Aitken algorithm

Steffensen method

No. Calc. values Accuracy | Rate Calc. values Accuracy Rate Calc. values Accuracy Rate
0 | 0.500000000000000 2.4E-01 - 0.731385186382581 | 7.7E-03 - 0.7313851863825817 7.7E-03 -
1 | 0.877582561890372 3.7E-01 0.633 | 0.736086691713016 | 3.0E-03 2.568 0.7390763403695222 8.8E-06 8.8E+02
2 | 0.639012494165259 2.3E-01 1.583 | 0.737652871396399 | 1.4E-03 2.094 0.7390851332036611 1.1E-11 7.6E+05
3 | 0.802685100682334 1.6E-01 1.458 | 0.738469220876263 | 6.2E-04 2.325 0.7390851332151606 2.2E-23 5.8E+11
4 | 0.694778026788006 1.0E-01 1.517 | 0.738798065173590 | 2.9E-04 2.145
5 0.768195831282016 7.3E-02 1.470 | 0.738957710941417 1.3E-04 2.253
6 0.719165445942419 4.9E-02 1.497 | 0.739026560427970 5.9E-05 2.175
7 | 0.752355759421527 3.3E-03 1.477 | 0.773905880831365 | 2.6E-05 2.225
8 0.730081063137823 2.2E-02 1.490 | 0.739073115644591 1.2E-05 2.191
9 | 0.735006309014843 1.5E-02 1.481 | 0.739079703326153 | 5.4E-06 2.213

10 | 0.735006309014843 1.0E-02 1.483 | 0.739082662515195 | 2.5E-06 2.198

11 0.741826522643245 6.8E-03 1.483 | 0.739084014267376 1.1E-06 2.208

12 | 0.737235725442231 4.5E-03 1.486 | 0.739084624843225 | 5.1E-07 2.201

13 | 0.740329651878263 3.0E-03 1.484 | 0.739084902738891 | 2.3E-07 2.206

14 | 0.738246238332233 2.0E-03 1.485 | 0.773908502857531 | 1.0E-07 2.203

15 | 0.739649962769661 1.4E-03 1.484 | 0.73908508575306 4.7E-08 2.205

16 | 0.738704539356983 9.4E-04 1.485 | 0.73908511167342 2.2E-08 2.203

17 | 0.739341452281210 6.3E-04 1.484 | 0.73908512344226 9.8E-09 2.204

18 0.738912449332103 4.2E-04 1.485 | 0.73908512878014 4.4E-09 2.204
$ $ $ $ $ $ $

52 | 0.739085132962136 6.3E-10 1.485 | 0.739085133215160 | 9.5E-21 2.203
$ $ $ $

115 | 0.739085133215160 9.7E-21 1.485

Table 7.1

Calculations performed with three numerical algorithms. Extended (quadruple) precision is used (this means that the actual
computations are carried out by using 32 significant digits, but the calculated approximations are given in the table with

15 significant digits). The absolute values of the difference between the calculated approximations and the reference
solution are given in the columns under “Accuracy”. The ratios between two successive approximations are given in the
columns under “Rate”. The calculations were carried out until the absolute value of the calculated approximation and the

reference solution becomes less than 10729, It was not possible to list all results for the first two methods in the above
table, but the last approximations are given .

7.1.4. Richardson Extrapolation for sequences of real numbers — an example
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The results shown in Table 7.1 are telling us that both the Aitken scheme and the Steffensen method
are accelerating the rate of convergence of the fixed-point iteration. However, it is not easy to predict
by how much the rate of convergence will be increased. The application of the Richardson
Extrapolation for accelerating the convergence of sequences of real numbers is giving us a means for
the evaluation of the rate of convergence of the resulting new numerical procedures.

