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Preface 

 
The Richardson Extrapolation is a very powerful and popular numerical procedure, which can 

efficiently be used in the efforts to improve the performance of programs by which large time-

dependent scientific and engineering problems are handled on computers. It was introduced in 

Richardson (1911, 1927) and after that has been used numerous times by many scientists and 

engineers in the treatment of their advanced large-scale mathematical models. Different 

phenomena that arise in science and engineering are described and can successfully be studied by 

applying such models. In most of the applications, this technique was until now used primarily in the 

efforts either to improve the accuracy of the model results or to evaluate and check the magnitude of 

the computational errors (and, thus, to control automatically the time-stepsize in an attempt to achieve 

easier the required accuracy and to increase the efficiency of the computational process).  

 

Three important items are always strongly emphasized when the application of the Richardson 

Extrapolation is discussed. The first of these important issues is the following:  

 

(1) One must accept a substantial increase of the number of the 

simple arithmetic operations per time-step when this 

approach is selected.  

 

The increase of the number of simple arithmetic operations per time-step is indeed rather 

considerable, but the extra computations per time-step can be compensated in most of the cases  

 

(2) by exploiting the possibility to achieve the same degree of 

accuracy by applying a considerably larger time-stepsize 

during the computations (decreasing in this way the number 

of time-steps)  

 

and/or  

 

(3) by the fact that the accuracy and, thus, also the time-stepsize, 

can be controlled in a very reliable manner.  

 

In this book, we shall additionally describe two other very important but in some cases extremely 

difficult issues. The efficiency of this device could be considerably improved or, at least, some of 

the problems related to the implementation of the Richardson Extrapolation can successfully be 

avoided when these two issues are properly handled:  

 

(4) It is necessary to emphasize strongly the fact that a fourth 

very important item, the numerical stability of the results 
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that are calculated by the new numerical method (the 

method which is obtained when the Richardson Extrapolation 

is implemented), is also very important. Therefore, it is 

necessary to study very carefully the stability properties of 

the different implementations of the Richardson 

Extrapolation when these implementations are combined 

with various numerical methods. 

 

(5) If very large time-dependent mathematical models are to be 

treated numerically, different splitting procedures have very 

often to be introduced and used; see, for example, Faragó, 

Havasi and Zlatev (2010), Geiser (2008), Marchuk (1968), 

Strang (1968), Zlatev (1995), Zlatev and Dimov (2006) and 

Zlatev, Faragó and Havasi (2010). Therefore, it is 

worthwhile to study the application of the Richardson 

Extrapolations and the stability of the resulting new methods 

also in the case where some kind of splitting is applied.  

 

The last two items, the stability properties of the resulting new numerical methods and the 

introduction of the Richardson Extrapolation in connection with some splitting procedures, will also 

be discussed in the present book. Especially, the first of the last two important issues will be a major 

topic of the further presentation. 

 

The mentioned above five fundamental topics that are related to the Richardson Extrapolation (RE) 

are readily summarized in Table 1.  

 

 

No. Property of the underlying method What happens if RE is used? Does that always happen? 

1 Accuracy It becomes higher Yes 

2 Arithmetic operations per time-step They are increased Yes 

3 Stepsize control It is always possible Yes 

4 Preservation of the stability It is not clear in advance It should always be studied 

5 Combination with splitting Not very clear One must be careful 

Table 1 

Properties of the resulting new numerical methods obtained when Richardson Extrapolation (RE) is 

used. Some desired properties of the combination with the Richardson Extrapolation (in comparison 

with the properties of the underlying numerical method) are listed in the second column. The results 

of using the Richardson Extrapolation (again in comparison with the underlying method) are shown 

in the third column. The answers to the questions raised in the fourth column emphasize the fact that 

problems may arise in connection with the last two properties, while the situation is very clear when 

the first three properties are considered. 
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Several important conclusions can be drawn by studying carefully the results presented in Table 1: 

 

(A) If only the first three properties are considered (which is 

very often, in fact nearly always, the case), then the 

application of the Richardson Extrapolation is very straight-

forward and everything would be extremely simple when the 

fourth and the fifth items are not causing troubles. It is 

indeed quite true that the number of arithmetic operations is 

always exceeding if the Richardson Extrapolation is used, but 

a very good compensation can be achieved because the 

resulting new method is more accurate and the number of 

time-steps can be reduced very significantly by increasing the 

time-stepsize (under the assumption, not always clearly 

stated, that the stability will not cause any problems). 

Furthermore, it is possible to control the time-stepsize and, 

thus, to select optimal time-stepsize at every time-step. 

 

(B) The truth is, however, that, it is necessary to ensure stability 

of the computational process. This could cause very serious 

difficulties. For example, the well-known Trapezoidal Rule 

is a rather reliable numerical procedure (it is A-stable and, 

therefore, in the most of the cases the computational process 

will remain stable for large values of the time-stepsize). 

Unfortunately, the combination of this numerical algorithm 

with the Richardson Extrapolation results in a new numerical 

method, which is not stable. This fact has been established in 

Dahlquist (1963). It has been proved in Zlatev, Faragó and 

Havasi (2010) that some other representatives of the class of 

the 𝛉–methods (the Trapezoidal Rule is belonging to this 

class and can be obtained for 𝛉 = 𝟎. 𝟓) will also become 

unstable when these are combined with the Richardson 

Extrapolation. These results are very bad, but good results 

can also be obtained. It was shown in Zlatev, Georgiev and 

Dimov (2014) that the combination of any Explicit Runge-

Kutta Method with the Richardson Extrapolation results in a 

new algorithm, which has better absolute stability properties 

than those of the underlying method when the order of 

accuracy 𝐩 is equal to the number of stages 𝐦. These two 

facts show very clearly that the situation is indeed not clear 

and it is necessary to investigate very carefully the stability 

properties of the combination of the Richardson 

Extrapolation with the selected numerical method. 

 

(C) The situation becomes more complicated when some splitting 

procedure has additionally to be implemented and used. 

Results proved in Zlatev, Faragó and Havasi (2012) 

indicate that also in this situation the stability of the 
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computational process could play an important role and, 

therefore, it should be studied very carefully.  

 

Taking into account the last two conclusions, we decided to concentrate our efforts on the difficulties, 

which may arise when the Richardson Extrapolation is used. In our opinion, this is worthwhile, 

because these difficulties are very often (if not always) underestimated when this device is 

commented and its use is advocated.  

 

The book consists of eight chapters and the contents of these chapters can be sketched in the following 

way: 

 

Chapter 1 contains the definition of the Richardson Extrapolation for an arbitrary time-dependent 

numerical method for solving systems of ordinary differential equations (ODEs). The basic properties 

of this computational technique are explained there and several introductory remarks are given. Two 

different implementations of the Richardson Extrapolation as well as the advantages and the 

disadvantages of the application of any of these two implementations are also discussed in this 

chapter. Finally, the fact that it is necessary to develop and to use numerical methods, which have 

good stability properties when these are combined with the Richardson Extrapolation, is strongly 

emphasized. 

 

The application of the Richardson Extrapolation in connection with Explicit Runge-Kutta Methods 

(ERKMs) for solving systems of ordinary differential equations is discussed in Chapter 2. It is shown 

there that for some classes of Explicit Runge-Kutta Methods the application of the Richardson 

Extrapolation results always in new numerical methods with better stability properties. Any of these 

new methods is the combination of the selected numerical algorithm (in this particular case, the 

underlying Explicit Runge-Kutta Method) with the Richardson Extrapolation. The most important 

and very useful for the practical applications fact is that, as stated above, the new numerical methods, 

which are obtained by applying additionally the Richardson Extrapolation, have bigger absolute 

stability regions than those of the underlying classical Explicit Runge-Kutta Methods. This is very 

important, because if the absolute stability regions are bigger, then the Richardson Extrapolation can 

be used with bigger stepsizes also in the cases where the restrictions due to the necessity to preserve 

the stability are dominating over the requirements for achieving better accuracy. Numerical examples 

are given in order to show how the improved stability properties can be utilized in order to achieve 

better efficiency of the computational process. 

 

Linear multistep methods and predictor-corrector methods (including here predictor-corrector 

methods with several different correctors as those developed in Zlatev, 1984) can successfully be 

used when large mathematical models are handled. The application of such methods in the numerical 

solution of systems of ordinary differential equations is considered in Chapter 3. The basic properties 

of these methods are described. It is explained why the use of the Richardson Extrapolation in 

connection with the linear multistep methods is at least difficult. However, another approach, the use 

of carefully chosen predictor-corrector schemes, can successfully be applied. It is shown that the 

result achieved by using different predictor-corrector schemes is very similar to the result achieved 

by using the Richardson Extrapolation. Again, as in the second chapter, we are interested first and 

foremost in the absolute stability properties of the resulting combined predictor-corrector methods. 

 

The combination of some implicit numerical methods for solving stiff systems of ordinary differential 

equations and the Richardson Extrapolation is the main topic of the discussion in Chapter 4. Implicit 
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numerical methods are as a rule much more expensive with regard to the computational complexity 

than the explicit methods, because they lead, normally in an inner loop of the well-known Newton 

iterative procedure (or some modifications of this procedure), to the solution of systems of linear 

algebraic equations, which can sometimes be very large (containing many millions of equations). 

Therefore, such numerical methods are mainly used when the system of ordinary differential 

equations that is to be treated is indeed stiff and, because of this, it is very inefficient to apply explicit 

numerical methods. The absolute stability properties of the numerical methods, which are the main 

topic of the discussion in the previous two chapters, are as a rule not sufficient in the efforts to achieve 

good efficiency when stiff problems must be solved. Therefore, it is necessary to use several more 

restrictive definitions related to the stability of the numerical methods for solving stiff systems of 

ordinary differential equations. Such definitions (A-stability, strong A-stability and L-stability; see 

Burrage, 1995, Butcher, 2003, Dahlquist, 1963, Dahlquist, Björck and Anderson, 1974, Hairer, 

Nørsett and Wanner, 1987, Hairer and Wanner, 1991, Hundsdorfer and Verwer, 2003, 

Lambert, 1991) are introduced in the fourth chapter and used consistently in it. After the introduction 

of the three more restrictive stability definitions, the selection and the application of suitable implicit 

numerical methods for solving stiff systems of ordinary differential equations possessing good 

stability properties is discussed. The additional treatment of the Richardson Extrapolation may cause 

also in this case extra problems (because even if the underlying numerical method has the needed 

stability properties, then the combined method may become unstable). Therefore, it is necessary to 

investigate the preservation of the A-stability (as well as the preservation of the other and stronger 

stability properties) of the chosen implicit numerical method in the essential for our study case where 

Richardson Extrapolation is additionally used. These important issues are carefully investigated in 

the fourth chapter. Some theoretical results are proved there and the usefulness of the obtained results 

is illustrated by performing a series of calculations related to several appropriate numerical examples 

(arising when badly scaled, extremely ill-conditioned and very stiff atmospheric chemical schemes 

implemented in many well-known large-scale air pollution models are to be handled). 

 

The performance of the Richardson extrapolation in connection with some splitting procedures is 

described in Chapter 5. It is stressed there that, while splitting procedures are commonly used in the 

treatment of large-scale and time-consuming simulations that arise in many scientific and engineering 

fields, the topics of combining these splitting techniques with the Richardson Extrapolation and of 

investigating the stability properties of the resulting new methods have practically not been carefully 

studied until now in the literature. An exception is the paper of Zlatev, Faragó and Havasi (2012). 

 

The implementation of the Richardson Extrapolation in connection with some classes of systems of 

partial differential equations is demonstrated in Section 6. It is explained there why in many cases it 

is much more difficult to use the Richardson Extrapolation for systems of partial differential equations 

than to apply it in the treatment of systems of ordinary differential equation. In the sixth chapter we 

discuss in detail a particular application of the Richardson Extrapolation in connection with some 

linear advection problems, arising, for example, in air pollution modelling, but also in some other 

areas of fluid dynamics. The development of reliable combined methods (advection equations plus 

Richardson Extrapolation), which have improved accuracy properties, is also described there. The 

usefulness of the results obtained in this chapter in the attempts to improve the accuracy of the 

calculated approximations is demonstrated by appropriate numerical examples. 

 

Time-dependent problems are treated in the first six chapters. However, the Richardson Extrapolation 

can also be used in the solution of algebraic or transcendental equations or systems of such equations 

by iterative methods. In the latter case the Richardson Extrapolation can successfully be applied in 
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an attempt (a) to accelerate the speed of the convergence and/or  (b) to reduce the number of iterations 

that are needed to achieve a prescribed accuracy. Some results about the application of the Richardson 

Extrapolation in the treatment of algebraic and transcendental equations or systems of such equations 

by iterative methods will be presented in Chapter 7. The application of the Richardson Extrapolation 

in numerical integration is also discussed in the seventh chapter.  

 

Some general conclusions and remarks are presented in the last chapter of the book, in Chapter 8. 

The following issues (which are closely related to the presentation given in the previous seven 

chapters) are summarized and emphasized once again in the last chapter of the monograph:  

 

(a) This book is written primarily for scientists and engineers. It will 

also be useful for PhD students. Finally, it can be applied in some 

appropriate courses for students. Therefore, we always try, by 

using the great experience obtained by us during our long 

cooperation with physicists and chemists, to make the text easily 

understandable also for non-mathematicians. We shall, of 

course, give all the proofs that are needed for the presentation of 

the results, but the truth is that we are much more interested in 

emphasizing the important fact that the methods discussed in this 

book can easily and efficiently be applied in real-life 

computations. 

 

(b) In the whole book it is pointed out, many times and in a very 

strong way, that both the accuracy and the error control are 

undoubtedly very important issues. However, the necessity to 

achieve sufficiently good accuracy and/or reliable error estimates 

is, as was pointed out above, not the only issue, which must be 

taken into account when the Richardson Extrapolation is used. In 

many cases, it is also very important to select the right numerical 

algorithms, such numerical algorithms, which will produce new 

efficient numerical methods with good stability properties when 

they are combined with the Richardson Extrapolation. 

 

(c) There are two ways of implementing the Richardson 

Extrapolation: passive and active. It is not clear in advance 

which of the two options performs better in a given particular 

situation. The performance depends on several factors; the 

stability properties of the combined numerical method (the 

underlying numerical method plus the Richardson Extrapolation) 

being very essential. Therefore, the decision is not easy, at least 

not always easy, and one must be careful in the choice of one of 

these two implementations. Some recommendations related to 

this important decision are given in the last chapter of the book. 

 

It should also be mentioned, once again, that the relatively simple and easily understandable examples 

describing how to implement efficiently the Richardson Extrapolations can successfully be used also 

in much more complicated environments in the efforts to improve the calculated results from different 

advanced and very complicated mathematical models. This is demonstrated in the book by giving 
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some examples that are related to several modules of large-scale environmental models, which are 

taken from Zlatev (1995) or Zlatev and Dimov (2006). 

 

It is important to emphasize strongly the fact that the Richardson Extrapolation is indeed a very 

reliable and robust technique. However, at the same time it must also be stressed that this is true only 

if and when it is correctly applied for the particular problems, which are to be handled. The 

implementation of this procedure seems to be very simple and straight-forward. However, the truth 

is that achieving high efficiency and good results is by far not always an easy task. The convergence 

and especially the stability properties of the new numerical method (consisting of the combination of 

the chosen algorithm and the Richardson Extrapolation) should be carefully studied and well 

understood. This is absolutely necessary, because the new numerical method will become very 

efficient and reliable only if and when such an investigation is properly done or if and when the 

implementation of the Richardson Extrapolation is based on well-established knowledge related to 

the properties of both the selected underlying numerical algorithm and the new numerical method 

obtained when one attempts to enhance the efficiency of the underlying method by additionally 

applying the Richardson Extrapolation.  

 

We hope that this book will help very much the readers to improve the performance of the Richardson 

Extrapolation in the solution of their particular tasks and we must also emphasize that we do believe 

that this book will be very useful for many specialists working with large-scale mathematical models 

arising in different areas of science and engineering. 

 

Moreover, it is worthwhile to mention here that 

 

 

the first five chapters of the book contain different methods for solving 

systems of ordinary differential equations (ODEs) and can be used in a 

short course on numerical treatment of such systems for non-

mathematicians (scientists and engineers). 

 

Some readers will be interested in reading only selected chapters of the book. For example, people, 

who are interested in applying the Richardson Extrapolation together with some splitting techniques, 

will prefer to start by reading the fifth chapter without studying carefully the previous four chapters. 

We tried to facilitate the attempts to go directly to the most interesting for a particular reader part of 

the book by making each chapter relatively independent from the others. In order to achieve this, it 

was necessary to repeat some issues. We do believe that this approach would be useful in many 

situations. 
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Chapter 1 

 

Basic Properties of the Richardson Extrapolation 

 
The basic principles, on which the implementation of the Richardson Extrapolation in the numerical 

treatment of the important class of initial value problems for systems of ordinary differential equations 

(ODEs) is based, are discussed in this chapter. It must immediately be stressed that this powerful 

approach can also be applied in the solution of systems of partial differential equations (PDEs). In the 

latter case, the device is often applied after the semi-discretization of the systems of PDEs. When the 

spatial derivatives  are discretized, by applying, for example, finite differences or finite elements, the 

system of PDEs is transformed into a system of ODEs, which is as a rule very large. Then the 

application of the Richardson Extrapolation is very straight-forward, since it is based on the same rules 

as those used in the implementation of the Richardson Extrapolation for systems of ODEs, and this 

simple way of implementing this devise is used very often, but its success is based on an assumption 

that the selected discretization of the spatial derivatives is sufficiently accurate and, therefore, the errors 

resulting from the spatial discretization are very small and will not interfere with the errors resulting 

from the application of the Richardson Extrapolation in the solution of the semi-discretized problem. 

If this assumption is satisfied, then the results will in general be good, but problems will surely arise 

when the assumption is not satisfied. Then the discretization errors caused by the treatment of the 

spatial derivatives must also be taken into account and the strict implementation of Richardson 

Extrapolation for systems of PDEs will become considerably more complicated than that for systems 

of ODEs. Therefore, the direct application of the Richardson Extrapolation in the computer treatment 

of systems of PDEs deserves some special treatment. This is why only the application of the Richardson 

Extrapolation in the case where systems of ODEs are handled numerically is studied in the first five 

chapters of this book, while the description of the direct use of the Richardson Extrapolation for 

systems of PDEs is postponed and will be presented in Chapter 6. 

 

The contents of the first chapter can be outlined as follows: 

 

The initial value problem for systems of ODEs is introduced in Section 1.1. It is explained there when 

the solution of this problem exists and is unique. The assumptions, which are to be made in order to 

ensure existence and uniqueness of the solution, are in fact not very restrictive, but it is stressed that 

some additional assumptions must be imposed when accurate numerical results are needed and, 

therefore, numerical methods for treatment of the initial value problems for systems of ODEs that have 

high order of accuracy are to be selected and used. It must also be emphasized here that in Section 

1.1 we are sketching only the main ideas. No details about the assumptions, which are to be made in 

order to ensure existence and uniqueness of the solution of initial value problems for systems of ODEs, 

are needed, because this topic is not directly connected to the application of Richardson Extrapolation 

in conjunction with different numerical methods for solving such problems. However, references to 

several text books, where such details are presented and discussed, are given.  

 

Some basic concepts that are related to the application of an arbitrary numerical method for solving 

initial value problems for systems of ODEs are briefly described in Section 1.2. It is explained there 

that the computations are as a rule carried out step by step at the grid-points of some set of values of 
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the independent variable (which is the time-variable in many engineering and scientific problems) and, 

furthermore, that it is possible to apply both constant and variable stepsizes (the name time-stepsizes 

will often be used). A very general description of the basic properties of these two approaches for 

solving approximately initial value problems for systems of ODEs is presented and the advantages and 

the disadvantages of using constant or variable time-stepsizes are discussed.  

 

The Richardson Extrapolation is introduced in Section 1.3. The ideas are very general and the 

application of the Richardson Extrapolation in connection with an arbitrary one-step numerical 

method for solving approximately initial value problems for systems of ODEs is described. The 

combination of the Richardson Extrapolation with particular numerical methods is studied in the next 

chapters of this book. 

 

The important (for improving the performance and for obtaining greater efficiency) fact that the 

accuracy of the computed results is increased, when the Richardson Extrapolation is implemented, is 

explained in Section 1.4. More precisely, it is shown there that if the order of accuracy of the selected 

numerical method for solving initial value problems for systems of ODEs is  𝐩 , where  𝐩  is some 

positive integer with  𝐩 ≥  𝟏 ,  then the application of the Richardson Extrapolation results in a new 

numerical method, which is normally of order  𝐩 + 𝟏  .  This means that the order of accuracy of the 

new numerical method, the combination of the selected algorithm for solving initial value problems 

for systems of ODEs and the Richardson Extrapolation, is as a rule increased by one.  

 

The possibility of obtaining an error estimation of the accuracy of the calculated approximations of the 

exact solution (in the case where the Richardson Extrapolation is additionally used) is discussed in 

Section 1.5. It is explained there that the obtained error estimation could be used in the efforts to control 

the time-stepsize and to select, in principle at every time-step, time-stepsizes in an optimal way (which 

is important when variable stepsize numerical methods for solving initial value problems for systems 

of ODEs are to be applied in the computational process). 

 

The drawbacks and the advantages of the application of  Richardson Extrapolation are discussed in 

Section 1.6. It is demonstrated there, with carefully chosen examples arising in an important for the 

modern society problem (in the application of air pollution modelling to study situations, which can 

lead to damages for plants, animals and human beings), that the stability of the calculated results is a 

very important issue and the need of numerical methods with good stability properties is again 

emphasized in this section. 

 

Two implementations of the Richardson Extrapolation are presented in Section 1.7. Some 

recommendations are given there in connection with the choice, in several different situations, of the 

better one of these two implementations.  

 

The possibility of achieving even more accurate results is discussed in Section 1.8. Assume that the 

order of the underlying method is   𝐩 .   It is shown in Section 1.8 how to achieve order of accuracy   

𝐩 + 𝟐   when the Richardson Extrapolation is additionally applied. 

 

Some general conclusions are drawn and listed in  Section 1.9. 

 

Research problems are proposed in the last section, Section 1.10, of the first chapter. 

 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

3 

 

 

 

 

1.1. Introduction of the initial value problem for systems of ODEs 

 
Initial value problems for systems of ODEs appear very often when different phenomena arising in 

many areas of science and engineering are to be described mathematically and after that to be treated 

numerically. These problems have been studied in detail in many monographs and text-books in which 

the numerical solution of systems of ODEs is handled; as, for example, in Burrage (1995), Butcher 

(2003), Hairer, Nørsett and Wanner (1987), Hairer and Wanner (1991), Henrici (1968), 

Hundsdorfer and Verwer (2003) and Lambert (1991).  

 

The classical initial value problem for systems of ODEs is as a rule defined in the following way:  

 

 

(𝟏. 𝟏)      
𝐝𝐲

𝐝𝐭
= 𝐟(𝐭, 𝐲),      𝐭 𝛜 [𝐚, 𝐛] ,     𝐚 < 𝐛,     𝐲 𝛜 ℝ𝐬 ,     𝐬 ≥ 𝟏 ,     𝐟 𝛜 𝐃 ⊂  ℝ  ×  ℝ𝐬 ,   

 

 

where 

 

(a) 𝐭 is the independent variable (in most of the practical problems arising in physics and 

engineering it is assumed that   𝐭   is the time variable and, therefore, we shall mainly use 

this name in our book), 

  

(b)  𝐬   is the number of equations in the system (1.1), 

 

(c)  𝐟   is a given function defined in some domain   𝐃 ⊂  ℝ  × ℝ𝐬   (it will always be assumed 

in this book that   𝐟   is a one-valued function in the whole domain  𝐃 )  

 

and 

 

(d)  𝐲 = 𝐲(𝐭)   is a vector of dimension   𝐬   that depends of the time-variable   𝐭   and represents 

the unknown function (or, in other words, this vector is the dependent variable and 

represents the unknown exact solution of the initial value problem for systems of ODEs).  

 

It is furthermore assumed that the initial value 

 

 

(𝟏. 𝟐)    𝐲(𝐚) = 𝛈 
 

 

is a given vector with   𝐬   components. 

 

It is well-known that the following theorem, which is related to the exact solution of the problem 

defined by (1.1) and (1.2), can be formulated and proved (see, for example, Lambert, 1991). 
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Theorem 1.1: A continuous and differentiable solution  𝐲(𝐭)  of the initial value problem for systems 

of ODEs that is defined by (1.1) and (1.2) exists and is unique if the right-hand-side function  𝐟  is 

continuous in the whole domain  𝐃  and if, furthermore, there exists a positive constant  𝐋  such that 

the following inequality is satisfied: 

 

 

(𝟏. 𝟑)    ‖ 𝐟(𝐭, �̅�) − 𝐟(𝐭, �̃�)‖  ≤ 𝐋 ‖�̅� − �̃� ‖  
 
 
for any two points  (𝐭, �̅�)  and  (𝐭, �̃�)  from the domain  𝐃  .  
 

                                                                                                                                                      ∎ 
 

 

Definition 1.1: Every constant   𝐋 ,   for which the above inequality is fulfilled, is called the Lipschitz 

constant and it is said that function  𝐟  from (1.1) satisfies the Lipschitz condition with regard to the 

dependent variable   𝐲   when (1.3) holds. 

 

                                                                                                                                                     ∎ 
 

 

It can be shown that the assumptions made in Theorem 1.1 provide only sufficient but not necessary 

conditions for existence and uniqueness of the exact solution   𝐲(𝐭)   of (1.1) – (1.2). For our purposes, 

however, the result stated in the above theorem is quite sufficient. Moreover, there is no need (a) to go 

into details here and (b) to prove Theorem 1.1. Any of these two actions is beyond the scope of this 

monograph, but the above theorem as well as many other results that are related to the existence and 

the uniqueness of the solution   𝐲(𝐭)   of the problem defined by (1.1) and (1.2) are proved in many 

text-books, in which initial value problems for systems of ODEs are studied. As an example, it should 

be pointed out that many theorems dealing with the existence and/or the uniqueness of the solution of 

initial value problems for systems of ODEs are formulated and proved in Hartmann (1964). 

 

It is worthwhile to conclude this section with several remarks. 

 

 

Remark 1.1: The requirement for existence and uniqueness of a solution   𝐲(𝐭)   of the system of ODEs 

that is imposed in Theorem 1.1 is stronger than the requirement that the right-hand-side function   𝐟   is 

continuous for all points   (𝐱, 𝐲)   from the domain   𝐃 ,   because the Lipschitz condition (1.3) must 

additionally be satisfied. On the other side, this requirement is weaker than the requirement that 

function   𝐟   is continuously differentiable for all points   (𝐱, 𝐲)   from the domain   𝐃 .   This means 

that the requirement made in Theorem 1.1 for the right-hand function   𝐟   is a little stronger than 

continuity, but a little weaker than differentiability. 

 

                                                                                                                                                     ∎ 
 

 

Remark 1.2: If the right-hand-side function   𝐟   is continuously differentiable with regard to all values 

of the independent variable 𝐭 and the dependent variable   𝐲 ,   i.e. in the whole domain   𝐃 ,   then the 

requirement imposed by (1.3) can be satisfied by the following choice of the Lipschitz constant: 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

5 

 

 

 

(𝟏. 𝟒)    𝐋 = 𝐬𝐮𝐩
(𝐭 ,𝐲)∈𝐃

‖ 
𝛛𝐟(𝐭, 𝐲)

𝛛𝐭
 ‖ . 

 

 

                                                                                                                                                     ∎ 

 

 

Remark 1.3: The problem defined by (1.1) and (1.2) is as a rule called non-autonomous (the right-

hand-side of the non-autonomous problems depends both on the dependent variable   𝐲   and on the 

independent variable   𝐭 ). In some cases, especially in many proofs of theorems, it is more convenient 

to consider autonomous problems. The right-hand-side   𝐟   does not depend directly on the time-

variable   𝐭   when the problem is autonomous. This means that an autonomous initial value problem 

for solving systems of ODEs can be written as: 

 

 

(𝟏. 𝟓)      
𝐝𝐲

𝐝𝐭
= 𝐟(𝐲),     𝐭 ∈  [𝐚, 𝐛] ,    𝐚 < 𝐛,    𝐲 ∈  ℝ𝐬 ,    𝐬 ≥ 𝟏 ,    𝐟 ∈  𝐃 ⊂  ℝ  × ℝ𝒔 ,    𝐲(𝐚) = 𝛈 . 

 

 

Any non-autonomous problem can easily be transformed into autonomous by adding a simple extra 

equation, but it should be noted that if the original problem is scalar (i.e. if it consists of only one 

equation), then the transformed problem will not be scalar anymore. It will become a system of two 

equations. This fact might sometimes cause certain difficulties; more details can be found in Lambert 

(1991). 

 

It should be mentioned here that the results presented in this book are valid both for non-autonomous 

and autonomous initial value problems for systems of ODEs.  

 

                                                                                                                                                     ∎ 

 

 

Remark 1.4: The problem defined by (1.1) and (1.2) contains only the first-order derivative of the 

dependent variable   𝐲 .   Initial value problems for systems of ODEs, which contain derivatives of 

higher order, also appear in many applications. Such problems will not be considered in this book, 

because these systems can easily be transformed into initial value problems of first-order systems of 

ODEs; see, for example, Lambert (1991). 

 

                                                                                                                                                     ∎ 
 

 

Remark 1.5: In the practical treatment of initial value problems for systems of ODEs it becomes 

normally necessary to introduce much more stringent assumptions than the assumptions made in 

Theorem 1.1 (especially when accurate numerical methods are to be applied in the treatment of these 

systems). This is due to the fact that numerical methods of order of accuracy   𝐩 > 𝟏   are nearly always 

used in the treatment of the problem defined by (1.1) and (1.2). Such numerical methods are often 

derived by expanding the unknown function   𝐲   in Taylor series, truncating this series after some term, 
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say the term containing derivatives of some order    𝐩 > 𝟏 ,   and after that applying different rules to 

transform the truncated series in order to obtain numerical methods with some desired properties; see, 

for example, Henrici (1968). By using (1.1), the derivatives of   𝐲   can be expressed by derivatives of   

𝐟   and, when such procedures are applied, one can easily established that it is necessary to assume that 

all derivatives of function   𝐟   up to order   𝐩 − 𝟏   must be continuously differentiable. It is obvious 

that this assumption is in general much stronger than the assumption made in Theorem 1.1. In fact, if 

a requirement to find a reliable error estimation is additionally made, then it will as a rule be necessary 

to require that the derivative of function   𝐟 ,   which is of order   𝐩 ,   is also continuously differentiable. 

The necessity of introducing stronger assumptions will be further discussed to a certain degree in many 

sections of the remaining part of this book, however this problem is not directly related to the 

implementation of the Richardson Extrapolation and, therefore, it will not be treated in detail this book. 

 

                                                                                                                                                     ∎ 

 

 

 

Remark 1.6: Only initial value problems for systems of ODEs will be studied in this book (i.e. no 

attempt to discuss the properties of boundary value problems for systems of ODEs will be made). 

Therefore, we shall mainly use the abbreviation “systems of ODEs” instead of “initial value problems 

for systems of ODEs” in the remaining sections of this chapter and also in the next chapters. 

 

                                                                                                                                                     ∎ 

 

 

 

 

 

1.2. Numerical treatment of initial value problems for systems of ODEs 

 
Normally, the system of ODEs defined by (1.1) and (1.2)  could not be solved exactly. Therefore, it is 

necessary to apply some suitable numerical method in order to calculate sufficiently accurate 

approximate values of the components of the exact solution vector   𝐲(𝐭)   at the grid-points belonging 

to some discrete set of values of the time-variable. An example for such a set, which is often called 

computational mesh or grid, is given below: 

 

 

(𝟏. 𝟔)      𝐭𝟎 = 𝐚,     𝐭𝐧 =  𝐭𝐧−𝟏 + 𝐡     ( 𝐧 = 𝟏, 𝟐, … , 𝐍 ),     𝐭𝐍 = 𝐛,     𝐡 =
𝐛 − 𝐚

𝐍
 .     

 
 

The calculations are carried out step by step. Denote by  𝐲𝟎  the initial approximation of the solution, 

i.e. the approximation at   𝐭𝟎 = 𝐚 .   It is often assumed that   𝐲𝟎 = 𝐲(𝐚) =  𝛈 .   In fact, the calculations 

are started with the exact initial value when this assumption is made. However, the calculations can 

also be started by using some truly approximate initial value   𝐲𝟎 ≈ 𝐲(𝐚) .    

 

After providing some appropriate, exact or approximate, value of the initial condition of the system of 

ODEs, one calculates successively (by using some computing formula, which is called “numerical 

method”) a sequence of vectors,   𝐲𝟏 ≈ 𝐲(𝐭𝟏) ,   𝐲𝟐 ≈ 𝐲(𝐭𝟐)   and so on, which are approximations of 
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the exact solution obtained at the grid-points of (1.6). When the calculations are carried out in this way, 

i.e. step by step, at the end of the computational process a set of vectors   { 𝐲𝟎 , 𝐲𝟏 , … , 𝐲𝐍 }   will be 

produced. These vectors represent approximately the values of the exact solution   𝐲(𝐭)   at the selected 

by (1.6) set of grid-points   { 𝐭𝟎 ,   𝐭𝟏 , … , 𝐭𝐍 } .    

 

It should be mentioned here that it is also possible to obtain, after the calculation of the sequence   

{ 𝐲𝟎 , 𝐲𝟏 , … , 𝐲𝐍 } ,   approximations of the exact solution at some points of the independent variable   

t ∈  [𝐚, 𝐛] ,   which do not belong to the set (1.6). This can be done by using some appropriately chosen 

interpolation formulae. 

 

The quantity   𝐡   is called stepsize (the term time-stepsize will be used nearly always in this book). 

When   𝐲𝐧   is calculated, the index   𝐧   is giving the number of the currently performed steps (the term 

time-steps will also be used very often). Finally, the integer   𝐍   is giving the number of time-steps, 

which have to be performed in order to complete the calculations.  

 

In the above example it is assumed that the grid-points    𝐭𝐧 ,   ( 𝐧 = 𝟎, 𝟏, 𝟐, … , 𝐍 )  are equidistant. 

The use of equidistant grids is in many cases very convenient, because it is, for example, possible to 

express in a very simple way an arbitrary grid-point   𝐭𝐧   belonging to the set (1.6) by using the left-

hand end-point   𝐚   of the time-interval   ( 𝐭𝐧 = 𝐚 + 𝐧𝐡 )   when such a choice is made. However, it is 

not necessary to keep the time-stepsize constant during the whole computational process. Variable 

stepsizes can also be used. In such a case the grid-points can be defined as follows: 

 

 

(𝟏. 𝟕)      𝐭𝟎 = 𝐚,     𝐭𝐧 =  𝐭𝐧−𝟏 + 𝐡𝐧     ( 𝐧 = 𝟏, 𝟐, … , 𝐍 ),     𝐭𝐍 = 𝐛 .     
 
 

In principle, the time-stepsize   𝐡𝐧 > 𝟎   that is used at time-step  𝐧  could always be different both 

from the time-stepsize   𝐡𝐧−𝟏   that was used at the previous time-step and from the time-stepsize   𝐡𝐧+𝟏   

that will be used at the next time-step. However, some restrictions on the change of the stepsize are 

nearly always needed, see, for example, Shampine and Gordon (1975) or Zlatev (1978, 1983), in 

order 

 

(a) to preserve in a better way the accuracy of the calculated approximations, 

 

(b) to ensure zero-stability during the calculations 

 

and 

 

(c) to increase the efficiency of the computational process by reducing the amount of simple 

arithmetic operations that are needed to obtain the approximate solution. 

 

Some more details about the use of variable time-stepsize and about the additional assumptions, which 

are relevant in this case and which have to be imposed when this technique is implemented, can be 

found, for example, in Hindmarsh (1971, 1980), Gear (1971), Krogh (1973a,b), Shampine (1984, 

1994), Shampine and Gordon (1975), Shampine, Watts and Davenport (1976), Shampine and 

Zhang (1990), Zlatev (1978, 1983, 1984, 1989), and  Zlatev and Thomsen (1979).  
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The use of a variable stepsize may often lead to an improvement of the efficiency of the computational 

process, because the code used in the numerical solution of the system of ODEs  tries at prescribed in 

some way time-steps to select optimal time-stepsizes. This procedure may result in a substantial 

reduction of the computer time. However, there are cases, in which the computational process would 

become unstable. This kind of stability for systems of ODEs is called sometimes zero-stability, as, for 

example, in Zlatev (1981b). Some further information about the zero-stability problems, which may 

arise when variation of the time-stepsize is allowed, can be found in Gear and Tu (1974), Gear and 

Watanabe (1974), Zlatev (1978, 1983, 1984, 1989), and Zlatev, Berkowicz and Prahm (1984a,b). 

Some discussion about the zero-stability of the computational process when it is allowed to vary the 

stepsize will be given in Chapter 3. 

 

The major advantages of using constant time-steps are two:  

 

(a) it is easier to establish in a reliable way and to analyse the basic properties of the 

numerical method (such as convergence, accuracy and stability) 

 

and  

 

(b) the behaviour of the computational error is more predictable and as a rule very robust.  

 

The major disadvantage of this device (the application of a constant time-stepsize) appears in the case 

where some components of the exact solution are  

 

(A) quickly varying in some small part of the time-interval   [𝐚, 𝐛]    
 

and  

 

(B) slowly varying in the remaining part of this interval.  

 

It is well-known that a small time-stepsize must be used in Case (A), while it is possible to apply much 

larger time-stepsize in Case (B), but if a constant time-stepsize option is selected, then one is forced to 

use the chosen small constant stepsize during the whole computational process, which could be (or, at 

least, may be) very time-consuming. If it is allowed to vary the time-stepsize, then small time-stepsizes 

could be used, in principle at least, only when some of the components of the solution vary very 

quickly, while large time-stepsizes can be applied in the remaining part of the time-interval. The 

number of the needed time-steps will often be reduced considerably in this way, which normally will 

also lead, as mentioned above, to a very substantial decrease of the computing time that is needed to 

solve numerically the problem. 

 

This means that by allowing some variations of the time-stepsize, one is trying to avoid the major 

disadvantage of the other option, the option where a constant time-stepsize is used during the whole 

computational process, i.e. one is trying avoid the necessity to apply a very small time-stepsize on the 

whole interval   [𝐚, 𝐛] .   It is nearly obvious that the application of variable time-steps will often be 

successful, but, as pointed out above, problems may appear and it is necessary to be very careful when 

this option is selected and used (see also the references given above).  

 

For the purposes of this book, in most of the cases it is not very important which of the two grids, the 

equidistant grid defined by (1.6) or the non-equidistant grid introduced by (1.7), will be chosen. Many 
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of the conclusions, which are drawn in the remaining part of this book, will be valid in both cases. We 

shall always give some explanations when this is not the case. 

 

There is no need to introduce particular numerical methods in this chapter, because the introduction of 

the Richardson Extrapolation, which will be presented in the next section, and the discussion of some 

basic properties of the new numerical method, which arises when this computational device is 

additionally applied, will be valid for any one-step numerical method used in the solution of systems 

of ODEs. However, many special numerical methods will be introduced and studied in the following 

chapters. 

 

 

 

 

1.3. Introduction of the Richardson Extrapolation 

 
Assume that the system of ODEs is solved, step by step as explained in the previous section, by an 

arbitrary numerical method. Assume also that approximations of the exact solution   𝐲(𝐭)   are to be 

calculated for the values   𝐭𝐧   ( 𝐧 = 𝟏, 𝟐, … ,   𝐍 )   either of the grid-points of (1.6) or of the grid-points 

of (1.7). Under these assumptions the simplest form of the Richardson Extrapolation can be introduced 

as follows. 

 

If the calculations have already been performed  for all grid-points   𝐭𝐢 ,   ( 𝐢 = 𝟏, 𝟐, … , 𝐧 − 𝟏 )   by 

using some numerical method, the order of accuracy of which is   𝐩 ,   and, thus, if approximations   

𝐲𝐢 ≈ 𝐲(𝐭𝐢)   of the exact solution are available at the grid-points   𝐭𝐢 ,   ( 𝐢 = 𝟎, 𝟏, 𝟐, … , 𝐧 − 𝟏 ),   then 

three actions are to be carried out in order to obtain the next approximation   𝐲𝐧 : 
 

 (a) Perform one large time-step, with a time-stepsize   𝐡   when the grid (1.6) is used or 

with a time-stepsize   𝐡𝐧   if the grid (1.7) has been selected, in order to calculate an 

approximation   𝐳𝐧   of   𝐲(𝐭𝐧) . 

 

 (b) Perform two small time-steps, with a time-stepsize   𝟎. 𝟓 𝐡 ,   when the grid (1.6) is 

used or with a time-stepsize   𝟎. 𝟓 𝐡𝐧   if the grid (1.7) has been selected, in order to 

calculate another approximation   𝐰𝐧   of   𝐲(𝐭𝐧) . 

 

 (c) calculate an approximation   𝐲𝐧   by applying the formula: 

 

 

(𝟏. 𝟖)      𝐲𝐧 =  
𝟐𝐩𝐰𝐧 − 𝐳𝐧

𝟐𝐩 − 𝟏
 .   

 

 
The algorithm that is defined by the above three actions, the actions (a), (b) and (c), is called 

Richardson Extrapolation. As mentioned before, this algorithm was introduced and discussed by L. F. 

Richardson in 1911 and 1927, see Richardson (1911, 1927). It should also be mentioned here that L. 

F. Richardson called this procedure “deferred approach to the limit”. 
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Note that the idea is indeed very general. The above algorithm is applicable to any one-step numerical 

method for solving systems of ODEs (in Chapter 6 it will be shown that it is also applicable, after 

introducing some additional requirements, when some systems of PDEs are to be handled). There are 

only two requirements: 

 

(A) The same one-step numerical method should be used in the calculation of the two 

approximations   𝐳𝐧  and   𝐰𝐧 . 

 

(B) The order of the selected numerical method should be   𝐩 .   This second requirement 

is utilized in the derivation of formula (1.8), in which the positive integer   𝐩   is 

involved; this will be further discussed in the next section.   

 

The main properties of the Richardson Extrapolation will be studied in the next sections of Chapter 1 

and in the next chapters of this book. 

 
It should be noted here that, as already mentioned, the simplest version of the Richardson Extrapolation 

is described in this section. For our purposes this is quite sufficient, but some other versions of the 

Richardson Extrapolation can be found in, for example, Faragó (2008). It should also be noted that 

many of the statements for the simplest version of the Richardson Extrapolation, introduced in this 

section and discussed in the remaining part of the book, remain also valid for other versions of this 

device. 

 

 

 

 

 

1.4. Accuracy of the Richardson Extrapolation 

 
Assume that the approximations   𝐳𝐧   and   𝐰𝐧   that have been introduced in the previous section were 

calculated by some numerical method, the order of accuracy of which is   𝐩.   If we additionally assume 

that the exact solution   𝐲(𝐭)   of the system of ODEs is sufficiently many times differentiable (actually, 

we have to assume that this function is   𝐩 + 𝟏   times continuously differentiable, which makes this 

assumption much more restrictive than the assumptions made in Theorem 1.1 in order to ensure 

existence and uniqueness of the solution of the system of ODEs), then the following two relationships 

can be written when the calculations have been carried out by using the grid-points introduced by (1.6) 

in Section 1.2:  

 

 

(𝟏. 𝟗)         𝐲(𝐭𝐧) −  𝐳𝐧  =  𝐡𝐩𝐊 + 𝐎(𝐡𝐩+𝟏)  , 
 

 

(𝟏. 𝟏𝟎)      𝐲(𝐭𝐧) −  𝐰𝐧  =  ( 𝟎. 𝟓 𝐡)𝐩𝐊 + 𝐎(𝐡𝐩+𝟏)  . 
 

 

The quantity   𝐊   that participates in the left-hand-side of both (1.9) and (1.10) depends both on the 

selected numerical method that was applied in the calculation of   𝐳𝐧   and   𝐰𝐧    and on the particular 

problem (1.1) – (1.2) that is handled. However, this quantity does not depend on the time-stepsize   𝐡 . 
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It follows from this observation that if the grid defined by (1.7) is used instead of the grid (1.6), then 

two new equalities, that are quite similar to (1.9) and (1.10), can immediately be written (only the time-

stepsize   𝐡   should be replaced by   𝐡𝐧   in the right-hand-sides of both relations). 

 

Let us now eliminate   𝐊   from (1.9) and (1.10). After some obvious manipulations the following 

relationship can be obtained: 

 

 

(𝟏. 𝟏𝟏)      𝐲(𝐭𝐧) −  
𝟐𝐩𝐰𝐧 − 𝐳𝐧

𝟐𝐩 − 𝟏
= 𝐎(𝐡𝐩+𝟏) . 

 

 

Note that the second term in the left-hand-side of (1.11) is precisely the approximation   𝐲𝐧   that was 

obtained by the application of the Richardson Extrapolation, see the relation (1.8) at end of the previous 

section). 

 

The following relationship can immediately be obtained from (1.8) after the above observation: 

 

 

(𝟏. 𝟏𝟐)        𝐲(𝐭𝐧) −  𝐲𝐧    = 𝐎(𝐡𝐩+𝟏)  . 
             

 

Comparing the relationship (1.12) with each of the relationships (1.9) and (1.10), we can immediately 

conclude that for sufficiently small values of the time-stepsize   𝐡   the approximation   𝐲𝐧   that is 

calculated by applying the Richardson Extrapolation will be more accurate than each of the two 

approximations   𝐳𝐧   and   𝐰𝐧   obtained when the selected numerical method is used directly. Indeed, 

the order of accuracy of    𝐲𝐧    is at least   𝐩 + 𝟏 ,   while each of    𝐳𝐧    and    𝐰𝐧   is of order of 

accuracy  𝐩 .  

 

This means that Richardson Extrapolation can be used to increase the accuracy of the calculated 

numerical solution.      

 

 

 

 

1.5. Evaluation of the error 

 
The Richardson Extrapolation can also be used, and in fact it is very often used, to evaluate the leading 

term of the error of the calculated approximations and after that to determine an optimal in some sense 

time-stepsize, which can hopefully be applied successfully during the next time-step. Note that the 

relations (1.9) and (1.10) cannot directly be used in the evaluation of the error, because the value of the 

quantity  𝐊  is in general not known. This means that it is necessary to eliminate this parameter in order 

to obtain an expression by which the error made can be estimated and, after that, an optimal time-

stepsize determined and used during the next time-step.  

 

An expression for   𝐊   can easily be obtained by subtracting (1.10) from (1.9). It can easily be verified 

that the result of this action is 
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(𝟏. 𝟏𝟑)      𝐊 =  
𝟐𝐩 (𝐰𝐧 − 𝐳𝐧)

𝐡𝐩 (𝟐𝐩 − 𝟏)
+ 𝐎(𝐡𝐩+𝟏) .   

 

 

Substituting this value of   𝐊   in (1.10) leads to the following expression: 

 

 

(𝟏. 𝟏𝟒)      𝐲(𝐭𝐧) −  𝐰𝐧 =  
𝐰𝐧 − 𝐳𝐧

𝟐𝐩 − 𝟏
+ 𝐎(𝐡𝐩+𝟏) .   

 

 

The relationship (1.14) indicates that the leading term of the global error made in the computation of 

the approximation   𝐰𝐧   can be estimated by applying the following relationship:  

 

 

(𝟏. 𝟏𝟓)      𝐄𝐑𝐑𝐎𝐑𝐧   =  | 
𝐰𝐧 − 𝐳𝐧

𝟐𝐩 − 𝟏
 | .   