Consider, as in Example 7.1, a sufficiently smooth function f(u) (i.e. we are assuming that all its

derivatives up to some order p =1  exist and are continuous), where  f:[a,b] - R and

M rg[ag]{f’} < 1. Assume furthermore that u, € (a,b) andthat ny issome sufficiently large
uE€la,

integer, such that ug +1/n € (a,b) when n>=ny. Form two sequences the n’th terms of
which are defined by the following expressions:

1
+_ J—
(7.23) f(uo "1) f(u(’), n=ng ng+1,..,
n
1
(7.24) flo) fl(uo "), n=ngngo+1,...
n

It is clear that

(7.25) f (10 + ) = Fuo) + (o) 505 () + g3 £'(0)
' 0T qn) I Tt AT T g2 077 6n3

and hence we have

f (uo + =) — f(uo)

(7.26)

1 1
~ /(o) = 5" () + 0(5) |

simiE

which means that the following two relationships hold:

f (w0 +3) — f(uo)

(7.27) lim —f'(ug) =0, lim
n—->oo

n—->oo

1
f (o +3) — flug)
(e "1) : = f'(uo)
n

ST N
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The following definition is useful for the presentation of the results in the remaining part of this section:

Definition 7.2: The convergence of the sequence of real numbers {f(u,)} o tothelimit f(u*) is
of order p =1 iftheinequality |f(u,)—f(u*)] <M, /nP, where M, isa constant, holds for
vVn.

We can obtain from (7.26) the following inequality (with some constant M, that does not depend on
n ), which shows that the convergence of the sequence defined by (7.23) to f'(ug) is linear:

f (o +

f(u()) Mz

(7.28) —fu)| =—=

:IHﬂ?

Similar arguments can be used to show that the sequence defined by (7.24) converges linearly to
f'(ug) . More precisely the following inequality holds too with some constant M, , which does not
depend on n and is not necessarily equal to that in (7.28):

fuo) ~ f (w0~ 3)
(7.29) : - )| <52

n

The above analysis shows that we have two sequences of real numbers, (7.23) and (7.24), both of them
converging linearly to f'(ug) . Let us create now a third sequence, each term of which is the sum of
the corresponding terms of the sequences (7.23) and (7.24):

(7.30)

’ uoiﬁe[a,b], n=n0,n0+1,....

SN

Transformations, as those performed above, applied in connection with the sequence (7.23), will give:

(7.30) fluo+3)=F(uo =)+ (o + 1)+ 5,57 (o) + o= [V G0 + @]
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and

1 1
~ (o) = 3 ") + 0 )

If we assume that function f is sufficiently smooth (i.e. in this particular case if it is continuously
differentiable up to order five), then there exists a constant M3 such that the following inequality
holds for sufficiently large values of n:

fuo+z) ~ £ (o +3)

(7.33) — f'(up)| < —2"’ :

SN

which means that it is possible to obtain a sequence, the rate of convergence of which is two, by
combining in an appropriate manner two sequences, which are only linearly convergent.

Higher rates of convergence can also be achieved. For example, it can be shown (by using the same
approach as that used above) that the rate of convergence of the sequence given below is four:

a9 - Care) o )12 8 (o —3) + £ (wo +5)

Richardson Extrapolation can be applied in the efforts to predict better the behaviour of the
improvement of the convergence rate. It is convenient here to introduce the same kind of notation as
that used in the previous chapters of this book.

We shall first introduce the following two definitions:

— fup) o (w0t 5) — o)

(7.35) w, & f(

=|H5|'7
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It should be noted that the first sequence in (7.35) is in fact the sequence defined in (7.23), the rate of
convergence of which is one. It can easily be shown (by using after the second term Taylor expansions
of function f) that the rate of convergence of the second sequence in (7.35) is also one.

Form now, as in the previous chapters, the Richardson Extrapolation for the case where the order of
convergence p isequal to one:

(7.36) y,“2w,—2z,=2

It can be shown, by applying truncated (after the fifth term) expansions in Taylor series, that the
Richardson Extrapolation is giving a sequence the order of convergence of which is two. Thus, the
convergence is accelerated (by order at least equal to one) when the Richardson Extrapolation is used.

Consider now two other sequences of real numbers:

U A %t e R

SN

Since the order of convergence for these two sequence is p =2, it is clear that the order of
convergence of the sequence obtained by using the Richardson extrapolation:

4w, - z,

(7.39) yn= 3

willbe p > 2. Itcaneasily be verified that y, isactuallyequalto f(u,) and, thus, the order of
convergence in this special case isnot p =3 asusual, but p =4 due to the cancellation of the
terms containing the third derivatives of f in the Taylor expansion given in (7.31).
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7.2. Application of the Richardson Extrapolation to numerical integration

In this section, we shall discuss the use of the Romberg method, Romberg (1955), for calculating
approximations of the integral:

b
(7.40) I(f)=ff(x)dx, aceR, beER, a<b, x€lab], f:lab] - R.

a

The Romberg method is essentially an application of the Richardson Extrapolation to the Composite
Trapezoidal Rule (see, for example, Burden and Faires, 2001).

Assume that h=(b—a)/n, x;=a+jh, j=1,2,..,n—-1, and f isat least twice
continuously differentiable in the interval [a,b], i.e.that f € C?[a,b]. Then the Composite
Trapezoidal Rule can be represented for some & € (a,b) by the following formula:

b h n-1 b "
740 L) = [ feax= g r@+2 Y fGx)+ fo|+ LB g
a =

The last term on the right-hand-side of (7.41) is the error of the integration method, but this term cannot
be used directly for the evaluation of the error, because in the general case & is not known. The
formula (7.41) is nevertheless important, because it shows that the Composite Trapezoidal Rule has
second order of accuracy.

If we assume additionally that f € C* [a,b], thenthe Composite Trapezoidal Rule can be re-written
as

b h = 2
(7.42) L,(f) = j f(x)dx = > f(a) +zz f(x;)+ f(b) +ZKih2‘ .
a j=1 i=1

The last formulation will be used in the derivation of the Romberg method as a successive
implementation (in several consecutive steps) of the (repeated) Richardson Extrapolation in order to
eliminate one term in the last sum in the right-hand-side at each step. Let us emphasize here that the
coefficients K; inthe sum of (7.42) depend on the derivatives of function f, but not on the increment
h .

Formula (7.42) is giving us the exact value of the integral, but unfortunately it cannot be directly used
in practice either (due to the presence of the infinite sum in the last term on the right-hand-side).
Therefore, it is necessary to truncate somehow this sum when actual computations are to be carried
out. It is reasonable to start with removing the whole infinite sum and then gradually to improve the
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accuracy of the approximations by adding successively terms containing K;, Ky, K3, ..., K,
and eliminating (one at a time) these constants. Moreover, the resulting truncated formulae can be used
with different value of the parameter n .

Let us start by removing the whole infinite sum from (7.42) and by applying the resulting formula for
n=2K1 k=1,23,4,5, ..,q, Itisconvenient (and it is also very often used in the literature) to
introduce the following notation for the resulting approximations: Toq, Toz, Toz, ..., Toq -

Consider two successive approximations Tg, and Tok,.q . Then the true value of the integral can
be expressed either by To + Kl(h/zk)2 +0(h*) orby Tousq + Kl(h/z"“)2 +0(h*). From
these expressions for the value of the integral, it is clear that the order of accuracy of the following two
approximations Ty + Kl(h/Zk)2 or Towsr + Kl(h/zl‘“)2 is four. The problem is that the

value of K; is unknown. Therefore, Richardson Extrapolation should be used to eliminate this
constant. We shall neglect the rest term  O(h*) in the above two expressions and then form:

4 [Toxsr + Ko (R/2Y) ] = [Tor + K1 (R/2%)°] 4Ty — Ty

7.43) T =
(7.43) Tien 3 :

It is seen that the constant Ky is indeed eliminated and the new approximations Ty, , where
k=1,2,..,q, are of order four.