 

 

If a code for performing the calculations with a variable time-stepsize is developed and used, then 

(1.15) can be applied in order to decide how to select a good time-stepsize for the next time-step. The 

expression: 

 

 

(𝟏. 𝟏𝟔)      𝐡𝐧𝐞𝐰   =  𝛚  √
𝐓𝐎𝐋

𝐄𝐑𝐑𝐎𝐑𝐧
 

𝐩

  𝐡    

 

 

can be used in the attempt to calculate a time-stepsize for the next time-step, which will (hopefully) be 

better in some sense than the time-stepsize used at the current time-step. The user should be careful 

when this formula is used in a computer code because the programme could be terminated by a message 

that “overflow has taken place” if the calculated value of 𝐄𝐑𝐑𝐎𝐑𝐧 becomes very small. 

 

 

The parameter   𝐓𝐎𝐋   that appears in (1.16) is often called the error-tolerance and can freely be 

prescribed by the user according to the desired by him or by her accuracy.  

 

The parameter   𝟎 <  𝛚 < 𝟏    is a precaution parameter introduced in an attempt to increase the 

reliability of the predictions made by using (1.16);   𝛚 = 0.9   is used in many codes for automatic 

variation of the time-stepsize during the computational process, but smaller value of this parameter can 

also be used and are often advocated; see more details in Gear (1971), Hindmarsh (1980), Krogh 

(1973), Shampine and Gordon (1975), Zlatev (1984) and Zlatev and Thomsen (1979).  

 

It should be mentioned here that (1.16) is normally not sufficient in the determination of the rules for 

the variation of the time-stepsize. Some additional (and, in most of the cases, heuristic) rules are to be 

introduced and used. More details about these additional rules can be found in the above references. 
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1.6. Major drawbacks and advantages of the Richardson Extrapolation 
 

It must once again be emphasized that the combination of the selected numerical method for solving 

systems of ODEs with the Richardson Extrapolation can be considered (and in fact must be considered) 

as a new numerical method. Let us now introduce the following two abbreviations: 

 

(1) Method A: the original (underlying) method selected for solving systems of ODEs 

 

and 

 

(2) Method B: the combination of the original method, Method A, and the Richardson 

Extrapolation. 

 

In this section we shall investigate some properties of the two numerical methods, Method A and 

Method B. More precisely, we shall try to find out the main advantages and drawbacks of Method 

B when it is compared with Method A. 
 

Assume first that the selected Method A is explicit. In this case, Method B has one clear disadvantage: 

if this method and Method A are to be used with the same time-stepsize  𝐡 ,  then three times more 

time-steps will be needed when the computations are carried out with Method B. The number of time-

steps will in general be also increased when variations of the time-stepsize are allowed, but the situation 

is not very clear, because it is not easy to formulate a strategy for variation of the time-stepsize, when 

Method A is used without adding the Richardson Extrapolation.  

 

If the underlying method, Method A, is implicit, then the situation is much more complicated, because 

systems of algebraic equations have to be handled at each time-step. In the general case, these systems 

are non-linear. Moreover, very often the non-linear systems of algebraic equations are large, containing 

millions of equations. This makes the treatment much more complicated. We shall postpone the 

detailed discussion of this case to Chapter 4, where the application of the Richardson Extrapolation for 

some implicit numerical methods will be studied. 

 

The need to carry on three time-steps with Method B (instead of one time-step when Method A is used) 

is indeed a clear disadvantage, but only if the two methods have to be used with the same time-stepsize. 

However, it is not necessary to require the use of the same time-stepsize, because Method B has also 

one clear advantage: it is more accurate, its order of accuracy is at least by one higher than the order 

of accuracy of  Method A. Therefore the results obtained by using Method B will in general be much 

more precise than those calculated by Method A and, therefore, the same accuracy, as that obtained by 

Method A, can be achieved when Method B is used with a substantially larger time-stepsize. This 

explains why it is not necessary to use Method A and Method B with the same time-stepsize, when we 

are interested in achieving certain prescribed in advance accuracy.  

 

It is necessary to investigate after these preliminary remarks whether the advantage of Method B (i.e. 

the possibility of achieving better accuracy) is giving a sufficient compensation for its disadvantage. 
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The people who like the Richardson Extrapolation are claiming that the answer to this question is 

always a clear “yes”. Indeed, the fact that Method B is more accurate than Method A will, as mentioned 

above, allow us, in principle at least, to apply bigger time-stepsizes when this method is used and 

nevertheless to achieve the same or even better accuracy. Denote by   𝐡𝐀   and   𝐡𝐁   the time-stepsizes 

used when Method A and Method B are applied and assume that some particular system of ODEs is to 

be solved. It is quite clear that if   𝐡𝐁  > 𝟑 𝐡𝐀 ,   then Method B will be computationally more efficient 

than Method A (but let us repeat here that this is true for the case where Method A is an explicit 

numerical method; if the Method A is implicit, then the inequality   𝐡𝐁  > 𝟑 𝐡𝐀   should in general be 

replaced with another inequality   𝐡𝐁  > 𝐦 𝐡𝐀   where   𝐦 > 𝟑 ;   see more details in Chapter 4).  

 

Assume now that the combined method, Method B, can indeed be applied with a considerably larger 

stepsize than that used when the computations are carried out with Method A. If, moreover, the 

accuracy of the results achieved by using Method B is higher than the corresponding accuracy, which 

was achieved by using Method A, then Method B will perform better than Method A for the solved 

problem (both with regard to the computational efficiency and with regard to the accuracy of the 

calculated approximations). 

 

The big question, which must be answered by the people who like the Richardson Extrapolation can 

be formulated in the following way: 

 

 

Will Method B be more efficient than Method A when realistic 

problems (say, problems arising in the treatment of some large-scale 

mathematical models describing various scientific and engineering 

problems) are solved and, moreover, will this happen even in the more 

difficult case when the underlying numerical method, Method A, is 

implicit? 

 

 

The answer to this important question is at least sometimes positive and it is worthwhile to demonstrate 

this fact by an example. The particular example, which was chosen by us for this demonstration is an 

atmospheric chemical scheme, which is described mathematically by a non-linear system of ODEs. 

We have chosen a scheme that contains   56   chemical species. It is one of the three atmospheric 

chemical schemes used in the Unified Danish Eulerian Model (UNI-DEM), see Zlatev (1995) or 

Zlatev and Dimov (2006). This example will be further discussed and used in Chapter 4. In this 

chapter, we should like to illustrate only the fact that it is possible to achieve great efficiency with 

regard to the computing time when Method B is used even in the more difficult case where Method 

A is implicit.  

 

The special accuracy requirement, which we imposed in the numerical treatment of the atmospheric 

chemical scheme, was that the global computational error  𝛕  should be kept smaller than   𝟏𝟎−𝟑   both 

in the case when Method A is used and in the case when Method B is applied. The particular numerical 

method, Method A, which was used in this experiment, was the well-known θ-method. It is well-known 

that the computations with Method A are carried out by using the formula: 
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(𝟏. 𝟏𝟕)     𝐲𝐧 =  𝐲𝐧−𝟏 + 𝐡[(𝟏 − 𝛉)𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏)  +  𝛉 𝐟(𝐭𝐧, 𝐲𝐧)]            𝐟𝐨𝐫           𝐧 = 𝟏, 𝟐, … , 𝐍 , 
 

 

when the θ-method is applied. In this experiment   𝛉 = 𝟎. 𝟕𝟓   was selected. From (1.17) it is 

immediately seen that the θ-method is in general implicit because the unknown quantity   𝐲𝐧   appears 

both in the left-hand side and in the right-hand side of this formula. It is also immediately seen that the 

method defined by (1.17) will become explicit only in the special case when the parameter   𝛉   is equal 

to zero. The θ-method will be reduced to the classical Forward Euler Formula (which will be used in 

Chapter 2) when this value of parameter   𝛉   is selected.    

 

For Method B the approximations   𝐳𝐧   and   𝐰𝐧   are first calculated by applying the θ-method with 

time-stepsizes   𝐡   and   𝟎. 𝟓 𝐡   respectively and then (1.8) is used to obtain   𝐲𝐧 .   These calculations 

are carried out at every time-step. 

 

The atmospheric chemical scheme mentioned above was treated numerically on a rather long time-

interval   [𝐚, 𝐛] = [ 𝟒𝟑𝟐𝟎𝟎, 𝟏𝟐𝟗𝟔𝟎𝟎 ] .   The value   𝐚 = 𝟒𝟑𝟐𝟎𝟎   corresponds to twelve o'clock at 

the noon (measured in seconds and starting from the mid-night), while   𝐛 = 𝟏𝟐𝟎𝟔𝟎𝟎   corresponds to 

twelve o'clock on the next day. Thus, the length of the time-interval is   𝟐𝟒   hours and it contains 

important changes from day-time to night-time and from night-time to day-time (when most of the 

chemical species are very quickly varying and, therefore, causing a lot of problems for any numerical 

method; this will be further discussed in Section 4). The steep gradients during these special short time-

periods (changes from day-time to night-time and from night-time to day-time) are illustrated in Fig. 

1.1. It is seen that some of the chemical species achieve maximum during day-time, while the maximum 

is achieved during night-time for other species. Finally, it should be noted that some of the chemical 

species vary in very wide ranges. More examples will be given in the next chapters. 

 

The exact solution of the non-linear system of ODEs, by which the atmospheric chemical problem is 

described mathematically, is not known. Therefore a reference solution was firstly obtained by solving 

the problem with a very small time-stepsize and a numerical method of high order. Actually, a three-

stage fifth-order fully-implicit Runge-Kutta algorithm, see Butcher (2003) or Hairer and Wanner 

(1991), was used with   𝐍 = 𝟗𝟗𝟖𝟐𝟒𝟒𝟑𝟓𝟐   and   𝐡𝐫𝐞𝐟  ≈  𝟔. 𝟏𝟑𝟎𝟕𝟔𝟑𝟒𝐄 − 𝟎𝟓   to calculate the 

reference solution. The reference solution was used (instead of the exact solution) in order to evaluate 

the global error. It should be mentioned here that the term “reference solution” in this context was for 

first time used probably by J. G. Verwer in 1977; see Verwer (1977). 

 

We carried out many runs with both Method A and Method B by using different time-stepsizes. 

Constant time-stepsizes, defined on the grid (1.6), were actually applied during every run. We started 

with a rather large time-stepsize and after each run decreased the time-stepsize by a factor of two. It is 

clear that the decrease of the stepsize by a factor of two leads to an increase of the number of time-

steps also by a factor of two. Furthermore, one should expect the error to be decreased by a factor of 

two every time when the time-stepsize is halved, because the θ-method with   𝛉 = 𝟎. 𝟕𝟓   is a numerical 

method of order one. This action (decreasing the time-stepsize and increasing the number of time-steps 

by a factor of two) was repeated as long as the requirement   𝛕 <  𝟏𝟎−𝟑   was satisfied. Since Method 

B is more accurate than Method A,  the time-stepsize, for which the requirement   𝛕 <  𝟏𝟎−𝟑   was for 

first time satisfied, was much larger when Method B is used. No more details about the solution 

procedure are needed here, but much more information about many different runs with the atmospheric 

chemical scheme can be found in Chapter 4. Some numerical results are presented in  Table 1.1.  The 
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computing times and the numbers of time-steps for the runs in which the accuracy requirement is for 

first time satisfied by each of the two methods are given in this table.  

 

 

 

Figure 1.1 

Diurnal variations of some of the chemical species involved in one of the atmospheric chemical 

schemes used in the Unified Danish Eulerian Model (UNI-DEM) for studying air pollution levels in 

Europe and its surroundings. 

 

 

 

Compared characteristics Method A Method B Ratio 

Time-steps 344064 2688 128 

Computing time 1.1214 0.1192 9.4077 

Table 1.1 

Numbers of time-steps and computing times (measured in CPU-hours) needed to achieve 

accuracy   𝛕 <  𝟏𝟎−𝟑   when Method A (in this experiment the  θ-method with   𝛉 = 𝟎. 𝟕𝟓  

was applied in the computations directly)  and Method B (the calculations were performed 

with the new numerical method, which consists of the combination of Method A and the 

Richardson Extrapolation) are used. In the last column of the table it is shown by how many 

times the number of time-steps and the computing time are reduced when Method B is 

used. 

 

 

The results shown in Table 1.1 indicate that there exist examples, for which Method B is without any 

doubt much more efficient than Method A. However, it is not entirely satisfactory to establish this fact, 

because the people who do not like very much the Richardson Extrapolation have a very serious 

objection. They are claiming that it will not be possible always to increase the time-stepsize, because 

the computations may become unstable when large time-stepsizes are used. Moreover, in some cases 

not only is it not possible to perform the computations with Method B by using a bigger time-stepsize, 
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but even runs with the same time-stepsize, as that used successfully with Method A, will fail when 

Method B is applied. In the worst case, it will not be possible to solve the system of ODEs with Method 

B even if the time-stepsize used is smaller than that used in a successful run with Method A.  

 

This objection is perfectly correct. In order to demonstrate this fact, let us consider again the θ-method 

defined by (1.17), but this time with   𝛉 = 𝟎. 𝟓 .   The particular numerical method obtained with this 

value of parameter   𝛉   is called the Trapezoidal Rule. This numerical method has very good stability 

properties. Actually, it is A-stable, which is very good for the case, in which the atmospheric chemical 

scheme with   𝟓𝟔   species is treated (this fact will be fully explained in Chapter 4, but in the context 

of this section it is not very important). The big problem arises when the θ-method with   𝛉 = 𝟎. 𝟓   

(i.e. the Trapezoidal Rule) is combined with the Richardson Extrapolation, because the stability 

properties of the combination of the Trapezoidal Rule with the Richardson Extrapolation are very poor, 

which was shown in Dahlquist (1963) and in Faragó, Havasi and Zlatev (2010). Also this fact will 

be further clarified in Chapter 4, while now we shall concentrate our attention only on the performance 

of the two numerical methods (the Trapezoidal Rule and the combination of the Trapezoidal Rule with 

the Richardson Extrapolation) when the atmospheric chemical scheme with   𝟓𝟔   species is to be 

handled. 

 

Let us again use the names Method A and Method B, this time for the Trapezoidal Rule and for the 

combination of the Trapezoidal Rule and the Richardson Extrapolation, respectively. The calculations 

carried out with Method A were stable and the results were good always when the number of time-

steps is varied from  𝟏𝟔𝟖   to   𝟒𝟒𝟎𝟒𝟎𝟏𝟗𝟐 ,   while Method B produced unstable results for all of the 

time-stepsizes, which were used (this will be shown and further explained in Chapter 4).  

 

The last result is very undesirable and, as a matter of fact, this completely catastrophic result indicates 

that it is necessary to answer the following question: 

 

 

How can one avoid or at least predict the appearance of similar 

unpleasant situations? 

 

 

The answer is, in principle at least, very simple: the stability properties of Method B must be 

carefully studied. If this is properly done, it will be possible to predict when the stability properties of 

Method B will become poor or even very poor and, thus, to select another (and better) numerical 

method and to avoid the disaster. This means that it is not sufficient to predict the appearance of bad 

results. It is, moreover, desirable and perhaps absolutely necessary to develop numerical methods for 

solving ODEs, for which the corresponding combinations with the Richardson Extrapolations have 

better stability properties (or, at least, for which the stability properties are not becoming as bad as in 

the above example where the Trapezoidal Rule was used). These two important tasks:  

 

(a) the development of numerical methods for which the stability properties of the 

combinations of these methods with Richardson Extrapolation are better than those of the 

underlying methods when these are used directly (or at least are not becoming worse)  

 

and 
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(b)  the rigorous investigation of the stability properties of the combinations of many 

particular numerical methods with the Richardson Extrapolation 

 

will be the major topic of the discussion in the following chapters of this book.  

 

 

 

 

 

1.7. Two implementations of the Richardson Extrapolation 
 

Formula (1.8) is in fact only telling us how to calculate the extrapolated approximation of  𝐲𝐧  at every 

time-step   𝐧   where   𝐧 = 𝟏, 𝟐, … , 𝐍   under the assumption that the two approximations   𝐳𝐧   and    

𝐰𝐧   are available. However, this formula alone is not completely determining the algorithm by which 

the Richardson Extrapolation is to be used in the whole computational process. This algorithm will be 

completely described only when it is clearly explained what will happen when the approximations   𝐲𝐧   

for   𝐧 = 𝟏, 𝟐, … , 𝐍   are obtained. There are at least two possible choices:  

 

(a) the calculated improved approximation   𝐲𝐧   for a given   𝐧   will not participate in the 

further calculations (it can be stored and used later for other purposes)  

 

and 

 

(b) the approximations   𝐲𝐧   for a given   𝐧   will directly be used in the computation of the 

next approximations   𝐲𝐧+𝟏. 

 

This leads to two different implementations of the Richardson extrapolation. These implementations 

are graphically represented in Fig. 1.2 and Fig. 1.3. 

 

The implementation of the Richardson Extrapolation made according to the rule (a), which is shown 

in Fig. 1.2, is called passive. It is quite clear why this name has been chosen (the extrapolated values 

are, as stated above, not participating in the further computations). 

 

The implementation of the Richardson Extrapolation made by utilizing the second rule, rule (b), which 

is shown in Fig. 1.3, is called active. It is immediately seen from the plot given in Fig. 1.3 that in this 

case every improved value  𝐲𝐧 , where   𝐧 = 𝟏, 𝟐, … , 𝐍 − 𝟏 ,   is actively used in the calculations of the 

next two approximations   𝐳𝐧+𝟏   and   𝐰𝐧+𝟏 .       

 

In Botchev and Verwer (2009), the terms “global extrapolation” and “local extrapolation” are used 

instead of passive extrapolation and active extrapolation respectively. We prefer the term “Active 

Richardson Extrapolation” (to point out immediately that the improvements obtained in the 

extrapolation are directly applied in the further calculations) as well as the term “Passive Richardson 

Extrapolation” (to express in a more straightforward way the fact that the values obtained in the 

extrapolation process at time-step  𝐧  will never be used in the consecutive time-steps). 
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Figure 1.2 

Passive implementation of the Richardson Extrapolation. 

 

 

 

Figure 1.3 

Active implementation of the Richardson Extrapolation. 

 

 

 

The key question which arises in connection with the two implementations is:  

 

Which of these two rules should be preferred? 
 

There is not a unique answer to this question. Three different situations, the cases (A), (B) and (C), 

listed below, may arise and should be carefully taken into account in order to make the right decision: 

 

(A) The application of both the Passive Richardson Extrapolation and the Active Richardson 

Extrapolation leads to a new numerical method, Method B, which have the same (or at 

least very similar) stability properties as those of the underlying numerical method, 

Method A.  

 

(B) The new numerical method, Method B, which arises when the Passive Richardson 

Extrapolation is used, has good stability properties, while this is not the case for case 
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when the Active Richardson Extrapolation is used (as in the example given above with 

the Trapezoidal Rule). It should be mentioned here that it is nearly obvious that the 

underlying numerical method, Method A, and the combination of this method with the 

Passive Richardson Extrapolation, Method B, will always have the same stability 

properties.  

 

(C) The new numerical method, Method B, which results after the application of the Active 

Richardson Extrapolation has better stability properties than those of the corresponding 

Method B, which arises after the application of the Passive Richardson Extrapolation.  

 

In the experiments related to the application of the θ-method with   𝛉 = 𝟎. 𝟕𝟓   (given in the previous 

section, but much more numerical results will be presented in Chapter 4), Case (A) takes place and the 

results obtained when the two implementations are used are in general quite similar. However, it should 

be mentioned that Botchev and Verwer (2009) reported and explained some cases, in which the Active 

Richardson Extrapolation gave considerably better results for the special problem, which they were 

treating. 

 

It is clear that the Passive Richardson Extrapolation should be used in Case (B). Let us reiterate here 

that the example with the Trapezoidal Rule, which was given in the previous section, confirms in a 

very strong way this conclusion. Some more details will be given in Chapter 4. 

 

Case (C) is giving some very clear advantages for the Active Richardson Extrapolation. In this 

situation the Passive Richardson Extrapolation may fail for some large time-stepsizes, for which the 

Active Richardson Extrapolation produces stable results. Some examples will be given in the next 

chapter. 

 

The main conclusion from the above analysis is, again as in the previous section, that it is absolutely 

necessary to investigate carefully the stability properties of the new numerical method, the 

numerical method consisting of the combination of the selected underlying method and the chosen 

implementation of the Richardson Extrapolation. Only when this is properly done, one will be able to 

make the right choice and to apply the correct implementation of the Richardson Extrapolation. The 

application of the Richardson Extrapolation will in general become much more robust and reliable 

when such an investigation is thoroughly performed.  

 

It must also be mentioned here that the stability properties are not the only factor, which must be taken 

into account. Some other factors, as, for example, quick oscillations of some components of the solution 

of (1.1) - (1.2), may also play a very significant role in the decision of which of the two implementations 

will perform better. However, it must be emphasized that these other factors may play an important 

role only in the case when the passive and the active implementations have the same (or, at least, very 

similar) stability properties. Thus, the requirement for investigating the stability properties of the two 

implementations is more essential. This requirement is necessary, but in some cases it is not sufficient 

and, therefore, if this is the truth, then some other considerations should be taken into account.  

 

The above conclusions emphasize in a very strong way the fact that it is worthwhile to consider the 

classical Richardson Extrapolation not only in such a way as it was very often considered in many 

applications until now, but also from another point of view. Indeed, the Richardson Extrapolation 

defined by (1.8) is not only a simple device for increasing the accuracy of the computations and/or for 

obtaining an error estimation, although any of these two issues is, of course, very important.  
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The application of the Richardson Extrapolation results always in a 

quite new numerical method and this numerical method should be 

treated as any of the other numerical methods. It is necessary to study 

carefully all its properties, including here also its stability properties. 

 

 

Therefore, in the following part of this book, the combination of any of the two implementations of the 

Richardson Extrapolation with the underlying numerical method will always be treated as a new 

numerical method the properties of which must be investigated in a very careful manner. The 

importance of the stability properties of this new numerical method will be the major topic in the next 

chapters.  

 

Our main purpose will be  

 

(A) to explain how new numerical methods, which are based on the Richardson 

Extrapolation and which have good stability properties, can be obtained 

 

and 

 

(B) to detect cases where the stability properties of the new numerical methods utilizing 

the Richardson Extrapolation become poor.  

 

 

 

 

 

1.8. Increasing further the accuracy 
 

Consider again (1.9) and (1.10), change the notation of the calculated approximation and assume that 

one additional term is kept on the right-hand side: 

 

 

(𝟏. 𝟏𝟖)         𝐲(𝐭𝐧) −  𝐳𝐧
[𝟏]

 =  𝐡𝐩𝐊 + 𝐡𝐩+𝟏𝐋 + 𝐎(𝐡𝐩+𝟐)  , 
 

 

(𝟏. 𝟏𝟗)         𝐲(𝐭𝐧) −  𝐳𝐧
[𝟐]

 =  ( 𝟎. 𝟓 𝐡)𝐩𝐊 + ( 𝟎. 𝟓 𝐡)𝐩+𝟏𝐋 + 𝐎(𝐡𝐩+𝟐)  . 
 

 

Assume furthermore that a third approximation   𝐳𝐧
[𝟑]

   is calculated by performing four small time-

steps with a time-stepsize   𝟎. 𝟐𝟓 𝐡 : 

 

 

(𝟏. 𝟐𝟎)         𝐲(𝐭𝐧) −  𝐳𝐧
[𝟑]

 =  ( 𝟎. 𝟐𝟓 𝐡)𝐩𝐊 + ( 𝟎. 𝟐𝟓 𝐡)𝐩+𝟏𝐋 + 𝐎(𝐡𝐩+𝟐)  . 
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We should like to eliminate the constants   𝐊   and   𝐋   from the three equalities (1.18) –(1.20). First, 

the constant   𝐊    could be eliminated. Multiply (1.19) with   𝟐𝐩   and subtract (1.18) from the modified 

equality (1.19). Similarly multiply (1.20) with   𝟒𝐩 = 𝟐𝟐𝐩   and subtract (1.18) from the modified 

equality (1.20). The result is: 

 

 

(𝟏. 𝟐𝟏)         (𝟐𝐩 − 𝟏)𝐲(𝐭𝐧) −  𝟐𝐩𝐳𝐧
[𝟐]

+ 𝐳𝐧
[𝟏]

 =  −𝟎. 𝟓𝐡𝐩+𝟏𝐋 + 𝐎(𝐡𝐩+𝟐)  
 

 

(𝟏. 𝟐𝟐)          (𝟐𝟐𝐩 − 𝟏)𝐲(𝐭𝐧) − 𝟐𝟐𝐩𝐳𝐧
[𝟑]

+ 𝐳𝐧
[𝟏]

 =  −𝟎. 𝟕𝟓𝐡𝐩+𝟏𝐋 + 𝐎(𝐡𝐩+𝟐)    
 

 

The constant   𝐋    should also be eliminated. Multiply (1.21) with   −𝟎. 𝟕𝟓   and (1.22) with   𝟎. 𝟓.  

 

 

(𝟏. 𝟐𝟑)       − 𝟎. 𝟕𝟓 (𝟐𝐩 − 𝟏)𝐲(𝐭𝐧) + (𝟎. 𝟕𝟓)𝟐𝐩𝐳𝐧
[𝟐]

−𝟎. 𝟕𝟓𝐳𝐧
[𝟏]

 =  𝟎. 𝟕𝟓(𝟎. 𝟓)𝐡𝐩+𝟏𝐋 + 𝐎(𝐡𝐩+𝟐)  
 

 

(𝟏. 𝟐𝟒)      𝟎. 𝟓 (𝟐𝟐𝐩 − 𝟏)𝐲(𝐭𝐧) − (𝟎. 𝟓) 𝟐𝟐𝐩𝐳𝐧
[𝟑]

+ 𝟎. 𝟓𝐳𝐧
[𝟏]

 =  𝟎. 𝟓(−𝟎. 𝟕𝟓)𝐡𝐩+𝟏𝐋 + 𝐎(𝐡𝐩+𝟐)    
 

 

Add the modified (1.21) to the modified (1.22). The result is: 

 

 

(𝟏. 𝟐𝟓)      (𝟐𝟐𝐩−𝟏 −  𝟑(𝟐𝐩−𝟐) + 𝟎. 𝟐𝟓)𝐲(𝐭𝐧) − 𝟐𝟐𝐩−𝟏𝐳𝐧
[𝟑]

+ 𝟑(𝟐𝐩−𝟐)𝐳𝐧
[𝟐]

− 𝟎. 𝟐𝟓𝐳𝐧
[𝟏]

 =  𝐎(𝐡𝐩+𝟐)    
 

 

The last equality can be rewritten as 

 

 

(𝟏. 𝟐𝟔)     𝐲(𝐭𝐧) =
𝟐𝟐𝐩−𝟏𝐳𝐧

[𝟑]
− 𝟑(𝟐𝐩−𝟐)𝐳𝐧

[𝟐]
+ 𝟎. 𝟐𝟓𝐳𝐧

[𝟏]

𝟐𝟐𝐩−𝟏 −  𝟑(𝟐𝐩−𝟐) + 𝟎. 𝟐𝟓
+ 𝐎(𝐡𝐩+𝟐)   

 

 

Denote 

 

 

(𝟏. 𝟐𝟕)     𝐲𝐧 =
𝟐𝟐𝐩−𝟏𝐳𝐧

[𝟑]
− 𝟑(𝟐𝐩−𝟐)𝐳𝐧

[𝟐]
+ 𝟎. 𝟐𝟓𝐳𝐧

[𝟏]

𝟐𝟐𝐩−𝟏 −  𝟑(𝟐𝐩−𝟐) + 𝟎. 𝟐𝟓
 .  

 

 

Then (1.26) can be rewritten as 

 

 

(𝟏. 𝟐𝟖)     𝐲(𝐭𝐧) = 𝐲𝐧 + 𝐎(𝐡𝐩+𝟐)   
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and it is clear that   𝐲𝐧   being of order equal at least to   𝐩 + 𝟐    is more accurate than the three 

approximations    𝐳𝐧
[𝟏]

 ,    𝐳𝐧
[𝟐]

   and    𝐳𝐧
[𝟑]

    the order of accuracy of which is   𝐩 .  

 

It must be pointed out that the computational cost of the improvement of the accuracy achieved in this 

section is rather high. It is necessary to perform  

 

(a) one time-step with a stepsize   𝐡    in order to calculate the first approximation   𝐳𝐧
[𝟏]

 ,    

 

(b) two time-steps with a stepsize   𝟎. 𝟓𝐡    in order to calculate the second approximation   

𝐳𝐧
[𝟐]

     

 

and   

 

(c) four time-steps with a stepsize   𝟎. 𝟐𝟓𝐡   in order to calculate the second approximation   

𝐳𝐧
[𝟑]

 . 

 

The device described in this section can be considered as a Repeated Richardson Extrapolation. Some 

more details about different implementations of Repeated Richardson Extrapolation and about some 

other extrapolation methods can be found in the fourth chapter of Hairer, Nørsett and Wanner (1987), 

see also Deuflhard, Hairer and Zugck (1987), Joyce (1971) and Christiansen and Petersen (1989). 

Interesting details about some of the scientists, who initiated the work on different extrapolation 

methods (including here the Richardson Extrapolations) can be found in the work of Claude Brezinski 

(https://nalag.cs.kuleuven.be/research/projects/WOG/history/talks/brezinski_talk.pdf). The stability of 

the new method (achieved when repeated Richardson Extrapolation is to be applied) must be studied 

carefully.   

 

 

 

1.9. Major conclusions related to Chapter 1 
 

The advantages and the drawbacks of the Richardson Extrapolation used in combination with systems 

of ODEs were discussed in this chapter. Two major conclusions were drawn during this discussion:  

 

(a) the use of the Richardson Extrapolation is leading to both more accurate and new 

numerical methods  

 

and  

 

(b) this devise can be used to organize an automatic control of the stepsize according to 

some prescribed in advance accuracy, which is very important for practical 

computations.  

 

However, these two conclusions will be true only if the new numerical method, the combination of the 

Richardson Extrapolation with the selected algorithm, is stable. This fact shows clearly that the 

preservation of the stability of the computational process is indeed a key issue. Therefore stability 

discussions will be the major topic in the next four chapters of this book. 

https://nalag.cs.kuleuven.be/research/projects/WOG/history/talks/brezinski_talk.pdf
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1.10. Topics for further research 
 

 The following topics might lead to some very interesting and useful results: 

 

(A) Attempt to verify that it is possible to achieve even higher accuracy than 

that achieved by using the device presented in Section 1.8. Assume that   𝐩   

is the order of accuracy of the selected numerical method and that   𝐪   is 

an integer greater than one. Show that it is possible to design a numerical 

scheme of order   𝐩 + 𝐪   by applying a procedure, which is similar to the 

procedure used in Section 1.8 for   𝐪 = 𝟐.   Note that the Richardson 

Extrapolation device discussed in Section 1.1 – Section 1.7 will be 

obtained by this general algorithm by setting  𝐪 = 𝟏 .   

 

(B) Try to evaluate the advantages and the drawbacks of the method designed 

as described above for an arbitrary positive integer    𝐪 . 

 

(C) The stability properties of the methods obtained with   𝐪 > 𝟏   should also 

be carefully studied. 

 

  
  



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

25 

 

 

Chapter 2 

 

Richardson Extrapolation  

for Explicit Runge-Kutta Methods 
 

It is convenient to start the investigation of several efficient implementations of the Richardson 

Extrapolation with the case where this technique is applied together with the Explicit Runge-Kutta 

Methods (ERKMs), which are very popular among scientists and engineers. It was mentioned in the 

previous chapter that the implementation of the Richardson Extrapolation with any algorithm for 

solving systems of ODEs should be considered as a new numerical method. Assume now that Method 

A is any numerical algorithm from the class of the ERKMs and that Method B is the new numerical 

method formed by the combination of Method A with the Richardson Extrapolation. If the stability 

properties of the Method B (which will be discussed in detail in this chapter) are not causing 

computational problems, then the strategy needed to achieve better performance, when the Richardson 

Extrapolation is used, is very straight-forward. One can easily achieve excellent efficiency in this case, 

because Method B can be run successfully with a time-stepsize, which is considerably larger than the 

time-stepsize used with Method A. It is possible to select large time-stepsizes and to achieve better 

accuracy results, because Method B is, as was shown in the previous chapter, more accurate than 

Method A. This means that in this situation, i.e. when the stability is not causing troubles, the 

application of the Richardson Extrapolation will indeed always lead to a very efficient computational 

process. However, the situation is, unfortunately, not always so simple. The problem is that the stability 

requirements are very often putting severe restrictions on the choice of large time-stepsizes when 

explicit numerical methods are selected. The difficulties are much greater when the systems solved are 

very large. Therefore, it is necessary to require that at least two extra conditions are satisfied: 

 

(a) Method A should have good stability properties  

 

and, moreover, an additional and rather strong requirement must also be imposed, 

 

(b) Method B should have better stability properties than Method A.  

 

The computational process will be efficient even for mildly stiff systems of ODEs when the above two 

conditions, both condition (a) and condition (b), are satisfied. It will be shown in this chapter that it is 

possible to satisfy simultaneously these two requirements for some representatives of the class of 

the ERKMs.  

 

In Section 2.1 we shall present several definitions, which are related to the important concept of 

absolute stability of some numerical methods for solving systems of ODEs. These definitions are valid 

not only for the class of the Explicit Runge-Kutta Methods, but also for the much broader class of one-

step methods for solving systems of ODEs. 

 

The class of the Explicit Runge-Kutta Methods is introduced in Section 2.2 and the stability 

polynomials, which are induced when these methods are used to handle the classical scalar and linear 

test-problem that has been introduced by G. Dahlquist in 1963, Dahlquist (1963), are presented in the 
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case when some numerical method for solving ODEs is directly applied in the computational process 

(i.e. when the selected numerical method is applied without using the Richardson Extrapolation). Many 

of the assertions made in this section are also valid for the class of one-step methods. The ERKMs 

form a sub-class of the class of one-step methods.  

 

Stability polynomials for the new numerical methods, which are combinations of Explicit Runge-

Kutta Methods with the Richardson Extrapolation, are derived in Section 2.3. Also in this case the 

classical scalar and linear test-problem, which was introduced by G. Dahlquist in 1963, is used and the 

results are valid for the broader class of one-step methods. 

 

In Section 2.4, the absolute stability regions of the Explicit Runge-Kutta Methods, when these are 

applied directly in the solution of systems of ODEs, are compared with the absolute stability regions 

of the new numerical methods, which appear when the Explicit Runge-Kutta Methods are combined 

with the Richardson Extrapolation. We assume in this section that the number   𝐦   of stages of the 

selected ERKM is equal to its order of accuracy   𝐩 .   It is verified that the absolute stability regions 

of the new numerical methods (derived by applying the Richardson Extrapolation) are always larger 

than those of the underlying ERKMs when this assumption, the assumption   𝐦 = 𝐩 ,   is made.  

 

Three appropriate numerical examples are formulated in Section 2.5. By using these examples it will 

be possible to demonstrate in Section 2.8 the fact that the new numerical methods resulting when 

Explicit Runge-Kutta Methods are combined with Richardson Extrapolation can be used with larger 

time-stepsizes than the time-stepsizes used with the original Explicit Runge-Kutta Methods when these 

are applied directly and, moreover, that this is also true in the situations where the stability restrictions 

are much stronger than the accuracy requirements. 

 

The organization of the computations, which are related to the three examples introduced in Section 

2.5, is explained in Section 2.6. The selected by us particular approach during the organization of the 

computational process allowed us to compare in a better way both the accuracy achieved during the 

numerical solution and the convergence rates when the time-stepsizes are successively decreased. 

 

The numerical methods, the absolute stability regions of which are shown in Section 2.4, form large 

classes when the order of accuracy   𝐩   is greater than one. All methods within any of these classes 

have the same absolute stability region. The particular Explicit Runge-Kutta Methods from these 

classes, which are actually applied in the numerical experiments, are presented in Section 2.7. 

 

Numerical results, which are obtained with the particular methods selected in Section 2.7 during the 

solution process organized as explained in Section 2.6, are given and discussed in Section 2.8. It is 

clearly demonstrated that the results are both more accurate and more stable when the ERKMs are 

combined with the Richardson Extrapolation. 

 

Explicit Runge-Kutta methods (ERKMs) with even more enhanced absolute stability properties are 

derived and tested in Section 2.9.  In this section it is assumed that    𝐩 < 𝐦    and ERKMs obtained 

by using two particular pairs    (𝐦, 𝐩) = (𝟒, 𝟑)    and    (𝐦, 𝐩) = (𝟔, 𝟒)    are studied under the 

requirement to achieve good (and in some sense optimal) stability properties both in the case when 

these methods are used directly and also in the case when their combinations with the Richardson 

Extrapolation are to be applied in the solution process. The ERKMs with optimal stability regions form 

two large classes. Particular methods, which have good accuracy properties, are selected from each of 

the two classes and their efficiency is demonstrated by numerical experiments.      
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The discussion in Chapter 2 is finished with several concluding remarks in Section 2.10. Some 

possibilities for further improvements of the efficiency of the Richardson Extrapolation when this 

technique is used together with Explicit Runge-Kutta Methods are also sketched in the last section of 

this chapter. A conjecture, which is inspired by the results obtained in connection with the ERKMs and 

their combinations with the Richardson Extrapolation, is formulated at the end of Chapter 2. 

 

Several problems for future research are proposed in the last section, Section 2.11, of this chapter. 

 

 

 

 

 

2.1. Stability function of one-step methods for solving systems of ODEs 
 

Consider again the classical initial value problem for non-linear systems of ordinary differential 

equations (ODEs), which was defined by (1.1) and (1.2) in the previous chapter. Assume that 

approximations   𝐲𝐧   of the values of   𝐲(𝐭𝐧)   are to be calculated at the grid-points given in (1.6), but 

note that the assumption for an equidistant grid is done in this chapter only in order to facilitate and to 

shorten the presentation of the results; approximations   𝐲𝐧   that are calculated on the grid (1.7) can 

also be considered in many of the cases treated in this section and in the following sections.  

 

One of the most important requirements, which has to be imposed during the attempts to select good 

and reliable numerical methods and which will in principle ensure reliable and robust computer 

treatment during the numerical solution of the problem defined by (1.1) and (1.2), can be explained in 

the following way.  

 

Let us assume that the exact solution   𝐲(𝐭)   of the initial value problem for systems of ODEs defined 

by (1.1) and (1.2) is a bounded function in the whole integration interval. This assumption is not a 

serious restriction. On the contrary, it is necessary, because such a requirement appears very often, 

practically nearly always, and has to be satisfied for many practical problems that arise in different 

fields of science and engineering. When the assumption for a bounded solution   𝐲(𝐭)   of the considered 

system of ODEs is made, it is very desirable to establish the fact that the following important 

requirement is also satisfied:  

 

 

The approximate solution, which is obtained by the selected numerical 

method for any set of grid-points (1.6), must also be bounded when the 

exact solution is bounded. 

 

 

The numerical solution is defined by the sequence   {𝐲𝟏 , 𝐲𝟐 , … , 𝐲𝐍} ,   which in this case is computed 

by some Explicit Runge-Kutta Method on the grid-points of (1.6), but this sequence may also be 

obtained by using the non-equidistant grid (1.7). It is obvious that the numerical solution is bounded if 

there exists a constant   𝐋 < ∞ ,   such that   ‖𝐲𝐧‖ ≤ 𝐋   for the selected norm and for all sets of grid-

points (1.6) or (1.7) for all indices   𝐧 ∈  {𝟏, 𝟐 , …  , 𝐍} . 
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It is obvious that such a requirement (the requirement to compute a bounded numerical solution when 

the exact solution is a bounded function) is quite natural. Moreover, the natural requirement for 

obtaining a bounded numerical solution, in the case when the exact solution   𝐲(𝐭)   is bounded, leads, 

roughly speaking, to some stability requirements that must be imposed in the choice of the numerical 

methods in an attempt to increase the efficiency of the computational process and to obtain both more 

accurate and more reliable results. Dahlquist (1963) suggested to study the stability properties of the 

selected numerical method for solving ODEs by applying this method not in the solution of the general 

system defined by (1.1) and (1.2), but in the solution of one much simpler test-problem. Actually, in 

that work, Dahlquist (1963), G. Dahlquist suggested to use the following scalar and linear test-

equation in the stability investigations: 

 

 

(𝟐. 𝟏)      
𝐝𝐲

𝐝𝐭
= 𝛌 𝐲,       𝐭 𝛜 [𝟎, ∞] ,       𝐲 ∈  ℂ ,       𝛌 = 𝛂 + 𝛃𝐢 ∈  ℂ ,       𝛂 ≤ 𝟎,       𝐲(𝟎) = 𝛈 ∈  ℂ . 

 

 

It is clear from (2.1) that the constant   𝛌   is assumed to be a complex number with a non-positive real 

part and, therefore, in this particular case the dependent variable   𝐲   takes values in the complex plane. 

Note too that the initial value   𝛈   is in general also a complex number. 

 

It is well-known that the exact solution   𝐲(𝐭) of (2.1) is given by 

 

 

(𝟐. 𝟐)      𝐲(𝐭) =  𝛈 𝒆𝛌𝐭 ,      𝐭 ∈  [𝟎, ∞] . 
 

 

It can immediately be seen that the exact solution  𝐲(𝐭)  given by (2.2) is bounded when the constraint   

𝛂 ≤ 𝟎   that is introduced in (2.1) is satisfied. Therefore, it is necessary to require that the approximate 

solution   {𝐲𝟏 , 𝐲𝟐 , … , 𝐲𝐍}   computed by the selected numerical method is also bounded for any set 

of grid-points (1.6). 

 

Assume now that (2.1) is treated by using an arbitrary one-step numerical method for solving ODEs. 

One-step methods are discussed in detail, for example, in Burrage (1995), Butcher (2003), Hairer, 

Nørsett and Wanner (1987), Henrici (1968), and Lambert (1991). Roughly speaking, only the 

approximation   𝐲𝐧−𝟏   of the solution at the grid-point   𝐭𝐧−𝟏   is used in the calculation of the 

approximation   𝐲𝐧   at the next grid-point   𝐭𝐧   of (1.6) when one-step methods are selected. A more 

formal statement can be derived from the definition given on p. 64 in Henrici (1968), however, this is 

not very important for the further discussion in this chapter, where we shall study Explicit Runge-Kutta 

Methods, and the above explanation is quite sufficient for our purposes. The important thing is only 

the fact that the results presented in this section are valid for any one-step method for solving systems 

of ODEs (and, thus, also for the Explicit Runge-Kutta Methods, which form a sub-class of the class of 

one-step methods).  

 

Let the positive constant (the time-stepsize)   𝐡   be given and consider the following set of grid-points, 

which is very similar to (1.6): 

 

 

(𝟐. 𝟑)      𝐭𝟎 = 𝟎,     𝐭𝐧 =  𝐭𝐧−𝟏 + 𝐡 = 𝐭𝟎 + 𝐧𝐡     ( 𝐧 = 𝟏, 𝟐, … ) .     



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

29 

 

 

 

Approximations of the exact solution   𝐲(𝐭)   from (2.2) can successively, step by step, be calculated 

on the grid-points of the set defined in (2.3). Moreover, it is very easy to show, see more details in 

Lambert (1991), that the application of an arbitrary one-step method in the treatment of (2.1) leads to 

the following recursive relation:   

 

 

(𝟐. 𝟒)      𝐲𝐧 = 𝐑(𝛎) 𝐲𝐧−𝟏 =  [𝐑(𝛎)]𝐧 𝐲𝟎,         𝛎 =  𝛌 𝐡,         𝐧 = 𝟏, 𝟐, …    
 

 

The function   𝐑(𝛎)   is called the stability function (see, for example, Lambert, 1991). If the applied 

one-step method is explicit, then this function is a polynomial. It is a rational function (some ratio of 

two polynomials, see Chapter 4) when implicit one-step methods are used.  

 

It can immediately be concluded from (2.4) that if the relation   |𝐑(𝛎)|  ≤ 𝟏   is satisfied for some value 

of   𝛎 =  𝐡𝛌 ,   then the selected one-step method will produce a bounded approximate solution of (2.1) 

for the applied value   𝐡   of the time-stepsize. It is said that the selected one-step numerical method is 

absolutely stable for this value of  parameter  𝛎  (see again Lambert, 1991). 

 

Consider the set of all points   𝛎   located in the complex plane to the left of the imaginary axis, for 

which the relationship   |𝐑(𝛎)|  ≤ 𝟏   holds. The set of these points is called absolute stability region 

of the one-step numerical method under consideration (Lambert, 1991, p. 202).   

 

The absolute stability definitions related to the scalar and linear test-problem (2.1), which were 

introduced above, can easily be extended for some linear systems of ODEs with constant coefficients 

that are written in the form: 

 

 

(𝟐. 𝟓)      
𝐝𝐲

𝐝𝐭
= 𝐀 𝐲,         𝐭 ∈  [𝟎, ∞] ,         𝐲 ∈  𝐃 ⊂  ℂ𝐬 ,          𝐬 ≥ 𝟏 ,          𝐲(𝟎) = 𝛈 ,        𝛈 ∈  𝐃  . 

 

 

It is assumed here that   𝐀 ∈   ℂ𝐬𝐱𝐬    is a given constant and diagonalizable matrix with complex 

elements and that   𝛈 ∈  ℂ𝒔   is some given vector with complex components. Under the first of these 

two assumptions, there exists a non-singular matrix   𝐐   such that   𝐐−𝟏𝐀 𝐐 = 𝚲    where   𝚲   is a 

diagonal matrix, whose diagonal elements are the eigenvalues of matrix   𝐀   from the right-hand side 

of (2.5). Substitute now the expression   𝐲 =  𝐐−𝟏 𝐳   in (2.5). The result is: 

 

 

(𝟐. 𝟔)      
𝐝𝐳

𝐝𝐭
= 𝚲 𝐳,      𝐭 ∈  [𝟎, ∞] ,      𝐳 ∈  �̅�  ⊂  ℂ𝒔 ,       𝐬 ≥ 𝟏 ,       𝐳(𝟎) = �̅� = 𝐐 𝛈  ,     �̅�  ∈  �̅�  . 

 

 

Assume that the real parts of all eigenvalues of matrix   𝐀   are non-positive. It is clear that system 

(2.6) consists of   𝐬    independent scalar equations of type (2.1) when this assumption is satisfied. A 

stability function   𝐑(𝛎𝐢),    𝐢 = 𝟏, 𝟐, … , 𝐬 ,   where   𝛎𝐢 = 𝐡𝛌𝐢 ,   can be associated with  each of these   

𝐬    equations when the selected one-step method is implicit. If the applied method is explicit then   
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𝐑(𝛎𝐢)    is a polynomial. This means that the following definition for absolute stability related to 

problem (2.6) with some matrix   𝐀   can be introduced in both cases. It is said that the one-step method 

is absolutely stable when it is applied in the numerical solution of (2.6) with some time-stepsize   𝐡   if 

the inequality   |𝐑(𝛎𝐢)| ≤ 𝟏   is satisfied for all eigenvalues   𝛌𝐢 ,  𝐢 = 𝟏, 𝟐, … , 𝐬  ,   of matrix   𝐀 .  

 

The definition can be slightly simplified when all eigenvalues of matrix   𝐀   are real (which means 

that all of them are non-positive). It is necessary to assume in this case that   𝛌    is an eigenvalue of 

matrix   𝐀   for which the relationship   |𝛌| = 𝐦𝐚𝐱 ( |𝛌𝟏| ,  |𝛌𝟐| , … ,   |𝛌𝐬|)   holds. Note that if we set   

 𝛎 =  𝐡𝛌 ,   then the application of an arbitrary one-step method in the numerical solution of (2.6) will 

produce a bounded numerical solution when the inequality  |𝐑(𝛎)|  ≤ 𝟏  is satisfied. It is clear that this 

definition relates the concept of absolute stability with only one of the eigenvalues of matrix   𝚲 ,   with 

the eigenvalue, which is largest in absolute value, i.e. with   |𝛌| = 𝐦𝐚𝐱 ( |𝛌𝟏| ,  |𝛌𝟐| , … ,   |𝛌𝐬|).   