Similar procedure can be used to obtain the next approximations. Consider now the following two
successive approximations Ty, and Tyk,.q . Then the true value of the integral can be expressed
either by Ty + Kz(h/zk)4 +0(h® orby T+ Kz(h/zk“‘l)4 + 0(h®) . From these
expressions for the value of the integral, it is clear that the order of accuracy of the following two
approximations Tgy + Kz(h/zk)4 or Tos1 + Kz(h/2k+1)4 is four. The problem is, again, that
the value of the constant K, is unknown. Therefore, Richardson Extrapolation should be used again

to eliminate this constant. We shall neglect the rest term  0(h®) in the above two expressions and
then form:

16 [T1ie + Ko(h/21)*] = [Ty + Ko (R/2%)"  16Ty01 — Tai

It is seen that the constant K, is indeed eliminated and the new approximations Ty, , Where
k=23,..,q, areofordersix.

In the same way, approximations Tz, of order eight can be obtained.

It is clear that the process can easily be continued if more accurate results are needed. Assume that the
approximations Tj_y have been calculated for k=j—1, j, .. , q. Then the next column of
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approximations, the approximations Tj, for k=j,j+1,..,q can be obtained by applying the
following formulae:

YT qper — Tk
411

(7.45) Tjisq =

The Romberg table (see below) can be used to represent conveniently the approximations:

Figure 7.1
The Romberg table achieved when the Richardson

Extrapolation is repeatedly applied in the calculation of
approximations of the value of the integral given in
formula (7.42).

Example 7.6: Consider the problem of finding the value of the integral:

1

(7.46) I(f) = f e * dx
0

by using the Romberg method.

This problem was solved in three steps.
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Step 1: Calculations with the Composite Trapezoidal Rule were performed during the first step for

n=2% with k=0,1, .., 40 in order to calculate
approximations Tg, . The accuracy of the last of these 41 approximations was
approximately equal to 10725 . We proceeded by calculating, applying the Richardson
Extrapolation, the quantities Ty, and continuing the calculations until the difference between
two successive approximations became less (in absolute value) than 10739 . This
requirement was satisfied for k = 21 . The last of these 21 approximations, T;,; was
declared as a reference solution.

41 different values of

Step 2: The reference solution was used during the second step to evaluate the accuracy of the already

calculated approximations and the rates of convergence.

Step 3: During the third step, Richardson Extrapolation was used to calculate approximations T, for

The value of the reference solution is:

i=2, 3, 4, 5. Thecalculations were continued, for each value of i, until the difference
| Ty — Ti_1| remained greater than 10739

0.7468241328124270253994674361317 .

Results are shown in Table 7.2 —Table 7.5.

k Toj Tix T Ty Tax Tsy
0 | 0.683939720585721 - : . X :
1 | 0.731370251828563 | 0.747180428909510 - X
2 | 0.742084097800381 | 0.746855379790987 | 0.746833709849752 - -
3 | 0.745865614845695 | 0.746826120527466 | 0.746824169900898 | 0.746824018482281 - -
4 | 0.746584596788221 | 0.746824257435730 | 0.746824133229614 | 0.746824132647387 | 0.746824133095094 -
5 | 0.746764254652296 | 0.746824140606985 | 0.746824132818402 | 0.746824132811874 | 0.746824132812519 | 0.746824132812243
6 | 0.746809163637827 | 0.746824133299672 | 0.746824132812518 | 0.746824132812424 | 0.746824132812427 | 0.746824132812427
7 | 0.746820390541617 | 0.746824132842881 | 0.746824132812428 | 0.746824132812427 | 0.746824132812427 | 0.746824132812427
8 | 0.746823197246152 | 0.746824132814330 | 0.746824132812427 | 0.746824132812427 | 0.746824132812427

9 | 0.746823898920947 | 0.746824132812545 | 0.746824132812427 | 0.746824132812427