 

The above analysis shows that the problems connected with the stability of the computations during 

the numerical solution of the system (2.6) are slightly more complicated than the problems with the 

stability of the computations of the scalar and linear equation (2.1), because it is necessary to introduce 

a requirement that the stability polynomials must satisfy the inequality  |𝐑(𝛎𝐢)| ≤ 𝟏   for all eigenvalues   

𝛌𝐢 ,   𝐢 = 𝟏, 𝟐, … , 𝐬 , of matrix  𝐀  in the latter case. However, the remarkable thing is that if the absolute 

stability region for the scalar and linear problem (2.5) is defined in a quite similar way as it was defined 

for the scalar equation (2.1), then the main ideas remain the same. The single relationship   |𝐑(𝛎)|  ≤
𝟏  for some given value   𝛎 𝛜 ℂ− ,   then  𝛎   is a point of the absolute stability region of the one-step 

numerical method used in the solution of (2.1) should now be replaced by a slightly more complicated 

requirement. More precisely, as stated above, the computations needed to obtain a numerical solution 

of the system (2.6) with a one-step method will be stable for a given time-stepsize   𝐡,   if all points   

𝛎𝐢 = 𝐡𝛌𝐢   are inside the absolute stability region of the method. Therefore, it becomes immediately 

clear that for some linear systems of ODEs with constant coefficients the absolute stability region can 

be introduced precisely in the same way (or at least in a very similar way) as in the case where the 

scalar equation (2.1) is considered. 

 

If matrix   𝐀   is not constant, i.e. if   𝐀 = 𝐀(𝐭)  and, thus, if the elements of this matrix depend on the 

time-variable   𝐭 ,   then the above result is no more valid. Nevertheless, under certain assumptions one 

can still expect the computational process to be stable. The main ideas, on which such an expectation 

is based, can be explained as follows. Assume that   𝐧   is an arbitrary positive integer and that a matrix   

𝐀(𝐭̅𝐧)   where   𝐭̅𝐧  ∈  [𝐭𝐧−𝟏, 𝐭𝐧]   is involved in the calculation of the approximation   𝐲𝐧 ≈ 𝐲( 𝐭𝐧 )   by 

the selected one-step numerical method. Assume further that matrix   𝐀(𝐭̅𝐧)   is diagonalizable for all 

values of   𝐭̅𝐧 .   Then some diagonal matrix   𝚲(𝐭̅𝐧)   will appear at time-step  𝐧  instead of   𝚲   in 

(2.6). Moreover, the eigenvalues of matrix  𝐀(𝐭̅𝐧)  will be the diagonal elements of  𝚲(𝐭̅𝐧) .  Denote 

by    𝛌𝟏(𝐭̅𝐧), 𝛌𝟐(𝐭̅𝐧) , …  , 𝛌𝐬(𝐭̅𝐧)   the eigenvalues of matrix   𝐀(𝐭̅𝐧) .  Assume that the real parts of 

all eigenvalues are non-positive and consider the products of these eigenvalues with the time-stepsize 

𝐡:  𝛎𝟏(𝐭̅𝐧) = 𝐡𝛌𝟏(𝐭̅𝐧) ,  𝛎𝟐(𝐭̅𝐧) = 𝐡𝛌𝟐(𝐭̅𝐧) , … , 𝛎𝐬(𝐭̅𝐧) = 𝐡𝛌𝐬(𝐭̅𝐧) . A stability polynomial   

𝐑(𝛎𝐢(𝐭̅𝐧)),   𝐢 = 𝟏, 𝟐, … , 𝐬 ,   can be associated with each of these quantities. It is clear that one should 

not expect the appearance of stability problems during the computations when the inequalities  

|𝐑(𝛎𝐢(𝐭̅𝐧))| ≤ 𝟏 ,   𝐢 = 𝟏, 𝟐, … , 𝐬 ,  are satisfied. It is clear that it is necessary to require that similar 

inequalities are satisfied for all points  𝐭𝐧  of the grid (2.3). This procedure seems to be rather 

complicated, but the heart of the matter is the fact that the system (2.6) is decoupled at every point of 

the grid (2.3) into a set of independent equations; each of them of the type (2.1).  After this observation, 

the expectation for obtaining stable results can be expressed as follows: if the time-stepsize   𝐡   is such 
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that all inequalities  |𝐑(𝛎𝐢(𝐭̅𝐧))| ≤ 𝟏  are satisfied at every time-step   𝐧 = 𝟏, 𝟐, …,   and for all indices   

𝐢 = 𝟏, 𝟐, … , 𝐬 ,  then one should expect the computational process to remain stable.  

 

Even more important is the fact that if the absolute stability region is formally defined precisely in the 

same way as it was defined above, i.e. if   |𝐑(𝛎)|  ≤ 𝟏   for some given value    𝛎 ∈  ℂ− ,   then   𝛎   is 

a point of the absolute stability region of the one-step numerical method used in the solution of (2.6) 

when matrix  𝐀 = 𝐀(𝐭)  is time-dependent. Now the requirement of a stable computational process in 

the solution of (2.6) when  𝐀  is a time-dependent matrix can be reformulated in the following way: 

one should expect the computations in the solution of (2.6) with a one-step method to be stable, when 

matrix   𝐀 = 𝐀(𝐭)   is time-dependent, for a given time-stepsize   𝐡,   if  all points   𝛎𝐢(𝐭̅𝐧) = 𝐡𝛌𝐢(𝐭̅𝐧) ,    

where   𝐧 = 𝟏, 𝟐, …,  and   𝐢 = 𝟏, 𝟐, … , 𝐬 ,   are inside the absolute stability region of the method. It is 

necessary to emphasize once again here that there is no guarantee that the computational process will 

necessarily be stable, but nearly all practical computations, which were carried out during more than 

50 years after the introduction of the absolute stability concept in Dahlquist (1963), indicate that 

stability is achieved nearly always (or at least very often).  

 

Quite similar, and again heuristic, considerations can also be applied in connection with the non-linear 

system of ODEs described by (1.1) and (1.2). In this case instead of matrix  𝐀(𝐭) one should consider 

the Jacobian matrix   𝐉 = 𝛛𝐟/𝛛𝐲   of function   𝐟( 𝐭 , 𝐲 )   in the right-hand-side of (1.1); see more details 

for example in Lambert (1991).  

 

The scalar and linear equation (2.1) is very simple, but it is nevertheless very useful in the investigation 

of the stability of the numerical methods. This fact has been pointed out by many specialists working 

in the field of numerical solution of systems of ODEs (see, for example, the remark on page 37 of 

Hundsdorfer and Verwer, 2003). The above considerations indicate that it is worthwhile to base the 

absolute stability theory (at least until some more advanced and more reliable test-problem is found) 

on the simplest test-problem (2.1) as did G. Dahlquist in 1963; see Dahlquist (1963). 

 

The results presented in this section are valid for an arbitrary (either explicit or implicit) one-step 

method for solving systems of ODEs. In the next sections of this chapter we shall concentrate our 

attention on the investigation of the stability properties of the Explicit Runge-Kutta Methods (the 

ERKMs), which form a sub-class of the class of one-step methods. After that we shall show that if 

some numerical methods from this sub-class are combined with the Richardson Extrapolation, then the 

resulting new numerical methods will sometimes have increased absolute stability regions. For these 

new numerical methods it will be possible to apply large time-stepsizes also in the case where the 

stability requirements are stronger than the accuracy requirements and, thus, if the stability 

requirements, and not the accuracy requirements, put some restrictions on the choice of the time-

stepsize during the numerical treatment of the system of ODEs. 

 

 

 

 

 

2.2. Stability polynomials of Explicit Runge-Kutta Methods 
 

Numerical methods of Runge-Kutta type for solving systems of ODEs are described and discussed in 

many text-books and papers; see, for example, Burrage (1995), Butcher (2003), Hairer, Nørsett and 

Wanner (1987), Henrici (1968), and Lambert (1991). Originally, some particular methods of this 
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type were developed and used (more than a hundred years ago) by Kutta (1901) and Runge (1895). It 

should be mentioned here that the contribution of a third mathematician, Karl Heun (Heun, 1900), has 

been underestimated. He also developed a numerical method belonging to this class, which is still 

called Heun’s method, and it would have been much more correct to use the name Runge-Heun-Kutta 

methods for the numerical algorithms from this class, but the name Runge-Kutta methods is already 

firmly established in this field. 

 

The general 𝐦-stage Explicit Runge-Kutta Method is a one-step numerical method for solving the 

systems of ODEs defined by (1.1) and (1.2). This numerical method is defined by the following formula 

(more details can be found, when necessary, in any of the text-books quoted above): 

 

 

(𝟐. 𝟕)      𝐲𝐧 = 𝐲𝐧−𝟏 + 𝐡 ∑ 𝐜𝐢

𝐦

𝐢=𝟏

𝐤𝐢
𝐧  . 

 

 

The coefficients   𝐜𝐢   are given constants, while at an arbitrary time-step   𝐧   the stages   𝐤𝐢
𝐧   are 

defined by 

 

 

(𝟐. 𝟖)      𝐤𝟏
𝐧 = 𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏) ,       𝐤𝐢

𝐧 = 𝐟 ( 𝐭𝐧−𝟏 + 𝐡 𝐚𝐢 ,   𝐲𝐧−𝟏 + 𝐡 ∑ 𝐛𝐢𝐣

𝐢−𝟏

𝐣=𝟏

𝐤𝐣
𝐧 )  ,    𝐢 = 𝟐, 𝟑, … , 𝐦 , 

 

 

with 

 

 

(𝟐. 𝟗)      𝐚𝐢 = ∑ 𝐛𝐢𝐣

𝐢−𝟏

𝐣=𝟏

 ,      𝐢 = 𝟐, 𝟑, … , 𝐦  ,       

 

 

where   𝐛𝐢𝐣   are also some given constants depending on the particular numerical method. 

 

Assume that the order of accuracy of the chosen Explicit Runge-Kutta Method is  𝐩 and, additionally, 

that the choice   𝐩 = 𝐦   is made for the numerical method under consideration. It can be shown (see, 

for example, Lambert, 1991) that it is possible to satisfy the requirement   𝐩 = 𝐦   only if   𝐦 ≤ 𝟒   

while we shall necessarily have   𝐩 < 𝐦    when  𝐦   is greater than four. Assume further that the 

method defined with (2.7), (2.8) and (2.9) is applied in the treatment of the special test-problem (2.1). 

Then the stability polynomial   𝐑(𝛎)   associated with the selected ERKM is given by (see Lambert, 

1991, p. 202): 

 

 

(𝟐. 𝟏𝟎)      𝐑(𝛎) = 𝟏 + 𝛎 +
𝛎𝟐

𝟐!
+  

𝛎𝟑

𝟑!
+ ⋯ +  

𝛎𝐩

𝐩!
,        𝐩 = 𝐦,        𝐦 = 𝟏, 𝟐, 𝟑, 𝟒  .       
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Mainly Explicit Runge-Kutta Methods with   𝐩 = 𝐦   will be considered in this chapter, but in Section 

2.9 some methods with   𝐩 < 𝐦   and with enhanced stability properties will be derived and tested. 

 

 

 

 

 

2.3. Using Richardson Extrapolation together with the scalar test-problem 
 

Consider an arbitrary (explicit or implicit) one-step method for solving systems of ODEs. Assume that:   

 

(a) the selected one-step numerical method is of order  𝐩    

 

and 

 

(b) an approximation  𝐲𝐧 of the exact value   𝐲( 𝐭𝐧 ) of the solution of (2.1) has to be 

calculated under the assumption that a sufficiently accurate approximation   𝐲𝐧−𝟏   has 

already been computed.  

 

The classical Richardson Extrapolation, which was introduced in Chapter 1 for the system of ODEs 

defined in (1.1) and (1.2), can easily be formulated for the case where the scalar and linear test-problem 

(2.1), which was proposed by Dahlquist (1963), is solved. The algorithm, by which the Richardson 

Extrapolation is implemented in this way, can be presented as shown below. Note that the relationship 

(2.4) and, thus, the stability function  𝐑(𝛎) (or the stability polynomial when the selected one-step 

method is explicit) is used in the formulation of this algorithm.  

 

 

Step 1 Perform one large time-step with a time-stepsize   𝐡   by using   𝐲𝐧−𝟏   as a starting value 

to calculate: 

 

(𝟐. 𝟏𝟏)      𝐳𝐧 = 𝐑(𝛎) 𝐲𝐧−𝟏  . 
 

Step 2 Perform two small time-steps with a time-stepsize   h5.0    by using   1ny     as a starting 

value in the first of the two small time-steps: 

 

(𝟐. 𝟏𝟐)      �̅�𝐧 = 𝐑 (
𝛎

𝟐
)  𝐲𝐧−𝟏 ,       𝐰𝐧 = 𝐑 (

𝛎

𝟐
) �̅�𝐧 =  [𝐑 (

𝛎

𝟐
)]

𝟐

 𝐲𝐧−𝟏 . 

 

Step 3 Compute (let us repeat here that   𝐩    is the order of accuracy of the selected numerical 

method) an improved solution by applying the basic formula (1.8) by which the 

Richardson Extrapolation was defined in Chapter 1: 

 

(𝟐. 𝟏𝟑)      𝐲𝐧 =  
𝟐𝐩𝐰𝐧 − 𝐳𝐧

𝟐𝐩 − 𝟏
=  

𝟐𝐩 [𝐑 (
𝛎
𝟐)]

𝟐

−  𝐑(𝛎)

𝟐𝐩 − 𝟏
 𝐲𝐧−𝟏 . 
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Note too that in the derivation of the algorithm it is assumed that the active implementation of 

Richardson Extrapolation is used (see Section 1.7). 

 

The last relationship, equality (2.13), in the scheme presented above shows clearly that the 

combination of the selected one-step numerical method and the Richardson Extrapolation can 

also be considered as a one-step numerical method for solving systems of ODEs when it is used to 

solve the Dahlquist scalar test-example (2.1). 

 

Furthermore, it can easily be shown (by applying the same technique as that used in Chapter 1) that the 

approximation   𝐲𝐧   calculated by (2.13) is usually of order   𝐩 + 𝟏   and, therefore, it is always more 

accurate than both   𝐳𝐧   and   𝐰𝐧   when the time-stepsize is sufficiently small. The most important 

fact is that the stability function (or polynomial, when the underlying numerical method is explicit) of 

the combined numerical method is expressed by the stability function (the stability polynomial) 𝐑(𝛎)   

of the underlying numerical method and is given by the following expression: 

 

 

(𝟐. 𝟏𝟒)      �̅�(𝛎) =   
𝟐𝐩 [𝐑 (

𝛎
𝟐)]

𝟐

−  𝐑(𝛎)

𝟐𝐩 − 𝟏
  . 

 

 

The above considerations are very general. As we already stated above, they are valid when the 

underlying numerical formula is any explicit or implicit one-step numerical method. However, in the 

following sections (2.4) – (2.8) of this chapter we shall restrict ourselves to the class of Explicit Runge-

Kutta Methods with   𝐩 = 𝐦 .  

 

It is necessary now to emphasize additionally the fact that the stability functions or polynomials of the 

underlying method and those of its combination with the Richardson Extrapolation, i.e. the functions 

or the polynomials   𝐑(𝛎)   and   �̅�(𝛎) ,   are different, which implies that the absolute stability regions 

of the underlying method and its combination with the Richardson Extrapolation will in general also 

be different.    

 

Our purpose will be to study the impact of the application of the Richardson Extrapolation on the 

stability properties of the underlying Explicit Runge-Kutta Methods. In other words, we shall compare 

the absolute stability region of each of the Explicit Runge-Kutta Methods, for which   𝐩 = 𝐦   is 

satisfied, with the corresponding absolute stability region, which is obtained when the method under 

consideration is combined with the Richardson Extrapolation. 
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2.4. Impact of Richardson Extrapolation on the absolute stability properties 
 

Let us repeat once again that the absolute stability region of a given one-step method (and also of a 

given numerical method of the class of the Explicit Runge-Kutta Methods) consists of all complex 

points  𝛎 = 𝐡𝛌  for which the stability function (if the numerical method is explicit, the stability 

function is reduced to a polynomial) satisfies the inequality   |𝐑(𝛎)|  ≤ 𝟏 .   If the method is combined 

with the Richardson Extrapolation, the condition   |𝐑(𝛎)|  ≤ 𝟏   must be replaced with the stronger 

requirement   |�̅�(𝛎)|  ≤ 𝟏 ,   which was derived in the previous section; see (2.14). The last requirement 

is indeed stronger, also in the case where the numerical method is explicit, because as mentioned in the 

end of the previous section the two stability polynomials are different. This can be demonstrated by 

the following simple example. In the case, where a fourth-order four-stage Explicit Runge-Kutta 

Method is used, the polynomial   𝐑(𝛎)  will be of degree four, while the degree of the corresponding 

polynomial   �̅�(𝛎)  will be eight when this method is combined with the Richardson Extrapolation. The 

same rule holds for all other Explicit Runge-Kutta Methods: the degree of the polynomial   �̅�(𝛎)   is 

by a factor of two higher than the degree of the corresponding polynomial  𝐑(𝛎). Therefore, the 

investigation of the absolute stability regions of the new numerical methods (consisting of the 

combinations of Explicit Runge-Kutta Methods and the Richardson Extrapolation) will be much more 

complicated than the investigation of the absolute stability regions of Explicit Runge-Kutta Methods 

when these are used directly.  

 

The absolute stability regions of the classical Explicit Runge-Kutta Methods (ERKMs) with   𝐩 = 𝐦   

and  𝐦 = 𝟏, 𝟐, 𝟑, 𝟒   are presented, for example, in Lambert (1991), p. 202. In this section these 

absolute stability regions will be compared with the absolute stability regions obtained when the 

Richardson Extrapolation is additionally used. 

 

First and foremost, it is necessary to describe the algorithm, which has been used to draw the absolute 

stability regions. The boundaries of the parts of the absolute stability regions that are located above the 

negative real axis and to the left of the imaginary axis can been obtained in the following way. Let   𝛎   

be equal to   �̅� + �̅�𝐢   with   �̅�  ≤ 𝟎   and assume that   𝛆 > 𝟎   is some very small increment. We must 

mention that from (2.1) and (2.4) it follows that     �̅� = 𝐡𝛂    and     �̅�𝐢 = 𝐡𝛃i .   Start with a fixed value   

 �̅� = 𝟎   of the real part of   𝛎 = �̅� + �̅�𝐢   and calculate the values of the stability polynomial   𝐑(𝛎)   

for    �̅� = 𝟎   and for   �̅� = 𝟎, 𝛆, 𝟐𝛆, 𝟑𝛆, …  .  Continue this process as long as the inequality   

|𝐑(𝛎)|  ≤ 𝟏   is satisfied and denote by   �̅�𝟎   the last value for which the requirement  |𝐑(𝛎)|  ≤ 𝟏  

was fulfilled. Set    �̅� = −𝛆    and repeat the same computations for the new value of    �̅�    and for   

�̅� = 𝟎, 𝛆, 𝟐𝛆, 𝟑𝛆, …  .  Denote by   �̅�𝟏   the largest value of   �̅�   for which the stability requirement   

|𝐑(𝛎)|  ≤ 𝟏   is satisfied. Continuing the computations, it will be possible to calculate the coordinates 

of a very large set of points    { (𝟎, �̅�𝟎), (−𝛆, �̅�𝟏), (−𝟐𝛆, �̅�𝟐), …  }   located in the negative part of the 

complex plane over the real axis. More precisely, all of these points are located close to the boundary 

of the part of the absolute stability region which is over the negative real axis and to the left of the 

imaginary axis. Moreover, all these points lie inside the absolute stability region, but if  𝛆   is sufficiently 

small, then they will be very close to the boundary of the absolute stability region. Therefore, the curve 

connecting successively all these points will in such a case be a very close approximation of the 

boundary of the part of the stability region, which is located over the real axis and to the left of the 

imaginary axis.  

 

It should be mentioned here that   𝛆 = 𝟎. 𝟎𝟎𝟏   was actually used in the preparation of all plots that are 

presented in this section.   
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It can easily be shown that the absolute stability region is symmetric with regard to the real axis. 

Therefore, there is no need to repeat the computational process that was described above for negative 

values of the imaginary part   �̅�   of   𝛎 = 𝐡𝛌 = �̅� + �̅�𝐢 . 
 

Some people are drawing parts of the stability regions which are located to the right of the imaginary 

axis (see, for example, Lambert, 1991). In our opinion, this is not necessary and in the most of the 

cases it will not be desirable either. The last statement can be explained as follows. Consider equation 

(2.1) and let again   𝛎   be equal to   �̅� + �̅�𝐢   but assume now that   �̅�   is a positive number. Then the 

exact solution (2.2) of (2.1) is not bounded and it is clearly not desirable to search for numerical 

methods, which will produce bounded approximate solutions (the concept of relative stability, see 

Lambert, 1991, p. 75, is more appropriate in this situation, but this topic is beyond the scope of the 

present book). Therefore, no attempts were made to find the parts of the stability regions which are 

located to the right of the imaginary axis.   

 

The main advantages of the described in this section procedure for obtaining the absolute stability 

regions of one-step methods for solving systems of ODEs are two:  

 

(a) it is conceptually very simple 

 

and  

 

(b) it is very easy to prepare computer programs exploiting it; moreover, it is 

very easy to carry out the computations in parallel. 

 

The same (or at least a very similar) procedure has also been used in Lambert (1991). Other procedures 

for drawing the absolute stability regions for numerical methods for solving systems of ODEs can be 

found in many text-books; see, for example, Hairer, Nørsett and Wanner (1987), Hairer and 

Wanner (1991), Hundsdorfer and Verwer (2003) and Lambert (1991).  

 

It should also be stressed here that the procedure for drawing the absolute stability regions of the 

Explicit Runge-Kutta Methods (ERKMs) with 𝐩 = 𝐦, which was described above, is directly 

applicable for the new numerical methods which arise when any of the ERKMs with  𝐩 = 𝐦  is 

combined with the Richardson extrapolation. It will only be necessary to replace the stability 

polynomial  𝐑(𝛎)  with  �̅�(𝛎)   when these new methods are studied. It should be repeated here that 

the computations will be much more complicated in the latter case. 

 

 

2.4.1. Stability regions related to the first-order one-stage Explicit Runge-Kutta Method  
 

The first-order one-stage Explicit Runge-Kutta Method is well-known also as the Forward Euler 

Formula or as the Explicit Euler Method. Its stability polynomial can be obtained from (2.10) by 

applying   𝐩 = 𝐦 = 1:  

 

 

(𝟐. 𝟏𝟓)      𝐑(𝛎) = 𝟏 + 𝛎 . 
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The application of the Richardson Extrapolation together with the first-order one-stage Explicit Runge-

Kutta Method leads according to (2.10) applied with   𝐩 = 𝐦 = 1   and (2.14) to a stability polynomial 

of the form: 

 

 

(𝟐. 𝟏𝟔)      �̅�(𝛎) =   𝟐 (𝟏 +
𝛎

𝟐
)

𝟐

− (𝟏 + 𝛎)  . 

 

 

The absolute stability regions, which are obtained by using (2.15) and (2.16) as well as the procedure 

discussed in the beginning of this section, are given in Fig. 2.1. 

 

 

 

Figure 2.1 

Stability regions of the original first-order one-stage Explicit Runge-Kutta Method and the combination 

of the Richardson Extrapolation with this method. 
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2.4.2. Stability regions related to the second order two-stage Explicit Runge-Kutta Methods  

 

The stability polynomial of any second-order two-stage Explicit Runge-Kutta Method (there exists a 

large class of such methods) can be obtained from (2.10) by applying   𝐩 = 𝐦 = 2:  

 

 

(𝟐. 𝟏𝟕)      𝐑(𝛎) = 𝟏 + 𝛎 +
𝛎𝟐

𝟐!
  . 

 

 

The application of the Richardson Extrapolation together with any of the second-order two-stage 

Explicit Runge-Kutta Method leads according to (2.10) applied with   𝐩 = 𝐦 = 2   and (2.14) to a 

stability polynomial of degree four, which can be written in the following form: 

 

 

(𝟐. 𝟏𝟖)      �̅�(𝛎) =  
𝟒

𝟑
 [𝟏 +

𝛎

𝟐
+ 

𝟏

𝟐!
 (

𝛎

𝟐
)

𝟐

 ]

𝟐

 −  
𝟏

𝟑
 (𝟏 + 𝛎 +

𝛎𝟐

𝟐!
 )  . 

 

 

The stability regions obtained by using (2.17) and (2.18) together with the procedure discussed in the 

beginning of this section are given in Fig. 2.2. 

 

 

 

 

 

2.4.3. Stability regions related to the third-order three-stage Explicit Runge-Kutta Methods  
 

The stability polynomial of any third-order three-stage Explicit Runge-Kutta Method (there exists a 

large class of such methods) can be obtained from (2.10) by applying   𝐩 = 𝐦 = 3:  

 

 

(𝟐. 𝟏𝟗)      𝐑(𝛎) = 𝟏 + 𝛎 +
𝛎𝟐

𝟐!
+  

𝛎𝟑

𝟑!
  . 

 

 

The application of the Richardson Extrapolation together with any of the third-order three-stage 

Explicit Runge-Kutta Method leads according to (2.10) applied with  𝐩 = 𝐦 = 3  and (2.14) to a 

stability polynomial of degree six, which can be written in the following form: 

 

 

(𝟐. 𝟐𝟎)      �̅�(𝛎) =  
𝟖

𝟕
 [𝟏 +

𝛎

𝟐
+ 

𝟏

𝟐!
 (

𝛎

𝟐
)

𝟐

+  
𝟏

𝟑!
 (

𝛎

𝟐
)

𝟑

 ]

𝟐

 −  
𝟏

𝟕
 (𝟏 + 𝛎 +

𝛎𝟐

𝟐!
+ 

𝛎𝟑

𝟑!
  )  . 

 

 

The absolute stability regions, which are obtained by using (2.19) and (2.20) as well as the procedure 

discussed in the beginning of this section, are given in Fig. 2.3. 
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Figure 2.2 

Stability regions of any representative of the class of the second-order two-stage Explicit Runge-Kutta 

Methods and the combination of the Richardson Extrapolation with this method. 

 

 

 

 

 

2.4.4. Stability regions related to the fourth-order four-stage Explicit Runge-Kutta Methods  
 

The stability polynomial of any fourth-order four-stage Explicit Runge-Kutta Method (there exists a 

large class of such methods) can be obtained from (2.10) by applying   𝐩 = 𝐦 = 4:  

 

 

(𝟐. 𝟐𝟏)      𝐑(𝛎) = 𝟏 + 𝛎 +
𝛎𝟐

𝟐!
+  

𝛎𝟑

𝟑!
+  

𝛎𝟒

𝟒!
  . 

 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

40 

 

The application of the Richardson Extrapolation together with the fourth-order four-stage Explicit 

Runge-Kutta Method leads according to (2.10) applied with   𝐩 = 𝐦 = 4   and (2.14) to a stability 

polynomial of degree eight, which can be written in the following form: 

 

 

 

Figure 2.3 

Stability regions of any representative of the class of the third-order three-stage Explicit Runge-Kutta 

Methods and the combination of the Richardson Extrapolation with this method. 

 

 

(𝟐. 𝟐𝟐)      �̅�(𝛎) =  
𝟏𝟔

𝟏𝟓
 [𝟏 +

𝛎

𝟐
+  

𝟏

𝟐!
 (

𝛎

𝟐
)

𝟐

+  
𝟏

𝟑!
 (

𝛎

𝟐
)

𝟑

 + 
𝟏

𝟒!
 (

𝛎

𝟐
)

𝟒

 ]

𝟐

 

 

                               − 
𝟏

𝟏𝟓
 (𝟏 + 𝛎 +

𝛎𝟐

𝟐!
+  

𝛎𝟑

𝟑!
+  

𝛎𝟒

𝟒!
)  . 

 

 

The absolute stability regions, which are obtained by using (2.21) and (2.22) as well as the procedure 

discussed in the beginning of this section, are given in Fig. 2.4. 
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Figure 2.4 

Stability regions of any representative of the class of the forth-order four-stage Explicit Runge-Kutta 

Method and the combination of the Richardson Extrapolation with this method. 

 

 

 

2.4.5. About the use of complex arithmetic in the program for drawing the plots.  

 

The variables  𝐑  (which is the value of the stability polynomial of the selected method) and  𝛎  were 

declared as “DOUBLE COMPLEX” in a FORTRAN program implementing the algorithm described 

in the beginning of this section. After that formulae (2.15) – (2.22) were directly used in the 

calculations. When the computation of the complex value of  𝐑  for a given value of  𝛎  is completed, 

the real part  �̅�  and the imaginary part  �̅�  of  𝐑  can easily be extracted. The numerical method under 

consideration is stable for the current value of  𝛎  if the condition  √�̅�2 + �̅�2 ≤ 1  is satisfied.  

 

It should be noted that it is also possible to use only real arithmetic calculations in the computer 

program. If such an approach is for some reasons more desirable than the use of complex arithmetic 

calculations, then long transformations are to be carried out in order first to obtain directly analytic 
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expressions for  �̅�  and  �̅� . After that the condition  √�̅�2 + �̅�2 ≤ 1  can again be used to check if the 

method is stable for the current value of  𝛎 . This alternative approach is fully described in Zlatev, 

Georgiev and Dimov (2013a). 

 

 

 

 

2.5. Preparation of appropriate numerical examples 
 

Three numerical examples will be defined in §2.5.1, §2.5.2 and §2.5.3. These examples will be used to 

calculate and present numerical results in the following sections. The first and the second examples are 

linear systems of ODEs with constant coefficients and are created in order to demonstrate the fact that 

the theoretical results related to the absolute stability are valid also when the Richardson Extrapolation 

is additionally applied. Each of these two examples contains three equations and its coefficient matrix 

has both real and complex eigenvalues. In the first example, the real eigenvalue is the dominant one, 

while the complex eigenvalues put the major constraints on the stability of the computational process 

in the second example. The third example is a non-linear system of ODEs. It contains two equations 

and is taken from Lambert (1991), p. 223. 

    

The main purpose with the three examples is to demonstrate the fact that the combined methods 

(Explicit Runge-Kutta methods + Richardson Extrapolation) can be used with large time-stepsizes also 

when the stability requirements are very restrictive. It will be shown in Section 2.8 that the combined 

methods will produce good numerical solutions for some large time-stepsizes, for which the original 

Explicit Runge-Kutta Methods are not stable.  

 

 

 

2.5.1. Numerical example with a large real eigenvalue  
 

Consider the linear system of ordinary differential equations (ODEs) with constant coefficients given 

by 

 

 

(𝟐. 𝟐𝟑)      
𝐝𝐲

𝐝𝐭
= 𝐀 𝐲,     𝐭 ∈ [𝟎, 𝟏𝟑. 𝟏𝟎𝟕𝟐] ,     𝐲 = (𝐲𝟏, 𝐲𝟐, 𝐲𝟑 )𝐓 ,      𝐲(𝟎) = (𝟏, 𝟎, 𝟐 )𝐓 ,    𝐀 ∈  ℝ𝟑𝐱𝟑 . 

 

 

The elements of matrix  𝐀   from (2.23) are given below: 

 

 

(𝟐. 𝟐𝟒)      𝐚𝟏𝟏 = 𝟕𝟒𝟏. 𝟒,         𝐚𝟏𝟐 = 𝟕𝟒𝟗. 𝟕,       𝐚𝟏𝟑 = −𝟕𝟒𝟏. 𝟕,      
 

 

(𝟐. 𝟐𝟓)      𝐚𝟐𝟏 = −𝟕𝟔𝟓. 𝟕,      𝐚𝟐𝟐 = −𝟕𝟓𝟖,         𝐚𝟐𝟑 = 𝟕𝟓𝟕. 𝟕,      
 

 

(𝟐. 𝟐𝟔)      𝐚𝟑𝟏 = 𝟕𝟐𝟓. 𝟕,          𝐚𝟑𝟐 = 𝟕𝟒𝟏. 𝟕,        𝐚𝟑𝟑 = −𝟕𝟑𝟒.      
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The three components of the exact solution of the problem defined by (2.23) – (2.26) are given by 

 

 

(𝟐. 𝟐𝟕)      𝐲𝟏(𝐭) = 𝐞−𝟎.𝟑𝐭  𝐬𝐢𝐧 𝟖𝐭 + 𝐞−𝟕𝟓𝟎𝐭 ,      
 

 

(𝟐. 𝟐𝟖)      𝐲𝟐(𝐭) = 𝐞−𝟎.𝟑𝐭  𝐜𝐨𝐬 𝟖𝐭 − 𝐞−𝟕𝟓𝟎𝐭 ,      
 

 

(𝟐. 𝟐𝟗)      𝐲𝟑(𝐭) = 𝐞−𝟎.𝟑𝐭  (𝐬𝐢𝐧 𝟖𝐭 + 𝐜𝐨𝐬 𝟖𝐭) + 𝐞−𝟕𝟓𝟎𝐭 .      
 

 

It should be mentioned here that the eigenvalues of matrix   𝐀   from (2.23) are given by  

 

 

(𝟐. 𝟑𝟎)      𝛍𝟏 = −𝟕𝟓𝟎 ,       𝛍𝟐 = −𝟎. 𝟑 + 𝟖𝐢 ,       𝛍𝟑 = −𝟎. 𝟑 − 𝟖𝐢   .      
 

 

The absolute value of the real eigenvalue  𝛍𝟏  is much larger than the absolute values of the two 

complex eigenvalues of matrix  𝐀 .  This means, roughly speaking, that the computations will be stable 

when   |𝛎| = 𝐡|𝛍𝟏|   is smaller than the length of the stability interval on the real axis (from the plots 

given in Fig. 2.1 – Fig. 2.4 it is clearly seen that this length is smaller than 3  for all four Explicit Runge-

Kutta Methods studied in the previous sections). In fact, one should require that all three points  𝐡𝛍𝟏,  

𝐡𝛍𝟐  and  𝐡𝛍𝟑  must lie in the absolute stability region of the used method, but it is clear that the last 

two points are not very important when the absolute stability is considered (these two points will be 

inside the absolute stability regions, when this is true for the first one).      

 

The plots of the three components of the solution of the example presented in this sub-section are given 

in Fig. 2.5. 
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Figure 2.5 

Plots of the three components of the solution of the system of ODEs defined by (2.23) – (2.26).  The 

analytical solution is known in this example and is given by the formulae (2.27) – (2.29). The real 

eigenvalue of matrix  𝐀  is much larger, in absolute value, than the two complex eigenvalues; see 

(2.30). In the program, by which the above plot is produced, the first-order one-stage Explicit Runge-

Kutta Method is used with   𝐡 = 𝟏𝟎−𝟓   and the maximal error found during this run was approximately 

equal to    𝟔. 𝟔𝟑 ∗ 𝟏𝟎−𝟒  .    

 

 

 

2.5.2. Numerical example with large complex eigenvalues  

 

Consider the linear system of ordinary differential equations (ODEs) given by 

 

 

(𝟐. 𝟑𝟏)      
𝐝𝐲

𝐝𝐭
= 𝐀 𝐲 + 𝐛,       𝐭 ∈  [𝟎, 𝟏𝟑. 𝟏𝟎𝟕𝟐] ,       𝐲 = (𝐲𝟏, 𝐲𝟐, 𝐲𝟑 )𝐓 , 𝐲(𝟎) = (𝟏, 𝟑, 𝟎 )𝐓 ,  

 

                              𝐀 ∈  ℝ𝟑𝐱𝟑 , 𝐛 = ( −𝟒 𝐞−𝟎.𝟑𝐭  𝐬𝐢𝐧 𝟒𝐭 ,   − 𝟖 𝐞−𝟎.𝟑𝐭  𝐬𝐢𝐧 𝟒𝐭 ,     𝟒 𝐞−𝟎.𝟑𝐭  𝐬𝐢𝐧 𝟒𝐭  )𝐓. 
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The elements of matrix  𝐀  from (32) are given below: 

 

 

(𝟐. 𝟑𝟐)      𝐚𝟏𝟏 = −𝟗𝟑𝟕. 𝟓𝟕𝟓,            𝐚𝟏𝟐 = 𝟓𝟔𝟐. 𝟒𝟐𝟓,         𝐚𝟏𝟑 = 𝟏𝟖𝟕. 𝟓𝟕𝟓,      
 

 

(𝟐. 𝟑𝟑)      𝐚𝟐𝟏 = −𝟏𝟖𝟕. 𝟔𝟓,               𝐚𝟐𝟐 = −𝟏𝟖𝟕. 𝟔𝟓,         𝐚𝟐𝟑 = −𝟓𝟔𝟐. 𝟑𝟓,      
 

 

(𝟐. 𝟑𝟒)      𝐚𝟑𝟏 = −𝟏𝟏𝟐𝟒. 𝟗𝟐𝟓,          𝐚𝟑𝟐 = 𝟑𝟕𝟓. 𝟎𝟕𝟓,         𝐚𝟑𝟑 = −𝟑𝟕𝟓. 𝟎𝟕𝟓 .    
 

 

The three components of the exact solution of the problem defined by (2.31) – (2.34) are given by 

 

 

(𝟐. 𝟑𝟓)      𝐲𝟏(𝐭) = 𝐞−𝟕𝟓𝟎𝐭  𝐬𝐢𝐧 𝟕𝟓𝟎𝐭 + 𝐞−𝟎.𝟑𝐭 𝐜𝐨𝐬 𝟒𝐭 ,      
 

 

(𝟐. 𝟑𝟔)      𝐲𝟐(𝐭) = 𝐞−𝟕𝟓𝟎𝐭  𝐜𝐨𝐬 𝟕𝟓𝟎𝐭 + 𝟐𝐞−𝟎.𝟑𝐭 𝐜𝐨𝐬 𝟒𝐭 ,      
 

 

(𝟐. 𝟑𝟕)      𝐲𝟑(𝐭) = 𝐞−𝟕𝟓𝟎𝐭  (𝐬𝐢𝐧 𝟕𝟓𝟎𝐭 + 𝐜𝐨𝐬 𝟕𝟓𝟎𝐭) − 𝐞−𝟎.𝟑𝐭 𝐜𝐨𝐬 𝟒𝐭 .      
 

 

It should be mentioned here that the eigenvalues of matrix  𝐀  from (32) are given by  

 

 

(𝟐. 𝟑𝟖)      𝛍𝟏 = −𝟕𝟓𝟎 + 𝟕𝟓𝟎𝐢 ,       𝛍𝟐 = −𝟕𝟓𝟎 − 𝟕𝟓𝟎𝐢 ,       𝛍𝟑 = −𝟎. 𝟑   .      
 

 

The absolute value of each of the two complex eigenvalues  𝛍𝟏  and  𝛍𝟐  is much larger than the 

absolute value of the real eigenvalue  𝛍𝟑 . This means that the computations will be stable when  𝛎 =
𝐡𝛍𝟏 is inside of the absolute stability region of the numerical method under consideration. Note that 

this value is located above the real axis (not on it, as in the previous example).  

 

The three components of the solution of the example presented in this sub-section are given in Fig. 2.6. 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

46 

 

 

Figure 2.6 

Plots of the three components of the solution of the system of ODEs defined by (2.31) – (2.34). The 

analytical solution is known in this example and is given by the formulae (2.35) – (2.37). The complex 

eigenvalues of matrix  𝐀  are much larger, in absolute value, than the real eigenvalue; see (2.38). In the 

program, by which the above plot is produced, the first-order one-stage Explicit Runge-Kutta Method 

is used with  𝐡 = 𝟏𝟎−𝟓 and the maximal error found during this run was approximately equal to  

𝟒. 𝟎𝟑 ∗ 𝟏𝟎−𝟓 .    
 

 

 

2.5.3. Non-linear numerical example  
 

Consider the non-linear system of two ordinary differential equations (ODEs) given by 

 

 

(𝟐. 𝟑𝟗)      
𝐝𝐲𝟏

𝐝𝐭
=  

𝟏

𝐲𝟏
− 𝐲𝟐 

𝐞𝐭𝟐

𝐭𝟐
− 𝐭 ,      
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(𝟐. 𝟒𝟎)      
𝐝𝐲𝟐

𝐝𝐭
=  

𝟏

𝐲𝟐
− 𝐞𝐭𝟐

− 𝟐𝐭 𝐞−𝐭𝟐
 .      

 

 

The integration interval is  [𝟎. 𝟗, 𝟐. 𝟐𝟏𝟎𝟕𝟐]  and the initial values are 
 

 

(𝟐. 𝟒𝟏)      𝐲𝟏(𝟎. 𝟗) =  
𝟏

𝟎. 𝟗
 ,        𝐲𝟐 (𝟎. 𝟗) = 𝐞−𝟎.𝟗𝟐

 .      

 

 

The exact solution is given by 

 

 

(𝟐. 𝟒𝟐)      𝐲𝟏(𝐭) =  
𝟏

𝐭
 ,        𝐲𝟐 (𝟎. 𝟗) = 𝐞−𝐭𝟐

 .      

 

 

The eigenvalues of the Jacobian matrix of the function from the right-hand-side of the system of ODEs 

defined by (2.39) and (2.40) are given by 

 

 

(𝟐. 𝟒𝟑)      𝛍𝟏 =  −
𝟏

𝐲𝟏
𝟐

 ,        𝛍𝟐 = −
𝟏

𝐲𝟐
𝟐

 .      

 

 

The following expressions can be obtained by inserting the values of the exact solution from (2.42) in 

(2.43): 

 

 

(𝟐. 𝟒𝟒)      𝛍𝟏(𝐭) =  −𝐭𝟐 ,        𝛍𝟐(𝐭) = −𝐞𝟐𝐭𝟐
 .      

 

 

It is clear now that in the beginning of the time-interval the problem is non-stiff, but it becomes stiffer 

and stiffer as the value of the independent variable  𝐭  grows. At the end of the integration we have  
|𝛍𝟐(𝟐. 𝟐𝟏𝟎𝟕𝟐)| ≈ 𝟏𝟕𝟓𝟖𝟏  and since the eigenvalues are real, the stability requirement is satisfied if  

𝐡|𝛍𝟐| ≤ 𝐋  where  𝐋  is the length of the stability interval on the real axis for the numerical method 

under consideration. 

 

The two components of the solution of the example presented in this sub-section are given in Fig. 2.7. 
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Figure 2.7 

Plots of the two components of the solution of the system of ODEs defined by (2.39) – (2.41) with  𝐭 ∈
 [𝟎. 𝟗, 𝟐. 𝟐𝟏𝟎𝟕𝟐].  The exact solution is given in (2.42). The eigenvalues of the Jacobian matrix are 

real; see  (2.43). In the program, by which the above plot is produced, the first-order one-stage Explicit 

Runge-Kutta method is used with  𝐡 = 𝟏𝟎−𝟔  and the maximal error found during this run was 

approximately equal to  𝟐. 𝟗𝟑 ∗ 𝟏𝟎−𝟕 . 

 

 

 

2.6. Organization of the computations 
 

The integration interval, which is  [𝟎, 𝟏𝟑. 𝟏𝟎𝟕𝟐]  for the first two examples and  [𝟎. 𝟗, 𝟐. 𝟐𝟏𝟎𝟕𝟐]  for 

the third one, was divided into  𝟏𝟐𝟖  equal sub-intervals and the accuracy of the results obtained by 

any of the selected numerical methods was evaluated at the end of each sub-interval. Let  

𝐭̅𝐣  , where   𝐣 = 𝟏, 𝟐, … , 𝟏𝟐𝟖 ,  be the end of any of the  𝟏𝟐𝟖  sub-intervals. Then the following formula 

is used to evaluate the accuracy achieved by the selected numerical method at this point: 
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(𝟐. 𝟒𝟓)      𝐄𝐑𝐑𝐎𝐑𝐣 =  
√ ∑ (𝐲𝐢(𝐭̅𝐣) − �̅�𝐢𝐣)

𝟐𝐬
𝐢=𝟏  

𝐦𝐚𝐱 [√∑ (𝐲𝐢(𝐭̅𝐣))
𝟐

𝐬
𝒊=𝟏  , 𝟏. 𝟎]

   . 

 

 

The value of parameter  𝐬  is  𝟑  in the first two examples, while  𝐬 = 𝟐  is used in the third one. The 

values  �̅�𝐢𝐣 ≈ 𝐲𝐢(𝐭̅𝐣)  are approximations of the exact solution that are calculated by the selected 

numerical method at time  𝐭̅𝐣 (where  𝐭̅𝐣   is the  end of any of the  𝟏𝟐𝟖  sub-intervals mentioned above). 

 

The global (called sometimes also total) error is computed as 

 

 

(𝟐. 𝟒𝟔)      𝐄𝐑𝐑𝐎𝐑 =  𝐦𝐚𝐱
𝐣=𝟏,𝟐,   … ,   𝟏𝟐𝟖

 (𝐄𝐑𝐑𝐎𝐑𝐣)  . 

 

 

Ten runs were performed with eight numerical methods (four Explicit Runge-Kutta Methods and the 

combinations of any of the Explicit Runge-Kutta Methods with the Richardson Extrapolation).  

 

The first of the ten runs was carried out by using  𝐡 = 𝟎. 𝟎𝟎𝟓𝟏𝟐  and  𝐡 = 𝟎. 𝟎𝟎𝟎𝟓𝟏𝟐  for the first 

two examples and for the third one respectively. In each of the next nine runs the stepsize is halved 

(which leads automatically to performing twice more time-steps). 

 

 

 

 

 

2.7. Particular numerical methods used in the experiments 
 

As already mentioned, there exists only one first-order one-stage Explicit Runge-Kutta Method (called 

also the Forward Euler Formula or the Explicit Euler Method), which is given by 

 

 

(𝟐. 𝟒𝟕)      𝐲𝐧 = 𝐲𝐧−𝟏 + 𝐡 𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏) .   
 

 

If 𝐦-stage Explicit Runge-Kutta Methods of order  𝐩  with  𝐩 = 𝐦  and  𝐩 = 𝟐, 𝟑 , 𝟒  are used, then 

the situation changes. In this case, for each  𝐩 = 𝐦 = 𝟐, 𝟑, 𝟒  there exists a large class of Explicit 

Runge-Kutta Methods. The class depends on one parameter for  𝐩 = 𝟐 ,  while classes dependent on 

two parameters appear for  𝐩 = 𝟑  and  𝐩 = 𝟒 .  All particular methods from such a class have the same 

stability polynomial and, therefore, the same absolute stability region. This is why it was not necessary 

until now to specify which particular numerical method was selected in any of these three cases, 

because in the previous sections of this chapter we were primarily interested in comparing the absolute 

stability regions of any of the studied by us Explicit Runge-Kutta Methods with the corresponding 

absolute stability regions that are obtained when the Richardson Extrapolation is additionally used. 

However, it is necessary to select at least one particular method from each of the three classes when 
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numerical experiments are to be carried out. The particular numerical methods that were used in the 

numerical solution of the examples discussed in the previous sections are listed below.   

 

The following method was chosen from the class of the second-order two-stage Explicit Runge-Kutta 

Methods (it is called sometimes the Improved Euler Method; see Lambert, 1991): 

 

 

(𝟐. 𝟒𝟖)      𝐤𝟏 = 𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏),   
 

 

(𝟐. 𝟒𝟗)      𝐤𝟐 =  𝐟(𝐭𝐧−𝟏 + 𝐡, 𝐲𝐧−𝟏 + 𝐡𝐤𝟏),   
 

 

(𝟐. 𝟓𝟎)      𝐲𝐧 = 𝐲𝐧−𝟏 +
𝟏

𝟐
 𝐡 (𝐤𝟏 + 𝐤𝟐) .   

 

 

The method selected from the class of the third-order three-stage Explicit Runge-Kutta Methods is 

defined as follows (in fact, this is the numerical method derived by Karl Heun; Heun, 1900): 

 

 

(𝟐. 𝟓𝟏)      𝐤𝟏 = 𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏),   
 

 

(𝟐. 𝟓𝟐)      𝐤𝟐 =  𝐟 ( 𝐭𝐧−𝟏 +
𝟏

𝟑
𝐡, 𝐲𝐧−𝟏 +

𝟏

𝟑
𝐡𝐤𝟏 ),     

 

 

(𝟐. 𝟓𝟑)      𝐤𝟑 =  𝐟 ( 𝐭𝐧−𝟏 +
𝟐

𝟑
𝐡, 𝐲𝐧−𝟏 +

𝟐

𝟑
𝐡𝐤𝟐 ),     

 

 

(𝟐. 𝟓𝟒)      𝐲𝐧 = 𝐲𝐧−𝟏 +
𝟏

𝟒
 𝐡 (𝐤𝟏 + 𝟑𝐤𝟑) .   

 

 

One of the most popular methods from the class of the fourth-order four-stage Explicit Runge-Kutta 

Methods is chosen for our study (this method is so popular that, when one sees a reference to a problem 

having been solved by “the Runge-Kutta method”, it is almost certainly that the method presented 

below has actually been used; see also Lambert, 1991): 

 

 

(𝟐. 𝟓𝟓)      𝐤𝟏 = 𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏),   
 

 

(𝟐. 𝟓𝟔)      𝐤𝟐 =  𝐟 ( 𝐭𝐧−𝟏 +
𝟏

𝟐
𝐡, 𝐲𝐧−𝟏 +

𝟏

𝟐
𝐡𝐤𝟏 ),     
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(𝟐. 𝟓𝟕)      𝐤𝟑 =  𝐟 ( 𝐭𝐧−𝟏 +
𝟏

𝟐
𝐡, 𝐲𝐧−𝟏 +

𝟏

𝟐
𝐡𝐤𝟐 ),     

 

 

(𝟐. 𝟓𝟖)      𝐤𝟒 =  𝐟( 𝐭𝐧−𝟏 + 𝐡, 𝐲𝐧−𝟏 + 𝐡𝐤𝟑 ),     
 

 

(𝟐. 𝟓𝟗)      𝐲𝐧 = 𝐲𝐧−𝟏 +
𝟏

𝟒
 𝐡 (𝐤𝟏 + 𝟐𝐤𝟐 + 𝟐𝐤𝟑 + 𝐤𝟒) .   

 

 

The numerical results, which will be presented in the next section, were obtained by using both the 

introduced above three particular Explicit Runge-Kutta Methods as well as the Forward Euler Formula 

and their combinations with the Richardson Extrapolation. More details about the selected by us 

particular methods can be found in Butcher (2003), Hairer, Nørsett and Wanner (1987) and 

Lambert (1991). 

 

 

 

 

2.8. Numerical results 
 

As mentioned in the previous sections, the three numerical examples that were introduced in Section 

2.5 have been run with eight numerical methods: the four particular Explicit Runge-Kutta Methods, 

which were presented in Section 2.7, and the methods obtained when each of these four Explicit Runge-

Kutta Method is combined with the Richardson Extrapolation. The results shown in Table 2.1 –Table 

2.6 indicate clearly that 

 

(a) the expected accuracy is nearly always achieved when the stability requirements are 

satisfied (under the condition that the rounding errors do not interfere with the 

discretization errors caused by the numerical method which is used; quadruple 

precision, utilizing 32 digits, was applied in all numerical experiments treated in this 

chapter in order to ensure that this is not happening), 

 

(b) it was verified that the Explicit Runge-Kutta Methods behave (as they should) as methods 

of order one, for the method defined by (2.47), of order two, for the method defined by 

(2.48) – (2.50), of order three for the method defined by (2.51) – (2.54), and of order 

four, for the method defined by (2.55) – (2.59), 

 

(c) the combination of each of these four methods with the Richardson Extrapolation behave 

as a numerical method of increased (by one) order of accuracy 

 

and 
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Run Stepsize Steps ERK1 ERK1R ERK2 ERK2R ERK3 ERK3R ERK4 ERK4R 

  1 0.00512       2560 N.S. N.S. N.S. 2.39E-05 N.S. 6.43E-03 N.S. 4.49E-10 

  2 0.00256       5120 2.01E-01 4.22E-02 4.22E-02 2.99E-06 5.97E-06 7.03E-09 2.46E-08 1.41E-11 

  3 0.00128     10240 9.21E-02 2.91E-04 2.91E-04 3.73E-07 7.46E-07 4.40E-10 1.54E-09 4.39E-13 

  4 0.00064     20480 4.41E-02 7.27E-05 7.27E-05 4.67E-08   9.33E-08 2.75E-11 9.62E-11 1.37E-14 

  5 0.00032     40960 2.16E-02 1.82E-05 1.82E-05 5.83E-09 1.17E-08 1.72E-12 6.01E-12 4.29E-16 

  6 0.00016     81920 1.07E-02 4.54E-06 4.54E-06 7.29E-10 1.46E-09 1.07E-13 3.76E-13 1.34E-17 

  7 0.00008   163840 5.32E-03 1.14E-06 1.14E-06 9.11E-11 1.82E-10 6.71E-15 2.35E-14 4.19E-19 

  8 0.00004   327680 2.65E-03 2.84E-07 2.84E-07 1.14E-11 2.28E-11 4.20E-16 1.47E-15 1.31E-20 

  9 0.00002   655360 1.33E-03 7.10E-08 7.10E-08 1.42E-12 2.85E-12 2.62E-17 9.18E-17 4.09E-22 

10 0.00001 1310720 6.66E-04 1.78E-08 1.78E-08 1.78E-13 3.56E-13 1.64E-18 5.74E-18 1.28E-23 

Table 2.1 

Accuracy results (error estimations) achieved when the first example from Section 2.5 is solved by the eight numerical 

methods on a SUN computer (quadruple precision being applied in this experiment). “N.S.” means that the numerical 

method is not stable for the stepsize used. “ERKp”,   𝐩 = 𝟏, 𝟐, 𝟑, 𝟒 ,   means Explicit Runge-Kutta Method of order  𝐩 . 

“ERKpR” refers to the Explicit Runge-Kutta Method of order  𝐩  combined with the Richardson Extrapolation. 

 

 

Run Stepsize Steps ERK1 ERK1R ERK2 ERK2R ERK3 ERK3R ERK4 ERK4R 

  1 0.00512       2560 N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A. 

  2 0.00256       5120 N. A. N. A. N. A. 7.99 N. A. very big N. A. 31.84 

  3 0.00128     10240 2.18 145.02 145.02 8.02 8.00 15.98 15.97 32.12 

  4 0.00064     20480 2.09 4.00 4.00 7.99 8.00 16.00 16.01 32.04 

  5 0.00032     40960 2.04 3.99 3.99 8.01 7.97 15.99 16.01 31.93 

  6 0.00016     81920 2.02 4.01 4.01 8.00 8.01 16.07 15.98 32.01 

  7 0.00008   163840 2.01 3.98 3.98 8.00 8.02 15.95 16.00 31.98 

  8 0.00004   327680 2.01 4.01 4.01 7.99 7.98 15.97 15.99 31.98 

  9 0.00002   655360 1.99 4.00 4.00 8.03 8.00 16.03 16.01 32.03 

10 0.00001 1310720 2.00 3.99 3.99 7.98 8.01 15.98 15.99 31.95 

Table 2.2 

Convergent rates (ratios of two consecutive error estimations from Table 2.1) observed when the first example from Section 

2.5 is solved by the eight numerical methods on a SUN computer (quadruple precision being used in this experiment). 

“N.A.” means that the convergence rate cannot be calculated (this happens either when the first run is performed or if the 

computations at the previous runs were not stable). “ERKp”,   𝐩 = 𝟏, 𝟐, 𝟑, 𝟒 ,   means Explicit Runge-Kutta Method of 

order  𝐩 . “ERKpR” refers to the Explicit Runge-Kutta Method of order  𝐩  combined with the Richardson Extrapolation. 
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Run Stepsize Steps ERK1 ERK1R ERK2 ERK2R ERK3 ERK3R ERK4 ERK4R 

  1 0.00512       2560 N. S. N. S. N. S. N. S. N. S. 4.95E-02 N. S. N. S. 

  2 0.00256       5120 N. S. N. S. N. S. 5.40E-08 N. S. 4.88E-13 N. S. 1.21E-17 

  3 0.00128     10240 2.37E-02 4.09E-06 6.81E-06 3.22E-11 1.54E-09 3.04E-14 7.34E-13 3.51E-19 

  4 0.00064     20480 2.58E-03 1.02E-06 1.70E-06 3.99E-12 1.92E-10 1.90E-15 4.59E-14 1.05E-20 

  5 0.00032     40960 1.29E-03 2.56E-07 4.26E-07 4.97E-13 2.40E-11 1.19E-16 2.87E-15 3.21E-22 

  6 0.00016     81920 6.45E-04 6.40E-08 1.06E-07 6.21E-14 3.00E-12 7.41E-18 1.79E-16 9.93E-24 

  7 0.00008   163840 3.23E-04 1.60E-08 2.66E-08 7.75E-15 3.75E-13 4.63E-19 1.12E-17 3.09E-25 

  8 0.00004   327680 1.61E-04 4.00E-09 6.65E-09 9.68E-16 4.69E-14 2.89E-20 7.00E-19 9.62E-27 

  9 0.00002   655360 8.06E-05 9.99E-10 1.66E-09 1.21E-16 5.86E-15 1.81E-21 4.38E-20 3.00E-28 

10 0.00001 1310720 4.03E-05 2.50E-10 4.16E-10 1.51E-17 7.32E-16 1.13E-22 2.73E-21 9.36E-30 

Table 2.3 

Accuracy results (error estimations) achieved when the second example from Section 2.5 is solved by the eight numerical 

methods on a SUN computer (quadruple precision being applied in this experiment). “N.S.” means that the numerical 

method is not stable for the stepsize used. “ERKp”,   𝐩 = 𝟏, 𝟐, 𝟑, 𝟒 ,   means Explicit Runge-Kutta Method of order  𝐩 . 

“ERKpR” refers to the Explicit Runge-Kutta Method of order  𝐩  combined with the Richardson Extrapolation. 

 

Run Stepsize Steps ERK1 ERK1R ERK2 ERK2R ERK3 ERK3R ERK4 ERK4R 

  1 0.00512       2560 N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A. 

  2 0.00256       5120 N. A. N. A. N. A. N. A. N. A. 1.01E+11 N. A. N. A. 

  3 0.00128     10240 N. A. N. A. N. A. 167.70 N. A. 16.05 N. A. 34.47 

  4 0.00064     20480 9.96 4.01 4.01     8.07 8.02 16.00 15.99 33.43 

  5 0.00032     40960 2.00 3.98 3.99     8.03 8.00 15.97 15.99 32.71 

  6 0.00016     81920 2.00 4.00 4.02     8.00 8.00 16.06 16.03 32.33 

  7 0.00008   163840 2.00 4.00 3.98      8.01 8.00 16.00 15.98 32.14 

  8 0.00004   327680 2.01 4.00 4.00     8.01 8.00 16.02 16.00 32.12 

  9 0.00002   655360 2.00 4.00 4.01     8.07 8.00 15.97 15.98 32.07 

10 0.00001 1310720 2.00 4.00 3.99     8.01 8.01 16.02 16.04 32.05 

Table 2.4 

Convergent rates (ratios of two consecutive error estimations from Table 2.3) observed when the second example from 

Section 2.5 is solved by the eight numerical methods on a SUN computer (quadruple precision being used in this 

experiment). “N.A.” means that the convergence rate cannot be calculated (this happens either when the first run is 

performed or if the computations at the previous runs were not stable). “ERKp”,   𝐩 = 𝟏, 𝟐, 𝟑, 𝟒 ,   means Explicit Runge-

Kutta Method of order  𝐩 . “ERKpR” refers to the Explicit Runge-Kutta Method of order  𝐩  combined with the Richardson 

Extrapolation. 
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Run Stepsize Steps ERK1 ERK1R ERK2 ERK2R ERK3 ERK3R ERK4 ERK4R 

  1 0.000512       2560 N. S. N. S. N. S. N. S. N. S. N. S. N. S. N. S. 

  2 0.000256       5120 N. S. 2.08E-02 N. S. 1.04E-09 N. S. 1.15E-03 N. S. 2.48E-10 

  3 0.000128     10240 3.76E-05 1.87E-03 8.23E-03 2.08E-10 4.17E-10 4.23E-11 1.03E-09 1.38E-11 

  4 0.000064     20480 1.88E-05 1.04E-09 1.26E-09 3.26E-11 5.78E-11 1.94E-12 2.68E-11 3.77E-13 

  5 0.000032     40960 9.39E-06 2.59E-10 3.14E-10 3.93E-12 6.07E-12 1.07E-13 1.29E-12 1.06E-14 

  6 0.000016     81920 4.70E-06 6.48E-11 7.85E-11 4.68E-13 6.70E-13 6.29E-15 7.08E-14 3.10E-16 

  7 0.000008   163840 2.35E-06 1.62E-11 1.96E-11 5.68E-14 7.84E-14 3.80E-16 4.13E-15 9.36E-18 

  8 0.000004   327680 1.17E-06 4.05E-12 4.90E-12 6.98E-15 9.47E-15 2.34E-17 2.50E-16 2.88E-19 

  9 0.000002   655360 5.87E-07 1.01E-12 1.23E-12 8.65E-16 1.16E-15 1.45E-18 1.53E-17 8.91E-21 

10 0.000001 1310720 2.93E-07 2.53E-13 3.06E-13 1.08E-16 1.44E-16 9.00E-20 9.50E-19 2.77E-22 

Table 2.5 

Accuracy results (error estimations) achieved when the third example from Section 2.5 is solved by the eight numerical 

methods on a SUN computer (quadruple precision being applied in this experiment). “N.S.” means that the numerical 

method is not stable for the stepsize used. “ERKp”,   𝐩 = 𝟏, 𝟐, 𝟑, 𝟒 ,   means Explicit Runge-Kutta Method of order  𝐩 . 

“ERKpR” refers to the Explicit Runge-Kutta Method of order  𝐩  combined with the Richardson Extrapolation. 

 

 

Run Stepsize Steps ERK1 ERK1R ERK2 ERK2R ERK3 ERK3R ERK4 ERK4R 

  1 0.000512       2560 N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A. 

  2 0.000256       5120 N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A. 

  3 0.000128     10240 N. A. N. R. N. A. 5.00 N. A. N. R. N. A. 17.97 

  4 0.000064     20480 2.00 N. R. N. R. 6.38 7.28 21.80 38.43 36.60 

  5 0.000032     40960 2.00 4.02 4.01 8.30 9.52 18.13 20.78 35.57 

  6 0.000016     81920 2.00 4.00 4.00 8.40 9.06 17.01 18.22 34.19 

  7 0.000008   163840 2.00 4.00 4.01 8.24 8.55 16.55 17.14 33.12 

  8 0.000004   327680 2.01 4.00 4.00 8.14 8.28 16.24 16.52 32.50 

  9 0.000002   655360 1.99 4.01 3.98 8.07 8.16 16.14 16.34 32.32 

10 0.000001 1310720 2.00 3.99 4.02 8.09 8.06 16.11 16.11 32.17 

Table 2.6 

Convergent rates (ratios of two consecutive error estimations from Table 2.5) observed when the third example from Section 

2.5 is solved by the eight numerical methods on a SUN computer (quadruple precision being used in this experiment). 

“N.A.” means that the convergence rate cannot be calculated (this happens either when the first run is performed or if the 

computations at the previous runs were not stable). “NR” means that the calculated convergence rate will not be reliable 

(the stepsize is too large). “ERKp”,   𝐩 = 𝟏, 𝟐, 𝟑, 𝟒 ,   means Explicit Runge-Kutta Method of order  𝐩 . “ERKpR” refers 

to the Explicit Runge-Kutta Method of order  𝐩  combined with the Richardson Extrapolation. 
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(d) for some large stepsizes, for which the Explicit Runge-Kutta Methods are unstable 

when these are used directly, their combinations with the Richardson Extrapolation 

produced good results. 

 

Some more precise information about the performed runs and about the results is given below. First, it 

should be emphasized that the accuracy results, which were obtained when the eight numerical methods 

for the solution of systems of ODEs are used, are given in  Table 2.1  for the first example, in  Table 

2.3  for the second one and in  Table 2.5  for the third (non-linear) example. Convergence rates 

observed for the eight tested numerical methods are shown in  Table 2.2,  Table 2.4  and  Table 2.6  

respectively.  

 

Several additional conclusions can immediately be drawn by investigating carefully the results that are 

presented in Table 2.1 - Table 2.6: 

 

(e) The non-linear example is not causing problems. As one should expect, the results for 

the first and the second stepsizes are not stable when the Explicit Runge-Kutta Methods 

are run, because for large values of  𝐭  the inequality  𝐡|𝛍𝟐(𝐭)| > 𝐋   holds (𝐋  being 

the length of the absolute stability interval on the real axis),  and, thus, the stability 

requirement is not satisfied. The condition  𝐡|𝛍𝟐(𝐭)| ≤ 𝐋  is not satisfied either for all 

values of  𝐭  for the next stepsize, but this happens only in the very end of the integration 

and the instability had not succeeded to manifest itself. The results become 

considerably better when the Richardson Extrapolation is used.    

 

(f) The combination of the first-order one-stage Runge-Kutta method and the Richardson 

Extrapolation gives nearly the same results as the second-order two-stage Runge-Kutta 

method. It is seen that the stability regions of these two numerical methods are also 

identical. The results indicate that this property holds not only for the scalar test-

example (2.1) proposed by Dahlquist but also for linear systems of ODEs with constant 

coefficients. Moreover, the explanations given in Section 2.1 indicate that this property 

perhaps holds also for some more general systems of ODEs. 

 

(g) The results show that the calculated (as ratios of two consecutive error estimations) 

convergence rates of the Runge-Kutta method of order  𝐩  are about  𝟐𝐩  when the 

stepsize is reduced successively by a factor of two. For the combinations of the Runge-

Kutta methods and the Richardson Extrapolation the corresponding convergence rates 

are approximately equal to  𝟐𝐩+𝟏  which means that the order of accuracy is increased 

by one. This should be expected and, moreover, it is also clearly seen from the tables 

that the obtained numerical results are nearly perfect. Only when the product of the 

time-stepsize and the absolute value of the largest eigenvalue is close to the boundary 

of the absolute stability region there are some deviations from the expected results. For 

the non-linear example this relationship is not fulfilled for some of the large stepsizes 

because the condition  𝐡|𝛍𝟐(𝐭)| ≤ 𝐋  is not satisfied in the very end of the integration 

interval.  

 

(h) The great power of the Richardson Extrapolation is clearly demonstrated by the results 

given in Table 2.1. Consider the use of the first-order one-stage Explicit Runge-Kutta 

method together with the Richardson Extrapolation (denoted as ERK1R in the table). 

The error estimation is  𝟐. 𝟗𝟏 ∗ 𝟏𝟎−𝟒  for  𝐡 = 𝟎. 𝟎𝟎𝟏𝟐𝟖  and when  𝟏𝟎𝟐𝟒𝟎  time-
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steps are performed. Similar accuracy can be achieved by using  𝟏𝟑𝟏𝟎𝟕𝟐   steps when 

the first-order one-stage Explicit Runge-Kutta Method, ERK1, is used (i.e. the number 

of time-steps is increased by a factor of  𝟏𝟐𝟖). Of course, for every step performed by 

the ERK1 method, the ERK1R method performs three steps (one large and two small). 

Even when this fact is taken into account (by multiplying the number of time-steps for 

ERK1R by three), the ERK1R is reducing the number of time-steps performed by 

ERK1 by a factor greater than  𝟒𝟎. The alternative is to use a method of higher order. 

However, such methods are more expensive and, what is perhaps much more important, 

a very cheap and rather reliable error estimation can be obtained when the Richardson 

Extrapolation is used. It is clearly seen (from Table 2.3 and Table 2.5) that the situation 

is very similar also when the second and the third examples are treated. 

 

(i) In these experiments, it was illustrative to apply quadruple precision (working with 

about 32 digits) in order to demonstrate in a very clear way the ability of the methods 

to achieve very accurate results when their orders of accuracy are greater than three. 

However, it should be stressed here that in general it will not be necessary to apply 

quadruple precision, i.e. the application of the traditionally used double precision will 

nearly always be quite sufficient. 

 

(j) The so-called active implementation (see Section 1.7 and also Faragó, Havasi and 

Zlatev, 2010 or Zlatev, Faragó and Havasi, 2010) of the Richardson Extrapolation is 

used in this chapter. In this implementation, at each time-step the improved (by 

applying the Richardson Extrapolation) value  𝐲𝐧−𝟏  of the approximate solution is used 

in the calculation of   𝐳𝐧  and  𝐰𝐧 . One can also apply another approach: the values of 

the previous approximations  of  𝐳𝐧−𝟏  and  𝐰𝐧−𝟏  can be used in the calculation of  𝐳𝐧  

and  𝐰𝐧  respectively and after that one can calculate the Richardson improvement  

𝐲𝐧 = (𝟐𝐩𝐰𝐧 − 𝐳𝐧)/(𝟐𝐩 − 𝟏) . As explained in Section 1.7, a passive implementation 

of the Richardson Extrapolation is obtained in this way (in this implementation the 

improved by the Richardson Extrapolation values of the approximations are calculated 

at every time-step, but not used in the further computations; they are only stored in 

order to be used for other purposes). It is obvious that, if the underlying method is 

absolutely stable for the two stepsizes  𝐡  and  𝟎. 𝟓𝐡 ,  then the passive implementation 

of the Richardson Extrapolation will also be absolutely stable. However, if it is not 

absolutely stable (even only for the large time-stepsize), then the results calculated by 

the passive implementation of the Richardson Extrapolation will be unstable. This is 

due to the fact that, as stated in Section 1.7, the passive implementation of the 

Richardson Extrapolation has the same absolute stability properties as those of the 

underlying method for solving systems of ODEs. Therefore, the results in the first lines 

of Table 2.1, Table 2.3 and Table 2.5 show very clearly that not only the underlying 

method but also the passive implementation of the Richardson Extrapolation may fail 

for some large values of the time-stepsize, while the active one is successful. This will 

happen, because the underlying method is not stable at least for the large stepsize, but 

the combined method is stable when the active implementation is used (due to the 

increased stability regions). 
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2.9. Development of methods with enhanced absolute stability properties 
 

The requirement   𝐩 = 𝐦   was imposed and used in the previous sections of the second chapter. This 

requirement is very restrictive, because it can be satisfied only for   𝐦 ≤ 𝟒 .   Therefore it is 

worthwhile to remove this restriction by considering Explicit Runge-Kutta Methods under the 

condition   𝐩 < 𝐦   and to try to develop numerical methods with enhanced stability properties. If the 

condition   𝐩 < 𝐦   is imposed, then the stability polynomial given in (2.10) should be replaced with 

the following formula:        

 

 

(𝟐. 𝟔𝟎)      𝐑(𝛎) = 𝟏 + 𝛎 +
𝛎𝟐

𝟐!
+  

𝛎𝟑

𝟑!
+ ⋯ +  

𝛎𝐩

𝐩!
+

𝛎𝐩+𝟏

𝛄𝐩+𝟏

(𝐦,𝐩)
(𝐩 + 𝟏)!

+ ⋯ +
𝛎𝐦

𝛄𝐩+𝟏

(𝐦,𝐩)
(𝐦)!

 .     

 

 

It is seen that there are   𝐦 − 𝐩   free parameters   𝛄𝐩+𝟏
(𝐦,𝐩)

,   𝛄𝐩+𝟐
(𝐦,𝐩)

,  … ,   𝛄𝐦
(𝐦,𝐩)

  in (2.60). These 

parameters will be used to search for methods with large absolute stability regions. Two special cases 

will be studied in this section in order to facilitate the presentation of the results: 

Case 1:     𝐩 = 𝟑  and   𝐦 = 𝟒   

and 

 𝐂𝐚𝐬𝐞 𝟐:   𝐩 = 𝟒  and   𝐦 = 𝟔 . 

Three major topics will be explained in this section. We shall show first that one can find large classes 

of numerical methods with enhanced stability properties for each of these two cases. Each 

representative of any of the two classes have the same absolute stability region as all the other 

representatives. After that, we shall select particular methods in each of the obtained classes (we shall 

explain carefully that this is a rather complicated procedure) and perform some numerical experiments. 

Finally, some possibilities for improving further the results will be sketched. 

 

 

 

2.9.1. Derivation of two classes of numerical methods with good stability properties.  

 

Consider first Case 1 of the two cases formulated above,  i.e. choose  𝐩 = 𝟑  and   𝐦 = 𝟒 .  Then 

(2.60)  is reduced to 

 

 

(𝟐. 𝟔𝟏)      𝐑(𝛎) = 𝟏 + 𝛎 +
𝛎𝟐

𝟐!
+  

𝛎𝟑

𝟑!
+

𝛎𝟒

𝛄𝟒
(𝟒,𝟑)

 𝟒!
 . 

 

 

A systematic search for numerical methods with good absolute stability properties was carried out by 

comparing the stability regions obtained for  𝛄𝟒
(𝟒,𝟑)

= 𝟎. 𝟎𝟎(𝟎. 𝟎𝟏)𝟓. 𝟎𝟎 . It is clear that the number of 
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tests,  𝟓𝟎𝟎 ,  was very large. Therefore, we reduced the number of the investigated tests by introducing 

two requirements:  

 

(a) the length of the stability interval on the negative part of the real axis should 

be greater than  𝟔. 𝟎𝟎   

 

and  

 

(b) the highest point of the absolute stability region should be at a distance not 

less than  𝟒. 𝟎𝟎  from the real axis. 

 

The number of tests was reduced very considerably by these two restrictions and it was found that the 

choice  𝛄𝟒
(𝟒,𝟑)

= 𝟐. 𝟒  is very good. The absolute stability regions obtained by this value of the free 

parameter are given in  Fig. 2.8. The Explicit Runge-Kutta Methods obtained with  𝐩 = 𝟑 ,   𝐦 = 𝟒 

and 𝛄𝟒
(𝟒,𝟑)

= 𝟐. 𝟒  form a large class of numerical methods. Each representative of this class has the 

same absolute stability region, the absolute stability region, which is limited by the red curve in Fig. 

2.8.  The corresponding new methods (the combinations of any of the ERKMs with the Richardson 

Extrapolation are also forming a large class of methods; each representative of the latter class has the 

same absolute stability region; this region is limited by the green curve in Fig. 2.8). 

 

Let us call Method A any of the Explicit Runge-Kutta Methods from the class determined with 𝐩 =

𝟑, 𝐦 = 𝟒 and  𝛄𝟒
(𝟒,𝟑)

= 𝟐. 𝟒. The comparison of the absolute stability regions shown in  Fig. 2.8  with 

those which were presented in  Fig. 2.3  allows us to draw the following three conclusions:  

 

(a) The absolute stability region of Method A is considerably smaller than the 

corresponding absolute stability region of the combination of Method A 

with the Richardson Extrapolation.  

 

(b) The absolute stability region of Method A is larger than the corresponding 

absolute stability region of the Explicit Runge-Kutta Method obtained with 

p = 𝐦 = 𝟑 . 

 

(c)  When  Method A  is combined with the Richardson Extrapolation then its 

absolute stability region is larger than the corresponding absolute stability 

region of the combination of the Richardson Extrapolation with the 

Explicit Runge-Kutta Method obtained  𝐩 = 𝐦 = 𝟑.  

 

The stability regions could be further enlarged if the second choice, the choice with  𝐦 − 𝐩 = 𝟐 ,  is 

made, because the number of free parameters was increased from one to two in this case. If  𝐩 = 𝟒  and  

𝐦 = 𝟔  is applied, then the stability polynomial (2.60) can be written as 

 

 

(𝟐. 𝟔𝟐)      𝐑(𝛎) = 𝟏 + 𝛎 +
𝛎𝟐

𝟐!
+  

𝛎𝟑

𝟑!
+  

𝛎𝟒

𝟒!
+

𝛎𝟓

𝛄𝟓
(𝟔,𝟒)

 𝟓!
 +

𝛎𝟔

𝛄𝟔
(𝟔,𝟒)

 𝟔!
 . 
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Figure 2.8 

Stability regions of any representative of the class of explicit third-order four-stage Runge-Kutta 

(ERK43) methods with  𝛄𝟒
(𝟒,𝟑)

= 𝟐. 𝟒  and its combination with the Richardson Extrapolation. 

 

 

Formula (2.62) shows that there are indeed two free parameters now. A systematic search for numerical 

methods with good absolute stability regions was performed also in this case. The search was much 

more complicated and time-consuming. It was carried out by using   𝛄𝟓
(𝟔,𝟒)

= 𝟎. 𝟎𝟎(𝟎. 𝟎𝟏)𝟓. 𝟎𝟎  and    

𝛄𝟔
(𝟔,𝟒)

= 𝟎. 𝟎𝟎(𝟎. 𝟎𝟏)𝟓. 𝟎𝟎 . The  number of tests,  𝟐𝟓𝟎𝟎𝟎𝟎 ,  was much larger than the number of 

tests in the previous case. Therefore, we reduced again the number of the investigated tests by 

introducing two extra requirements:  

 

(a) the length of the stability interval on the negative part of the real axis should 

be greater than  𝟏𝟐. 𝟎𝟎   

 

and  
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(b) the highest point of the absolute stability region should be at a distance not 

less than  𝟓. 𝟎𝟎  from the real axis. 

 

The number of tests was reduced very considerably in this way and it became possible to find out that 

the choice  𝛄𝟓
(𝟔,𝟒)

= 𝟏. 𝟒𝟐  and    𝛄𝟔
(𝟔,𝟒)

= 𝟒. 𝟖𝟔  gives very good results. The absolute stability regions 

for the class of Explicit Runge-Kutta Methods found with these two values of the free parameters are 

given in Fig. 2.9 . Also in this case, the Explicit Runge-Kutta Methods created by using the parameters  

𝐩 = 𝟒,  𝐦 = 𝟔,  𝛄𝟓
(𝟔,𝟒)

= 𝟏. 𝟒𝟐  and  𝛄𝟔
(𝟔,𝟒)

= 𝟒. 𝟖𝟔  form a large class of numerical methods. Each 

representative of this class has the same absolute stability region, the absolute stability region limited 

by the red curve in Fig. 2.9.  The corresponding new methods (the combinations of any of the ERKMs 

with the Richardson Extrapolation) are also forming a large class of methods; each representative of 

the latter class has the same absolute stability region; the region limited by the green curve in Fig. 2.9. 

 

Let us call Method B any representative of the class of the Explicit Runge-Kutta Methods determined 

by choosing:   𝐩 = 𝟒 ,   𝐦 = 𝟔,   𝛄𝟓
(𝟔,𝟒)

= 𝟏. 𝟒𝟐  and  𝛄𝟔
(𝟔,𝟒)

= 𝟒. 𝟖𝟔 . Then the following three 

statements are true: 

 

(A) The absolute stability region of Method B is considerably smaller than the 

corresponding absolute stability region of the combination of Method B 

with the Richardson Extrapolation.  

 

(B) The absolute stability region of Method B is larger than the corresponding 

absolute stability region of the Explicit Runge-Kutta Method obtained with 

𝐩 = 𝐦 = 𝟒  
 

and  

 

(C) when Method B is applied together with the Richardson Extrapolation, 

then its absolute stability region is larger than the corresponding absolute 

stability region of the combination of the Richardson Extrapolation with 

the Explicit Runge-Kutta Method obtained with  𝐩 = 𝐦 = 𝟒. 

 

The lengths of the absolute stability intervals on the negative real axis of  Method A,  Method B  and 

two traditionally used Explicit Runge-Kutta Method (applied also in the previous sections of this 

chapter) are given in  Table 2.7  together with corresponding absolute stability intervals of their 

combinations with the Richardson Extrapolation. 
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Figure 2.9 

Stability regions of any representative of the class of Explicit Runge-Kutta methods determined with 

𝐩 = 4,   𝐦 = 𝟔,   𝛄𝟓
(𝟔,𝟒)

= 𝟏. 𝟒𝟐   and   𝛄𝟔
(𝟔,𝟒)

= 𝟒. 𝟖𝟔   together with its combination with the Richardson 

Extrapolation. 

 

 

Numerical method Direct implementation Combined with Richardson Extrapolation 

𝐩 = 𝐦 = 𝟑 2.51 4.02 

Method A 3.65 8.93 

𝐩 = 𝐦 = 𝟒 2.70  6.40 

Method B 5.81 16.28 

Table 2.7 

Lengths of the absolute stability intervals on the negative real axis of four Explicit Runge-Kutta 

Methods and their combinations with the Richardson Extrapolation. 
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It is seen from Table 2.7 that  

 

(a) the length of the absolute stability interval on the negative part of the real 

axis of the new methods, which consist of the combination of any Explicit 

Runge-Kutta Method obtained with  𝐩 = 𝟒 ,  𝐦 = 𝟔,    𝛄𝟓
(𝟔,𝟒)

= 𝟏. 𝟒𝟐   and  

𝛄𝟔
(𝟔,𝟒)

= 𝟒. 𝟖𝟔  and the Richardson Extrapolation, is more than six times 

longer than the length of the of the absolute stability interval of the Explicit 

Runge-Kutta methods with  𝐩 = 𝐦 = 𝟒  when this method is used directly,  

 

(b) it follows from conclusion (a) that for mildly stiff problems, in which the 

real eigenvalues of the Jacobian matrix of function 𝐟 are dominating over 

the complex eigenvalues, the new numerical method, the combination of a 

fourth-order six-stage Explicit Runge-Kutta Method with the Richardson 

Extrapolation, could be run with a time-stepsize, which is by a factor of six 

larger than that for a fourth-order four-stage explicit Runge-Kutta method.  

 

However, this success is not unconditional: two extra stages must be added in order to achieve the 

improved absolute stability regions, which makes the new numerical method more expensive. It is 

nevertheless clear that a reduction of the number of time-steps by a factor approximately equal to six 

will as a rule be a sufficiently good compensation for the use of two additional stages.  

 

The research for developing Explicit Runge-Kutta Methods with 𝐩 < 𝐦,  which have good absolute 

stability properties when they are combined with the Richardson Extrapolation, is by far not finished 

yet. The results presented in this section only indicate that one should expect good results, but it is 

necessary  

 

(a) to optimize further the search for methods with good stability properties,  

 

(b) to select particular methods with good accuracy properties among the 

classes of method with good stability properties obtained after the 

application of some optimization tool in the search  

 

and  

 

(c) to carry out much more numerical experiments in order to verify the 

usefulness of the results in some realistic applications.  

 

These additional tasks will be further discussed in the remaining part of Chapter 2. 

 

 

 

2.9.2. Selecting particular numerical methods for Case 1:    𝐩 = 𝟑  and   𝐦 = 𝟒   

 

It was pointed out above that the numerical methods, the absolute stability region of which were shown 

in Fig. 2.8, form a large class of Explicit Runge-Kutta Methods. It is necessary now to find a good 

representative of this class. We are mainly interested in finding a method which has good accuracy 

properties. This is a very difficult task. Three groups of requirements must be satisfied: 
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(a) four order conditions are to be derived,  

 

(b) one must use the optimal value,  𝛄𝟒
(𝟒,𝟑)

= 𝟐. 𝟒  for which the largest absolute stability 

region is obtained (see the previous sub-section)  

 

and, finally,  

 

(c) several relations between the coefficients of the four-stage ERKMs have to be taken 

into account. 

 

This leads to the solution of a non-linear algebraic system of 8 equations with 13 unknowns. The 

equations are listed below: 

 

 

(𝟐. 𝟔𝟑)     𝐜𝟏 + 𝐜𝟐 + 𝐜𝟑 + 𝐜𝟒 = 𝟏 ,   
 

 

(𝟐. 𝟔𝟒)     𝐜𝟐𝐚𝟐 + 𝐜𝟑𝐚𝟑 + 𝐜𝟒𝐚𝟒 =
𝟏

𝟐
 , 

 

 

(𝟐. 𝟔𝟓)     𝐜𝟐(𝐚𝟐)𝟐+𝐜𝟑(𝐚𝟑)𝟐+𝐜𝟑(𝐚𝟑)𝟐 =
𝟏

𝟑
 , 

 

 

(𝟐. 𝟔𝟔)     𝐜𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑) =
𝟏

𝟔
 . 

 

 

(𝟐. 𝟔𝟕)    𝐜𝟒𝐛𝟒𝟑𝐛𝟑𝟐𝐚𝟐 =  
𝟏

 𝛄𝟒
(𝟒,𝟑)

 
𝟏

𝟏𝟐𝟎
 . 

 

 

(𝟐. 𝟔𝟖)     𝐛𝟐𝟏 = 𝐚𝟐 , 
 

 

(𝟐. 𝟔𝟗)     𝐛𝟑𝟏 + 𝐛𝟑𝟐 = 𝐚𝟑 . 
 

 

(𝟐. 𝟕𝟎)     𝐛𝟒𝟏 + 𝐛𝟒𝟐 + 𝐛𝟒𝟑 = 𝐚𝟒 . 
 

 

The relationships (2.63)-(2.66) are the order conditions (needed to obtain an Explicit Runge-Kutta 

Method, the order of accuracy of which is three). The equality (2.67) is used in order to obtain good 

stability properties. The last three equalities, equalities (2.68)-(2.70), are giving some relations between 

the coefficients of the Runge-Kutta methods.  
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It can easily be verified that the conditions (2.63) – (2.70) are satisfied if the coefficients are chosen in 

the following way: 

 

 

(𝟐. 𝟕𝟏)      𝐜𝟏 =
𝟏

𝟔
 ,     𝐜𝟐 =

𝟏

𝟑
 ,     𝐜𝟑 =

𝟏

𝟑
 ,     𝐜𝟒 =

𝟏

𝟔
 ,      

 

 

(𝟐. 𝟕𝟐)      𝐚𝟐 =
𝟏

𝟐
 ,     𝐚𝟑 =

𝟏

𝟐
 ,     𝐚𝟒 = 𝟏 ,       

 

 

(𝟐. 𝟕𝟑)      𝐛𝟐𝟏 =
𝟏

𝟐
 ,    𝐛𝟑𝟏 = 𝟎 ,    𝐛𝟑𝟐 =

𝟏

𝟐
 ,     𝐛𝟒𝟏 = 𝟎 ,     𝐛𝟒𝟐 = 𝟏 − 

𝟏

𝟐. 𝟒
,     𝐛𝟒𝟑 =

𝟏

𝟐. 𝟒
 .        

 

 

It should be noted that if the last two coefficients  𝐛𝟒𝟐    and  𝐛𝟒𝟑   in (2.73) are replaced with 

 

 

(𝟐. 𝟕𝟒)     𝐛𝟒𝟐 = 𝟎,     𝐛𝟒𝟑 = 𝟏 ,        
 

 

then the classical fourth-order four stages Explicit Runge-Kutta Method will be obtained; this method 

is defined by the formulae (2.55)-(2.59) in Section 2.7. 

 

The order of the method determined by the coefficients given in (2.71)-(2.73) is lower than the order 

of the classical method (three instead of four), but its absolute stability region is (as mentioned above) 

considerably larger. The absolute stability regions of the derived by us optimal ERK43 method and its 

combination with the Richardson Extrapolation are given in Fig. 2.8. It will be illustrative to compare 

these regions with the corresponding absolute stability regions of the classical ERK33 method (the 

third-order three stage Explicit Runge-Kutta Method) and with the combination of the ERK33 method 

with the Richardson Extrapolation. These plots are shown in Fig. 2.3.   

 

The first of the three numerical examples presented in Section 2.5 was used in order to test the 

efficiency of the ERK43 method.  

 

The organization of the computations applied to calculate the results given below, in Table 2.8, is 

described in detail in Section 2.6. It is not necessary here to repeat these details, but it should be 

mentioned that 12 runs were performed in these tests (not 10 runs as in the previous sections). We are 

starting with a stepsize  𝐡 = 𝟎. 𝟎𝟐𝟎𝟒𝟖   and reducing the stepsize by a factor of two after the 

completion of each run. This means that the stepsize in the last run is again  𝐡 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 . 
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Run Stepsize ERK33 ERK44 ERK43 ERK43+RE 

1 0.02048 N.S. N.S. N.S. N.S. 

2 0.01024 N.S N.S. N.S. N.S. 

3 0.00512 N.S. N.S. 8.43E-03 4.86E-08 

4 0.00256 5.97E-06 2.46E-08 3.26E-06 3.04E-09 (15.99) 

5 0.00128 7.46E-07 (8.00) 1.54E-09 (15.97) 4.07E-07 (8.01) 1.90E-10 (16.00) 

6 0.00064 9.33E-08 (8.00) 9.62E-12 (16.00) 5.09E-08 (8.00) 1.19E-11 (15.97) 

7 0.00032 1.17E-08 (7.97) 6.01E-12 (16.01) 6.36E-09 (8.00) 7.42E-13 (16.04) 

8 0.00016 1.46E-09 (8.01) 3.76E-13 (15.98) 7.95E-10 (8.00) 4.64E-14 (15.99) 

9 0.00008 1.82E-10 (8.02) 2.35E-14 (16.00) 9.94E-11 (8.00) 2.90E-15 (16.00) 

10 0.00004 2.28E-11 (7.98) 1.47E-15 (15.99) 1.24E-11 (8.02) 1.81E-16 (16.02) 

11 0.00002 2.85E-12 (8.00) 9.18E-17 (16.01) 1.55E-12 (8.00) 1.13E-17 (16.02) 

12 0.00001 3.56E-13 (8.01) 5.74E-18 (15.99) 1.94E-13 (7.99) 7.08E-19 (15.96) 

Table 2.8 

Comparison of the third-order four stages explicit Runge-Kutta (ERK43) method  𝛄𝟒
(𝟒,𝟑)

= 𝟐. 𝟒 and its combination with 

the Richardson Extrapolation (ERK43+RE) with the traditionally used third-order three stages and fourth-order four stages 

explicit Runge-Kutta methods (ERK33 and ERK44).  “N.S” means that the method is not stable (the computations are 

declared as unstable and stopped when the norm of the calculated solution becomes greater than  𝟐. 𝟒 ∗ 𝟏𝟎𝟕 ). The 

convergence rates are given in brackets. 

 

 

The results presented in  Table 2.8  show clearly that following three conclusions are certainly true: 

 

No. Conclusions 

1 The new numerical method (the third-order four-stage Explicit Runge-Kutta Method with 

 𝛄𝟒
(𝟒,𝟑)

= 𝟐. 𝟒; the ERK43 method) is both more accurate and more stable than the classical 

third-order three stages explicit Runge-Kutta method (ERK33). 

2 The classical fourth-order four stages Explicit Runge-Kutta Method, ERK44, is more accurate 

than the new method (which is very natural because its order of accuracy is higher), but the 

new method behaves in a reasonably stable way for 𝐡 = 𝟎. 𝟎𝟎𝟐𝟓𝟔 where the classical method 

fails. 

3 The combination of the new method with the Richardson extrapolation (ERK43+RE) is both 

more accurate and more stable than the two classical methods (ERK33 and ERK44) and the 

new method (ERK43). 
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2.9.3. Selecting particular numerical methods for Case 2:    𝐩 = 𝟒  and   𝐦 = 𝟔   

 

The methods, which have the absolute stability regions shown in Fig. 2.9, form (as the methods the 

stability regions of which were presented in Fig. 2.8) a large class of Explicit Runge-Kutta Methods. 

It is necessary now to find a good representative of this class. We are also in this sub-section interested 

in finding a method which has not only a large absolute stability region but also good accuracy 

properties. 

 

A non-linear system of algebraic equations has to be solved in the attempts to find a fourth-order six-

stage Explicit Runge-Kutta Method. In our particular case this system contains 15 equations with 26 

unknowns.  It should be mentioned that  

 

(a) the first eight equations are the order conditions needed to achieve fourth 

order of accuracy (the first four of them being the same as the order 

conditions presented in the previous sub-section; these relationships are 

given here only for the sake of convenience), 

 

(b) the next two equations will ensure good absolute stability properties  

 

and  

 

(c) the last five conditions are some relations between the coefficients of the 

Runge-Kutta method.   
 
The  15 equations are listed below: 
 
 
(𝟐. 𝟕𝟓)        𝐜𝟏 + 𝐜𝟐 + 𝐜𝟑 + 𝐜𝟒 = 𝟏 ,   
 
 

(𝟐. 𝟕𝟔)        𝐜𝟐𝐚𝟐 + 𝐜𝟑𝐚𝟑 + 𝐜𝟒𝐚𝟒 =
𝟏

𝟐
 , 

 
 

(𝟐. 𝟕𝟕)        𝐜𝟐(𝐚𝟐)𝟐+𝐜𝟑(𝐚𝟑)𝟐+𝐜𝟑(𝐚𝟑)𝟐 =
𝟏

𝟑
 , 

 
 

(𝟐. 𝟕𝟖)        𝐜𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑) =
𝟏

𝟔
 , 

 
 

(𝟐. 𝟕𝟗)        𝐜𝟐(𝐚𝟐)𝟑 + 𝐜𝟑(𝐚𝟑)𝟑 + 𝐜𝟒(𝐚𝟒)𝟑 + 𝐜𝟓(𝐚𝟓)𝟑 + 𝐜𝟔(𝐚𝟔)𝟑 =
𝟏

𝟒
  , 
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(𝟐. 𝟖𝟎)        𝐜𝟑𝐛𝟑𝟐(𝐚𝟐)𝟐 + 𝐜𝟒[𝐛𝟒𝟐(𝐚𝟐)𝟐 + 𝐛𝟒𝟑(𝐚𝟑)𝟐] + 𝐜𝟓[𝐛𝟓𝟐(𝐚𝟐)𝟐+𝐛𝟓𝟑(𝐚𝟑)𝟐 + 𝐛𝟓𝟒(𝐚𝟒)𝟐]

+ 𝐜𝟔[𝐛𝟔𝟐(𝐚𝟐)𝟐 + 𝐛𝟔𝟑(𝐚𝟑)𝟐 + 𝐛𝟔𝟒(𝐚𝟒)𝟐 + 𝐛𝟔𝟓(𝐚𝟓)𝟐] =
𝟏

𝟏𝟐
  , 

 
 
(𝟐. 𝟖𝟏)        𝐜𝟑𝐚𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟒𝐚𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑) + 𝐜𝟓𝐚𝟓(𝐛𝟓𝟐𝐚𝟐 + 𝐛𝟓𝟑𝐚𝟑 + 𝐛𝟓𝟒𝐚𝟒)

+ 𝐜𝟔𝐚𝟔(𝐛𝟔𝟐𝐚𝟐 + 𝐛𝟔𝟑𝐚𝟑 + 𝐛𝟔𝟒𝐚𝟒 + 𝐛𝟔𝟓𝐚𝟓) =
𝟏

𝟖
  , 

 
 
(𝟐. 𝟖𝟐)        𝐜𝟒𝐛𝟒𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟓[𝐛𝟓𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟓𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑)]

+ 𝐜𝟔[𝐛𝟔𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟔𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑) + 𝐛𝟔𝟓(𝐛𝟓𝟐𝐚𝟐 + 𝐛𝟓𝟑𝐚𝟑 + 𝐛𝟓𝟒𝐚𝟒)] =
𝟏

𝟐𝟒
 

 
 

(𝟐. 𝟖𝟑)        𝐜𝟔𝐛𝟔𝟓𝐛𝟓𝟒𝐛𝟒𝟑𝐛𝟑𝟐𝐚𝟐 =
𝟏

𝟕𝟐𝟎
  

𝟏

𝟒. 𝟖𝟔
  

 
 
(𝟐. 𝟖𝟒)        𝐜𝟓𝐛𝟓𝟒𝐛𝟒𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟔{𝐛𝟔𝟒𝐛𝟒𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟔𝟓[𝐛𝟓𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟓𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑)]}

=
𝟏

𝟏𝟐𝟎
 

𝟏

𝟏. 𝟒𝟐
  .  