10 | 0.746824074339562 | 0.746824132812434 | 0.746824132812427

11 | 0.746824118194211 | 0.746824132812427

12 | 0.746824129157873 | 0.746824132812427

13 | 0.746824131898788 | 0.746824132812427

14 | 0.746824132584017 | 0.746824132812427

15 | 0.746824132755324 | 0.746824132812427

16 | 0.746824132798151

17 | 0.746824132808358

18 | 0.746824132811534

19 | 0.746824132812203

20 | 0.746824132812371

21 | 0.746824132812413

22 | 0.746824132812423

23 | 0.746824132812426

24 | 0.746824132812426

25 | 0.746824132812426

26 | 0.746824132812427

27 | 0.746824132812427

28 | 0.746824132812427

29 | 0.746824132812427

30 | 0.746824132812427

31 | 0.746824132812427

32 | 0.746824132812427

320




Zlatev, Dimov, Faragé and Havasi: Practical Aspects of the Richardson Extrapolation

Table7.2
Values of the integral (7.46) that are calculated by using the Romberg method. Extended (quadruple) precision is used (this

means that the actual computations are carried out by using 32 significant digits, but the calculated approximations are

given in the table with 15 significant digits). The calculations (excepting these used to calculate the results in the first
column of the table) were carried out until the absolute value of the difference of the calculated approximation and the

reference solution becomes less than 1073% | but not all results are given in this table, because the rounded, to 15

significant digits, values are becoming quickly the same.

k Tox Tix Ty T3y Ty Tsk
0 6.2884E-02 - - - - -
1 1.5454E-02 3.5630E-04 - - - -
2 | 3.8400E-03 | 3.1247E-05 | 9.5770E-06 - - -
3 9.5852E-04 1.9877E-06 3.7097E-08 1.1433E-07 - -
4 2.3954E-04 1.2462E-07 | 4.1719E-10 1.6504E-10 | 2.8267E-10 -
5 5.9878E-05 7.7946E-09 5.9751E-12 5.5212E-13 | 9.2926E-14 1.8329E-13
6 1.4969E-05 4.8725E-10 9.1314E-14 2.0786E-15 | 7.8405E-17 1.2355E-17
7 3.7423E-06 3.0454E-11 1.4189E-15 8.0460E-18 | 7.3962E-20 2.6086E-21
8 9.3557E-07 1.9034E-12 2.2139E-17 3.1358E-20 | 7.1614E-23 6.1516E-25
9 2.3389E-07 1.1896E-13 3.4580E-19 1.0944E-22 6.9787E-26 1.4884E-28
10 5.8473E-08 7.4352E-15 5.4026E-21 4.7815E-25 6.8226E-29 7.4726E-32
11 1.4618E-08 4.6470E-16 8.4415E-23 1.8682E-27 | 4.4970E-31
12 3.6546E-09 2.9044E-17 1.3190E-24 7.3875E-30
13 | 9.1364E-10 | L.8BI52E-18 | 2.0610E-26 | 8.5906E-31
14 2.2841E-10 1.1345E-19 3.2166E-28
15 5.7102E-11 7.0908E-21 5.2778E-30
16 1.4276E-11 4.4317E-22 1.0015E-31
17 | 35680E-12 | 2.7698E-23
18 8.9223E-13 1.7311E-24
19 | 2.2306E-13 | 10820E-25
20 5.5764E-14 6.7620E-27
21 1.3941E-14 4.2266E-28
22 | 3.4853E-15 | 2.6967E-29
23 | 8.7131E-16 | 2.2999E-30
24 | 2.1783E-16 | 6.3325E-31
25 5.4457E-17
26 1.3614E-17
27 | 3.4036E-18
28 | 8.5083E-19
29 2.1271E-19
30 | 5.3168E-20
31 1.3282E-20
32 | 3.3108E-21
Table 7.3