 
 
(𝟐. 𝟖𝟓)     𝐛𝟐𝟏 = 𝐚𝟐 
 
 
(𝟐. 𝟖𝟔)     𝐛𝟑𝟏 + 𝐛𝟑𝟐 = 𝐚𝟑 
 
 
(𝟐. 𝟖𝟕)     𝐛𝟒𝟏 + 𝐛𝟒𝟐 + 𝐛𝟒𝟑 = 𝐚𝟒 
 
 
(𝟐. 𝟖𝟖)     𝐛𝟓𝟏 + 𝐛𝟓𝟐 + 𝐛𝟓𝟑 + 𝐛𝟓𝟒 = 𝐚𝟓 
 
 
(𝟐. 𝟖𝟗)     𝐛𝟔𝟏 + 𝐛𝟔𝟐 + 𝐛𝟔𝟑 + 𝐛𝟔𝟒 + 𝐛𝟔𝟓 = 𝐚𝟔 

 

 

The  26  unknowns in the non-linear system of algebraic equations described by the relationships 

(2.75)-(2.89) can be seen in the array representing the class of six stages Explicit Runge-Kutta 

Methods, which is given below: 
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𝐚𝟐 𝐛𝟐𝟏      

𝐚𝟑 𝐛𝟑𝟏 𝐛𝟑𝟐     

𝐚𝟒 𝐛𝟒𝟏 𝐛𝟒𝟐 𝐛𝟒𝟑    

𝐚𝟓 𝐛𝟓𝟏 𝐛𝟓𝟐 𝐛𝟓𝟑 𝐛𝟓𝟒   

𝐚𝟔 𝐛𝟔𝟏 𝐛𝟔𝟐 𝐛𝟔𝟑 𝐛𝟔𝟒 𝐛𝟔𝟓  

 𝐜𝟏 𝐜𝟐 𝐜𝟑 𝐜𝟒 𝐜𝟓 𝐜𝟔 

 

 

We shall need, for several comparisons, the numerical results obtained with some good and accurate 

fifth-order six-stage Explicit Runge-Kutta methods. Nine additional relationships must be satisfied in 

order to achieve such a high accuracy, but the two conditions (2.83) and (2.84), which were imposed 

for improving the absolute stability properties are now not needed. The extra order conditions that are 

needed to achieve fifth order of accuracy are: 

 

 

(𝟐. 𝟗𝟎)    𝐜𝟐(𝐚𝟐)𝟒 + 𝐜𝟑(𝐚𝟑)𝟒 + 𝐜𝟒(𝐚𝟒)𝟒 + 𝐜𝟓(𝐚𝟓)𝟒 + 𝐜𝟔(𝐚𝟔)𝟒 =
𝟏

𝟓
  ,                                            

 

 

(𝟐. 𝟗𝟏)    𝐜𝟑𝐛𝟑𝟐(𝐚𝟐)𝟑 + 𝐜𝟒[𝐛𝟒𝟐(𝐚𝟐)𝟑 + 𝐛𝟒𝟑(𝐚𝟑)𝟑] + 𝐜𝟓[𝐛𝟓𝟐(𝐚𝟐)𝟑 + 𝐛𝟓𝟑(𝐚𝟑)𝟑 + 𝐛𝟓𝟒(𝐚𝟒)𝟑]

+ 𝐜𝟔[𝐛𝟔𝟐(𝐚𝟐)𝟑 + 𝐛𝟔𝟑(𝐚𝟑)𝟑+𝐛𝟔𝟒(𝐚𝟒)𝟑+𝐛𝟔𝟓(𝐚𝟓)𝟑] =
𝟏

𝟐𝟎
  ,                             

 

 
(𝟐. 𝟗𝟐)    𝐜𝟑𝐚𝟑𝐛𝟑𝟐(𝐚𝟐)𝟐+𝐜𝟒𝐚𝟒[𝐛𝟒𝟐(𝐚𝟐)𝟐 + 𝐛𝟒𝟑(𝐚𝟑)𝟐] + 𝐜𝟓𝐚𝟓[𝐛𝟓𝟐(𝐚𝟐)𝟐+𝐛𝟓𝟑(𝐚𝟑)𝟐 + 𝐛𝟓𝟒(𝐚𝟒)𝟐]

+ 𝐜𝟔𝐚𝟔[𝐛𝟔𝟐(𝐚𝟐)𝟐 + 𝐛𝟔𝟑(𝐚𝟑)𝟐 + 𝐛𝟔𝟒(𝐚𝟒)𝟐 + 𝐛𝟔𝟓(𝐚𝟓)𝟐] =
𝟏

𝟏𝟓
  ,                     

 

 

(𝟐. 𝟗𝟑)    𝐜𝟑(𝐛𝟑𝟐𝐚𝟐)𝟐 + 𝐜𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑)𝟐 + 𝐜𝟓(𝐛𝟓𝟐𝐚𝟐 + 𝐛𝟓𝟑𝐚𝟑 + 𝐛𝟓𝟒𝐚𝟒)𝟐

+ 𝐜𝟔(𝐛𝟔𝟐𝐚𝟐 + 𝐛𝟔𝟑𝐚𝟑 + 𝐛𝟔𝟒𝐚𝟒 + 𝐛𝟔𝟓𝐚𝟓)𝟐 =
𝟏

𝟐𝟎
,                                                

 

 

(𝟐. 𝟗𝟒)    𝐜𝟑(𝐚𝟑)𝟐𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟒(𝐚𝟒)𝟐(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑) + 𝐜𝟓(𝐚𝟓)𝟐(𝐛𝟓𝟐𝐚𝟐 + 𝐛𝟓𝟑𝐚𝟑 + 𝐛𝟓𝟒𝐚𝟒)

+ 𝐜𝟔(𝐚𝟔)𝟐(𝐛𝟔𝟐𝐚𝟐 + 𝐛𝟔𝟑𝐚𝟑 + 𝐛𝟔𝟒𝐚𝟒 + 𝐛𝟔𝟓𝐚𝟓) =
𝟏

𝟏𝟎
 ,                                       

 

 

(𝟐. 𝟗𝟓)    𝐜𝟒𝐛𝟒𝟑𝐛𝟑𝟐(𝐚𝟐)𝟐 + 𝐜𝟓{𝐛𝟓𝟑𝐛𝟑𝟐(𝐚𝟐)𝟐 + 𝐛𝟓𝟒[𝐛𝟒𝟐(𝐚𝟐)𝟐 + 𝐛𝟒𝟑(𝐚𝟑)𝟐]}
+ 𝐜𝟔{𝐛𝟔𝟑𝐛𝟑𝟐(𝐚𝟐)𝟐 + 𝐛𝟔𝟒[𝐛𝟒𝟐(𝐚𝟐)𝟐 + 𝐛𝟒𝟑(𝐚𝟑)𝟐]

+ 𝐛𝟔𝟓[𝐛𝟓𝟐(𝐚𝟐)𝟐+𝐛𝟓𝟑(𝐚𝟑)𝟐 + 𝐛𝟓𝟒(𝐚𝟒)𝟐]} =
𝟏

𝟔𝟎
 ,                                               
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(𝟐. 𝟗𝟔)    𝐜𝟓𝐛𝟓𝟒𝐛𝟒𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟔{𝐛𝟔𝟒𝐛𝟒𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟔𝟓[𝐛𝟓𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟓𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑)]}

=
𝟏

𝟏𝟐𝟎
 ,                                                                                                                          

 

 

(𝟐. 𝟗𝟕)    𝐜𝟒𝐚𝟒𝐛𝟒𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟓𝐚𝟓[𝐛𝟓𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟓𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑)]
+ 𝐜𝟔𝐚𝟔[𝐛𝟔𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟔𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑)+𝐛𝟔𝟓(𝐛𝟓𝟐𝐚𝟐 + 𝐛𝟓𝟑𝐚𝟑 + 𝐛𝟓𝟒𝐚𝟒)]

=
𝟏

𝟑𝟎
 ,                                                                                                                             

 

 

(𝟐. 𝟗𝟖)    𝐜𝟒𝐛𝟒𝟑𝐚𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐜𝟓[𝐛𝟓𝟑𝐚𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟓𝟒𝐚𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑)]
+ 𝐜𝟔[𝐛𝟔𝟑𝐚𝟑𝐛𝟑𝟐𝐚𝟐 + 𝐛𝟔𝟒𝐚𝟒(𝐛𝟒𝟐𝐚𝟐 + 𝐛𝟒𝟑𝐚𝟑) + 𝐛𝟔𝟓𝐚𝟓(𝐛𝟓𝟐𝐚𝟐 + 𝐛𝟓𝟑𝐚𝟑 + 𝐛𝟓𝟒𝐚𝟒)]

=
𝟏

𝟒𝟎
 ,                                                        

 

 

The coefficients of a fifth-order six-stage explicit Runge-Kutta method proposed by John Butcher 

(Butcher, 2003) are shown in the array given below: 

 

 

𝐚𝟐 =
𝟐

𝟓
 𝐛𝟐𝟏 =

𝟐

𝟓
 

     

𝐚𝟑 =
𝟏

𝟒
 𝐛𝟑𝟏 =

𝟏𝟏

𝟔𝟒
 𝐛𝟑𝟐 =

𝟏𝟏

𝟔𝟒
 

    

𝐚𝟒 =
𝟏

𝟐
 𝐛𝟒𝟏 = 𝟎 𝐛𝟒𝟐 = 𝟎 𝐛𝟒𝟑 =

𝟏

𝟐
 

   

𝐚𝟓 =
𝟑

𝟒
 𝐛𝟓𝟏 =

𝟑

𝟔𝟒
 𝐛𝟓𝟐 = −

𝟏𝟓

𝟔𝟒
 𝐛𝟓𝟑 =

𝟑

𝟖
 𝐛𝟓𝟒 =

𝟗

𝟏𝟔
 

  

𝐚𝟔 = 𝟏 𝐛𝟔𝟏 = 𝟎 𝐛𝟔𝟐 =
𝟓

𝟕
 𝐛𝟔𝟑 =

𝟔

𝟕
 𝐛𝟔𝟒 = −

𝟏𝟐

𝟕
 𝐛𝟔𝟓 =

𝟖

𝟕
 

 

 
𝐜𝟏 =

𝟕

𝟗𝟎
 𝐜𝟐 = 𝟎 𝐜𝟑 =

𝟑𝟐

𝟗𝟎
 𝐜𝟒 =

𝟏𝟐

𝟗𝟎
 𝐜𝟓 =

𝟑𝟐

𝟗𝟎
 𝐜𝟔 =

𝟕

𝟗𝟎
 

 

 

It can easily be verified that all conditions (2.75)-(2.98), except the relationships (2.83)-(2.84), by 

which the stability properties are improved, are satisfied by the coefficients of the numerical method 

presented by the above array. This is, of course, an indirect indication that these conditions were 

correctly derived.  
 

Let us consider now the derivation of a particular fourth-order six-stage Explicit Runge-Kutta Method. 

Assume  that the eleven coefficients that are listed below 

 

 

(𝟐. 𝟗𝟗)      𝐜𝟓,   𝐜𝟔,    𝐚𝟑,    𝐚𝟔,    𝐛𝟑𝟐,    𝐛𝟒𝟏,    𝐛𝟒𝟑,    𝐛𝟓𝟐,    𝐛𝟓𝟒,    𝐛𝟔𝟏,    𝐛𝟔𝟑 
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are fixed and have the same values as those given in the above array. Then we have to solve the system 

of 15 equations with 15 unknowns, which is defined by (2.75)-(2.89). The well-known Newton iterative 

procedure was used in the numerical solution. The 15 components of the initial values of the 

components of the solution vector were taken from the Butcher’s method and extended precision was 

used during the iterative process  (also in this case quadruple precision, working with 32 digits, was 

selected). The fact that we are starting with the coefficients of the fifth-order six-stage explicit Runge-

Kutta method is giving a reasonable chance to find a fourth-order six-stage Explicit Runge-Kutta which 

has good accuracy properties. 

 

The numerical solution found at the end of the Newton iterative procedure is given below: 

 

  

(𝟐. 𝟏𝟎𝟎)        𝐜𝟏 = 𝟎. 𝟎𝟔𝟔𝟑𝟔𝟏𝟒𝟑𝟖𝟐𝟎𝟗𝟏𝟑𝟕𝟏𝟑𝟑𝟐𝟕𝟑𝟔𝟏𝟓𝟕𝟔𝟔𝟕𝟕𝟐𝟑𝟒 
 

 

(𝟐. 𝟏𝟎𝟏)        𝐜𝟐 = 𝟎. 𝟑𝟑𝟒𝟔𝟔𝟒𝟑𝟗𝟏𝟏𝟕𝟑𝟒𝟖𝟑𝟖𝟔𝟏𝟔𝟕𝟗𝟓𝟔𝟖𝟒𝟏𝟎𝟖𝟗𝟏𝟕𝟎 
 

 

(𝟐. 𝟏𝟎𝟐)        𝐜𝟑 =  𝟎. 𝟎𝟔𝟎𝟐𝟗𝟑𝟓𝟒𝟏𝟎𝟔𝟐𝟗𝟐𝟗𝟎𝟐𝟕𝟖𝟒𝟑𝟒𝟔𝟎𝟕𝟗𝟖𝟔𝟑𝟗𝟐𝟕 

 

 

(𝟐. 𝟏𝟎𝟑)        𝐜𝟒 =  𝟎. 𝟏𝟎𝟓𝟑𝟒𝟕𝟐𝟗𝟔𝟐𝟐𝟏𝟏𝟏𝟔𝟔𝟒𝟑𝟖𝟕𝟎𝟎𝟐𝟏𝟔𝟗𝟎𝟑𝟔𝟑𝟑𝟔 
 

 

(𝟐. 𝟏𝟎𝟒)        𝐚𝟐 = 𝟎. 𝟐𝟒𝟒𝟏𝟐𝟕𝟔𝟑𝟗𝟐𝟒𝟒𝟎𝟗𝟐𝟖𝟐𝟖𝟕𝟎𝟖𝟏𝟗𝟎𝟔𝟖𝟒𝟏𝟒𝟖𝟒𝟐 

 

 

(𝟐. 𝟏𝟎𝟓)        𝐚𝟒 = 𝟎. 𝟓𝟖𝟑𝟖𝟗𝟒𝟏𝟔𝟎𝟖𝟒𝟒𝟏𝟑𝟖𝟗𝟕𝟗𝟕𝟓𝟖𝟏𝟎𝟗𝟗𝟔𝟗𝟎𝟎𝟐𝟓𝟔 
 

 

(𝟐. 𝟏𝟎𝟔)        𝐚𝟓 = 𝟎. 𝟕𝟒𝟐𝟑𝟐𝟎𝟗𝟓𝟎𝟖𝟑𝟖𝟖𝟎𝟎𝟑𝟑𝟒𝟐𝟏𝟏𝟕𝟎𝟕𝟐𝟕𝟔𝟖𝟓𝟖𝟒𝟖 

 

 

(𝟐. 𝟏𝟎𝟕)        𝐛𝟐𝟏 = 𝟎. 𝟐𝟒𝟒𝟏𝟐𝟕𝟔𝟑𝟗𝟐𝟒𝟒𝟎𝟗𝟐𝟖𝟐𝟖𝟕𝟎𝟖𝟏𝟗𝟎𝟔𝟖𝟒𝟏𝟒𝟖𝟒𝟐 

 

 

(𝟐. 𝟏𝟎𝟖)        𝐛𝟑𝟏 = 𝟎. 𝟏𝟕𝟏𝟖𝟕𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 

 

(𝟐. 𝟏𝟎𝟗)        𝐛𝟒𝟐 = 𝟎. 𝟎𝟖𝟑𝟖𝟗𝟒𝟏𝟔𝟎𝟖𝟒𝟒𝟏𝟑𝟖𝟗𝟕𝟗𝟕𝟓𝟖𝟏𝟎𝟗𝟗𝟔𝟗𝟎𝟎𝟐𝟓𝟔 

 

 

(𝟐. 𝟏𝟏𝟎)        𝐛𝟓𝟏 = −𝟎. 𝟎𝟎𝟑𝟗𝟓𝟕𝟐𝟓𝟖𝟏𝟔𝟓𝟒𝟑𝟕𝟕𝟏𝟒𝟑𝟒𝟕𝟎𝟎𝟎𝟓𝟓𝟕𝟔𝟖𝟕𝟓𝟕 
 

 

(𝟐. 𝟏𝟏𝟏)        𝐛𝟓𝟑 = 𝟎. 𝟒𝟏𝟖𝟏𝟓𝟑𝟐𝟎𝟗𝟎𝟎𝟒𝟐𝟑𝟖𝟎𝟒𝟖𝟓𝟓𝟖𝟕𝟎𝟕𝟖𝟑𝟒𝟓𝟒𝟔𝟎𝟓 
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(𝟐. 𝟏𝟏𝟐)        𝐛𝟔𝟐 = 𝟎. 𝟓𝟔𝟕𝟗𝟐𝟏𝟕𝟑𝟔𝟒𝟏𝟒𝟎𝟗𝟑𝟓𝟐𝟗𝟒𝟔𝟎𝟐𝟎𝟐𝟏𝟓𝟏𝟏𝟕𝟒𝟎𝟏 
 

 

(𝟐. 𝟏𝟏𝟑)        𝐛𝟔𝟒 = −𝟏. 𝟏𝟏𝟎𝟎𝟒𝟏𝟗𝟏𝟏𝟕𝟏𝟐𝟎𝟔𝟐𝟓𝟑𝟐𝟑𝟏𝟖𝟒𝟕𝟗𝟔𝟏𝟒𝟐𝟓𝟎𝟐𝟐 
 

 

(𝟐. 𝟏𝟏𝟒)        𝐛𝟔𝟓 = 𝟎. 𝟔𝟖𝟒𝟗𝟕𝟕𝟑𝟏𝟖𝟏𝟓𝟓𝟏𝟏𝟏𝟖𝟔𝟎𝟎𝟎𝟏𝟏𝟑𝟒𝟔𝟎𝟓𝟗𝟑𝟑𝟑𝟔 

 

 

Numerical results obtained when the so derived fourth-order six-stage Explicit Runge-Kutta Method 

(ERK64) and its combination with the Richardson Extrapolation (ERK64+RE) are used in the solution 

of the first example from Section 2.5 are given in Table 2.9. The corresponding results, obtained by 

applying the classical ERK44 method and the ERK65B, the fifth-order six-stage method proposed in 

Butcher’s book (Butcher, 2003), are also presented in Table 2.9. Additionally, results obtained by 

using the fifth-order six-stage Explicit Runge-Kutta (ERK65F) Method proposed by E. Fehlberg 

(Fehlberg, 1966) are given in Table 2.9. It should be mentioned that it was established that also the 

coefficients of the Fehlberg’s method are satisfying all the order conditions (2.75)-(2.98), except the 

relationships (2.83)-(2.84) by which the stability properties are improved, which verifies once again 

the correctness of their derivation. 

 

 
 

Run Stepsize ERK44 ERK65B ERK65F ERK64 ERK64+RE 

1 0.02048 N.S. N.S. N.S. N.S. 9.00E-08 

2 0.01024 N.S. N.S. N.S. N.S. 1.93E-04 

3 0.00512 N.S. 1.18E-09 N.S. 1.16E-07 8.82E-11 

4 0.00256 2.46E-08 3.69E-11 (31.97) 5.51E-11 7.28E-09 (15.93) 2.76E-12 (31.96) 

5 0.00128 1.54E-09 (15.97) 1.15E-12 (32.09) 1.72E-12 (32.03) 4.55E-10 (16.00) 8.62E-14 (32.02) 

6 0.00064 9.62E-11 (16.00) 3.61E-14 (31.86) 5.39E-14 (31.91) 2.85E-11 (15.96) 2.69E-15 (32.04) 

7 0.00032 6.01E-12 (16.01) 1.13E-15 (31.95) 1.68E-15 (32.08) 1.78E-12 (16.01) 8.42E-17 (31.95) 

8 0.00016 3.76E-13 (15.98) 3.52E-17 (32.10) 5.26E-17 (31.94) 1.11E-13 (16.04) 2.63E-18 (32.01) 

9 0.00008 2.35E-14 (16.00) 1.10E-18 (32.00) 1.64E-18 (32.07) 6.95E-15 (15.97) 8.22E-20 (32.00) 

10 0.00004 1.47E-15 (15.99) 3.44E-20 (31.98) 5.14E-20 (31.91) 4.34E-16 (16.01) 2.57E-21 (31.98) 

11 0.00002 9.18E-17 (16.01) 1.07E-21 (32.15) 1.61E-21 (31.93) 2.71E-17 (16.01) 8.03E-23 (32.00) 

12 0.00001 5.74E-18 (15.99) 3.36E-23 (31.85) 5.02E-23 (32.07) 1.70E-18 (15.94) 2.51E-24 (31.99) 

Table 2.9 

Comparison of the first fourth-order six stages explicit Runge-Kutta (ERK64) method and its combination with the 

Richardson Extrapolation (ERK64+RE) with the classical fourth-order four stages explicit Runge-Kutta  (ERK44) method 

and the fifth-order six stages (ERK65B and ERK65F) Runge-Kutta methods proposed respectively by Butcher in his book 

and by Fehlberg in 1968. “N.S” means that the method is not stable (the computations are declared as unstable and stopped 

when the norm of the calculated solution becomes greater than 1.0E+07). The convergence rates are given in brackets in 

the table.  

 

 

 

Similar conclusions, as those which were valid for the results presented in Table 2.8, can also be drawn 

for the new ERK64 method and its combination (ERK64+RE) with the Richardson Extrapolation. 

These conclusions are listed below:  
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No. Conclusions 

1 The new numerical method, the fourth-order six-stage Explicit Runge-Kutta (ERK64) Method, 
is both more accurate and more stable than the classical fourth-order four stages Explicit 
Runge-Kutta (ERK44) Method (which indicates that the choice of the particular ERK64 
method with good accuracy properties was successful). 

2 The fifth-order six-stage Explicit Runge-Kutta Method proposed by Butcher, ERK65B, is both 
more accurate and more stable than the fifth-order six-stage Explicit Runge-Kutta Method 
proposed by Fehlberg, ERK65F. This is the reason for using the former method as a starting 
point in the Newton iterative procedure. We are trying in this way to obtain a method which 
is in some sense closer to the better one of the two well-known and commonly used fifth-
order six stage methods. 

3 Both the fifth-order six-stages Explicit Runge-Kutta Method proposed by Butcher, ERK65B, 
and the fifth-order six-stage Explicit Runge-Kutta ethod proposed by Fehlberg, ERK65F are 
more accurate than the new ERK64 method (which is quite natural, because their order of 
accuracy is higher), but the new method has better stability properties than the ERK65F 
method and, therefore, behaves in a reasonably stable way in some cases where this method 
fails. 

4 The combination of the new method with the Richardson Extrapolation (ERK64+RE) is both 
more accurate and more stable than the two classical methods (ERK65B and ERK65F). Note 
that ERK43+RE method is stable for all 12 runs. 

5 It is not very clear why the numerical error for  𝐡 = 𝟎. 𝟎𝟏𝟎𝟐𝟒  is greater than that for 𝐡 =
𝟎. 𝟎𝟐𝟎𝟒𝟖  when the ERK64+RE is used (the opposite should be true), but some conclusions 
can anyway be drawn by studying the plot presenting the absolute stability region of this 
method. The border of the absolute stability region around the point  −𝟏𝟑. 𝟓  is rather close 
to the negative part of the real axis and this fact might have some influence on the results 
(perhaps due to the fact that two of the eigenvalues have imaginary parts). When the stepsize 
becomes bigger, the real part of the largest eigenvalue multiplied by 𝐡 moves to the left, but 
there the border of the absolute stability region is not so close to the negative part of the real 
axis and the numerical results become again more stable. 

 
 

 

 

 

2.9.4. Possibilities for further improvement of the results  
 

It was mentioned several times that our objective was to derive two numerical methods, which have 

good stability properties and at the same time are very accurate. In order to achieve this we tried to 

derive methods, which are in some sense close to a method of a higher order. This strategy was followed 

in the derivation of both the ERK43 method and the ERK64 method. 

 

 For the ERK43 method we used as starting point the classical ERK44 method determined by the 

formulae (2.55)-(2.59) in Section 2.7. In order to satisfy the stability condition  (2.67)  we had only to 

modify two of the coefficients of the classical method; see (2.74).  
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The ERK65B method (which is clearly better than the ERK65F method) was applied in the derivation 

of an ERK64 method. Eleven of the coefficients of the ERK64 method are the same as those in the 

ERK65B method. Moreover, we started the Newton iterative procedure by using as an initial guess the 

remaining coefficients of the ERK65B method. The expectation is that the vector containing the 

coefficients of the so derived  ERK64  method will be in some sense close to the corresponding vector 

of the ERK65B method. 

 

It is intuitively clear that if the derived numerical method is close in some sense to a method of higher 

order, then the leading terms of the local truncation error will be small (because for the method of 

higher order the corresponding terms are equal to zero, which is ensured by the order conditions). The 

statement that the leading terms of the local truncation error are small is, of course, based on heuristic 

assumptions. Nevertheless, the results, which are presented in Table 2.8 and Table 2.9, indicate very 

clearly that the new numerical methods not only have enhanced stability properties, but are in addition 

very accurate.        

 

The question is:  

 

 

Is it possible to apply some more strict rules by which to derive some 

even more accurate methods? 

 

 

Some ideas, which can be used in the derivation Explicit Runge-Kutta Methods with better accuracy 

properties, are sketched below. 

 

Let us start with the ERK64 method. It is reasonable to expect that the results for this methods could 

be improved if the following procedure is used. Consider the conditions (2.90)-(2.98) needed to achieve 

fifth order of accuracy. Move the constants from the right-hand-sides of these equalities to the left-

hand-sides. Denote by 𝐆𝐢 , where 𝐢 = 𝟏, 𝟐, … , 𝟗 , the absolute values of the terms in the left-hand sides 

that are obtained after these transformations.  As an illustration of this process let us point out that 

 

 

(𝟐. 𝟏𝟏𝟓)    𝐆𝟏 = |𝐜𝟐(𝐚𝟐)𝟒 + 𝐜𝟑(𝐚𝟑)𝟒 + 𝐜𝟒(𝐚𝟒)𝟒 + 𝐜𝟓(𝐚𝟓)𝟒 + 𝐜𝟔(𝐚𝟔)𝟒 −
𝟏

𝟓
|   

 

 

will be achieved from (2.90) by following the sketched above rules. It is clear how the remaining eight 

values of the quantities  𝐆𝐢  can be obtained from (2.91)-(2.98).  

 

Now the following constrained non-linear optimization problem can be defined. Find the minimum of 

the expression: 

 

 

(𝟐. 𝟏𝟏𝟔)    ∑ 𝐆𝐢

𝟗

𝐢=𝟏
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under the assumption that the equalities (2.75)-(2.89) are also satisfied. 

 

Thus, we have to solve a non-linear optimization problem with 15 constraints in order to obtain a 

method with (hopefully) better accuracy properties. 

 

It is possible to generalize slightly this idea in the following way. Introduce non-negative weights 𝐰𝐢 , 
assume that the sum of the weights is equal to   𝟗   and minimize the sum given below:  

 

 

(𝟐. 𝟏𝟏𝟕)    ∑ 𝐰𝐢𝐆𝐢

𝟗

𝐢=𝟏

 

 

 

again under the assumption that the  equalities (2.75)-(2.89) are also satisfied. It is obvious that if all 

weights are equal to 1 ,  then (2.117) reduces to (2.116). 

 

In our opinion the new ERK43 method is very close to the classical ERK44 method (only two of the 

coefficients of the classical methods have to be modified in order to satisfy the relationship arising 

from the requirement to achieve enhanced absolute stability) and it is hard to believe that some essential 

improvement can be achieved in this case. Nevertheless, one can try to derive better methods. This can 

be done in a quite similar way as the procedure used above. Consider the conditions (2.79)-(2.82) 

needed to obtain fourth-order accuracy. Move the constants in the right-hand-sides of these equalities 

to the left-hand-side. Denote by  𝐅𝐢 , where 𝐢 = 𝟏, 𝟐, 𝟑, 𝟒 , the absolute values of the terms in the left-

hand sides of the obtained after these transformations equalities. As an illustration of the outcome from 

this process let us point out that 

 

 

(𝟐. 𝟏𝟏𝟖)    𝐅𝟏 = |𝐜𝟐(𝐚𝟐)𝟑 + 𝐜𝟑(𝐚𝟑)𝟑 + 𝐜𝟒(𝐚𝟒)𝟑 + 𝐜𝟓(𝐚𝟓)𝟑 + 𝐜𝟔(𝐚𝟔)𝟑 −
𝟏

𝟒
|   

 

 

will be achieved from (2.79) by following the rules that were sketched above. It is clear how the 

remaining three values of the quantities  𝐅𝐢  can be obtained from (2.80)-(2.82). Now the following 

constrained optimization problem can be defined. Find the minimum of the expression: 

 

 

(𝟐. 𝟏𝟏𝟗)    ∑ 𝐅𝐢

𝟒

𝐢=𝟏

 

 

 

under the assumption that the equalities (2.63)-(2.70) are also satisfied. 

 

It is again possible to generalize slightly this idea. Introduce non-negative weights  𝐯𝐢 ,   assume that 

the sum of the weights is now equal to   𝟒    and minimize the sum given below:  
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(𝟐. 𝟐𝟎)    ∑ 𝐯𝐢𝐅𝐢

𝟒

𝐢=𝟏

 

 

 

under the assumption that the four equalities (2.63)-(2.70) are also satisfied. It is obvious that if all 

weights  𝐯𝐢  are set equal to  𝟏 , then (2.20) reduces to (2.19). 

 

It must be emphasized that the set of order conditions (2.75)-(2.82) + (290)-(298) is very general and 

can be used for developing many kinds of different Explicit Runge-Kutta Methods, whose order is less 

than or equal to five (in fact, classes of such methods). This set of relationships (actually some sub-sets 

of this set) has been used in this section to search for good ERK43 and ERK64 methods, but it can 

also be applied, for example, for designing good ERK63 methods: the absolute stability properties of 

these methods will probably be considerably better that those of the two classes considered above, 

because the number of free parameters will be increased by one to become three (𝛄𝟒
(𝟔,𝟑)

, 𝛄𝟓
(𝟔,𝟑)

, 𝛄𝟔
(𝟔,𝟑)

) , 
but the search for particular values of these constants which ensure greater absolute stability regions 

will be much more complicated. 

 

Explicit Runge-Kutta Methods containing more than six stages can also be used. One can, for example, 

use relation (2.60) with 𝐦 = 𝟏𝟏 and some  𝐩 ≤ 𝟖  (it can be proved that no EPRM of order greater 

than 𝟖  can be constructed when the number of stages is  𝟏𝟏; see p.182 in Lambert, 1991). The number 

of free parameters will be greater than or equal to three when such a choice is made and it will be 

possible to create accurate ERKMs with even larger stability regions. However, the procedure will 

become much more difficult. It will not be easy to derive the order conditions, but some packages for 

automatic differentiation and symbolic computations, such as Maple and Mathematica, can be applied 

to facilitate the derivation. Even after utilizing these packages, many other problems remain. These 

problems are related mainly 

 

(a) to the formulation of large underdetermined non-linear systems of algebraic equations 

(or, even better, large constrained non-linear optimization problems)  

 

and  

 

(b) to finding solutions of these problems that will ensure good accuracy properties of the 

derived Explicit Runge-Kutta Methods.  

 

It is nevertheless worthwhile to try to derive sufficiently accurate methods with better stability 

properties, because in this way it may become possible to avoid the application of implicit numerical 

methods for solving systems of ODEs (which leads to the necessity to handle very large non-linear 

algebraic systems) and, thus to reduce very considerably the computational work when some classes 

of large-scale scientific problems are to be treated. 

 

It must also be emphasized that we are not interested so much in finding accurate Explicit Runge-Kutta 

Methods with good stability properties, but first and foremost in ERKMs, which applied together with 

the Richardson Extrapolation result in new numerical methods with even better stability properties. 

This is important, because it is well-known that the application of the Richardson Extrapolation may 

sometimes result in new numerical methods, which have worse stability properties than those of the 
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underlying method. The most terrible example is the application of the Richardson Extrapolation 

together with the well-known Trapezoidal Rule. While the Trapezoidal Rule has excellent stability 

properties (it is A-stable), its combination with the Richardson Extrapolation leads to an unstable 

computational process. Some other examples can be found in Zlatev, Faragó and Havasi (2010). It 

must be strongly emphasized here that all Explicit Runge-Kutta Methods which were considered 

above, also the methods in the previous sections, were designed so that their combinations with the 

Richardson Extrapolation have bigger absolute stability regions than the underlying methods (see Fig. 

2.8 and Fig. 2.9). In this way, larger time-stepsizes can be used when the Richardson Extrapolation 

is added not only because the resulting method is more accurate, but also because it is more 

stable.  
 

The conclusion made above is indeed very important: we tried until now to design accurate ERKMs 

with good stability properties and after that to show that their combinations with the Richardson 

Extrapolations have even larger regions of absolute stability (they will in addition be necessarily more 

accurate). The order should probably be reversed. Indeed, as we pointed out several times, our major 

objective is to use the Richardson Extrapolation in an attempt to improve the efficiency of the 

computational process. Therefore, it might be much more profitable to search directly for 

combinations of ERKMs with the Richardson Extrapolation, which have good stability and accuracy 

properties. This problem is, of course much, more complicated (first and foremost, because the degree 

of the stability polynomials of the combinations of ERKMs and the Richardson Extrapolation is twice 

greater than the degree of the underlying ERKMs), but the results of this much more difficult search 

might be significantly better. Therefore, it is worthwhile to try to resolve this very challenging problem.  

 

 

 

 

 

2.10. Major concluding remarks related to Explicit Runge-Kutta Methods 

 
Specific conclusions based on numerical results from three examples (introduced in Section 2.5) were 

drawn in the previous sections. Several additional general conclusions will be drawn below. These 

conclusions are based not only on numerical results, but also on the established, in Section 2.4 and 

Section 2.9, facts that the Richardson Extrapolation does lead to a considerable improvement of both 

the stability properties and the accuracy of the calculated approximations (in comparison with those of 

the underlying Explicit Runge-Kutta Methods when these are used directly). It was established in 

Section 2.4 that the stability regions were always increased when the Richardson Extrapolation is used 

and when the number of stages  𝐦  is equal to the order of accuracy  𝐩 .  However it was also shown, 

in the previous section, that even better results can be achieved for some other classes of Explicit 

Runge-Kutta Methods. We shall try now to summarize these results. 

 

It is well known that the application of the Richardson Extrapolation leads always to an improvement 

of the accuracy of the underlying numerical method when the stability properties are not restricting the 

choice of the time-stepsize. This statement holds not only for the Explicit Runge-Kutta Methods, but 

for any numerical method for solving systems of ODEs (see Chapter 1). The remarkable thing for the 

class of Explicit Runge-Kutta Methods with  𝐩 = 𝐦 ,   𝐦 = 𝟏, 𝟐, 𝟑, 𝟒  is, as mentioned above, that the 

application of the Richardson Extrapolation leads to new numerical methods with considerably larger 

absolute stability regions. In fact, the results shown in Section 2.4 (and more precisely, the results 
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presented in the plots drawn in Fig. 2.1 – Fig 2.4) could be considered as a graphical proof of the 

following theorem: 

 

 

Theorem 2.1: Let us consider an arbitrary Explicit Runge-Kutta Method, for which the condition  

𝐩 = 𝐦 ,   𝐦 = 𝟏, 𝟐, 𝟑, 𝟒  is satisfied. If   𝐩 = 𝐦 = 𝟏 , then there exists only one such method (the 

Forward Euler Formula), while large classes of Explicit Runge-Kutta Methods exist for each  𝐩 = 𝐦 ,   
when  𝐩  is greater than one. Combine the selected method with the Richardson Extrapolation. Then 

the obtained in this was new numerical method has always a larger absolute stability region than that 

of the underlying Explicit Runge-Kutta Method. 

 

                                                                                                                                                       ■  

 

 

In the previous section we have demonstrated that two other results, which are in some sense even 

stronger, hold: 

 

 

Theorem 2.2: A large class  𝓕𝟐.𝟒
𝟒,𝟑

  of Explicit Runge-Kutta Methods depending on the three parameters  

𝐩 = 𝟑 , 𝐦 = 𝟒  and  𝛄𝟒
(𝟒,𝟑)

=2.4   can be derived. Two statements are true for this class:  

 

(a) every representative of class  𝓕𝟐.𝟒
𝟒,𝟑

 (i.e. any Explicit Runge-Kutta Method from class  

𝓕𝟐.𝟒
𝟒,𝟑

) has the same absolute stability region that is optimal in some sense (which 

implies, of course, that all combinations of methods from the class 𝓕𝟐.𝟒
𝟒,𝟑

  and the 

Richardson Extrapolation have the same absolute stability region)  

 

and  

 

(b) the combination of any representative of class  𝓕𝟐.𝟒
𝟒,𝟑

  with the Richardson Extrapolation 

has larger absolute stability region than the absolute stability region of the underlying 

numerical method.   

 

                                                                                                                                                       ■  

 

 

 

Theorem 2.3: A large class  𝓕𝟏.𝟒𝟐,𝟒.𝟖𝟔
𝟔,𝟒

  of Explicit Runge-Kutta Methods depending on the three 

parameters  𝐩 = 𝟒 ,   𝐦 = 𝟔 ,    𝛄𝟓
(𝟔,𝟒)

=1.42    and    𝛄𝟔
(𝟔,𝟒)

=4.86    can be derived. Two statements 

are true for this class:  

 

(a) every representative of class  𝓕𝟏.𝟒𝟐,𝟒.𝟖𝟔
𝟔,𝟒

 (i.e. any Explicit Runge-Kutta Method from 

class  𝓕𝟏.𝟒𝟐,𝟒.𝟖𝟔
𝟔,𝟒

) has the same absolute stability region that is optimal in some sense 

(which implies, of course, that all combinations of the  methods from the class 

𝓕𝟏.𝟒𝟐,𝟒.𝟖𝟔
𝟔,𝟒

  and the Richardson Extrapolation have the same absolute stability region)  
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and  

 

(b) the combination of any representative of class  𝓕𝟏.𝟒𝟐,𝟒.𝟖𝟔
𝟔,𝟒

  with the Richardson 

Extrapolation has a larger absolute stability region than the absolute stability region 

of the underlying numerical method.   

 

                                                                                                                                                       ■  

 

 

The validity of the statements in Theorem 2.2 and Theorem 2.3 were verified in Section 2.9. 

 

During the search for ERKMs with large absolute stability regions, we investigated many methods. For 

all these ERKMs, the new methods obtained when the Richardson Extrapolation is additionally used 

had bigger absolute stability regions than the underlying method. This fact justifies the formulation of 

the following conjecture: 

 

 

Conjecture: The combination of the Richardson Extrapolation with 

any Explicit Runge-Kutta Method leads to a new 

numerical method, which has a larger absolute stability 

region. 

 

 

Finally, at the end of this chapter it should also be emphasized that non-stiff and moderately stiff 

systems of ODEs, for which the methods studied in this chapter can be very useful, appear after some 

kind of discretization and/or splitting of mathematical models appearing in different areas of science 

and engineering.  

 

As an example, large-scale air pollution models should be mentioned; see Alexandrov, Sameh, 

Siddique and Zlatev (1997), Alexandrov, Owczarz, Thomsen and Zlatev (2004), Zlatev (1995) and 

Zlatev and Dimov (2006). Large-scale air pollution models can be used in many important 

environmental studies. The most important of the different studies is perhaps the investigation of the 

impact of climate changes on the high air pollution levels. Such investigations were carried out by 

using the Unified Danish Eulerian Model (UNI-DEM) in Zlatev (2010), Zlatev and Christensen 

(1989), Zlatev, Georgiev and Dimov (2013b) and Zlatev, Havasi and Faragó (2011). The advection 

terms (the terms containing first-order spatial derivatives in the systems of partial differential equations 

by which large-scale air pollution models are described) can be treated with explicit methods for 

solving systems of ODEs after applying some splitting procedure and discretization; see again 

Alexandrov, Sameh, Siddique and Zlatev (1997), Alexandrov, Owczarz, Thomsen and Zlatev 

(2004), Zlatev (1995) and Zlatev and Dimov (2006).  

 

An attempt to implement combinations of the Explicit Runge-Kutta Methods discussed in this chapter 

with the Richardson Extrapolation  in the non-stiff sub-models of UNI-DEM will be carried out in the 

near future. 
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2.11. Topics for further research 
 

 The following topics might lead to some very interesting and useful results: 

 

(A) Explicit Runge-Kutta Methods of order up to four were studied in this 

chapter. It will be worthwhile to try to extend the results for methods of 

order five, six and seven and to find some classes of methods with enlarged 

absolute stability regions. There will be some free parameters when such 

methods are considered. Will it be possible to find values of these 

parameters, which are in some sense optimal?    

 

(B) It will not be a very easy task to obtaine some particular methods within 

the classes of methods mentioned in (A). The determination of these 

methods will lead to the solution of non-linear algebraic equations in which 

the number of equations is smaller than the number of unknowns. Will it 

be possible to find particular methods which have optimal properties (or at 

least some good properties)? 

  

(C) It is commonly accepted that the ERKM’s with many stages are very 

expensive. However, if the numerical problems solved are moderately stiff, 

then such methods can be useful if they have good stability properties (they 

will be cheaper than numerical methods for stiff systems of ODE’s, 

because there is no need to solve large systems of linear algebraic equations 

during the Newton iterative procedure; see Chapter 4). Therefore, it is 

worthwhile to construct ERKM’s with many stages and good stability 

properties. 
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Chapter 3 

 

Linear multistep and predictor-corrector methods 

 
The linear multistep methods are very popular numerical tools, which  are often used in the numerical 

solution of systems of ODEs, especially in the case where the solved problems are non-stiff. However, 

some difficulties appear when one attempts to apply the Richardson Extrapolation in conjunction with 

these numerical methods. These difficulties will be shortly discussed in this chapter, but the major 

objective will be the presentation of another useful computational approach, the development and the 

usage of easily applicable, efficient and reliable predictor-corrector methods with improved 

stability properties. It will be demonstrated that these devices can successfully play the same role as 

the role of the Richardson Extrapolation when it is used in the calculation of approximate solutions of 

the  non-stiff systems of ODEs by Explicit Runge-Kutta Methods. By applying predictor-corrector 

schemes, one will be able both to improve the accuracy of the calculated results and to control in a 

sufficiently robust way the time-stepsize selection during the whole integration process. This means 

that the application of these alternative computational schemes, of the predictor-corrector methods, 

will have precisely the same computational effect as the effect achieved when the Richardson 

Extrapolation is applied in the numerical solution of systems of ODEs together with the Explicit Runge-

Kutta Methods. 

 

The class of the linear multistep methods will be introduced in Section 3.1. Some basic information 

about this large class of numerical algorithms, including some discussion of the important topics of 

consistency, zero-stability and convergence, will also be presented there. The advantages and the 

drawbacks of the linear multistep methods will be outlined. The most frequently used methods from 

this class will be introduced at the end of the first section. 

 

Variation of the time-stepsize is not always improving the efficiency of the computational process, but 

may sometimes lead to a very substantial reduction of the computing time. If the variation of the time-

stepsize will result in an improvement of the efficiency of the computational process and, thus, if it is 

desirable to introduce such a device in connection with the selected linear multistep methods, then at 

least one extra requirement appears. This additional requirement is the necessity to preserve the zero-

stability of the selected linear multistep methods during the computations. The loss of zero-stability 

when the time-stepsize is varied may cause serious computational problems. This important topic will 

be treated in Section 3.2. 

 

The absolute stability properties of the linear multistep methods also deserve some special treatment. 

The definition of absolute stability will be given in Section 3.3 and the problems related to this concept 

will be shortly discussed there. 

 

The difficulties connected to the application of the Richardson Extrapolation together with the linear 

multistep methods and the necessity to apply some alternative approach in the computer treatment of 

systems of ODEs will be shortly discussed in Section 3.4.   
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Predictor-corrector methods will be presented in Section 3.5. After a brief discussion of these schemes, 

several special predictor-corrector methods with improved absolute stability properties will also be 

presented. It will be emphasized that the predictor-correctors schemes are explicit numerical 

algorithms. 

 

One of the most important and most useful properties of the predictor-corrector schemes is the fact that 

an estimation of the local truncation error can easily be calculated when these computational tools are 

used. An efficient device for estimating the local truncation error will be introduced and discussed in 

Section 3.6. Other ways to control the accuracy of the computed approximations and to select an 

optimal step-size, or at least a good one, for the next time-step will also be presented there. 

 

The absolute stability properties of the predictor-corrector methods will be studied in Section 3.7. The 

necessity of improving the absolute stability properties of some commonly used classes of predictor-

corrector schemes will be justified in this section and some predictor-corrector schemes with improved 

absolute stability properties will be presented. 

 

Predictor-corrector schemes with several different correctors can sometimes be successfully used in 

the efforts to develop algorithms with improved absolute stability properties for some special 

situations, which appear when large-scale scientific and engineering models are to be handled on 

computers. This topic will be discussed in Section 3.8. 

 

A stronger stability requirement, the requirement to achieve A-stability, will be briefly discussed in 

Section 3.9. In fact, only implicit numerical methods can be A-stable and, the predictor-corrector 

schemes are not A-stable, because as mentioned above, these schemes are explicit. The A-stability 

concept is applicable for a few implicit linear 𝐤-step methods (in fact, only linear 𝐤-step methods with  

𝐤 ≤ 𝟐  can be A-stable). Weaker (but very useful for some applications) stability concepts are 

applicable to some numerical methods belonging to the class of Backward Differentiation Formulae. 

Some results will be presented in Section 3.9, but these concepts, especially the A-stability, will be 

discussed in detail in the next chapter, in Chapter 4.  

 

For some readers, who wish to apply linear multistep methods, it will be useful to have access to a list 

of the coefficients of the most popular linear multistep methods. Such a list is given in Section 3.10. It 

is not easy to find such a list in the commonly used text-books, where as a rule only methods of lower 

orders are given. 

 

Some general conclusions related to the linear multistep methods are listed in the last section, Section 

3.11, of the third chapter.  

 

Some proposals for a future research in this field are given in Section 3.12. 

 

 
 

3.1. Linear multistep methods for solving systems of ODEs 

 
Consider again the system of ODEs, which was defined by equalities (1.1) and (1.2) in Chapter 1. A 

general linear 𝐤-step method, where   𝐤 ≥ 𝟏   is a given integer, can be defined by the following 

formula: 
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(𝟑. 𝟏)      𝐲𝐧 +  ∑ 𝛂𝐢

𝐤

𝐢=𝟏

 𝐲𝐧−𝐢 = 𝐡 ∑ 𝛃𝐢

𝐤

𝐢=𝟎

𝐟𝐧−𝐢 ,           |𝛂𝐤| +  |𝛃𝐤|  > 𝟎  ,          𝐧 = 𝐤,   𝐤 + 𝟏, …  ,   𝐍,  

 

 

where   𝛂𝐢   and   𝛃𝐢   are real constants and   𝐍   is, as in Chapter 1, the number of grid-points in (1.6). 

Furthermore, for every value of the integer   𝐧 ≥ 𝟎    the abbreviation   𝐟𝐧   is introduced by the 

following formula:   

 

 

(𝟑. 𝟐)      𝐟𝐧 = 𝐟(𝐭𝐧 , 𝐲𝐧),          𝐧 = 𝟎 , 𝟏, 𝟐 , …  , 𝐍  . 

 

 

If    𝛃𝟎 = 𝟎 ,   then the computational formula defined by (3.1) is an explicit numerical method, because 

the right-hand-side does not depend on the unknown vector     𝐲𝐧 ,    while this formula is representing 

an implicit numerical method for    𝛃𝟎 ≠ 𝟎 .   

 

If    𝐤 = 𝟏 ,  then the calculations with formula (3.1) can be started directly. It will be sufficient in this 

case to use the initial value    𝐲𝟎 =  𝐲(𝐚) = 𝛈    from (1.2) at the first time-step and after that to carry 

on successively, step by step, the further computations. In principle, some approximation    𝐲𝟎 ≈ 𝛈     

can also be applied during the first time-step. It must be mentioned here that one-step formulae are 

actually obtained when the choice    𝐤 = 𝟏    is made in (3.1) and that some of these formulae, as the 

Forward Euler Method, were studied in the previous chapter.   

 

If     𝐤 > 𝟏 ,  then it is not possible to start directly the computations with formula (3.1). In the beginning 

of the computations it will be necessary to calculate sufficiently accurate approximations of the first    

𝐤 − 𝟏  values of the exact solution at the equidistant grid defined by (1.6) by using some other  

numerical methods of an appropriate order (as, for example, with some Runge-Kutta methods). More 

precisely, it will indeed be necessary to calculate sufficiently accurate approximations of the 

following vectors   𝐲𝟏 ≈  𝐲(𝐭𝟏) ,    𝐲𝟐 ≈  𝐲(𝐭𝟐) ,   …  , 𝐲𝐤−𝟏 ≈  𝐲(𝐭𝐤−𝟏) . These approximations are 

often called starting values. This can be done, as mentioned above, by using some one-step numerical 

method of an appropriate order of accuracy in the beginning of the computational process (the order of 

accuracy of the auxiliary numerical method used to obtain the starting values must at least be equal to 

the order of accuracy of the selected linear multistep method that will be used in the further 

calculations). The need to prepare sufficiently accurate starting values is one of the serious drawbacks 

of the linear multistep methods (see also §3.1.4). More details about the calculation of the starting 

values, when linear multistep methods with   𝐤 > 𝟏   are to be used in the solution of systems of ODEs, 

can be found, for example, in Henrici (1968) and Lambert (1991).  

 

Two polynomials, which are often called characteristic polynomials (see Lambert, 1991), are usually 

associated with the coefficients of the linear multistep method defined by (3.1): 

 

 

(𝟑. 𝟑)      𝛒(𝐳) = 𝟏 +  ∑ 𝛂𝐢

𝐤

𝐢=𝟏

𝐳𝐢 ,           𝛔(𝐳) =  ∑ 𝛃𝐢

𝐤

𝐢=𝟎

𝐳𝐢 ,             𝐳 ∈ ℂ . 
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Many important properties of the linear multistep methods, such as order conditions, attainable order 

of accuracy, consistency, zero-stability and convergence, can efficiently be studied and will be studied 

in the remaining part of this chapter by using these polynomials. 

 

 

 

3.1.1. Order conditions  

 

If the numerical method defined by (3.1) is of order of accuracy   𝐩 ≥ 𝟏 ,  then the coefficients   𝛂𝐢   

and   𝛃𝐢   must satisfy the following relationships (see Lambert, 1991): 

 

 

(𝟑. 𝟒)      𝟏 + ∑ 𝛂𝐢

𝐤

𝐢=𝟏

= 𝟎  , 

 

 

(𝟑. 𝟓)      ∑ 𝐢𝛂𝐢

𝐤

𝐢=𝟏

=  ∑ 𝛃𝐢

𝐤

𝐢=𝟎

  , 

 

 

(𝟑. 𝟔)     
𝟏

𝐪!
 ∑  𝐢𝐪 𝛂𝐢

𝐤

𝐢=𝟏

=
𝟏

(𝐪 − 𝟏)!
 ∑  𝐢𝐪−𝟏 𝛃𝐢 ,            𝐪 = 𝟐 , 𝟑 , … , 𝐩  .

𝐤

𝐢=𝟎

   

 

 

Note that, by applying the characteristic polynomials given in (3.3), the equalities (3.4) and (3.5) can 

be rewritten as 

 

 

(𝟑. 𝟕)      𝛒(𝟏) = 𝟎            
 

 

and 

 

 

(𝟑. 𝟖)       
𝐝𝛒(𝟏)

𝐝𝐳
=  𝛔(𝟏)     

 

 

respectively. Note too that the linear multistep method is of order one when the relationships  (3.7) and 

(3.8) or, which is the same, when (3.4) and (3.5), are satisfied. 

 

More details about the order conditions and their application in the efforts to design efficient linear 

multistep methods and different predictor-corrector methods can be found in Butcher (2003), Hairer, 
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Nørsett and Wanner (1987), Hundsdorfer and Verwer (2003), Lambert (1991) and Shampine 

(1994). 

 

 

 

 

3.1.2. Basic definitions 
 

The following definitions are related to three fundamental properties of the linear multistep methods: 

to the concepts of consistency, zero-stability and convergence. These concepts are important not only 

for the linear multistep methods, but also for many other numerical methods for solving systems of 

ODEs (as, for example, for the Explicit Runge-Kutta Methods that were presented and discussed in the 

previous chapter). 

 

 

Definition 3.1: The linear multistep method (3.1) is said to be consistent if (3.3) and (3.4) hold or, in 

other words, if (3.7) and (3.8) hold and, thus, if the method (3.1) is at least of order one.  

 

                                                                                                                                                     ∎ 
 

 

Definition 3.2: The linear multistep method (3.1) is said to be zero-stable if no root of the first 

characteristic polynomial   𝛒(𝐳)   is greater than one in absolute value and if every root that is equal to 

one (in absolute value) is a simple root (i.e. there are no multiple roots equal to one in absolute value).  

 

                                                                                                                                                     ∎ 
 

 

Definition 3.3: The linear multistep method introduced by (3.1) is said to be convergent if for all 

initial value problems for systems of ODEs defined by (1.1) and (1.2), for which the exact solution   

𝐲(𝐭)   exists and is unique on the interval   [𝐚, 𝐛]   (which means that the conditions of Theorem 1.1 in 

Chapter 1 are satisfied), the relationship 

 

 

(𝟑. 𝟗)      𝐥𝐢𝐦
𝐡→𝟎  ⋀  𝐧𝐡=𝐭𝐧−𝐚

𝐲𝐧 = 𝐲(𝐭𝐧) 

 

 

holds for all   𝐭𝐧 ∈ (𝐚, 𝐛]   and for numerical solutions   {𝐲𝐧} ,    𝐧 = 𝐤 , 𝐤 + 𝟏 , …  , 𝐍  of the 

difference equation (3.1) satisfying starting conditions   𝐲𝐢 = 𝛈𝐢(𝐡) ,    𝐢 = 𝟏 ,   𝟐 , …  , 𝐤 − 𝟏 ,   for 

which 

 

 

(𝟑. 𝟏𝟎)            𝐥𝐢𝐦 
𝐡→𝟎 

𝛈𝐢(𝐡) = 𝛈 . 

  

 

                                                                                                                                                     ∎ 
 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

86 

 

 

 

Now the following theorem holds (see, for example, Lambert, 1991). 

 

 

Theorem 3.1: The linear multistep method defined by (3.1) is convergent if and only if it is both 

consistent and zero-stable. 

 

 

                                                                                                                                                     ∎ 
 

The statement of Theorem 3.1 is often abbreviated as 

 

 

consistency + zero-stability  ⟺  convergence 

 

 

This means that both consistency and zero-stability are needed in the efforts to design convergent linear 

multistep methods. Note too that in the definitions related to these important concepts it was implicitly 

assumed that a constant time-stepsize is used on the grid (1.6) defined in Chapter 1. The variation of 

the time-stepsize causes some problems when the linear multistep methods defined by (3.1) are used; 

this is a rather serious drawback of these methods. 

 

It follows from Theorem 3.1 that the concept of zero-stability is very important, because combined 

with consistency it guarantees convergence. It turns out, however, that problems with the preservation 

of the zero-stability of the linear multistep methods may arise when variations of the time-stepsize are 

allowed. Some classes of linear multistep methods for which the zero-stability is preserved also in the 

case when the time-stepsize is varied will be introduced in Section 3.2. 

 

 

 

 

 

3.1.3. Attainable order of linear multistep methods  

 

It is natural to ask the following question:  

 

 

What is the maximal order of a convergent linear k-step  method? 

 

 

The order conditions, which are given by (3.4) – (3.6), depend on the coefficients   𝛂𝐢   and   𝛃𝐢  of the 

linear multistep method. It is immediately seen that the number of these coefficients is   𝟐𝐤   when the 
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method (3.1) is explicit (i.e. when   𝛃𝟎 = 𝟎 ) and   𝟐𝐤+1   when the method (3.1) is implicit (i.e. when   

𝛃𝟎 ≠ 𝟎 ). This means that in principle either   𝟐𝐤   or    𝟐𝐤+1   order conditions of type (3.4) – (3.6) 

arise and are to be satisfied for the explicit and implicit linear 𝐤-step methods respectively. It is 

furthermore clear that these relationships (the order conditions, which have to be satisfied) form a 

system of linear algebraic equations. Therefore, one should expect that linear 𝐤-step methods of 

orders   𝐩 = 𝟐𝐤   and   𝐩 = 𝟐𝐤 + 𝟏 , which are both reliable and efficient, can be constructed when 

explicit and implicit linear multistep methods are selected. Unfortunately, such a conclusion is not true 

when the requirement for constructing convergent numerical methods is additionally imposed. This 

requirement, the requirement to ensure convergence, must necessarily be imposed and it leads to the 

famous first Dahlquist barrier. In fact, the restriction of the attainable order for convergent linear 𝐤-

step methods that is caused by the first Dahlquist barrier is a consequence of the following theorem; 

see p. 55 in Lambert (1991):  

 

 

Theorem 3.2: No zero-stable 𝐤-step linear method can have order of accuracy exceeding   𝐤+1   when  

𝐤   is odd and   𝐤+2   when   𝐤   is even.          

 

                                                                                                                                                     ∎ 
 

 

Since a convergent linear 𝐤-step  method must be zero-stable (according to Theorem 3.1) and a method 

of order greater than or equal to one is consistent, it is clear that “zero-stable” can be replaced with 

“convergent” in the statement of Theorem 3.2. 

 

A statement similar to the assertion of Theorem 3.2 has been proved by G. Dahlquist in 1956 (see 

Dahlquist, 1956, 1959).  

 

 

 

 

3.1.4. Drawbacks and advantages of the linear multistep methods  

 

Some of the major drawbacks of the linear multistep methods were already mentioned in the previous 

sub-sections. We shall list the major drawbacks below. 

 

(a) Need to calculate starting values. If   𝐤 > 𝟏 ,  then it is necessary to calculate   𝐤 − 𝟏   

starting values. Several different approaches can be used to resolve this problem. It is 

simplest, in principle at least, to apply some one-step method in the calculation of the 

needed starting values. However, one must remember that it is necessary to calculate 

sufficiently accurate starting values and this requirement can cause additional 

difficulties. This means that the order of accuracy of the one-step method selected for 

the computation of the starting values should be at least equal to the order of accuracy 

of the linear multistep method, which will be used in the remaining part of the 

calculations. 

 

(b) Difficulties with the variations of the time-stepsize. The use of variable time-

stepsizes might be very useful in some situations. This fact was explained in Chapter 

1. The variation of the time-stepsize will certainly be very efficient when some 
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components of the solution vector are quickly varying in a short part of the time-

interval   [𝐚, 𝐛] ,  while all its components are slowly varying in the remaining part of 

this interval. In such a case, it will be efficient to use small time-steps  as well as more 

accurate formulae when some components of the solution vector have steep gradients 

and large time-stepsizes when all its components are smoothly and slowly varying. The 

straight-forward development and implementation of a suitable technique for an 

automatic variation of the time-stepsize and/or of the integration formula during the 

solution process results in a method with variable coefficients depending on the  time-

stepsizes that were used before the current time-step (more details can be found, for 

example, in Zlatev, 1978, 1981b, 1983, 1984). The calculation of the coefficients of 

the linear multistep formula can cause some problems when variable time-stepsizes are 

used and especially if in addition a variation of the formulae used is also allowed. This 

important topic will be further discussed in Section 3.2. 

 

(c) The absolute stability regions of the linear multistep methods are small in 

comparison with those of the Explicit Runge-Kutta Methods. Moreover, the 

absolute stability regions are in general becoming smaller when the order of accuracy 

is increased (while the opposite is true for the Explicit Runge-Kutta Methods). The 

decrease of the size of the absolute stability regions is especially true for the explicit 

linear multistep methods. The fact that there are problems (or at least that problems 

may appear) in connection with the stability of the computational process is another 

serious drawback of the linear multistep methods. This is especially true in the case 

when mildly-stiff systems of ODEs are to be handled. The problems related to the 

absolute stability regions of the linear multistep methods will be treated in some more 

detail in Section 3.4 for linear multistep methods as well as in Section 3.7 and Section 

3.8  for some special classes of predictor-corrector schemes. 

 

(d) Only very few of the linear multistep methods are A-stable. A-stability is important 

when stiff systems of ODEs are to be treated. A-stable linear multistep method can be 

developed only for   𝐤 ≤ 𝟐 .  The A-stability and some related stability concepts will 

be described in Section 3.9. It should be mentioned here that the Backward 

Differentiation Formulae, see the end of the next sub-section, §3.1.5, have reasonably 

good stability properties and are very useful in the treatment of some special systems 

of ODEs. 

 

 

The linear multistep methods have also some very important advantages: 

 

(A) The formulae, by which these methods are defined, are very simple and as a rule it is 

easy to implement them in different parts of large-scale scientific and engineering 

models. 

 

(B) The leading terms of the truncation error can be evaluated in a relatively straight-

forward and very efficient way. 

 

(C) These methods can be implemented in a very straight-forward manner as predictor-

corrector schemes, which are very efficient when non-stiff or even mildly-stiff systems 

of ODEs are to be solved numerically. 
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The predictor-corrector schemes will be discussed in the next sections. 

 

 

 

3.1.5. Frequently used linear multistep methods  

 

The most frequently used linear multistep methods are the Adams formulae, which are defined in the 

following way: 

 

 

(𝟑. 𝟏𝟏)      𝐲𝐧  = 𝐲𝐧−𝟏 + 𝐡 ∑ 𝛃𝐢

𝐤

𝐢=𝟎

𝐟𝐧−𝐢 ,           |𝛃𝐤|  > 𝟎  ,          𝐧 = 𝐤,   𝐤 + 𝟏, …  ,   𝐍 .  

 

 

This means that  

 

 

(𝟑. 𝟏𝟐)      𝛂𝟏 =  −𝟏 ,       𝛂𝐢 = 𝟎 ,               𝐢 = 𝟐,   𝟑 ,   …  ,   𝐤,  
 

 

when the Adams formulae are used.  

 

If  𝛃𝟎 = 𝟎 ,  i.e. if the linear multistep methods defined by using (3.11) and (3.12) are explicit, then 

they are called Adams-Bashforth Formulae (Adams, 1883, Bashforth, 1883). 

 

If  𝛃𝟎 ≠ 𝟎 ,  i.e. if the methods defined by applying (3.11) and (3.12) are implicit, then they are called 

Adams-Moulton Formulae (Adams, 1883, Moulton 1926). 

 

Some people claim that both the Adams-Bashforth Formulae and the Adams-Moulton Formulae were 

invented by J. C. Adams in 1855.   

 

The linear multistep methods from two other classes, the Nyström methods and the generalized Milne-

Simpson methods, are not so popular as the Adams methods. However, some interesting properties of 

these methods when they are combined with the Adams methods can be derived in the important case 

when variation of both the time-stepsize and the formulae are allowed.  

 

The Nyström and the generalized Milne-Simpson methods are defined in the following way: 

 

 

(𝟑. 𝟏𝟑)      𝐲𝐧  = 𝐲𝐧−𝟐 + 𝐡 ∑ 𝛃𝐢

𝐤

𝐢=𝟎

𝐟𝐧−𝐢 ,             |𝛃𝐤|  > 𝟎  ,            𝐧 = 𝐤,   𝐤 + 𝟏, …  ,   𝐍 .  

 

 

This means that  
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(𝟑. 𝟏𝟒)      𝛂𝟏 =  𝟎 ,       𝛂𝟐 =  −𝟏 ,        𝛂𝐢 = 𝟎 ,               𝐢 = 𝟑,   𝟒 ,   …  ,   𝐤,  
 

 

when the Nyström methods and/or the generalized Milne-Simpson methods are used.  

 

If    𝛃𝟎 = 𝟎 ,    i.e. if the methods defined by using (3.13) and (3.14) are explicit, then they are called 

Nyström methods  (Nyström, 1925). 

 

If  𝛃𝟎 ≠ 𝟎 ,  i.e. if the methods defined by using (3.13) and (3,14) are implicit, then they are called 

generalized Milne-Simpson methods (Milne, 1926, 1953). 

 

If the problem solved, i.e. the system of ODEs defined by (1.1) and (1.2), is stiff, then some methods 

from the class of the Backward Differentiation Formulae can often be successfully used. The 

Backward Differentiation Formulae form a sub-class of the class of the linear multistep methods, which 

is defined by: 

 

 

(𝟑. 𝟏𝟕)      𝐲𝐧 + ∑ 𝛂𝐢

𝐤

𝐢=𝟏

𝐲𝐧−𝐢 = 𝐡 𝛃𝟎𝐟𝐧 ,          |𝛂𝐤|  > 𝟎  ,          |𝛃𝟎|  > 𝟎  ,           𝐧 = 𝐤,   𝐤 + 𝟏, …  ,   𝐍 .  

 

 

The methods of this sub-class have relatively good stability properties (at least in the case when the 

order of accuracy is not greater than six), but they are implicit and, thus, in general large non-linear 

systems of algebraic equations are to be solved at every time-step when these methods are used.  

 

The well-known and very popular first-order Backward Differentiation Formula, which is called also 

the Implicit Euler Method, can be obtained from (3.17) by setting there   𝐤 = 𝟏 .  This method is also 

an implicit Runge-Kutta method of order one. It will be further discussed in Chapter 4.  

 

More details about the Backward Differentiation Formulae can be found, for example, in Gear (1971), 

Hairer and Wanner (1980), Hundsdorfer and Verwer (2003) and Lambert (1991).  

 

 
 

3.2. Variation of the time-stepsize for linear multistep methods 

 
It was pointed out in the previous section (and also in the previous chapters) that it is worthwhile in 

some situations to be able to vary the time-stepsize during the computational process. Indeed, it is 

intuitively clear that if some of components of the exact solution vector   𝐲(𝐭)   are rapidly varying in 

some parts of the integration interval   [𝐚, 𝐛] ,  while all components of   𝐲(𝐭)   are slowly varying in 

the remaining parts of the integration interval   [𝐚, 𝐛] ,   then it will be more profitable to use small 

time-stepsizes in the parts where there are quickly varying components and large time-stepsizes in the 

remaining part of the time-interval. Furthermore, it will be efficient to use more accurate (and more 

expensive) formulae in the first case and less accurate, but considerably cheaper, formulae in the second 

case. These considerations lead to the idea of developing linear multistep variable stepsize variable 
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formula methods (LM VSVFMs).  While the potential advantage of these methods is obvious, it is 

clear that two major difficulties arise and must be resolved during the development of such methods:  

 

(a) the coefficients of the linear multistep methods will not remain constant anymore (they 

will be dependent on several of the last used time-stepsizes when this approach is 

applied)  

 

and  

 

(b) the zero-stability properties of the linear multistep method might be affected when it is 

allowed to vary the time-stepsize and also the formulae.  

 

It will be shown, in the remaining part of this section, how the above two difficulties can be overcome. 

 

 

 

3.2.1. Calculation of the coefficients of an LM VSVFM  

 

Consider a set   𝓕 = {𝐅𝟏 ,   𝐅𝟐, …,   𝐅𝐦}   of    𝐦     linear multistep methods with constant coefficients. 

Formula    𝐅𝐣     of this set can be represented by the following expression, where index    𝐣    is expressing 

the fact that precisely the    𝐣𝐭𝐡   formula from set   𝓕   is used: 

 

 

(𝟑. 𝟏𝟖)      𝐲𝐧 + ∑ 𝛂𝐣𝐢

𝐤𝐣

𝐢=𝟏

 𝐲𝐧−𝐢 = 𝐡 ∑ 𝛃𝐣𝐢

𝐤𝐣

𝐢=𝟎

𝐟𝐧−𝐢 ,         𝐣 = 𝟏, 𝟐, … , 𝐦,         𝐧 > 𝐤𝐣 .  

 

 

Assume that methods of type (3.18) from the set   𝓕   are to be used in the development of a variable 

stepsize variable formula procedure and that precisely the formula      𝐅𝐣     is used at time-step  𝐧 . 

Denote by   𝐅𝐬𝐭𝐚𝐫𝐭 ∈ 𝓕    the first linear multistep formula, which has been used after the calculation of 

the starting values, and consider the time-stepsize  

 

 

(𝟑. 𝟏𝟗)      𝐡𝐧 = 𝐱𝐧 − 𝐱𝐧−𝟏 ,         𝐧 = 𝐤𝐬𝐭𝐚𝐫𝐭,   𝐤𝐬𝐭𝐚𝐫𝐭 + 𝟏, …  ,   𝐍,  
 

 

that is to be used at time-step  𝐧 ,  with   𝐧 ≥ 𝐤𝐬𝐭𝐚𝐫𝐭 .   Set   𝐡𝟎 = 𝐡𝟏 ,   assume that some formula   

𝐅𝐣 ∈ 𝓕  is to be applied and  consider the vector: 

 

 

(𝟑. 𝟐𝟎)      �̅�𝐧𝐣 = {  
𝐡𝐧−𝟏

𝐡𝐧
 ,    

𝐡𝐧−𝟐

𝐡𝐧
  ,   …  ,   

𝐡𝐧−𝐤𝐣+𝟏

𝐡𝐧
   }  ,        𝐧 > 𝐤𝐣 . 
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Under these assumptions, formula   𝐅𝐣  , the coefficients of which are not constants but depend on the 

time-stepsizes used during the last   𝐤𝐣   time-steps, can be written in the following form: 

 

 

(𝟑. 𝟐𝟏)      𝐲𝐧 + ∑ 𝛂𝐣𝐢(�̅�𝐧𝐣)

𝐤𝐣

𝐢=𝟏

 𝐲𝐧−𝐢 =  ∑ 𝐡𝐧−𝐢𝛃𝐣𝐢(�̅�𝐧𝐣)

𝐤𝐣

𝐢=𝟎

𝐟𝐧−𝐢  .           

 

 

Assume again that  𝐧 > 𝐤𝐣  and introduce the quantities: 

 

 

(𝟑. 𝟐𝟐)      𝐡𝐧−𝐢
∗ = ∑ 𝐡𝐧−𝐪

𝐢−𝟏

𝐪

  ,        𝐢 = 𝟏,   𝟐,   …,   𝐤𝐣 ,           𝐧 > 𝐤𝐣 ,            𝐡𝐧
∗ ≝ 𝟎 ,  

 

 

and 

 

 

(𝟑. 𝟐𝟑)      �̅�𝐧−𝐢
∗ =

𝐡𝐧−𝐢
∗

𝐡𝐧
= 𝟏 +

𝐡𝐧−𝟏

𝐡𝐧
+

𝐡𝐧−𝟐

𝐡𝐧
+ ⋯ +

𝐡𝐧−𝐢+𝟏

𝐡𝐧
 ,        𝐢 = 𝟏,   𝟐,   …,   𝐤𝐣 ,            �̅�𝐧

∗ ≝ 𝟎 .  

 

 

The basic question now is: how to calculate the coefficients of formula (3.21)? It can be proved 

(see, for example, Zlatev, 1983) that if formula (3.18) is of order   𝐩𝐣 ,  then formula (3.21)  is of the 

same order of accuracy and its coefficients can be obtained by the solving the system of linear algebraic 

equations formed by the equalities (3.24)-(3.26), which are listed below. It is immediately seen that 

these equalities are very similar to the equalities (3.4)-(3.6). 

 

 

(𝟑. 𝟐𝟒)      𝟏 + ∑ 𝛂𝐣𝐢(�̅�𝐧𝐣)

𝐤𝐣

𝐢=𝟏

= 𝟎  , 

 

 

(𝟑. 𝟐𝟓)      ∑ �̅�𝐧−𝐢
∗ 𝛂𝐣𝐢(�̅�𝐧𝐣)

𝐤𝐣

𝐢=𝟏

=  ∑
𝐡𝐧−𝐢

𝐡𝐧
𝛃𝐣𝐢(�̅�𝐧𝐣)

𝐤𝐣

𝐢=𝟎

  , 

 

 

(𝟑. 𝟐𝟔)      
𝟏

𝐪!
∑(�̅�𝐧−𝐢

∗ )
𝐪

 𝛂𝐣𝐢(�̅�𝐧𝐣)

𝐤𝐣

𝐢=𝟏

=  
𝟏

(𝐪 − 𝟏)!
∑

𝐡𝐧−𝐢

𝐡𝐧
(�̅�𝐧−𝐢

∗ )
𝐪−𝟏

 𝛃𝐣𝐢(�̅�𝐧𝐣) ,            𝐪 = 𝟐 , 𝟑 , … , 𝐩𝐣  .

𝐤𝐣

𝐢=𝟎
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Moreover, it can also be shown that if the same time-stepsize has been used during the last   𝐤𝐣   time-

steps or, in other words, if    𝐡𝐧 = 𝐡𝐧−𝟏 = ⋯ = 𝐡𝐧−𝐤𝐣
= 𝐡 ,    then equalities (3.24)-(3.26) will be 

reduced to equalities (3.4)-(3.6) and formula (3.21) will be reduced to formula (3.18). 

 

No proof has been given in this paragraph, but all proofs of the above statements can be found in Zlatev 

(1983). 

 

 

 

3.2.2. Zero-stability properties of an LM VSVFM  

 

We have shown in the previous paragraph how to calculate the coefficients of the formulae (these 

coefficients depend on a sequence of several of the last time-stepsizes) that are to be used in an LM 

VSVFM. However, this does not solve all problems related to the development of reliable and efficient 

LM VSVFMs. The biggest of the remaining problems is caused by the fact that the variation of the 

stepsize and/or of the formula may affect the zero-stability of the computational process. This 

phenomenon was first pointed out by Nordsieck in 1962, see Nordsieck (1962). After that many 

investigations were carried out, for example by Piotrowski (1969), Gear and Tu (1974) and Gear 

and Watanabe (1974). Two important results were established during these investigations:  

 

(a) it is necessary to impose some restrictions in the variation of the time-stepsize and/or 

the formulae  

 

and  

 

(b) zero-stability can be guaranteed (under an assumption that several restrictions on the 

variation of the time-stepsizes and/or the formulae were properly introduced) when the 

Adams methods are used.  

 

The last result, established in Gear and Tu (1974) and Gear and Watanabe (1974) for the Adams 

type formulae, was extended in Zlatev (1978, 1981b, 1983) for some more general methods. 

 

Rather general restrictions on the time-stepsize can be introduced by the following relationships, where 

a constant   𝐤𝐬𝐭𝐚𝐫𝐭   is defined in (3.19) and in the text before this formula: 

 

(A) Assume that   𝐡 = 𝐦𝐚𝐱
𝐧=𝐤𝐬𝐭𝐚𝐫𝐭,   𝐤𝐬𝐭𝐚𝐫𝐭+𝟏,… ,𝐍

𝐡𝐧  . Then the inequality  𝐡𝐍 ≤ 𝐜  must be 

satisfied for some positive constant  𝐜 . 

 

(B) There exist two constants   �̅�   and   �̅�   such that   𝟎 < �̅� ≤ 𝐡𝐧/𝐡𝐧+𝟏 ≤ �̅� < ∞   for 

all pairs of time-stepsizes, i.e. for   𝐧 = 𝐤𝐬𝐭𝐚𝐫𝐭,   𝐤𝐬𝐭𝐚𝐫𝐭 + 𝟏, … , 𝐍 − 𝟏 .  
 

(C)  If    𝐍 → ∞ ,  then   𝐥𝐢𝐦(𝐍𝐡) = 𝐜 .  

 

Similar restrictions were introduced first by Piotrowski (1962) and after that used in different proofs 

by Gear and Tu (1974), Gear and Watanabe (1974) and Zlatev (1978, 1981b, 1983). In the first two 

of these papers, it was proved that if the restrictions (A)-(C), or some similar restrictions, are satisfied, 
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then the Adams formulae are zero-stable. The major result proved in the papers of Zlatev was related 

to LM VSVFMs defined by the following more general formulae:  

 

 

(𝟑. 𝟐𝟕)      𝐲𝐧 + 𝛂𝐣𝟏(�̅�𝐧𝐣)𝐲𝐧−𝟏 + [𝟏 − 𝛂𝐣𝟏(�̅�𝐧𝐣)]𝐲𝐧−𝟐 =  ∑ 𝐡𝐧−𝐢𝛃𝐣𝐢(�̅�𝐧𝐣)

𝐤𝐣

𝐢=𝟎

𝐟𝐧−𝐢 ,       𝐧 > 𝐤𝐣 .           

 

 

The LM VSVFMs based on formulae of type (3.27)  are zero-stable when the restrictions (A)-(C) are 

satisfied.  

 

It is clear that if   𝛂𝐣𝟏(�̅�𝐧𝐣) = 𝟏  and   𝛃𝐣𝟎(�̅�𝐧𝐣) = 𝟎   for all values of    �̅�𝐧𝐣 ,   then formula (3.27) will 

be reduced to an Adams-Bashforth method. This means that the results proved by Gear and Tu (1974) 

and Gear and Watanabe (1974) are a special case of the results proved in Zlatev (1978, 1981b, 1983). 

Furthermore, it is immediately seen that if   𝛂𝐣𝟏(�̅�𝐧𝐣) = 𝟎   and   𝛃𝐣𝟎(�̅�𝐧𝐣) = 𝟎 ,   then the formula 

(3.27) is reduced to a Nyström method. Thus, formula (3.27) can be considered as a linear combination 

of Nyström and Adams-Bashforth methods in this case. Similarly, if   𝛂𝐣𝟏(�̅�𝐧𝐣) = 𝟎   and   𝛃𝐣𝟎(�̅�𝐧𝐣) ≠

𝟎 ,   then the formula (3.27) is reduced to a generalized Milne-Simpson method. It follows that formula 

(3.27) can be considered as a linear combination of generalized Milne-Simpson and Adams-Moulton 

methods in this case. 

  

More results as well as the proofs of the results given above can be found in Zlatev (1983). 

 

 

 

3.3. Absolute stability of the linear multistep methods 

 
Convergence, consistency and zero-stability are fundamental requirements of the numerical methods 

for solving systems of ODEs defined by (1.1) and (1.2), which are unconditionally needed. If these 

requirements are satisfied, then  the numerical solution    𝐲𝐧   at a given grid-point   𝐭𝐧   will be close 

to the corresponding value   𝐲(𝐭𝐧)   of the exact solution when time-stepsize   𝐡   is sufficiently small. 

However, in many situations, especially when large-scale scientific models are to be handled, it is much 

more important and useful to achieve sufficiently accurate results also when relatively large time-

stepsizes are used during the solution of the system of ODEs defined by (1.1) and (1.2) with explicit 

numerical methods. Good absolute stability properties of the selected numerical method should 

additionally be required in the efforts to be able to perform successfully the computations and to reach 

the end-point   𝐭𝐍   of the time-interval by using sufficiently large time-stepsizes. 

 

Consider  the linear multistep method defined by (3.1) and assume (as in Chapter 2) that it is applied 

in the numerical solution of  the scalar and linear Dahlquist test-equation:  

 

 

(𝟑. 𝟐𝟖)      
𝐝𝐲

𝐝𝐭
= 𝛌 𝐲,      𝐭 𝛜 [𝟎, ∞] ,      𝐲 𝛜 ℂ ,     𝛌 = �̅� + �̅�𝐢 ∈  ℂ− ,     �̅� ≤ 𝟎,     𝐲(𝟎) = 𝛈 𝛜 ℂ . 
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The following stability polynomial, which is formulated by the use of  

 

 

(a) the two characteristic polynomials   𝛒(𝐳)   and   𝛔(𝐳)   that were defined in equalities 

(3.3)  

 

 and  

 

(b) the complex quantity  𝛎 = 𝐡𝛌 ,   

 

can be associated with the Dahlquist test-equation (3.28):  

 

 
(𝟑. 𝟐𝟗)      𝛑(𝐳, 𝛎) = 𝛒(𝐳) − 𝛎 𝛔(𝐳) ,             𝐳 ∈ ℂ ,         𝛎 = 𝛂 + 𝛃𝐢 ∈ ℂ− ,       𝛂 ≤ 𝟎    . 

 
 

Now several absolute stability definitions are very useful in connection with the treatment of systems 

of ODEs by linear multistep methods. 

 

 

Definition 3.4: The linear multistep method is said to be absolutely stable for a given   𝛎 = 𝐡𝛌    if for 

that value of    𝛎    the inequality   |𝐳𝐢| < 𝟏    holds for all roots   𝐳𝐢 ,    𝐢 = 𝟏 ,   𝟐 , …  , 𝐤  ,   of the 

stability polynomial (3.29).   

 

                                                                                                                                                     ∎ 
 

 

Definition 3.5:  The set of all values of     𝛎 ∈ ℂ− ,    for which the linear multistep method is absolutely 

stable, forms the absolute stability region of this method. 

 

                                                                                                                                                     ∎ 
 

 

Note that the absolute stability concept is defined in different ways for linear multistep methods and 

for Explicit Runge-Kutta Methods. In the first case a linear multistep formula is called absolutely stable 

for a given   𝛎 = 𝛂 + 𝛃𝐢 ∈ ℂ−   if all the roots of its stability polynomial are within the unit disc. In the 

second case, an Explicit Runge-Kutta Method is absolutely stable for a given   𝛎 = 𝛂 + 𝛃𝐢 ∈ ℂ−   if 
the value of the absolute stability polynomial is less than or equal to one. It is intuitively clear that the 

first requirement is more restrictive than the second one and this explains the fact that the absolute 

stability regions of the linear multistep methods are in general smaller than those of the Explicit Runge-

Kutta Methods of the same order of accuracy. However, it should be emphasized here that the reason 

for introducing this concept is exactly the same in both cases: one wishes to ensure that if the exact 

solution is bounded, then the numerical solution is bounded too (or at least one has some good reasons 

to expect that the numerical solution remains bounded).      

 

The absolute stability regions of different linear multistep methods (both explicit and implicit) are 

given in many text-books treating the numerical solution of linear multistep method. These regions are 

not very impressive, especially when the linear multistep methods are explicit. They are, as mentioned 
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in the previous paragraph, in general considerably smaller than the absolute stability regions of the 

corresponding Explicit Runge-Kutta Methods, which were studied in the previous chapter. More 

precisely, they are smaller than for the Explicit Runge-Kutta Methods of the same order of accuracy. 

Furthermore, the absolute stability regions are becoming smaller when the order of accuracy of the 

linear multistep methods is increasing. For six explicit linear multistep methods, more precisely for the 

Adams-Bashforth methods of order less than or equal to six, this fact is demonstrated in Fig. 3.1. 

 

The absolute stability regions presented in Fig. 3.1 should be compared with the corresponding absolute 

stability regions given in Fig. 2.1 – Fig. 2.4 (the regions limited by the red curves) in the second chapter. 

Two major conclusions can be drawn when such a comparison is made:  

 

(a) The absolute stability regions of the Adams-Bashforth methods are smaller than the 

corresponding absolute stability regions of the Explicit Runge-Kutta Methods. The 

only exception is the case   𝐤 = 𝟏  resulting in the Explicit Euler Method (the Forward 

Euler Formula) both when the class of the linear multistep method is considered and 

when the class of Explicit Runge-Kutta Methods are studied. It should be mentioned 

here that the computational work needed to perform a time-step by the ERKMs is 

increased considerably when the order of accuracy becomes greater, because more 

function evaluations are needed, while the number of function evaluations remains the 

same (one only) when explicit linear multistep methods are used. This gives some 

compensation for the necessity to use smaller step-sizes, because of the stability 

restrictions, when explicit linear multistep methods are used. 

 

(b) If    𝐤 > 𝟏 , then the absolute stability regions of the Adams-Bashforth methods are 

becoming smaller when the order of accuracy is increased, while the opposite effect is 

observed when the Explicit Runge-Kutta Methods are studied.  

 

The length of the absolute stability intervals on the negative part of the real axis are also quickly 

decreasing when the order is increased. This fact is illustrated in Table 3.1. The results in this table 

should be compared with the corresponding results for the Explicit Runge-Kutta Methods presented in 

the previous chapter. 

 

It should be noted here that the results related to the absolute stability restrictions, which were derived 

under the assumption that the Dahlquist scalar and linear test-problem is treated by the selected 

numerical method, can be generalized, precisely as in Chapter 2, for some linear systems of  ODEs 

with constant coefficients. One should furthermore expect that, under some assumptions, the results 

will remain stable also in the case when linear systems of  ODEs with variable coefficients and even 

for non-linear systems of ODEs (more details about the argumentation of these statements can be found 

in Chapter 2).  

 

Some further details related to the absolute stability will be presented in Section 3.7, where this concept 

will be discussed in relation to the very important from a practical point of view predictor-corrector 

schemes. 
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Figure 3.1 

The absolute stability regions of the first six Adams-Bashforth formulae. 

 

 

Order Length of the absolute stability interval 

1 2.000 

2 1.000 

3 0.545 

4 0.300 

5 0.163 

6 0.086 

Table 3.1 

Lengths of the absolute stability intervals on the negative parts of 

the real axis for six Adams-Bashforth methods. 

 

 

The absolute stability regions of the implicit Adams-Moulton methods are larger than those of the 

corresponding explicit Adams-Bashforth methods. The Backward Differentiation Formulae have 

pretty good stability properties. We shall not discussed these two classes of linear multistep methods 
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here, because our major objective in this chapter will be the description of the most important properties 

of the predictor-corrector schemes, which are in some sense similar to the Richardson Extrapolation. 

However, more details about the Backward Differentiation Formulae can be found in many text-books 

on the numerical solution of systems of ODEs as, for example, in Butcher (2003), Gear (1971), 

Hairer, Nørsett and Wanner (1987), Lambert (1991) and Shampine (1994).  

 

 

 
 

3.4. Difficulties related to the implementation of Richardson Extrapolation 

 
Let us assume that an attempt to introduce the Richardson Extrapolation together with a given linear 

multistep method is to be carried out in a similar way as described in Chapter 1. More precisely, if the 

calculations have already been performed  for all grid-points   𝐭𝐢 ,   ( 𝐢 = 𝟏 , 𝟐 , …  , 𝐧 − 𝟏 )   by using 

an arbitrary linear 𝐤 -step method of order  𝐩 ,  and, thus, if approximations  𝐲𝐢 ≈ 𝐲(𝐭𝐢)  of the exact 

solution are available at the grid-points  𝐭𝐢 ,   ( 𝐢 = 𝟏 , 𝟐 , …  , 𝐧 − 𝟏 ), then the following three 

actions are to be carried out in order to obtain the next approximation  𝐲𝐧 : 
 

 (a) Perform one large time-step, with a time-stepsize  𝐡  when the grid (1.6) is used or 

with a time-stepsize  𝐡𝐧  if the grid (1.7) has been selected, in order to calculate an 

approximation   𝐳𝐧  of   𝐲(𝐭𝐧) . 

 

 (b) Perform two small time-steps, with a time-stepsize   𝟎. 𝟓 𝐡 ,  when the grid (1.6) is 

used or with a time-stepsize  𝟎. 𝟓 𝐡𝐧  if the grid (1.7) has been selected, in order to 

calculate another approximation   𝐰𝐧   of   𝐲(𝐭𝐧) . 

 

 (c) calculate an approximation   𝐲𝐧   by applying the formula: 

 

 

(𝟑. 𝟑𝟎)      𝐲𝐧 =  
𝟐𝐩𝐰𝐧 − 𝐳𝐧

𝟐𝐩 − 𝟏
 .   

 

 
No problems appear during the first action if the grid (1.6) is used (at least, if a constant time-stepsize 

𝐡  is selected), but the second action is causing some technical problems, because some values of the 

approximations at several extra points, which do not belong to the grid (1.6), will be needed. The 

additional points are:  𝐭𝐧−𝟎.𝟓 = 𝐭𝐧 − 𝟎. 𝟓𝐡 ,   𝐭𝐧−𝟏.𝟓 = 𝐭𝐧 − 𝟏. 𝟓𝐡 ,  … ,  𝐭𝐧−𝟎.𝟓𝐤 = 𝐭𝐧 − 𝐤(𝟎. 𝟓𝐡) .  

The need of approximations at these points means that even if it is possible to carry on the procedure 

that was described above, its implementation will increase very considerably the storage requirements. 

 

The solution of the other problem, the problem related to the fact that a procedure as that described by 

the above three actions can be applied only when an assumption that the grid used is equidistant is 

made, is also very problematic. The attempt to allow the usage of a variable time-stepsize strategy will 

be extremely difficult.  
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Because of these difficulties, we shall not try to implement the Richardson Extrapolation together with 

linear multistep methods. This seems not to be necessary either, because there exists an alternative 

approach which is  

 

(A) rather efficient  

 

and  

 

(B) easily applicable.  

 

Moreover, the major advantages of the Richardson Extrapolation are preserved when the alternative 

approach, the application of predictor-corrector schemes, is carefully implemented: (a) the accuracy 

can be improved, (b) the local truncation error can be estimated and (c) the time-stepsize can be 

controlled. It should be stressed also that the computational cost of a predictor-corrector scheme is 

considerably cheaper than the computational cost of the Richardson Extrapolation, which is an 

additional advantage of the predictor-corrector schemes.  

 

In the following part of this chapter we shall show that predictor-corrector schemes can successfully 

be used instead of the Richardson Extrapolation. The predictor-corrector methods will be introduced 

in the next section of this chapter. 

 

 

 

3.5. Introduction of some predictor-corrector schemes 

 
The linear multistep methods are mainly used in the practical computations as predictor-corrector 

schemes. Consider a pair of an explicit and an implicit linear 𝐤-step methods written in the following 

form: 

 

 

(𝟑. 𝟑𝟏)      𝐲𝐧
[𝟎]

+  ∑ 𝛂𝐢
[𝟎]

𝐤

𝐢=𝟏

𝐲𝐧−𝐢 = 𝐡 ∑ 𝛃𝐢
[𝟎]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢  ,                             |𝛂𝐤
[𝟎]

| +  |𝛃𝐤
[𝟎]

|  > 𝟎     

 

 

and 

 

 

(𝟑. 𝟑𝟐)      𝐲𝐧
[𝟏]

+  ∑ 𝛂𝐢
[𝟏]

𝐲𝐧−𝐢

𝐤

𝐢=𝟏

= 𝐡𝛃𝟎
[𝟏]

𝐟𝐧
[𝟎]

+ 𝐡 ∑ 𝛃𝐢
[𝟏]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢  ,        |𝛂𝐤
[𝟏]

| +  |𝛃𝐤
[𝟏]

|  > 𝟎   ∧    𝛃𝟎
[𝟏]

≠ 𝟎 , 

 

 

where the quantities  𝐟𝐧−𝐢  and  𝐟𝐧
[𝟎]

  are abbreviations of  𝐟(𝐭𝐧−𝐢 , 𝐲𝐧−𝐢 )  and  𝐟 (𝐭𝐧 , 𝐲𝐧
[𝟎]

)  respectively 

for  𝐢 = 𝟏, 𝟐 , … ,  k . 
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In fact the implicitness of the second formula, formula (3.32), disappears when it is combined with 

equality (3.31) in the manner shown above. Indeed, it is immediately seen that both (3.31) and (3.32) 

are explicit methods, because vector 𝐟𝐧
[𝟎]

= 𝐟 (𝐭𝐧 , 𝐲𝐧
[𝟎]

) , which appears in the right-hand-side of 

(3.32), can be computed by using the vector  𝐲𝐧
[𝟎]

  that was calculated by (3.31). The fact that (3.32) is 

an explicit formula is more clearly expressed in the very popular scheme consisting of four steps, which 

is shown below.  

 

 

Step Process                  Formula used 

Step 1 Prediction (𝟑. 𝟑𝟑)       𝐲𝐧
[𝟎]

+  ∑ 𝛂𝐢
[𝟎]

𝐤

𝐢=𝟏

𝐲𝐧−𝐢 = 𝐡 ∑ 𝛃𝐢
[𝟎]

𝐟𝐧−𝟏

𝐤

𝐢=𝟏

 

Step 2 Evaluation (𝟑. 𝟑𝟒)       𝐟𝐧
[𝟎]

= 𝐟 (𝐭𝐧 ,   𝐲𝐧
[𝟎]

) 

Step 3 Correction (𝟑. 𝟑𝟓)       𝐲𝐧
[𝟏]

+  ∑ 𝛂𝐢
[𝟏]

𝐲𝐧−𝐢

𝐤

𝐢=𝟏

= 𝐡𝛃𝐤
[𝟏]

𝐟𝐧
[𝟎]

+ 𝐡 ∑ 𝛃𝐢
[𝟏]

𝐤

𝐢=𝟏

𝐟𝐧−𝟏 

Step 4 Evaluation (𝟑. 𝟑𝟔)       𝐟𝐧
[𝟏]

= 𝐟 (𝐭𝐧 ,   𝐲𝐧
[𝟏]

) 

 

 

One should set  𝐲𝐧 = 𝐲𝐧
[𝟏]

  and  𝐟𝐧 = 𝐟𝐧
[𝟏]

 ,  when the fourth step of the above computational scheme is 

completed and, after this action, everything is prepared for the calculations at the next time-step, i.e. 

for the calculation (by using the same scheme) of  𝐲𝐧+𝟏 . The scheme given above is very often called  

PECE  scheme, where PECE is an abbreviation of “prediction - evaluation (of the right-hand-side 

function 𝐟 ) – correction-evaluation (again of the right-hand-side function 𝐟 )”.  

 

Sometimes the second evaluation of the right-hand-side function  𝐟  is not carried out and the 

calculations at the time-step  𝐧  are finished after the performance of the third step. The calculations 

for the next time-step  𝐧+1  are prepared by setting  𝐲𝐧 = 𝐲𝐧
[𝟏]

  and  𝐟𝐧 = 𝐟𝐧
[𝟎]

 .  The resulting scheme 

is called  PEC (which is an abbreviation of prediction-evaluation-correction).  The amount of the 

computational work is reduced in this way: only one function evaluation is used in the  PEC  scheme 

instead of the two function evaluations which have to be performed when the  PECE  is selected. 

However, one should take into account the fact that some price has often to be paid for the reduction 

of the computational work, because the absolute stability regions of the  PEC schemes are often 

considerably smaller than the corresponding absolute stability regions of the  PECE  schemes (see, for 

example, Lambert, 1991). This may sometimes require considerable reductions of the time-stepsize 

when the  PEC  scheme is selected. 

 

The corrector formula (3.35) can be used not only once, but several, say  𝐫 ,  times, where  𝐫  is some 

integer greater than one. In this case the schemes  𝐏(𝐄𝐂)𝐫𝐄  and  𝐏(𝐄𝐂)𝐫  can be used instead of  PECE  

and  PEC  respectively. However, these schemes are obviously more expensive and one must 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

101 

 

furthermore be careful with the stability of the computational process also in this choice, because the 

absolute stability properties of the  𝐏(𝐄𝐂)𝐫𝐄  and  𝐏(𝐄𝐂)𝐫 schemes with  𝐫 > 𝟏  are in some cases 

poorer than those of the  PECE  and  PEC  schemes (but these may also be better, especially in the 

case where  𝐏(𝐄𝐂)𝐫𝐄   schemes are used) . 

 

It will be more informative sometimes to show the orders of accuracy of the involved in the above 

abbreviations of the different predictor-corrector schemes. Assume, for example, that the orders of 

accuracy of the predictor and the corrector are    𝐩    and    𝐩 + 𝟏   respectively. Then the abbreviations 

can be rewritten as follows:   𝐏𝐩𝐄𝐂𝐩+𝟏 ,    𝐏𝐩𝐄𝐂𝐩+𝟏𝐄 ,    𝐏𝐩(𝐄𝐂𝐩+𝟏)
𝐫
   and    𝐏𝐩(𝐄𝐂𝐩+𝟏)

𝐫
𝐄  .    

 

One can also apply predictor-corrector schemes with several different correctors in an attempt to 

improve the absolute stability properties of the resulting predictor-corrector schemes. This approach 

will be discussed in the Section 3.8.  
 

 

 

3.6. Local Error Estimation  
 

The possibility of estimating in a sufficiently accurate way and in an easy manner the local truncation 

error at every time-step is one of the most important advantages of the predictor-corrector schemes 

based on linear multistep methods. Some examples, which demonstrate how the local error can be 

estimated, are given in this section. Much more examples and a more general presentation of the results 

can be found in Lambert (1991). 