Accuracy achieved in computations of the integral (7.46) carried out by using the Romberg method. Extended (quadruple)
precision is used (this means that the actual computations are carried out by using 32 significant digits, but the calculated
approximations are given in the table with 5 significant digits which is quite sufficient for this case). The calculations
for Ty, where i=1, 2, 3, 4, 5, werecarried out until the absolute value of the calculated approximation

and the reference solution becomes less than 10730 . which means that no calculations were carried out for the white
cells in the table.
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Tox Tix Tox T3k Tax Tsx
2.0692 -
4.0244 11.4026 -
40062 | 15.7200 | 258.1588 -
20016 | 159498 | 88.9228 | 692.7455 -
40004 | 15.9885 | 60.8215 | 298.0184 | 3041.8470 -
20001 | 159972 | 65.4341 | 2656186 | 1185.1999 | 148359408
240000 | 15.9993 | 64.3573 | 258.3441 | 1060.0809 | 4736.1650
40000 | 15.9998 | 64.0892 | 2565824 | 1032.7875 | 42405409
20000 | 16,0000 | 64.0223 | 256.1454 | 1026.1818 | 4133.1341
10 | 40000 | 16.0000 | 64.0056 | 256.0364 | 1022.8802 | 1991.7539
11 | 40000 | 16.0000 | 64.0011 | 2559386 | 151.7120
12 | 40000 | 16.0000 | 64.0004 | 252.8891
13 | 40000 | 16.0000 | 63.9974 | 8.5995
14 | 40000 | 16,0000 | 64.0740
15 | 40000 | 16.0000 | 60.9448
16 | 40000 | 16.0000 | 52.7000
17 | 40000 | 16.0000
18 | 240000 | 16.0000
19 | 20000 | 15.9999
20 | 2.0000 | 16.0009
21 | 40000 | 15.9996
22 | 20000 | 15.6724
23 | 40000 | 11.7249
24 | 20000 | 36320

cooouoam.bwwl—\w

25 | 4.0000
26 | 4.0000
27 | 4.0000
28 | 4.0000
29 | 4.0000
30 | 4.0000
31 | 4.0000
32 | 4.0000

Table7.4
Rates of convergence achieved in the calculations of values of the integral from (7.46) by using the Romberg method.

Extended (quadruple) precision is used (this means that the actual computations are carried out by using 32 significant

digits, but the calculated approximations are given in the table with 5 significant digits which is quite sufficient for this
case). The calculations were carried out until the absolute value of the calculated approximation and the reference solution

becomes less than  1073% | which means that no calculations were carried out for the white cells in the table. The perfect
values of the ratesare: 4, 16, 64, 256 , 1024 and 4096 respectively.
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T; Calculated Result Accuracy Rate
To; | 0.746584596788221549176776588169 2.3954E-04 -
Ty, | 0.746824140606985101991090205781 7.7946E-09 3.0731E+04
T,3 | 0.746824132812518339588049781742 9.1314E-14 8.5360E+04
T3, | 0.746824132812427017353515777622 8.0460E-18 1.1349E+04
Tz | 0.746824132812427025399539049872 7.1614E-23 1.1235E+05
Tse | 0.746824132812427025399467435983 1.4884E-28 4.8116E+05

Table 7.5
Values of the integral calculated in the second diagonal of the Romberg method. Extended (quadruple) precision is used
(this means that the actual computations are carried out by using 32 significant digits) and all significant digits are given
in the column under “Calculated Results”; the use of less significant digits was quite enough when accuracy results and
rates of convergence were listed. It is demonstrated in this table that the convergence along the diagonals of the Romberg
table is extremely fast.

7.3. General conclusions related to the seventh chapter

It has been shown in this chapter that the Richardson Extrapolation and some alternative approaches
(the Aitken scheme and the Steffensen method) can successfully be applied to accelerate the
convergence of sequences of real numbers. Such sequences can appear when iterative methods are used
in the solution of algebraic and transcendental equations. To facilitate the explanations, the results were
derived for the scalar case, but most of the results can be generalized for the case where systems of
algebraic and/or transcendental equations are to be treated.