 

Consider a  𝐏𝐩𝐄𝐂𝐩𝐄  (which means that it is assumed that the predictor formula and the corrector 

formula are of the same order of accuracy, of order  𝐩 ). Then the following relationships can be 

derived, see again Lambert (1991): 

 

 

(𝟑. 𝟑𝟕)      𝐲(𝐭𝐧) − 𝐲𝐧
[𝟎]

= 𝐂𝐩+𝟏
[𝟎]

𝐡𝐩+𝟏𝐲(𝐩+𝟏)(𝐭𝐧) + 𝐎(𝐡𝐩+𝟐)    

 

 

and 

 

 

(𝟑. 𝟑𝟖)      𝐲(𝐭𝐧) − 𝐲𝐧
[𝟏]

= 𝐂𝐩+𝟏
[𝟏]

𝐡𝐩+𝟏𝐲(𝐩+𝟏)(𝐭𝐧) + 𝐎(𝐡𝐩+𝟐) ,  

 

 

where the constants   𝐂𝐩+𝟏
[𝟎]

   and    𝐂𝐩+𝟏
[𝟏]

   do not depend on the time-stepsize  𝐡   and can be calculated 

by using the equalities: 

 

 

(𝟑. 𝟑𝟗)     𝐂𝐩+𝟏
[𝟎]

=
𝟏

(𝐩 + 𝟏)!
 ∑  𝐢𝐩+𝟏 𝛂𝐢

[𝟎]

𝐤

𝐢=𝟏

−
𝟏

𝐩!
 ∑  𝐢𝐩 𝛃𝐢

[𝟎]
 

𝐤

𝐢=𝟎
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and 

 

 

(𝟑. 𝟒𝟎)     𝐂𝐩+𝟏
[𝟏]

=
𝟏

(𝐩 + 𝟏)!
 ∑  𝐢𝐩+𝟏 𝛂𝐢

[𝟏]

𝐤

𝐢=𝟏

−
𝟏

𝐩!
 ∑  𝐢𝐩 𝛃𝐢

[𝟏]
 .

𝐤

𝐢=𝟎

 

 

 

Subtracting (3.38) from (3.37) we obtain: 

 

 

(𝟑. 𝟒𝟏)      (𝐂𝐩+𝟏
[𝟎]

− 𝐂𝐩+𝟏
[𝟏]

) 𝐡𝐩+𝟏𝐲(𝐩+𝟏)(𝐭𝐧) = 𝐲𝐧
[𝟏]

− 𝐲𝐧
[𝟎]

+ 𝐎(𝐡𝐩+𝟐) .  

 

 

Multiply both sides of (3.41) with   𝐂𝐩+𝟏
[𝟏]

 ,  divide by  𝐂𝐩+𝟏
[𝟎]

− 𝐂𝐩+𝟏
[𝟏]

   and neglect the term   𝐎(𝐡𝐩+𝟐) .   

The result is: 

 

 

(𝟑. 𝟒𝟏)      𝐂𝐩+𝟏
[𝟏]

 𝐡𝐩+𝟏 𝐲(𝐩+𝟏)(𝐭𝐧) =
 𝐂𝐩+𝟏

[𝟏]

𝐂𝐩+𝟏
[𝟎]

− 𝐂𝐩+𝟏
[𝟏]

 (𝐲𝐧
[𝟏]

− 𝐲𝐧
[𝟎]

) .  

 

 

Substitute this value of    𝐂𝐩+𝟏
[𝟏]

 𝐡𝐩+𝟏 𝐲(𝐩+𝟏)(𝐭𝐧)    in (3.38)  to obtain the following expression for the 

evaluation of an approximate value of  the local truncation error: 

 

 

(𝟑. 𝟒𝟐)      𝐲(𝐭𝐧) − 𝐲𝐧
[𝟏]

≈
 𝐂𝐩+𝟏

[𝟏]

𝐂𝐩+𝟏
[𝟎]

− 𝐂𝐩+𝟏
[𝟏]

 (𝐲𝐧
[𝟏]

− 𝐲𝐧
[𝟎]

) .  

 

 

It is seen that the expression on the right-hand side of (3.42) can be computed and, therefore, the above 

procedure is very similar to the Richardson Extrapolation. Moreover, we can introduce: 

 

 

(𝟑. 𝟒𝟑)      �̅�𝐧
[𝟏]

= 𝐲𝐧
[𝟏]

+
 𝐂𝐩+𝟏

[𝟏]

𝐂𝐩+𝟏
[𝟎]

− 𝐂𝐩+𝟏
[𝟏]

 (𝐲𝐧
[𝟏]

− 𝐲𝐧
[𝟎]

)   

 

 

and it follows, from (3.42) and (3.43), that the new approximation    �̅�𝐧
[𝟏]

   has of order of accuracy   

𝐩 + 𝟏,  which is by one higher than the order of accuracy of both    �̅�𝐧
[𝟏]

   and     �̅�𝐧
[𝟎]

 .  Note too that if 

the Richardson Extrapolation is to be carried out, then one has to perform three time-steps (one large  

time-step with a time-stepsize  𝐡   and two small time-steps with a time stepsize   𝟎. 𝟓𝐡 ) in order to 
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achieve the same effect. The corresponding computational work with the predictor-corrector scheme 

is equivalent to the performance of two time-steps (one with the predictor formula and the other with 

the corrector formula). This means that not only is the use of a predictor-corrector scheme very similar 

to the application of the Richardson Extrapolation, but it will often require a smaller amount of 

computations.      

 

The device for calculating an approximation of the local truncation error by (3.42) and for computing 

a more accurate numerical solution by using (3.43) was derived by Milne (1953) and was the major 

motivation for the further development of predictor-corrector schemes. Note that it was derived in this 

section for schemes of the type  𝐏𝐩𝐄𝐂𝐩𝐄 ,  but it can easily be extended also for predictor-corrector 

schemes of the type  𝐏𝐩𝐄𝐂𝐩 ,  𝐏𝐩(𝐄𝐂𝐩)
𝐫
𝐄    and  𝐏𝐩(𝐄𝐂𝐩)

𝐫
,  see, for example, Lambert (1991) . The 

requirement is that the order of accuracy of the predictor formula must be equal to the order of the 

corrector formula. However, this is not a serious restriction, because  

 

(a) there is obviously no meaning to use predictor formulae the order of accuracy of which 

is higher than that of the corrector formulae,  

 

and  

 

(b) if the order of the corrector formulae is higher than that of the predictor formulae it is 

very easy to obtain a reliable approximation of the local truncation error (for example, 

the difference    𝐲𝐧
[𝟏]

− 𝐲𝐧
[𝟎]

   is giving a sufficiently good approximation of the local 

truncation error in the case where predictor-corrector schemes of the   𝐏𝐩𝐄𝐂𝐩+𝟏𝐄  are 

used). 

 

The above discussion demonstrates the fact that by using appropriate predictor-corrector schemes we 

can indeed achieve in an efficient way the same two effects, which were derived during the  

presentation of the Richardson Extrapolation in the previous sections: 

 

 (a) it is possible to calculate an estimation of the local truncation error, by using the term 

in the right-hand-side of (3.42)  

 

and  

 

(b) it is possible to calculate a new approximation    �̅�𝐧
[𝟏]

 ,   which is more accurate than 

both    𝐲𝐧
[𝟏]

   and     𝐲𝐧
[𝟎]

 .        

 

However, one important question is still remaining and it has to be answered: 

 

 

Will it be possible to apply the results presented above in the 

calculation of a good guess for the time-stepsize, which has to be 

applied during the next time-step or, in other words, is it possible to 

implement efficiently a variable stepsize variable formula predictor 

corrector schemes based on linear multistep methods? 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

104 

 

 

It is not very easy to answer this question. The major problem is related to the fact that the quantities    

𝐂𝐩+𝟏
[𝟎]

   and    𝐂𝐩+𝟏
[𝟏]

    from (3.39) and (3.40) will not be constants anymore when it is allowed to vary 

the time-stepsize (and also to vary the formulae if this will additionally increase the efficiency of the 

computational process). The solution of this difficult problem is presented below.  

 

Consider, as in Section 3.2, a set   𝓕 = {𝐅𝟏 ,   𝐅𝟐, …,   𝐅𝐦} ,  which now consists of    𝐦     predictor-

corrector schemes with constant coefficients and assume that the predictor-corrector scheme   𝐅𝐣   is of 

the type a   𝐏𝐩𝐄𝐂𝐩𝐄  .   By using the same notation as that introduced in Section 3.2 and the relationship 

(3.26), the equalities (3.39) and (3.40) can be replaced by the following two relationships:  

 

 

(𝟑. 𝟒𝟒)     𝐂𝐩+𝟏
[𝟎]

(�̅�𝐧𝐣) =
𝟏

(𝐩 + 𝟏)!
 ∑  𝐢𝐩+𝟏 𝛂𝐣𝐢

[𝟎]
(�̅�𝐧𝐣)

𝐤

𝐢=𝟏

−
𝟏

𝐩!
 ∑  𝐢𝐩 𝛃𝐣𝐢

[𝟎]
(�̅�𝐧𝐣) 

𝐤

𝐢=𝟎

 

 

 

and 

 

 

(𝟑. 𝟒𝟓)     𝐂𝐩+𝟏
[𝟏]

(�̅�𝐧𝐣) =
𝟏

(𝐩 + 𝟏)!
 ∑  𝐢𝐩+𝟏 𝛂𝐣𝐢

[𝟏]
(�̅�𝐧𝐣)

𝐤

𝐢=𝟏

−
𝟏

𝐩!
 ∑  𝐢𝐩 𝛃𝐣𝐢

[𝟏]
(�̅�𝐧𝐣) .

𝐤

𝐢=𝟎

 

 

 

It is seen that the quantities   𝐂𝐩+𝟏
[𝟎]

(�̅�𝐧𝐣)   and   𝐂𝐩+𝟏
[𝟏]

(�̅�𝐧𝐣)  depend on the time-stepsizes that were used 

during the last   𝐣   time-steps. However, in the present special situation this is not very important. The 

important thing is that the coefficients in the terms participating in the right-hand-sides of (3.44) and 

(3.45) can be calculated (as was shown in Section 3.2). Therefore, the total quantities on the left-hand-

side of the last two equalities can also be calculated and used in (3.42) and (3.43). This means that the 

following two relationships can be obtained when the stepsize can be varied: 

 

 

(𝟑. 𝟒𝟔)      𝐂𝐩+𝟏
[𝟏]

(�̅�𝐧𝐣)(𝐡𝐧)𝐩+𝟏 𝐲(𝐩+𝟏)(𝐭𝐧) =
 𝐂𝐩+𝟏

[𝟏]
(�̅�𝐧𝐣)

𝐂𝐩+𝟏
[𝟎]

(�̅�𝐧𝐣) − 𝐂𝐩+𝟏
[𝟏]

(�̅�𝐧𝐣)
 (𝐲𝐧

[𝟏]
− 𝐲𝐧

[𝟎]
)   

 

 

and 

 

 

(𝟑. 𝟒𝟕)      𝐲(𝐭𝐧) − 𝐲𝐧
[𝟏]

=
 𝐂𝐩+𝟏

[𝟏]
(�̅�𝐧𝐣)

𝐂𝐩+𝟏
[𝟎]

(�̅�𝐧𝐣) − 𝐂𝐩+𝟏
[𝟏]

(�̅�𝐧𝐣)
 (𝐲𝐧

[𝟏]
− 𝐲𝐧

[𝟎]
) + 𝐎[(𝐡𝐧)𝐩+𝟏 ] .  
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It is clear now that an approximation of the norm   𝐄𝐧   of the local truncation error at time-step   𝐧   is 

given by 

 

 

(𝟑. 𝟒𝟖)      𝐄𝐧 = |
 𝐂𝐩+𝟏

[𝟏]
(�̅�𝐧𝐣)

𝐂𝐩+𝟏
[𝟎]

(�̅�𝐧𝐣) − 𝐂𝐩+𝟏
[𝟏]

(�̅�𝐧𝐣)
| ‖ 𝐲𝐧

[𝟏]
− 𝐲𝐧

[𝟎]
‖ .  

 

 

Assume now that some error tolerance  𝐓𝐎𝐋  has been prescribed. Then three possibilities arise and 

must be analysed carefully:  

 

(a)    𝐄𝐧 > 𝐓𝐎𝐋 ,   

 

(b)    𝐄𝐧 = 𝐓𝐎𝐋   
 

and   

 

(c)    𝐄𝐧 < 𝐓𝐎𝐋 .  
 

If (a) is satisfied, then the accuracy requirement introduced by the error tolerance has not been satisfied 

at time-step   𝐧 . The conclusion is that the time-step   𝐧   was not successful and therefore it  must be 

rejected, because the time-stepsize   𝐡𝐧   was too big and should be reduced in order to calculate a more 

accurate approximation. In many codes based on the use of a variable stepsize, the time-stepsize is 

reduced by some constant factor. Very often it is halved and the time-step is repeated. It is not very 

recommendable to try to use   𝐄𝐧   in an attempt to calculate more precisely the reduction factor, because 

the fact that   𝐄𝐧 > 𝐓𝐎𝐋   indicates that the results from the calculations at the current time-step are 

not very reliable. 

 

In the case where (b) is satisfied, everything is fine and it is best to perform the next time-size with 

time-stepsize   𝐡𝐧+𝟏 = 𝐡𝐧 .  Of course, in the practical computations one should require that the 

quantity    |𝐄𝐧 − 𝐓𝐎𝐋|   is in some sense small instead of the stringent requirement    𝐄𝐧 = 𝐓𝐎𝐋  , 

which will practically never satisfied in computer arithmetic. The introduction of    |𝐄𝐧 − 𝐓𝐎𝐋|   leads 

to some obvious modifications of (a) and (c). 

 

Case (c) is the  most interesting one. The relationship   𝐄𝐧 < 𝐓𝐎𝐋  indicates that it is possible to perform 

the next time-step with a larger time-stepsize. An attempt to find a good guess for the time-stepsize, 

which can successfully be used in the next time-step, can be carried out as follows. Assume that the 

following two equalities are satisfied: 

 

 

(𝟑. 𝟒𝟗)      𝐄𝐧 = 𝛄 𝐓𝐎𝐋          𝐚𝐧𝐝           𝐄𝐧 = 𝛅(𝐡𝐧)𝐩+𝟏 

 

 

with some constant   𝛄 < 𝟏  and some other constant 𝛅 . It is clear that the constants   𝛄  and  𝛅  can 

easily be computed.  𝐄𝐧  can be calculated by using (3.48),  𝐓𝐎𝐋  is prescribed by the user and  𝐡𝐧  is 

the last-time-stepsize. Therefore,  𝛄 =  𝐄𝐧/𝐓𝐎𝐋   and  𝛅 = 𝛄 𝐓𝐎𝐋/(𝐡𝐧)𝐩+𝟏 ,  where the quantities 

participating in the right-hand-sides of the two equalities are known.  It is clear now that the largest 
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guess for a time-stepsize   𝐡𝐧+𝟏 ,   which is suitable for the next time-step, time-step   𝐧 + 𝟏 ,   can be 

calculated by imposing a requirement to achieve  

 

 

(𝟑. 𝟓𝟎)      𝐄𝐧+𝟏 = 𝐓𝐎𝐋 = 𝛅(𝐡𝐧+𝟏)𝐩+𝟏  

 

 

when the next time-step is completed. 

 

By using the relations   𝐄𝐧 = 𝛅(𝐡𝐧)𝐩+𝟏  and   𝐓𝐎𝐋 = 𝛅(𝐡𝐧+𝟏)𝐩+𝟏  one can find out that the following 

number is a good guess for an optimal time-stepsize, which can be used at the next time-step: 

 

 

(𝟑. 𝟓𝟏)        𝐡𝐧+𝟏 = 𝐡𝐧 (
𝐓𝐎𝐋

𝐄𝐧
)

𝟏
𝐩+𝟏

  .    

 

 

There is no guarantee, of course, that the time-step   𝐧 + 𝟏   will be successful when the time-stepsize  

𝐡𝐧+𝟏  calculated by (3.51) is applied. Therefore, the right-hand-side of (3.51) is multiplied by some 

precaution positive factor less than one in many practical codes for solving systems of ODEs with 

predictor-corrector schemes with a variable time-stepsize. 

 

The approach described above can be used successfully when only one predictor-corrector scheme 

based on linear multistep methods, a predictor-corrector scheme of the type    𝐏𝐩𝐄𝐂𝐩𝐄 ,   is used in the 

solution of the system of ODEs defined by (1.1) and (1.2). In many situations, it is worthwhile to vary 

also the predictor-corrector scheme. Assume that two other predictor-corrector schemes from the set   

𝓕 = {𝐅𝟏 ,   𝐅𝟐, …,   𝐅𝐦}   are appropriate candidates for the performance  of the next time-step. In many 

practical codes, one selects as candidates for the next time-step predictor-corrector schemes of the types    

𝐏𝐩−𝟏𝐄𝐂𝐩−𝟏𝐄    and      𝐏𝐩+𝟏𝐄𝐂𝐩+𝟏𝐄 .  Replace   𝐡𝐧+𝟏   by   𝐡𝐧+𝟏
[𝐩]

  in (3.51).  Use          

 

 

(𝟑. 𝟓𝟐)      𝐄𝐧+𝟏
[𝐩]

= 𝐓𝐎𝐋           𝐚𝐧𝐝           𝐄𝐧+𝟏
[𝐩]

= 𝛅 (𝐡𝐧+𝟏
[𝐩−𝟏]

)
𝐩

  

 

 

instead of (3.50). Apply now equalities  (3.52)  and (3.49) to calculate a good guess for the time-

stepsize   𝐡𝐧+𝟏
[𝐩−𝟏]

  when the next time-step   𝐧 + 𝟏   will be carried out with the predictor-corrector 

scheme  𝐏𝐩−𝟏𝐄𝐂𝐩−𝟏𝐄 .   The result is:    

 

 

(𝟑. 𝟓𝟑)        𝐡𝐧+𝟏
[𝐩−𝟏]

= 𝐡𝐧 (𝐡𝐧

𝐓𝐎𝐋

𝐄𝐧
)

𝟏
𝐩

  .    

 

 

Use          

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

107 

 

 

(𝟑. 𝟓𝟒)      𝐄𝐧+𝟏
[𝐩+𝟐]

= 𝐓𝐎𝐋          𝐚𝐧𝐝          𝐄𝐧+𝟏
[𝐩+𝟐]

= 𝛅 (𝐡𝐧+𝟏
[𝐩+𝟏]

)
𝐩+𝟐

  

 

 

instead of (3.50). Use now equalities (3.54) and  (3.49) to calculate a good guess for the time-stepsize  

𝐡𝐧+𝟏
[𝐩+𝟏]

  when the next time-step   𝐧 + 𝟏   will be carried out with the predictor-corrector scheme  

𝐏𝐩+𝟏𝐄𝐂𝐩+𝟏𝐄 .   The result is:    

 

 

(𝟑. 𝟓𝟓)        𝐡𝐧+𝟏
[𝐩+𝟏]

= 𝐡𝐧 (
𝟏

𝐡𝐧

𝐓𝐎𝐋

𝐄𝐧
)

𝟏
𝐩+𝟐

  .    

 

 

A good guess for the time-stepsize   𝐡𝐧+𝟏   that can be used to perform the next time-step   𝐧 + 𝟏   can 

be obtained when the quantities on the right-hand-sides of (3.51), (3.53) and (3.55) are calculated. One 

can choose: 

 

 

(𝟑. 𝟓𝟔)        𝐡𝐧+𝟏 = 𝐦𝐚𝐱 ( 𝐡𝐧+𝟏
[𝐩−𝟏]

,   𝐡𝐧+𝟏
[𝐩]

 ,   𝐡𝐧+𝟏
[𝐩+𝟏]

 )     

 

 

and use this time-stepsize during the next-time step together with the respective predictor-corrector 

scheme. 

 

It is possible to involve more than three predictor-corrector schemes in the search for the scheme, which 

will produce the largest possible time-stepsize for the next time-step. 

 

To simplify the presentation of the results, we used above a set    𝓕 = {𝐅𝟏 ,   𝐅𝟐, …,   𝐅𝐦}   of predictor-

corrector schemes of the type   𝐏𝐩𝐄𝐂𝐩𝐄    where parameter   𝐩   is varied in the different schemes in 

this set. Other sets of predictor-corrector scheme can also be applied in a quite straight-forward way; 

see more details in Lambert (1991). 

 

The difficult problem related to the preservation of the zero-stability arises also when predictor-

corrector schemes are used in a variable stepsize variable formula manner. It can be proved that in this 

case the method will be zero-stable if the last corrector formula in every scheme     𝐅𝐣 ∈ 𝓕 ,     𝐣 = 𝟏,

𝟐, …  , 𝐦 ,    is zero-stable (Zlatev, 1985a, 1987, 1988, 1989). This implies that the last corrector 

formula  should be of the type: 

 

 

(𝟑. 𝟓𝟕)      𝐲𝐧 + 𝛂𝐣𝟏(�̅�𝐧𝐣)𝐲𝐧−𝟏 + [𝟏 − 𝛂𝐣𝟏(�̅�𝐧𝐣)]𝐲𝐧−𝟐 =  ∑ 𝐡𝐧−𝐢𝛃𝐣𝐢(�̅�𝐧𝐣)

𝐤𝐣

𝐢=𝟎

𝐟𝐧−𝐢 ,             
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with   𝛃𝐣𝟎(�̅�𝐧𝐣) ≠ 𝟎   and, furthermore, the same restrictions on the time-stepsize as those proposed in 

Section 3.2 must be imposed. Zero-stable methods based on sets of predictor-corrector schemes, where 

both the time-stepsize and the scheme can be varied during the computational process, were proposed 

in Thomsen and Zlatev (1979) and Zlatev and Thomsen (1979). In the development of these methods 

an attempt to improve the absolute stability properties of the predictor-corrector schemes has been 

carried out. The absolute stability of predictor-corrector schemes will be studied in the next section. 

 

It should be pointed out here that variable stepsize variable order schemes based on the use of Adams 

methods (Adams-Bashforth methods for the predictors and Adams-Moulton methods for the 

correctors) are normally used in efficient codes for solving non-stiff systems of ODEs defined by (1.1) 

and (1.2); see, for example, Enright, Bedet, Farkas and Hull (1974), Gear (1971), Hindmarsh 

(1971), Krogh (1973a, 1973b), Shampine and Gordon (1975), Shampine, Watts and Davenport 

(1976).         

 

 

 

 

 

3.7. Absolute stability of the predictor-corrector schemes  
 

We shall start the discussion in this section in the same way as in the beginning of Section 3.2, i.e. by 

pointing out that convergence, consistency and zero-stability are fundamental requirements, also when 

predictor-corrector schemes are to be used, related to the numerical solution of  systems of ODEs 

defined by (1.1) and (1.2). These three properties are unconditionally needed, because only if such 

requirements are satisfied, then the numerical solution    𝐲𝐧   at a given grid-point   𝐭𝐧   will be close to 

the corresponding value   𝐲(𝐭𝐧)   of the exact solution when time-stepsize   𝐡   is sufficiently small. 

However, in many situations, especially when large-scale scientific and engineering models are to be 

handled numerically on computers, it will be much more important and useful to achieve sufficiently 

accurate results even when relatively large time-stepsizes are used during the treatment of the systems 

of ODEs defined by (1.1) and (1.2) with explicit numerical methods. Therefore, good absolute 

stability properties of the selected predictor-corrector schemes should additionally be required in the 

efforts to be able to perform successfully the computations and to reach the end-point   𝐭𝐍   of the time-

interval by using larger time-stepsizes. 

 

Consider  a predictor-corrector scheme of type    𝐏𝐩𝐄𝐂𝐩𝐄    and assume (as was assumed in Chapter 2 

and in Section 3.2) that this numerical device is applied in the numerical solution of the scalar and 

linear Dahlquist test-equation:  

 

 

(𝟑. 𝟓𝟖)      
𝐝𝐲

𝐝𝐭
= 𝛌 𝐲,      𝐭 𝛜 [𝟎, ∞] ,      𝐲 𝛜 ℂ ,     𝛌 = �̅� + �̅�𝐢 ∈  ℂ− ,     �̅� ≤ 𝟎,     𝐲(𝟎) = 𝛈 𝛜 ℂ . 

 

 

Denote by   𝛒∗(𝐳)   and   𝛔∗(𝐳)     the two characteristic polynomials of the predictor formula and use 

the notation   �̅�(𝐳)   and   �̅�(𝐳)   for the characteristic polynomials of the corrector formula. Use again 

as in Section 3.2 the notation      𝛎 = 𝐡𝛌  . Assume that both the predictor and the corrector are linear 
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𝐤-step methods given by (3.33) and (3.35) respectively. Then the following stability polynomial can 

be associated with the selected      𝐏𝐩𝐄𝐂𝐩𝐄     scheme:   

 

 

(𝟑. 𝟓𝟗)      𝛑𝐏𝐄𝐂𝐄(𝐳, 𝛎) = �̅�(𝐳) − 𝛎 �̅�(𝐳) + 𝛎𝛃𝟎
[𝟏][𝛒∗(𝐳) − 𝛎 𝛔∗(𝐳)]  . 

 
 

Now several absolute stability definitions that are very similar to those introduced in Section 3.2 are 

very useful in connection with the treatment of systems of ODEs by predictor-corrector schemes. 

 

 

Definition 3.6: The predictor-corrector scheme 𝐏𝐄𝐂𝐄  consisting of the two linear 𝐤-step formulae 

given by (3.33) and (3.35) is said to be absolutely stable for a given   𝛎 = 𝐡𝛌    if for that value of    𝛎    

the inequality   |𝐳𝐢| < 𝟏    holds for all roots    𝐳𝐢 ,     𝐢 = 𝟏 ,   𝟐 , …  , 𝐤  ,    of its stability polynomial 

(3.59).   

 

                                                                                                                                                     ∎ 
 

 

Definition 3.7:  The set of all values of     𝛎 ∈ ℂ− ,    for which the predictor-corrector scheme  𝐏𝐄𝐂𝐄 

consisting of the two linear 𝐤-step formulae given by (3.33) and (3.35)  is absolutely stable, forms the 

absolute stability region of this method. 

 

                                                                                                                                                     ∎ 
 

 

It should be noted here that the orders of both the predictor formula and the corrector formula are not 

very important when absolute stability properties are studied. Therefore,   𝐩   was omitted in formula 

(3.59) and this parameter will not be used in the remaining part of this section. Another parameter, the 

parameter    𝐤 ,   is much more important in this situation, because this parameter determines the degrees 

of the four polynomials    𝛒∗(𝐳) ,    𝛔∗(𝐳) ,    �̅�(𝐳)    and    �̅�(𝐳) ,   which are involved in the absolute 

stability polynomial    𝛑𝐏𝐄𝐂𝐄(𝐳, 𝛎)  .  All these five polynomials are of degree   𝐤   and the important 

issue is the requirement the absolute values of all zeros of the absolute stability polynomial     

𝛑𝐏𝐄𝐂𝐄(𝐳, 𝛎)    to be less than or equal to one.       

 

The absolute stability regions of different predictor-corrector schemes consisting of two linear 𝐤-step 

formulae are given in several text-books treating the numerical solution of systems of ODEs; see for 

example, Lambert (1991). The above presentation is related to predictor-corrector schemes of the type       

𝐏𝐄𝐂𝐄 .  Absolute stability polynomials for other types of predictor-corrector methods can be 

introduced in the following way. Define the two quantities: 

 

 

(𝟑. 𝟔𝟎)     𝛏 ≝ 𝛎𝛃𝟎
[𝟏]

 

 
 

and 
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(𝟑. 𝟔𝟏)    𝛚𝐢 (𝛏) ≝
𝛏𝐢(𝟏 − 𝛏)

𝟏 − 𝛏𝐢
 ,          𝐢 = 𝟏,   𝟐,   …  ,   𝐫 . 

 
 

It is worthwhile to note here that   𝛚𝟏 (𝛏) = 𝛏 .  

 

In this notation, the absolute stability polynomials for predictor-corrector schemes of types   

𝐏𝐤(𝐄𝐂𝐤+𝟏)𝐫   and    𝐏𝐤(𝐄𝐂𝐤+𝟏)𝐫𝐄   are given by 

 

 

(𝟑. 𝟔𝟐)      𝛑𝐏(𝐄𝐂)𝐫(𝐳, 𝛎) = 𝛃𝟎
[𝟏]

𝐳𝐤[�̅�(𝐳) − 𝛎 �̅�(𝐳)] + 𝛚𝐫 (𝛏)[𝛒∗(𝐳) �̅�(𝐳) − �̅�(𝐳)𝛔∗(𝐳)]   

 
 

and 

 

 
(𝟑. 𝟔𝟑)      𝛑𝐏(𝐄𝐂)𝐫𝐄(𝐳, 𝛎) = �̅�(𝐳) − 𝛎 �̅�(𝐳) + 𝛚𝐫 (𝛏)[𝛒∗(𝐳) −  𝛎𝛔∗(𝐳)]   

 
 

respectively. 

 

It is clear that (3.63) will be reduced to (3.59) by setting   𝐫 = 𝟏 . 

 

Much more details can be found in Lambert (1991). Two important facts should be stressed here 

instead of giving a full description of the derivation of the above absolute stability polynomials:       

 

(A) The absolute stability regions for the predictor-corrector schemes are not very 

impressive, especially when predictor-corrector schemes of type  𝐏(𝐄𝐂)𝐫  are used. 

Even if  𝐏(𝐄𝐂)𝐫𝐄  schemes are selected, all regions are in general considerably smaller 

than the absolute stability regions of the corresponding Explicit Runge-Kutta Methods 

(the Explicit Runge-Kutta Method of the same order of accuracy), which were studied 

in the previous chapter. Furthermore, the absolute stability regions are normally 

becoming smaller when the order of accuracy of the predictor-corrector schemes is 

increasing. Some results, which demonstrate the fact that the absolute stability regions 

of the predictor-corrector schemes are as a rule becoming smaller when the order of 

accuracy in increased, are shown in Fig. 3.2. The orders of the predictors is varied from 

one to six in Fig. 3.2. The corresponding orders of the correctors are varied from two 

to seven. This means that    𝐏𝐤𝐄𝐂𝐤+𝟏𝐄   schemes were used with  𝐤 = 𝟏, 𝟐, … , 𝟔 .       
 

(B) The conclusion made in (A) indicates that it is worthwhile to try to improve the absolute 

stability properties of the predictor-corrector schemes. It must be emphasized here that 

one should try not only to improve the absolute stability properties but also to preserve 

the zero-stability properties of these numerical methods when these are to be used as 
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variable stepsize variable formula methods. The results of the efforts made in this 

directions will be described in the following part of this section. 

 

 

Figure 3.2 

Absolute stability regions of six Adams  𝐏𝐤𝐄𝐂𝐤+𝟏𝐄   schemes. 

 

 

 

 

Consider the following four formulae: 

 

 

(𝟑. 𝟔𝟒)      𝐲𝐧  = 𝐲𝐧−𝟏 + 𝐡 ∑ �̅�𝐢
[𝟎]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢 ,            𝐤 = 𝟐,   𝟑,   …   ,   𝟏𝟐 ,  

 

 

(𝟑. 𝟔𝟓)      𝐲𝐧  = 𝐲𝐧−𝟐 + 𝐡 ∑ �̂�𝐢
[𝟎]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢 ,            𝐤 = 𝟐,   𝟑,   …   ,   𝟏𝟐 ,  
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(𝟑. 𝟔𝟔)      𝐲𝐧  = 𝐲𝐧−𝟏 + 𝐡 ∑ �̅�𝐢
[𝟏]

𝐤

𝐢=𝟎

𝐟𝐧−𝐢 ,            𝐤 = 𝟐,   𝟑,   …   ,   𝟏𝟐 ,  

 

 

(𝟑. 𝟔𝟕)      𝐲𝐧  = 𝐲𝐧−𝟐 + 𝐡 ∑ �̂�𝐢
[𝟏]

𝐤

𝐢=𝟎

𝐟𝐧−𝐢 ,            𝐤 = 𝟐,   𝟑,   …   ,   𝟏𝟐 .  

 

Adams-Bashforth formulae, Nyström formulae, Adams-Moulton formulae and generalized Milne-

Simpson formulae are represented by (3.64), (3.65), (3.66) and(3.67) respectively. We shall 

additionally assume that the formulae (3.64) and (3.65) are of order of accuracy   𝐩 = 𝐤 , while the 

order of accuracy of the other two formulae is  𝐩 = 𝐤 + 𝟏 .  

 

Multiply (3.64) by    �̅�    and  (3.65) with   𝟏 − �̅�  .  Add the two equalities obtained after performing 

these two actions. The result is:       

 

 

(𝟑. 𝟔𝟖)      𝐲𝐧 + �̅�𝐲𝐧−𝟏 + (𝟏 − �̅�)𝐲𝐧−𝟐 = 𝐡 ∑ [�̅��̅�𝐢
[𝟎]

+ (𝟏 − �̅�)�̂�𝐢
[𝟎]

]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢 ,       𝐤 = 𝟐,   𝟑,   …   ,   𝟏𝟐 , 

 

 

Multiply (3.66) by    𝛂    and  (3.67) with   𝟏 − 𝛂  .  Add the two equalities obtained after performing 

these two actions. The result is:       

 

 

(𝟑. 𝟔𝟗)      𝐲𝐧 + 𝛂𝐲𝐧−𝟏 + (𝟏 − 𝛂)𝐲𝐧−𝟐 = 𝐡 ∑ [𝛂�̅�𝐢
[𝟏]

+ (𝟏 − 𝛂)�̂�𝐢
[𝟏]

]

𝐤

𝐢=𝟎

𝐟𝐧−𝐢 ,       𝐤 = 𝟐,   𝟑,   …   ,   𝟏𝟐 . 

 

 

It is clear that the two formulae (3.68) and (3.69) form a predictor-corrector scheme of    𝐏𝐤𝐄𝐂𝐤+𝟏𝐄    

type for    𝐤 = 𝟐,   𝟑,   …   ,   𝟏𝟐 .  Moreover, it is also clear that each of these predictor-corrector 

schemes depend on the two free parameters   �̅�    and   𝛂 .  These parameters were used in Thomsen 

and Zlatev (1979) and in Zlatev and Thomsen (1979) to design predictor-corrector schemes with 

improved absolute stability properties and to implement the so obtained schemes in a code for 

automatic integration of systems of ODEs. Some information about the properties of the improved 

predictor-corrector schemes are given in Table 3.2. Plots of the  of six    𝐏𝐤𝐄𝐂𝐤+𝟏𝐄    schemes with    

𝐤 =  𝟑,   …   ,   𝟖   are given in Fig. 3.3. 

 

Much more details about the predictor-corrector schemes with enhanced absolute stability properties 

can be found in the above two references. Plots, which show that the absolute stability regions of the    

𝐏𝐤𝐄𝐂𝐤+𝟏𝐄   that are combinations of Adams-Bashforth predictors and Adams-Moulton correctors with 

Nyström predictors and Generalized Milne-Simpson correctors respectively are larger than those of 

predictor-corrector schemes based on Adams formulae, are also given there.  



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

113 

 

 

 

Figure 3.3 

Absolute stability regions of six    𝐏𝐤𝐄𝐂𝐤+𝟏𝐄   schemes, which are combinations of Adams-Bashforth 

predictors and Adams-Moulton correctors with Nyström predictors and Generalized Milne-Simpson 

correctors respectively. 

 

 
 

3.8. Application of several different correctors 

 
The results  in Table 3.2 show clearly that the lengths of the absolute stability intervals on the imaginary 

axis are much smaller than the intervals of the absolute stability on the real axis when predictor-

corrector schemes, which are based on linear multistep formulae, are used. Therefore, it is desirable 

sometimes to have longer absolute stability interval on the imaginary axis and near this axis. This is 

the case for many applications from different fields of science and engineering. This will be 

demonstrated in this section by taking an example arising in the field of environmental modelling. 

After that we shall show how to design special schemes, which have longer intervals of absolute 

stability along the imaginary axis.  
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  K 𝛂 �̅� Interval on the real axis Interval on the imaginary axis 

  3 1.40   1.36 2.39  (1.92) 1.24  (1.18) 

  4 1.90   1.87 1.92  (1.41) 1.16  (0.93) 

  5 1.95   1.90 1.41  (1.04) 0.92  (0.64) 

  6 1.50   0.55 1.06  (0.76) 0.63  (0.52) 

  7 1.90   1.70 0.77  (0.58) 0.51  (0.37) 

  8 1.90   1.50 0.58  (0.44) 0.37  (0.26) 

  9 1.80   0.50 0.45  (0.34) 0.25  (0.18) 

10 1.50 -2.50 0.36  (0.26) 0.16  (0.12) 

11 1.80 -0.60 0.27  (0.21) 0.11  (0.07) 

12 1.80 -1.00 0.21  (0.17) 0.07  (0.04) 

Table 3.2 

Lengths of the absolute stability intervals on the real and imaginary axes of ten predictor-

corrector schemes of the type   𝐏𝐤𝐄𝐂𝐤+𝟏𝐄    with improved absolute stability properties. 

The values of the two free parameters   �̅�   and   𝛂 ,   for which the improved predictor-

corrector schemes were obtained, are listed in the second and the third columns 

respectively. The corresponding lengths of the traditionally used Adams-Bashforth-

Moulton predictor-corrector   𝐏𝐤𝐄𝐂𝐤+𝟏𝐄   schemes are given for comparison in brackets.  

 
 

 

 

3.8.1. An example from the field of environmental modelling  

 

Consider the following systems of partial differential equations (PDEs), which can be used to study 

long-range transport of air pollutants, mainly sulphur and nitrogen pollutants) in the atmosphere:  

 

 

(𝟑. 𝟕𝟎)      
𝛛𝐜

𝛛𝐭
= −𝐮

𝛛𝐜

𝛛𝐱
− 𝐯

𝛛𝐜

𝛛𝐲
− 𝐰

𝛛𝐜

𝛛𝐳
+ 𝐐,      𝐱 ∈ [𝐚𝟏, 𝐛𝟏],   𝐲 ∈ [𝐚𝟐, 𝐛𝟐],   𝐳 ∈ [𝐚𝟑, 𝐛𝟑],   𝐭 ∈ [𝐚, 𝐛]. 

 

 

The quantities involved in (3.70) can be defined as follows: 

 

 (a)  𝐜 = 𝐜(𝐱, 𝐲, 𝐳, 𝐭)  is the unknown function, a vector containing the concentrations of the 

studied by the model pollutants; it will be assumed here that the chemical part of the 

model is very simple, and more precisely that either   𝐒𝐎𝟐  and    𝐒𝐎𝟒   or     𝐍𝐎𝟐  and    

𝐍𝐎𝟑  are studied by the above model, i.e. the model can be used to study transport of 

either sulphur pollutants (sulphur di-oxide and sulphate) or nitrogen pollutants 

(nitrogen di-oxide and nitrate), which means that the model consists of two equations,  

 

(b)  𝐮 = 𝐮(𝐱, 𝐲, 𝐳, 𝐭) ,    𝐯 = 𝐯(𝐱, 𝐲, 𝐳, 𝐭)   and  𝐰 = 𝐰(𝐱, 𝐲, 𝐳, 𝐭)  are given functions 

representing the components of the wind velocity vector along the coordinate axes  

 

and   
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(c) the chemical reactions are described by the function   𝐐 = 𝐐(𝐱, 𝐲, 𝐳, 𝐭, 𝐜) , in fact it is 

assumed in connection with (3.70) that the chemical reactions are linear and that there 

are only two chemical species (this assumption is made only in Chapter 3). 

 

The model described mathematically by the system of PDEs (3.70) must be considered together with 

some initial and boundary conditions. It is assumed that periodic boundary conditions are specified and 

that the values of function  𝐜(𝐱, 𝐲, 𝐳, 𝐭)  are given for  𝐭 = 𝐚   and for all values of the spatial variable 

in the beginning of the time-interval.     

 

It is also assumed (this is typical for the large-scale air pollution models) that the spatial domain is a 

parallelepiped and an equidistant grid is introduced by  𝐆𝐋𝐌 = 𝐗𝐌𝐱
× 𝐘𝐌𝐲

× 𝐙𝐌𝐳
   where  𝐗𝐌𝐱

 ,   𝐘𝐌𝐲
   

and   𝐙𝐌𝐳
   are defined by 

 

 

(𝟑. 𝟕𝟏)       𝐗𝐌𝐱
≝ {𝐱𝟏 = 𝐚𝟏,   𝐱𝐢 = 𝐱𝐢−𝟏 + ∆𝐱 ,   𝐢 = 𝟏, 𝟐, … , 𝟐𝐌𝐱,   ∆𝐱 =

(𝐛𝟏 − 𝐚𝟏)

𝟐𝐌𝐱
,   𝐱𝟐𝐌𝐱

= 𝐛𝟏}, 

 

 

(𝟑. 𝟕𝟐)       𝐘𝐌𝐱
≝ {𝐲𝟏 = 𝐚𝟐,   𝐲𝐢 = 𝐲𝐢−𝟏 + ∆𝐲,   𝐢 = 𝟏, 𝟐, … , 𝟐𝐌𝐲,   ∆𝐲 =

(𝐛𝟐 − 𝐚𝟐)

𝟐𝐌𝐲
,   𝐱𝟐𝐌𝐲

= 𝐛𝟐}, 

 

 

 

and 

 

 

(𝟑. 𝟕𝟑)       𝐙𝐌𝐳
≝ {𝐳𝟏 = 𝐚𝟑,   𝐳𝐢 = 𝐳𝐢−𝟏 + ∆𝐳,   𝐢 = 𝟏, 𝟐 , … , 𝟐𝐌𝐳,   ∆𝐳 =

(𝐛𝟑 − 𝐚𝟑)

𝟐𝐌𝐳
,   𝐳𝟐𝐌𝐳

= 𝐛𝟑}. 

 

 

Assume that the pseudospectral method is used to discretize the spatial derivatives in (3.70) and to 

transform the system of PDEs into a large system of ODEs of the type: 

 

 

(𝟑. 𝟕𝟒)       
𝐝𝐠

𝐝𝐭
= 𝐟(𝐭, 𝐠)  .  

 

 

The number of equations in this system is   𝐌 = 𝟐𝐌𝐱 × 𝟐𝐌𝐲 × 𝟐𝐌𝐳 .  This number can indeed be very 

large. If we assume that   𝟐𝐌𝐱 = 𝟗𝟔 ,   𝟐𝐌𝐲 = 𝟗𝟔   and   𝟐𝐌𝐳 = 𝟏𝟎 ,   then   𝐌 = 𝟗𝟐𝟏𝟔𝟎 .   This 

number is already very large, but if the spatial domain has to cover the whole of Europe together with 

its surroundings, i.e. if long-range transport of air pollutants in different European countries is to be 

studied, then the surface cells will be  𝟓𝟎 𝐤𝐦 × 𝟓𝟎 𝐤𝐦 ,  which is rather crude. It is clear that much 

smaller surface cells are needed in order to improve the reliability of the model results. Therefore, it is 

much more reasonable to take  𝟐𝐌𝐱 = 𝟒𝟖𝟎 ,   𝟐𝐌𝐲 = 𝟒𝟖𝟎   and keep   𝟐𝐌𝐳 = 𝟏𝟎   and this second 

discretization will results in a system of   𝟒𝟔𝟎𝟖𝟎𝟎𝟎   ODEs  when the three grids (3.71), (3.72) and 
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(3.73) are applied in connection with (3.70). The time-integration interval is very long (covering 

normally a year) and many thousands of time-steps have to be carried out. Moreover, many different 

scenarios have to be performed in order to study the sensitivity of the model results to the variation of 

different key parameters, such as emissions, temperature variations, boundary conditions, etc. It should 

be mentioned here that such grids and much more chemical species were used in connection with 

several studies related to the impacts of future climatic changes on high air pollution levels, see for 

example, Csomós et al. (2006), Zlatev (2010),  Zlatev, Georgiev and Dimov (2013b), Zlatev, Havasi 

and Faragó (2011), Zlatev and Moseholm (2008).  

 

The above discussion shows clearly that it is necessary to try to solve the system of ODEs appearing 

in some environmental problems by using as large as possible time-stepsizes. In the remaining part of 

this section we will show that this is not an easy task and that the development of some special methods 

is needed in order to resolve it. The major problem is that the Jacobian matrix of (3.74) has eigenvalues 

close to the imaginary axis. 

 

 

 

3.8.2. Some absolute stability considerations related to environmental modelling  

 

Consider again (3.70) and assume  𝐮   is a constant. Assume furthermore that the following conditions 

are additionally satisfied: 

 

 

(𝟑. 𝟕𝟓)      𝐯 ≡ 𝟎,          𝐰 ≡ 𝟎,        𝐐 ≡ 𝟎 . 
 

  

Finally, assume that the pseudospectral method, see, for example, Fornberg (1975, 1996) or Zlatev, 

Berkowicz and Prahm (1983a,b,c),  is applied in the discretization of the so simplified equation 

(3.70). The result (see Zlatev, Berkowitcz and Prahm, 1984a,b) is: 

 

 

(𝟑. 𝟕𝟔)      
𝐝𝐠

𝐝𝐭
= −𝐮𝐒𝐠 ,  

 

 

where   𝐒   is a   𝟐𝐌𝐱 × 𝟐𝐌𝐱   skew-symmetric matrix and thus all its eigenvalues lie on the imaginary 

axis. In fact, the eigenvalues are given by the set  𝚲 = {−𝐌 + 𝐣)𝐢, 𝐣 = 𝟎, 𝟏, … , 𝟐𝐌, 𝐢𝟐 = −𝟏}  and it 

can be proved, Zlatev, Berkowicz and Prahm (1984c), that the computations will be stable when 

(3.76) is solved by the pseudospectral method if the time-stepsize satisfies the following inequality:  

 

 

(𝟑. 𝟕𝟕)      𝐡 < [ 
𝐡𝐢𝐦𝐚𝐠

|𝐮|𝛑
 

𝐌

𝐌 − 𝟏
 ] ∆𝐱 ,  

 

 

where   𝐡𝐢𝐦𝐚𝐠    is the length of the absolute stability interval on the imaginary axis of the selected 

numerical method.  
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If other discretization methods, as, for example, methods based on the application of finite elements or 

finite differences, are used instead of the pseudospectral method, then (3.76) has to be modified, but 

the major parameters,  ∆𝐱 ,  𝐡𝐢𝐦𝐚𝐠   and some quantities depending on the way in which the spatial 

derivatives are discretized and on the particular problem solved, would be represented also in the 

modified formula. 

 

The inequality (3.77) shows that the stability of the computational process when (3.76) is solved 

numerically depends on  

 

(a) the problem solved (because of the presence of  𝐮  in the inequality),  

 

(b) the spatial discretization used (mainly because of the presence of  ∆𝐱 ) 

 

 and  

 

(c) on the time-integration algorithm (because of the presence of the length   𝐡𝐢𝐦𝐚𝐠   of the 

stability interval on the imaginary axis).   

 

When the problem is given and the spatial discretization is chosen, it will be important to select a 

numerical scheme with as large as possible length of the stability interval on the imaginary axis. It 

turns out, however, that this is not an easy task. 

 

Assume that linear multistep methods, either single formulae or predictor-corrector schemes combining 

several formulae, are to be used. Then the following theorem, which can be deduced from a more 

general result proved in Jeltsch and Nevanlinna (1981), see also Jeltsch and Nevanlinna (1982) and 

Zlatev (1984a, 1985b), is establishing a barrier for the size of   𝐡𝐢𝐦𝐚𝐠   for the linear multistep methods. 