It was also demonstrated that repeated Richardson Extrapolation is a very powerful approach in the

attempts to increase the accuracy of the approximations to the values of integrals in the case where the
Composite Trapezoidal Rule is the underlying method.

7.4. Some research topics
The following topics might lead to some very interesting and useful results:

(A) Try to generalize some of the results presented in Section 7.1 for the case
where s> 1.

(B) The results presented in Section 7.2 might be used with other methods for
numerical integrations (different from the Composite Trapezoidal Rule).
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Chapter 8

General conclusions

It was shown in the first four chapters of this book that the Richardson Extrapolation is a very general
and powerful tool for improving the performance of time-dependent problems arising in many different
areas of science and engineering. It can successfully be used both as a tool for improving the accuracy
of the numerical results and for error control during the computational process. In this book we
emphasized the fact that one should be very careful because the Richardson Extrapolation may lead to
unstable computations. Precisely this happens when the well-know and often used by scientists and
engineers Trapezoidal Rule is combined with the Richardson Extrapolation. Therefore it is necessary
to study carefully the stability properties of the combined method (the method for solving systems of
ordinary differential equations when it is used together with the Richardson Extrapolation). This is
normally very difficult. Different cases in which the stability properties are preserved are studied in the
first four chapters. It is shown, in Chapter 2, that sometimes the application of the Richardson
Extrapolation may result in new numerical methods with improved stability properties.

The important for scientists and engineers problem of using splitting procedures is shortly discussed in
Chapter 5. Some stability results for the sequential splitting procedure are treated there.

There are two approaches of introducing the Richardson Extrapolation for partial differential equations
(or systems of partial differential equations), which are studied in Chapter 6:

(A) The first approach is based on the use of semi-discretization (discretization of the
spatial derivatives) by applying either finite elements or finite differences. This leads
to a transformation of the partial differential equation or the systems of partial
differential equations into a system of ordinary differential equations. The methods
from the first four chapters can after that be used in the application of the Richardson
Extrapolation. This approach is very straight-forward, but it can successfully be used
only when the truncation errors made when the spatial derivatives are discretized are
much smaller than the errors due to the use of the selected numerical method for
solving ordinary differential equations.

(B) The second approach is based on a direct implementation of the Richardson
Extrapolation to the partial differential equation or the system of partial differential
equations. The solution of the problem of applying the Richardson Extrapolation in
this case is much more difficult than the solution of the problem in the first approach.
However, the second approach is much more robust when it is correctly implemented.

The above analysis indicates that each of the approaches has advantages and drawbacks. The correct
choice will in general depend very much on the particular problem that must be solved.

Some results related to the applications of the Richardson Extrapolation and some other methods for
accelerating the rate of convergence of sequences are treated in the first section of the seventh chapter.
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The Romberg method for calculations of vales of integrals also is treated in the seventh chapter (in the
second sections).

At the end of each chapter, some research problems are listed. The hope is that the reader will be able

to solve some of these problems if that is necessary for the solution of the particular problem which
she or he has to handle.
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L ist of abbreviations

DIRK Methods

Diagonally Implicit Runge-Kutta Methods

ERKMp

Explicit Runge-Kutta Method of order p

ERKMp+R

Explicit Runge-Kutta Method of order p combined with the Richardson
Extrapolation

FIRK Methods

Fully Implicit Runge-Kutta Methods

LM VSVFM Linear Multistep Variable Stepsize Variable formula Method
ODEs Ordinary Differential Equations
PDEs Partial Differential Equations

PEC Methods

Prediction-Evaluation-Correction Methods (used in relation to the linear
multistep methods; indices denoting the order of the number of steps are also
used in some cases)

PECE Methods

Prediction-Evaluation-Correction-Evaluation Methods (used in relation to the
linear multistep methods; indices denoting the order or the number of steps are
also used in some case)

RE Richardson Extrapolation
UNI-DEM Unified Danish Eulerian Model (a large-scale air pollution model)
VSVFM Variable Stepsize Variable Formula Method (used in relation to the linear

multistep methods)
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