 

 

Theorem 3.3: Consider a numerical method consisting either of a single linear multistep formula or of 

a predictor-corrector scheme with  𝐫  correctors, where both the predictor and the correctors are linear 

multistep formulae. The length of the absolute stability interval of this methods satisfies the inequality: 

 

 

(𝟑. 𝟕𝟖)      𝟎 ≤ 𝐡𝐢𝐦𝐚𝐠 ≤ 𝐫 + 𝟏 ,  

 

 

assuming here that    𝐫 = 𝟎    when the numerical method consists of a single explicit linear multistep 

formula. 

 

                                                                                                                                                     ∎ 
 

 

The statement of Theorem 3.3 is rather restrictive. It is telling us that we must use several linear 

multistep formulae if we wish to increase the length of the absolute stability interval of the predictor-

corrector scheme over a certain level. The requirement to ensure zero-stability of the selected predictor-

corrector scheme is imposing another restriction: it is necessary to use the special predictor-corrector 

schemes derived in the previous section. Let us reiterate here that these predictor-corrector schemes 

depend on two parameters,   �̅�    for the predictor and   𝛂   for the corrector. This means that the number 
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of free parameters that can be used in the efforts to increase the length of the absolute stability interval 

on the imaginary axis is only two for all values of   𝐫  both when zero-stable predictor-corrector 

schemes of type    𝐏𝐩(𝐄𝐂𝐩+𝟏)
𝐫
   and of type   𝐏𝐩(𝐄𝐂𝐩+𝟏)

𝐫
𝐄   are used. This number is increased from   

𝟐    to  𝐫 + 𝟏 , when it is allowed to use different correctors in the predictor-corrector schemes. The 

increased number of free parameters will give us more freedom in the search for better predictor-

corrector schemes. 

 

It is worthwhile now to change a little the notation in this section. We shall replace  �̅�   with  𝛂[𝟎]    

when we refer to the predictor formula and  𝛂   with  𝛂[𝐢] ,  where  𝐢 = 𝟏, 𝟐, … , 𝐫 , when we refer to the  

𝐢𝐭𝐡  corrector. The   𝐢𝐭𝐡  corrector will be denoted by  𝐂𝐩
[𝐢]

, where the lower index is showing the order 

of accuracy, while the upper index is indicating the position of the formula in the predictor-corrector 

scheme. 

 

An optimization process was organized by using the subroutine VA10AD from the Harwell Library of 

Fortran programs. This subroutine is discussed in Fletcher (1972). We found out during the search that 

the predictor-corrector schemes with best  𝐡𝐢𝐦𝐚𝐠  have normally poor accuracy properties. A similar 

problem is also discussed in Jeltsch and Nevanlinna (1982). Therefore, we had to make a compromise 

in order to obtain predictor-corrector schemes, which have both good absolute stability properties on 

the imaginary axis (but not the best possible) and which are sufficiently accurate.  

 

Some results which were obtained during the search are listed in Table 3.3. 

 

 

 

No. Type of the predictor-corrector scheme 𝐡𝐢𝐦𝐚𝐠 

F1 (−𝟎. 𝟎𝟎𝟒𝟏, 𝟏. 𝟗𝟖𝟖𝟒) − 𝐏𝟐𝐄𝐂𝟑
[𝟏]

𝐄 1.995 

F2 (−𝟎. 𝟖𝟒𝟒𝟎, 𝟏. 𝟖𝟖𝟒𝟏) − 𝐏𝟑𝐄𝐂𝟒
[𝟏]

𝐄 1.733 

F3 (−𝟏. 𝟓𝟗𝟎𝟗, 𝟎. 𝟑𝟕𝟒𝟖, 𝟎. 𝟕𝟕𝟏𝟎) − 𝐏𝟐𝐄𝐂𝟐
[𝟏]

𝐄𝐂𝟐
[𝟐]

𝐄 2.330 

F4 (−𝟏. 𝟕𝟔𝟑𝟏, 𝟎. 𝟓𝟓𝟕𝟕, 𝟎. 𝟎𝟎𝟒𝟒) − 𝐏𝟐𝐄𝐂𝟐
[𝟏]

𝐄𝐂𝟑
[𝟐]

𝐄 2.462 

F5 (−𝟎. 𝟎𝟎𝟐𝟔, 𝟏. 𝟗𝟗𝟏𝟗, 𝟎. 𝟎𝟎𝟓𝟎) − 𝐏𝟐𝐄𝐂𝟑
[𝟏]

𝐄𝐂𝟒
[𝟐]

𝐄 2.842 

F6 (𝟎. 𝟐𝟖𝟖𝟓, 𝟎. 𝟗𝟗𝟖𝟎, 𝟎. 𝟑𝟒𝟒𝟔, 𝟏. 𝟎𝟐𝟑𝟑) − 𝐏𝟐𝐄𝐂𝟐
[𝟏]

𝐄𝐂𝟐
[𝟐]

𝐄𝐂𝟐
[𝟑]

𝐄 3.345 

F7 (𝟎. 𝟎𝟑𝟕𝟓, 𝟎. 𝟑𝟓𝟏𝟎, 𝟎. 𝟕𝟏𝟐𝟒, 𝟎. 𝟎𝟑𝟑𝟔) − 𝐏𝟐𝐄𝐂𝟐
[𝟏]

𝐄𝐂𝟐
[𝟐]

𝐄𝐂𝟑
[𝟑]

𝐄 3.296 

F8 (−𝟐. 𝟏𝟔𝟖𝟕, 𝟎. 𝟐𝟏𝟎𝟗, 𝟎. 𝟑𝟔𝟗𝟓, 𝟎. 𝟐𝟏𝟗𝟏) − 𝐏𝟐𝐄𝐂𝟐
[𝟏]

𝐄𝐂𝟑
[𝟐]

𝐄𝐂𝟒
[𝟑]

𝐄 3.147 

Table 3.3 

Eight predictor-corrector schemes with long absolute stability intervals   𝐡𝐢𝐦𝐚𝐠   on the 

imaginary axis. The values of the free parameters, for which these schemes were found, 

are given in brackets.   

 

 
The predictor-corrector schemes with long absolute stability intervals on the imaginary axis were 

derived under the assumption that the analogue (3.76) of the famous Dahlquist scalar and linear test-

equation (3.28)  is solved. In fact, we are interested in the solution of the simplified air pollution model 

(3.70). Absolute stability cannot be guaranteed when the system of PDEs (3.70) has to be treated 
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numerically. However, by applying arguments similar to those used in Section 2.1 and in Section 3.3, 

one can conclude that stable computational process should be expected when all eigenvalues of the 

Jacobian matrix are close to the imaginary axis. To enhance this expectation care was taken (during 

the derivation of the predictor-corrector schemes listed in Table 3.3)  to ensure that absolute stability 

regions of these schemes contain also some parts of the complex half-plane    ℂ−    that are located 

close to the imaginary axis. When this additional task was accomplished, we can expect the 

computational process to be stable, assuming additionally for this special case that the pseudospectral 

method is used to discretize the spatial derivatives in (3.70) on the grids (3.71)-(3.73), if the following 

condition is satisfied: 

 

 

(𝟑. 𝟕𝟗)      𝐡 <
𝐡𝐢𝐦𝐚𝐠

𝛑
[ 

𝐮∗(𝐌𝐱 − 𝟏)

𝐌𝐱∆𝐱
+  

𝐯∗(𝐌𝐲 − 𝟏)

𝐌𝐲∆𝐲
+

𝐰∗(𝐌𝐳 − 𝟏)

𝐌𝐳∆𝐳
]

−𝟏

 ,  

 

 

with 

 

 

(𝟑. 𝟖𝟎)      𝐮∗ ≝ 𝐦𝐚𝐱
𝐱∈[𝐚𝟏,𝐛𝟏],   𝐲∈[𝐚𝟐,𝐛𝟐],   𝐳∈[𝐚𝟑,𝐛𝟑],    𝐭∈[𝐭∗,𝐭∗∗]  

{ |𝐮(𝐱, 𝐲, 𝐳, 𝐭)| } ,  

 

 

(𝟑. 𝟖𝟏)      𝐯∗ ≝ 𝐦𝐚𝐱
𝐱∈[𝐚𝟏,𝐛𝟏],   𝐲∈[𝐚𝟐,𝐛𝟐],   𝐳∈[𝐚𝟑,𝐛𝟑],    𝐭∈[𝐭∗,𝐭∗∗]    

{ |𝐯(𝐱, 𝐲, 𝐳, 𝐭)| } ,  

 

 

(𝟑. 𝟖𝟐)      𝐰∗ ≝ 𝐦𝐚𝐱
𝐱∈[𝐚𝟏,𝐛𝟏],   𝐲∈[𝐚𝟐,𝐛𝟐],   𝐳∈[𝐚𝟑,𝐛𝟑],    𝐭∈ [𝐭∗,𝐭∗∗]    

{ |𝐰(𝐱, 𝐲, 𝐳, 𝐭)| } , 

 

 

where the interval  [𝐭∗, 𝐭∗∗]   contains the current integration point (typically denoted by  𝐭𝐧 ). 

 

It was assumed until now that a constant stepsize is used. This requirement can be removed if some 

restrictions on the variation of the stepsize, as those imposed in § 3.2.2, are imposed. If this has been 

done, then  𝐡   should be replaced by  𝐡𝐧 ,   where  𝐧   is the time-step that has to be performed.     

 

 

 

 

 

3.8.3. Numerical Experiments  

 

Some of the predictor-corrector schemes presented in Table 3.3 were applied to develop variable 

stepsize variable formula methods in Zlatev (1984) and Zlatev, Berkowicz and Prahm (1984a,b). It 

is not necessary to describe in detail the experiments, but it is worthwhile to emphasize two important 

facts:  
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(A) It was necessary to introduce some diffusion terms in (3.70) in order to obtain more 

reliable results. This is not causing additional stability problems because the advection 

terms are dominant and restricting the choice of the time-stepsizes. 

 

(B) The calculated results were compared with measurements collected in many European 

countries within the project EMEP (European Monitoring and Evaluation Program), 

which is still functioning; see the EMEP Home Web-page in the reference list, where 

detailed information about this program, including numerous reports, can be found. It 

should be mentioned too that also input data (meteorological data and emission data) 

for the model were obtained from EMEP.  

 

The usefulness of selecting predictor-corrector schemes with several different correctors is shown by 

comparing these methods with methods in which the same correctors are used in the predictor-corrector 

schemes. Let us call the method obtained when the first approach is used as a variable stepsize variable 

formula method Algorithm 1, while the name Algorithm 2 is used for the second approach, where the 

correctors remain the same.  

 

Three predictor-corrector schemes are used in Algorithm 2. These formulae are given in Table 3.4.  

The predictor-corrector schemes used in Algorithm 1 are given in Table 3.5. These predictor-corrector 

schemes have not the best possible stability intervals, but they are more accurate than those with 

optimal lengths of the absolute stability intervals along the imaginary axis, which were listed in Table 

3.3.  

 

 

No. Type of the predictor-corrector scheme 𝐡𝐢𝐦𝐚𝐠 

G1 (−𝟎. 𝟎𝟓, 𝟏. 𝟖𝟓) − 𝐏𝟐𝐄𝐂𝟑
[𝟏]

𝐄 1.95 

G2 (−𝟎. 𝟖𝟓, 𝟏. 𝟖𝟎) − 𝐏𝟑𝐄𝐂𝟒
[𝟏]

𝐄 1.70 

G3 (𝟏. 𝟎𝟎, 𝟏. 𝟎𝟎) − 𝐏𝟑𝐄𝐂𝟒
[𝟏]

𝐄 1.17 

Table 3.4 

The three more traditional predictor-corrector schemes, which are used in Algorithm 2 and 

their absolute stability intervals   𝐡𝐢𝐦𝐚𝐠  on the imaginary axis. The values of the free 

parameters, for which these schemes were found, are given in brackets. The third scheme 

is based on the commonly used Adams- Bashforth predictor and Adams-Moulton corrector. 

 

 

No. Type of the predictor-corrector scheme 𝐡𝐢𝐦𝐚𝐠 

H1 (−𝟎. 𝟑𝟒𝟏𝟐, 𝟎. 𝟑𝟕𝟎𝟓, 𝟎. 𝟓𝟕𝟔𝟔, 𝟎. 𝟒𝟓𝟒𝟖) − 𝐏𝟐𝐄𝐂𝟐
[𝟏]

𝐄𝐂𝟐
[𝟐]

𝐄𝐂𝟑
[𝟑]

𝐄 3.26 

H2 (𝟎. 𝟔𝟓𝟎𝟎, 𝟏. 𝟓𝟎𝟎, 𝟏. 𝟎𝟎𝟎𝟎) − 𝐏𝟐𝐄𝐂𝟑
[𝟏]

𝐄𝐂𝟒
[𝟐]

𝐄 2.51 

H3 (−𝟎. 𝟎𝟗𝟎𝟎, 𝟏. 𝟔𝟎𝟎) − 𝐏𝟑𝐄𝐂𝟒
[𝟏]

𝐄 1.62 

Table 3.5 

The three predictor-corrector schemes used in Algorithm 1, in which an attempt to balance 

the requirement for  long absolute stability intervals  𝐡𝐢𝐦𝐚𝐠  on the imaginary axis with a 

requirement for achieving better accuracy is made. The values of the free parameters, for 

which these schemes were found, are given in brackets.   
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A careful comparison of the predictor-corrector schemes presented in Table 3.4 with those presented 

in Table 3.5 shows that schemes in Table 3.4, which is based on the use of only two formulae, are 

computationally cheaper than the first two schemes in Table 3.5 involving three and four formulae 

respectively. On the other hand, all predictor-corrector schemes used in Algorithm 1 have better 

stability properties than the stability properties of the corresponding schemes of Algorithm 2; compare 

the values of   𝐡𝐢𝐦𝐚𝐠  in the two tables.   

 

Both a stability control and an accuracy control was carried out at every time-step in the runs of the 

model with Algorithm 1 and Algorithm 2. The stability control is based on the condition (3.79), while 

the accuracy control is based on the results presented in Section 3.6. 

 

Some numerical results obtained in a long run, covering meteorological data for one year, are presented 

in Table 3.6. It is seen that the algorithm based on several different correctors performs better, 

especially in the three-dimensional case. 

 

 

Version of 

 the model 

Two-dimensional version Three-dimensional version 

Time-steps CPU-times Time-steps CPU-times 

Algorithm 1  636 (60.3%) 341.5 (92.6%) 638 (60.3%) 2574.9 (78.0%) 

Algorithm 2 1055 368.9 1058 3299.3 

Table 3.6 

Numbers of time-steps and CPU-times (measured in seconds) when Algorithm 1 and 

Algorithm 2 are run over a long time-interval with meteorological and emission data for 

one year. The reductions (measures in percent) when Algorithm 1 is used are given in 

brackets. 

 

 
 

3.9. A-stability of the linear multistep methods  

 
One must require more than absolute stability of the numerical method that should be applied when 

the solved system of ODEs is stiff or very stiff. A-stability is more appropriate in this case.  

 

 

Definition 3.8: A linear multistep method is said to be A-stable if its absolute stability region contains 

all points in the negative part of the complex plane (i.e. if all roots of the stability polynomial   

𝛑(𝐳, 𝛎) = 𝛒(𝐳) − 𝛎 𝛔(𝐳)   satisfy the inequality   |𝐳𝐢| < 𝟏   for   𝐢 = 𝟏 ,   𝟐 , … ,  k    always  when   

𝛎 ∈  ℂ− ).     

 

                                                                                                                                                     ∎ 
 

 

Unfortunately, only very few linear multistep methods are A-stable. The result showing that this is true 

has been established by G. Dahlquist in 1963, Dahlquist (1963). It became well-known in the literature 
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about numerical solution of systems of ODEs as the second Dahlquist barrier; see, for example, 

Lambert (1991). 

 

 

Theorem 3.4: The following three statements are true:  

 

(A) an explicit linear multistep method cannot be A-stable,   

 

(B) the order of accuracy of an A-stable linear multistep method cannot exceed 

two  

 

and  

 

(C) the second order linear multistep method with a smallest error constant is 

the Trapezoidal Rule.          

 

 

                                                                                                                                                     ∎ 
 

 

The Trapezoidal Rule and the linear multistep method with  𝐤 = 𝟏  belong also to the class of the θ-

methods and will be studied in the next chapter. Some other stability concepts will also be introduced 

and discussed in Chapter 4. 

 

Theorem 3.3 indicates that the use of linear multistep methods in the solution of stiff systems of ODEs 

is connected with many problems, but as mentioned in the previous sections of this chapter the 

Backward Differentiation Formulae can be applied in the solution of certain classes of stiff problems 

and there are several well written packages of computer programs based on these methods; see, for 

example, Hindmarsh (1980). 

 
 

3.10. Coefficients of some popular linear multistep methods  

 
Some of the readers might wish to apply suitable linear multistep methods either in their research or in 

the treatment of their applications. The coefficients of the most popular linear multistep methods, which 

are listed below, will be very useful for such readers. It must be emphasized here that it is not very easy 

to find such a list in the commonly used text-books, where as a rule only methods of lower orders are 

given. 

 

It is worthwhile to present also in this section the formulae for the Adams-Bashforth Methods, the 

Nyström Methods, the Adams-Moulton Methods and the Generalized Milne-Simpson Methods:  

 

 

(𝟑. 𝟖𝟑)      𝐲𝐧  = 𝐲𝐧−𝟏 + 𝐡 ∑ �̅�𝐢
[𝟎]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢 ,    
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(𝟑. 𝟖𝟒)      𝐲𝐧  = 𝐲𝐧−𝟐 + 𝐡 ∑ �̂�𝐢
[𝟎]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢 ,       

 

 

(𝟑. 𝟖𝟓)      𝐲𝐧  = 𝐲𝐧−𝟏 + 𝐡 ∑ �̅�𝐢
[𝟏]

𝐤

𝐢=𝟎

𝐟𝐧−𝐢 ,     

 

 

(𝟑. 𝟖𝟔)      𝐲𝐧  = 𝐲𝐧−𝟐 + 𝐡 ∑ �̂�𝐢
[𝟏]

𝐤

𝐢=𝟎

𝐟𝐧−𝐢  .  

 

 

The coefficients of the Adams-Bashforth, Nyström, Adams-Moulton and the Generalized Milne-

Simpson methods are also listed for    𝟏 ≤ 𝐤 ≤ 𝟏𝟎    in Table 3.7, Table 3.8, Table 3.9 and Table 3.10 

respectively.   

 

 
𝐤 𝛏�̅�𝟏

[𝟎]
 𝛏�̅�𝟐

[𝟎]
 𝛏�̅�𝟑

[𝟎]
 𝛏�̅�𝟒

[𝟎]
 𝛏�̅�𝟓

[𝟎]
 𝛏�̅�𝟔

[𝟎]
 𝛏�̅�𝟕

[𝟎]
 𝛏�̅�𝟖

[𝟎]
 𝛏�̅�𝟗

[𝟎]
 𝛏�̅�𝟏𝟎

[𝟎]
 𝛏 

1 1          1 

2 3 -1         2 

3 23 -16 5        12 

4 55 -59 37 -9       24 

5 1901 -3774 2616 -1274 251      720 

6 4277 -7923 9982 -7298 2877 -475     1440 

7 198721 -447288 705549 -688256 407139 -134472 19087    60480 

8 434241 -1152169 2183877 -26664477 21002243 -1041723 295767 -36799   120960 

9 140097247 -43125206 95476786 -139855262 137968480 -91172642 38833486 -9664106 1070017  3628800 

10 30277247 -105995189 265932680 -454661776 538363838 -444772162 252618224 -94307320 20884811 -2082753 7257600 

Table 3.7 

The products of the coefficients of the  Adams-Bashforth 𝐤-step methods, where   𝟏 ≤ 𝐤 ≤ 𝟏𝟎 , with 

the multipliers  𝛏 , which are given in the last column. This means that the coefficients are the ratios of 

the numbers given in columns 2-11 and the corresponding multipliers  𝛏   (the multipliers  𝛏   located 

in the same rows). The order   𝐩   of each formula is equal to  𝐤 . The first two of the coefficients   𝛂   

are equal to  𝟏  and   −𝟏   respectively, while the remaining coefficients   𝛂   are equal to  𝟎 .  

 

 

The Backward Differentiation Formulae are given by 

 

 

(𝟑. 𝟖𝟕)      𝐲𝐧 + ∑ 𝛂𝐢

𝐤

𝐢=𝟏

𝐲𝐧−𝐢 = 𝐡 𝛃𝟎𝐟𝐧 ,          |𝛂𝐤|  > 𝟎  ,          |𝛃𝟎|  > 𝟎  ,           𝐧 = 𝐤,   𝐤 + 𝟏, …  ,   𝐍 .  

 

 

These formulae are zero-stable up to sixth order of accuracy, while for  𝐤 > 𝟕 all Backward 

Differentiation Formulae are zero-unstable. This fact was established in Cryer (1972). Therefore, in 
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Table 3.11, which is given below, only the coefficients of the Backward Differentiation Formulae with    

𝟏 ≤ 𝐤 ≤ 𝟔   are listed. 

 

 
𝐤 𝛏�̂�

𝟏

[𝟎]
 𝛏�̂�

𝟐

[𝟎]
 𝛏�̂�

𝟑

[𝟎]
 𝛏�̂�

𝟒

[𝟎]
 𝛏�̂�

𝟓

[𝟎]
 𝛏�̂�

𝟔

[𝟎]
 𝛏�̂�

𝟕

[𝟎]
 𝛏�̂�

𝟖

[𝟎]
 𝛏�̂�

𝟗

[𝟎]
 𝛏�̂�

𝟏𝟎

[𝟎]
 

𝛏 

2 2 0         1 

3 7 -2 1        3 

4 8 -5 4 -1       3 

5 269 -266 294 -146 29      90 

6 297 -406 574 -426 169 -28     90 

7 13613 -23886 41193 -40672 24183 -8010 1139    3780 

8 14720 -31635 64440 -79417 62928 -31257 8888 -1107   3780 

9 439777 -1208066 2839756 -4195622 4155230 -2750822 1173196 -292226 32377  113400 

10 505625 -1492898 3979084 -6854054 8141878 -6738470 3831628 -1431554 317209 -31648 113400 

Table 3.8 

The products of the coefficients of the  Nyström 𝐤-step methods, where   𝟐 ≤ 𝐤 ≤ 𝟏𝟎 , with the 

multipliers  𝛏 , which are given in the last column. This means that the coefficients are the ratios of the 

numbers given in columns 2-11 and the corresponding multipliers  𝛏   (the multipliers  𝛏   located in 

the same rows). The order   𝐩   of each formula is equal to  𝐤 . The first and the third coefficients   𝛂   

are equal to  𝟏  and   −𝟏   respectively, while the remaining coefficients   𝛂   are equal to  𝟎 .  

  

 
𝐤 𝛏�̅�𝟎

[𝟏]
 𝛏�̅�𝟏

[𝟏]
 𝛏�̅�𝟐

[𝟏]
 𝛏�̅�𝟑

[𝟏]
 𝛏�̅�𝟒

[𝟏]
 𝛏�̅�𝟓

[𝟏]
 𝛏�̅�𝟔

[𝟏]
 𝛏�̅�𝟕

[𝟏]
 𝛏�̅�𝟖

[𝟏]
 𝛏�̅�𝟗

[𝟏]
 𝛏�̅�𝟏𝟎

[𝟏]
 

1 1 1          

2 5 8 -1         

3 9 19 -5 1        

4 251 646 -264 106 -19       

5 475 1427 -798 582 -173 27      

6 19087 65112 -46461 37504 -20211 6312 -863     

7 36799 139849 -121797 123133 -88547 41499 -11351 1375    

8 1070017 4467094 -4604594 5595358 -5033120 3146338 -1291214 312874 -33953   

9 2082753 9449717 -11271304 16002320 -17283646 13510082 -7394032 2687864 -583435 57281  

10 134211265 656185652 -890175549 1446205080 -1823311566 1710774528 -1170597042 567450984 -184776195 36284876 -3250433 

Table 3.9 

The products of the coefficients of the  Adams-Moulton 𝐤-step methods, where   𝟏 ≤ 𝐤 ≤ 𝟏𝟎 , with 

the multipliers  𝛏 , which are given in the last column. This means that the coefficients are the ratios  

of the numbers given in columns 2-11 and the multipliers  𝛏   (the multipliers  𝛏  corresponding to the 

ten rows of the tables are: 𝛏𝟏 = 𝟐 , 𝛏𝟐 = 𝟏𝟐 , 𝛏𝟑 = 𝟐𝟒 , 𝛏𝟒 = 𝟕𝟐𝟎 ,   𝛏𝟓 = 𝟏𝟒𝟒𝟎 , 𝛏𝟔 =
𝟔𝟎𝟒𝟖𝟎 ,   𝛏𝟕 = 𝟏𝟐𝟎𝟗𝟔𝟎 , 𝛏𝟖 = 𝟑𝟔𝟐𝟖𝟖𝟎𝟎 ,   𝛏𝟗 = 𝟕𝟐𝟓𝟕𝟔𝟎𝟎 , 𝛏𝟏𝟎 = 𝟒𝟕𝟗𝟎𝟎𝟏𝟔𝟎𝟎 ). The order   𝐩   

of each formula is equal to  𝐤 + 𝟏 . The first two of the coefficients   𝛂   are equal to  𝟏  and   −𝟏   

respectively, while the remaining coefficients   𝛂   are equal to  𝟎 .  
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𝐤 𝛏�̂�
𝟎

[𝟏]
 𝛏�̂�

𝟏

[𝟏]
 𝛏�̂�

𝟐

[𝟏]
 𝛏�̂�

𝟑

[𝟏]
 𝛏�̂�

𝟒

[𝟏]
 𝛏�̂�

𝟓

[𝟏]
 𝛏�̂�

𝟔

[𝟏]
 𝛏�̂�

𝟕

[𝟏]
 𝛏�̂�

𝟖

[𝟏]
 𝛏�̂�

𝟗

[𝟏]
 𝛏�̂�

𝟏𝟎

[𝟏]
 

𝛏 

2 1 4 1         3 

3 1  4 1 0        3 

4 29 124 24 4 -1       90 

5 28 129 14 14 -6 1      90 

6 1139 5640 33 1328 -87 264 -37     3780 

7 1107 5864 -639 2448 -1927 936 -261 32    3780 

8 32377 182584 -42494 120088 -116120 74728 -31154 7624 -833   113400 

9 31648 189145 68738 181324 -207974 166582 -92390 33868 -7394 729  113400 

10 2046263 12908620 -6449433 17067984 -22652334 21705672 -15023790 7335888 -2400729 473164 -42505 7484400 

Table 3.10 

The products of the coefficients of the generalized Milne-Simpson 𝐤-step methods, where   𝟐 ≤ 𝐤 ≤
𝟏𝟎 , with the multipliers  𝛏 , which are given in the last column. This means that the coefficients are 

the ratios of the numbers given in columns 2-11 and the corresponding multipliers  𝛏   (the multipliers  

𝛏   located in the same rows). The order   𝐩   of each formula is equal to  𝐤 + 𝟏 . The first and the third 

coefficients   𝛂   are equal to  𝟏  and   −𝟏   respectively, while the remaining coefficients   𝛂   are equal 

to  𝟎 .  

 

 
𝐤 𝛂𝟏 𝛂𝟐 𝛂𝟑 𝛂𝟒 𝛂𝟓 𝛂𝟔 𝛃𝟎 

1 -1      1 

2 -4/3 1/3     2/3 

3 -18/11 9/11 -2/11    6/11 

4 -48/25 36/25 -16/25 3/25   12/25 

5 -300/137 300/137 -200/137 75/137 -12/137  60/137 

6 -360/147 450/147 -400/147 225/147 -72/147 10/147 60/147 

Table 3.11 

The coefficients of the Backward Differentiation 𝐤-step methods 

with   𝟐 ≤ 𝐤 ≤ 𝟔 .  The order   𝐩   of each formula is equal to   𝐤 .  

 

 
 

3.11. Some general conclusions related to the third chapter  

 
It was shown in this chapter that predictor-corrector schemes can successfully be used instead of the 

Richardson Extrapolation in conjunction with linear multistep methods. The computational work per 

time-step is reduced when the predictor-corrector schemes are used, but the stability requirements 

could cause problems, because the absolute stability regions of the traditionally used predictor-

corrector schemes are smaller than the corresponding absolute stability regions for the Explicit Runge-

Kutta Methods. Moreover, it was verified that the absolute stability regions are as a rule becoming 

smaller when the order of accuracy of the predictor-corrector schemes is increased. Therefore, it is 

necessary to search for special predictor-corrector schemes with increased absolute stability regions. 

Some results obtained in such a search were presented, but an important question remains:  
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Will it be possible to improve further the results and to obtain 

predictor-corrector schemes which have even bigger absolute 

stability regions? 

 

 

Such an aim could probably be achieved, but something has to be paid for it. Two approaches can be 

used.  

 

The first possibility is to use more general predictor-corrector schemes of the type:     

 

 

(𝟑. 𝟖𝟖)      𝐲𝐧
[𝟎]

+  ∑ 𝛂𝐢
[𝟎]

�̅�

𝐢=𝟏

𝐲𝐧−𝐢 = 𝐡 ∑ 𝛃𝐢
[𝟎]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢 ,     

 

 

(𝟑. 𝟖𝟗)      𝐲𝐧
[𝟏]

+  ∑ 𝛂𝐢
[𝟏]

𝐲𝐧−𝐢

�̅�

𝐢=𝟏

= 𝐡𝛃𝟎
[𝟏]

𝐟𝐧
[𝟎]

+ 𝐡 ∑ 𝛃𝐢
[𝟏]

𝐤

𝐢=𝟏

𝐟𝐧−𝐢 ,       

 

 

where   𝟐 < �̅�  ≤ 𝐤 .  The price that has to be paid is the need of extra storage, because the vectors  

𝐲𝐧−𝐢 ,   𝐢 = 𝟑, 𝟒, … , �̅� ,  must be stored and used in the computation of the approximations   𝐲𝐧
[𝟎]

   and  

𝐲𝐧
[𝟏]

 .    

 

In principle, one can obtain something for the extra storage used. Assume that the coefficients   𝛃𝐢
[𝐣]

,
𝐣 = 𝟎, 𝟏,   were used to achieve order of accuracy    𝐤    for the predictor formula and  𝐤 + 𝟏  for the 

corrector formula.  Then the extra free parameters (𝛂𝐢
[𝐣]

 , 𝐢 = 𝟑, , 𝟒, … , �̅� ,   𝐣 = 𝟎, 𝟏 ) cannot be used to 

increase the order of accuracy of the formulae (3.88) and (3.89), because of the first Dahlquist barrier 

(see § 3.1.3). They could be applied in an attempt to improve the absolute stability properties of the 

scheme defined by these two formulae. Such an attempt might be successful, but one should take care 

for the preservation of the zero-stability in the case when these formulae are used with variable time-

stepsize, which has been established only for   �̅�  ≤ 𝟐 . Therefore, it will additionally be necessary to 

prove that the formulae of the predictor-corrector scheme are zero-stable when these are used in a 

variable time-stepsize mode (at least the corrector formula must be zero-stable). This may be a very 

difficult task.     

 

 

The second approach seems to be more promising. One can use the formulae (3.88) and (3.89) with   

�̅�  ≤ 𝟐 ,   but drop the requirement for achieving the maximal orders of accuracy:     𝐤    for the predictor 

formula and  𝐤 + 𝟏  for the corrector formula. Assume that the required order of accuracy is   𝐣    for 

the predictor formula and  𝐣 + 𝟏  for the corrector formula. Then there will be    𝐤 − 𝐣    free parameters 

in the predictor formula and  𝐤 − 𝐣   free parameters in the corrector formula, which can be used in the 

efforts to improve the stability of the computational process. Thus, the accuracy of the results will be 

lower, but the stability might be increased.     
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There will be no problems with the zero-stability in this case.  

 

 

Both the first approach and the second approach rely on some compromise: it may be possible to 

achieve some positive result (improved stability), but for some price (one accepts to use more storage 

in the first case, while the accuracy requirements are relaxed in the second case). The need of finding 

a good compromise during the selection of a numerical algorithms is not surprising. The fact that there 

arise many difficulties related to the choice of efficient numerical methods was well understood from 

the very beginning of the development of the numerical analysis and the scientific computing. 

Moreover, it was also well-known that it is very difficult to find the most efficient numerical method 

and to justify fully its application in the solution of large-scale scientific and/or engineering problems. 

Finding the best possible algorithm is practically impossible in many of the complicated situations that 

have often to be handled in practice and this fact was also well-known from the very beginning of the 

development of the numerical analysis. This is why R. W. Hamming wrote in one of the first books on 

numerical methods, Hamming (1962), that the choice of a good numerical method is in nearly all cases 

a question of finding a good compromise. The resolution of the stability problems in relation to 

predictor-corrector schemes is one of the areas where a compromise is needed in the efforts to improve 

the stability properties of the studied algorithms.  

 

 

 

3.12. Topics for further research 
 

 The following topics might lead to some very interesting and useful results: 

 

(A) Consider the second approach from the previous section. Will it be possible 

to design some linear multistep methods, whose order of accuracy is   𝐣   
with   𝐣 < 𝐤 ,   with increased absolute stability regions? Could one select 

some appropriate pairs   (𝐣, 𝐤)    with good absolute stability properties?   

 

(B) Will the approach sketched above in (A) be applicable also in the case 

where predictor-corrector schemes are used? 
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Chapter 4 

 

Richardson Extrapolation for some implicit methods 

 
The implementation of the Richardson Extrapolation in connection with several selected for our  book, 

but also often used in many applications, implicit numerical methods for solving systems of ODEs is 

discussed in this chapter. Actually, representatives of the well-known θ-methods, which were already 

mentioned in the first chapter, and some Implicit Runge-Kutta Methods are studied. The main topic of 

the discussion will again be the investigation of the stability properties of all these methods in the 

case when they are combined with the Richardson Extrapolation. All details that are needed in order 

to implement and to use efficiently the Richardson Extrapolation for the θ-methods are fully explained 

in the first part of this chapter. Then, when the basic rules are well explained, the same technique is 

applied in connection with some other implicit numerical methods for solving systems of ODEs, more 

precisely in connection with Fully Implicit Runge-Kutta (FIRK) Methods and with Diagonally Implicit 

Runge-Kutta (DIRK) Methods.  

 

The θ-methods will be introduced in Section 4.1. It will be explained there that the name “θ-method” 

is often used by many researchers, but it causes confusion in some situations, because in fact the “θ-

method” is not a single numerical scheme, but a considerably large class of methods depending on the 

parameter  𝛉 ,  which can freely be varied. 

 

The stability properties of most popular numerical schemes from the class of the  θ-methods, which 

are often used by scientists and engineers, will be presented and discussed in Section 4.2.  

 

The implementation of the Richardson Extrapolation in combination with the class of the θ-methods 

will be described in Section 4.3. The presentation will be very similar to that given in Section 1.3 and 

Section 2.3, but in this section the specific properties of the numerical schemes from the class of the θ-

methods will be taken into account.   

 

The stability properties of the resulting new numerical methods (which are combinations of numerical 

schemes from the class of the θ-methods with the Richardson Extrapolation) will be studied in Section 

4.4. It will be shown in this section that the stability properties of the underlying θ-methods are not 

always preserved when these are combined with the Richardson Extrapolation. Some recommendations 

related to the choice of robust and reliable combinations of the Richardson Extrapolation with 

numerical schemes from the class of the θ-methods will be given. 

 

The computational difficulties, which arise when numerical schemes belonging to the class of the θ-

methods are used in the solution of stiff systems of ODEs, will be discussed in the next section, Section 

4.5. It will be explained there that the schemes selected for solving stiff systems of ODEs have 
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necessarily to be implicit in order to ensure or, at least, to try to ensure stability of the computational 

process. The implicitness of the numerical methods is causing additional difficulties and some 

problems must be resolved when the numerical methods are handled on computers (both directly and 

in a combination with the Richardson Extrapolation). The problems, which arise because of the need 

to apply implicit numerical schemes, will be described and it will be explained how to resolve them.  

 

Numerical results will be presented in Section 4.6. An atmospheric chemical scheme, which is 

implemented in several well-known large-scale environmental models, will be introduced and 

systematically used in the numerical experiments. The presented results will demonstrate clearly two 

very important facts: 

 

(a) the ability of the combined numerical methods, based on the application of the 

Richardson Extrapolation, to preserve very well the stability of the computational 

process (according to the results that will be proved in Section 4.3)  

 

and   

 

(b) the possibility to achieve higher accuracy when the new numerical methods (consisting 

of combinations of selected θ-methods with the Richardson Extrapolation) are used. 

 

The ideas used in Section 4.2 – Section 4.6, where the θ-methods are treated, will be generalized in 

Section 4.7 and used there in relation to both Fully Implicit Runge-Kutta (FIRK) Methods and 

Diagonally Implicit Runge-Kutta (DIRK) Methods. 

 

Several major conclusions will be given in Section 4.8. Some possibilities for further improvements 

of the results are also discussed in this section. 

 

Some topics for future research will be sketched in the last section of this chapter, in Section 4.9.    

 

 

 

 

 

4.1. Description of the class of θ-methods 
 

The computations based on the use of the θ-methods will be carried out step by step as explained in 

Chapter 1. Approximations of the exact solution of the initial value problem for the systems of ODEs 

described by (1.1) and (1.2) are calculated at the grid-points { 𝐭𝟎 ,   𝐭𝟏 , … ,  𝐭𝐧−𝟏 ,   𝐭𝐧 , … , 𝐭𝐍 }  of 

(1.6).  Two relationships hold for all indices  𝐧  from the set  { 𝟏 , 𝟐 , …  ,    𝐍 } :  

 

(a) 𝐭𝐧 = 𝐭𝐧−𝟏 + 𝐡  (where the time-stepsize  𝐡  is some fixed positive number) 

  

and 

 

(b) 𝐲𝐧 ≈ 𝐲(𝐭𝐧)  .  
 

This means that an equidistant grid will be mainly used in this chapter, but this is done only in order to 

facilitate both the presentation and the understanding of the results. Most of the conclusions will remain 
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valid also when variations of the time-stepsize are allowed and used during the numerical solution of 

the system of ODEs. In the previous chapter it was verified that the variation of the time-stepsize is 

causing some technical difficulties when linear multistep methods are used and, therefore, it was 

necessary to develop and implement, at every time-step, some special devices at every time-step in 

order to be able to calculate the coefficients of the chosen method and to select the optimal time-

stepsize. It should be emphasized here that the variation of the time-stepsize is in general not causing 

additional technical difficulties when either the θ-methods or other one-step methods are used. 

 

In this section and in several of the next sections of Chapter 4, the following formula is used (with 

some particular value of the parameter  𝛉 )  in the computational process: 

 

 

(𝟒. 𝟏)     𝐲𝐧 =  𝐲𝐧−𝟏 + 𝐡[(𝟏 − 𝛉)𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏)  +  𝛉 𝐟(𝐭𝐧, 𝐲𝐧)]          for         𝐧 = 𝟏, 𝟐, … , 𝐍 . 
 

 

As mentioned above, the algorithm defined by the above formula is nearly always or at least very often 

called the θ-method. However, formula (4.1) shows very clearly that the θ-method is in fact a large 

class of numerical methods, which depend on the particular parameter  𝛉 .  We shall sometimes use the 

traditionally quoted in the literature name “θ-method” both when we are describing some special 

numerical schemes from this class and when we are discussing properties, which are valid for the whole 

class. From the context it will be quite clear in what sense the term “θ-method” is used.  

 

The class of the θ-methods is normally used with  𝛉 ∈ [𝟎, 𝟏] . The numerical methods, which are 

obtained for  𝛉 = 𝟎,   𝛉 = 𝟎. 𝟓  and  𝛉 = 𝟏 ,  are very popular among scientists and engineers and are 

very often used by them in practical computations. It will be shown that also the method, which is 

obtained when    𝛉 = 𝟎. 𝟕𝟓   is specified, has some nice properties. Therefore, this representative of 

the class of θ-methods will also be used in this chapter. 

 

The Forward Euler Formula (which is also well-known as the Explicit Euler Method) is obtained for  

𝛉 = 𝟎: 
 

 

(𝟒. 𝟐)     𝐲𝐧 =  𝐲𝐧−𝟏 + 𝐡 𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏)       𝐟𝐨𝐫        𝐧 = 𝟏, 𝟐, … , 𝐍 . 
      

 

This numerical scheme is a first-order one-stage Explicit Runge-Kutta Method. It can also be 

considered as a representative of the linear 𝐤-step methods studied in the previous chapter, which is 

obtained by the special and in fact the simplest choice    𝐤 = 𝟏 .   The Forward Euler Formula (4.2) 

had already been used in the discussion both in Chapter 2 and in Chapter 3. It will not be further 

discussed in this chapter. 

 

The well-known Trapezoidal Rule is obtained for  𝛉 = 𝟎. 𝟓: 
 

 

(𝟒. 𝟑)     𝐲𝐧 =  𝐲𝐧−𝟏 + 𝟎. 𝟓 𝐡 [𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏)  +   𝐟(𝐭𝐧, 𝐲𝐧)]            for          𝐧 = 𝟏, 𝟐, … , 𝐍 . 
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This numerical algorithm was mentioned in one numerical example, which was presented in Chapter 

1, but it will be discussed further and in some more detail in the next sections of this chapter. The order 

of accuracy of the Trapezoidal Rule is two. 

 

The Backward Euler Formula (known also as the Implicit Euler Method) is obtained from (4.1) for  

𝛉 = 𝟏: 
 

 

(𝟒. 𝟒)     𝐲𝐧 =  𝐲𝐧−𝟏 + 𝐡 𝐟(𝐭𝐧, 𝐲𝐧)    for     𝐧 = 𝟏, 𝟐, … , 𝐍 . 
 

 

The order of accuracy of the Backward Euler Formula is only one, but it has very good stability 

properties. 

 

As we pointed out above, the Forward Euler Method is explicit, while both the Trapezoidal Rule and 

the Backward Euler Formula are implicit numerical schemes, because the unknown vector  𝐲𝐧  

participates both in the left-hand-side and in the right-hand-side of (4.3) and (4.4). In fact, as was 

mentioned in the beginning of this chapter, the only explicit numerical scheme from the class of the θ-

methods defined by (4.1) is the Forward Euler Method. 

 

 

 

4.2. Stability properties of the θ-methods 
 

It is both relatively easy and very convenient to study, as was done in the previous chapters, the stability  

properties of the θ-method by the application of the famous scalar and linear test-problem proposed 

in Dahlquist (1963): 

 

 

(𝟒. 𝟓)      
𝐝𝐲

𝐝𝐭
= 𝛌 𝐲,      𝐭 ∈  [𝟎, ∞] ,      𝐲 ∈  ℂ ,     𝛌 = �̅� + �̅�𝐢 ∈  ℂ ,     �̅� ≤ 𝟎,     𝐲(𝟎) = 𝛈 . 

 

 

The exact solution of equation (4.5) is given by 

 

 

(𝟒. 𝟔)      𝐲(𝐭) =  𝛈 𝒆𝛌𝐭 ,      𝐭 ∈  [𝟎, ∞] . 
 

 

It should be mentioned also here that the exact solution   𝐲(𝐭)   of the Dahlquist test-equation  (4.5)  is 

a bounded function, because the assumption   �̅� ≤ 𝟎   was made in (4.5).   

 

The application of the numerical algorithms that are defined by (4.1) in the solution of the special scalar 

test-problem (4.5) leads to a relationship, which is of the same form as that derived in Chapter 2: 

 

 

(𝟒. 𝟕)      𝐲𝐧 = 𝐑(𝛎) 𝐲𝐧−𝟏 =  [𝐑(𝛎)]𝐧 𝐲𝟎,      𝛎 =  𝐡 𝛌,      𝐧 = 𝟏, 𝟐, …    
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However, if    𝛉 ≠ 𝟎 ,   then the stability function   𝐑(𝛎),  is not a polynomial as in Chapter 2, but a 

ratio of two first-degree polynomials. This ratio can be represented by the following formula: 

 

 

(𝟒. 𝟖)     𝐑(𝛎)  =  
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎
 .   

 

 

It is immediately seen that if  𝛉 = 𝟎 ,  i.e. when the Forward Euler Method is used, then the stability 

function is indeed reduced to the first-degree polynomial   𝐑(𝛎)  =  𝟏 + 𝛎   and, as mentioned above, 

this case was studied in Chapter 2, see (2.15) in §2.4.1.  

 

In this chapter, we shall be interested only in the case   𝛉 ≠ 𝟎 .   𝐑(𝛎)   is always a rational function 

and more precisely a ratio of two polynomials for such a choice of parameter   𝛉 .  In fact, numerical 

methods, which have good stability properties are obtained when   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎]   and it will be 

assumed in the remaining part of this chapter that   𝛉   is in this interval. 

 

As in Chapter 2, we can conclude that the numerical solution of (4.6), which is calculated by using 

some numerical scheme from the class of the θ-methods with a given value of the time-stepsize   𝐡   

and for some particular coefficient   𝛌 ,  will be bounded when the stability requirement   𝐑(𝛎) ≤ 𝟏   is 

satisfied.  

 

In Chapter 2, we were interested in solving the problem  (4.5)  in the case where the parameter   𝛌   was 

not very large in absolute value. When this assumption is made, i.e. when    |𝛌|   is not very large,  then 

the problem defined by (4.5) is non-stiff or, at least, only moderately stiff and it can be treated 

numerically with a reasonably large time-stepsize in spite of the fact that the absolute stability region 

of the selected numerical scheme is finite (as were all absolute stability regions that were presented in 

Chapter 2; see Fig. 2.1 – Fig. 2.4, Fig. 2.8 and Fig. 2.9).  

 

Now we shall be interested in the case where  |𝛌|  is very large (in which case the problem will 

normally become stiff). If this is the case, i.e. if   |𝛌|   is really very large, then it is highly desirable to 

be able to use a sufficiently large time-stepsize in the numerical solution of the  (4.5). This is even 

more desirable and in fact it is nearly always necessary when the problem defined by (1.1) and (1.2) is 

very large and when the Jacobian matrix of function   𝐟   has eigenvalues with non-positive real parts, 

which are very large in absolute value.  

 

The requirement of using a large time-stepsize in the solution of (4.5) is indeed very restrictive, when 

at the same time parameter  |𝛌|   is very large. This is why it is often not sufficient in this situation to 

search (as we did in Chapter 2) for large but finite absolute stability regions that contain all points of    

𝛎 =  𝛂 + 𝛃𝐢     with    𝛂 ≤ 𝟎    for which    𝐑(𝛎)  ≤ 𝟏 .  Instead of this it much more is reasonable to 

require that 

 

 

(𝟒. 𝟗)     𝐑(𝛎)  ≤ 𝟏      for      ∀ 𝛎 =  𝛂 + 𝛃𝐢     with    𝛂 ≤ 𝟎 . 
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In other words, we shall now demand that the crucial inequality  𝐑(𝛎)  ≤ 𝟏  is satisfied everywhere in 

the negative part of the complex plane and that the absolute stability regions of the numerical methods 

are infinite (containing the whole negative part of the complex plane). This is a very strong 

requirement. It can be proved that the assumption made in (4.9) can be satisfied only when a 

requirement for applying some implicit numerical method is additionally imposed. This extra 

requirement, the requirement to use some implicit numerical method for solving systems of ODEs, is, 

as mentioned in the previous chapters, a part of a theorem proved in Dahlquist (1963), which is often 

called the second Dahlquist barrier (see, for example, pp. 243-244 in Lambert, 1991).   

 

By applying the sketched above discussion, which led us to the necessity to impose the strong 

requirement (4.9) and to the conclusion that implicit methods for solving systems of ODEs must be 

used, the following definition, proposed originally by G. Dahlquist, can be given. 

 

 

Definition 4.1: It is said that the numerical method for solving systems of ODEs is A-stable when the 

relationship 𝐑(𝛎)  ≤ 𝟏  is fulfilled  for      ∀ 𝛎 =  𝛂 + 𝛃𝐢     with    𝛂 ≤ 𝟎  in the case where the 

numerical method is applied in the solution of the Dahlquist scalar and linear test-example (4.5).  

 

 

                                                                                                                                                     ∎ 
 

 

Because of the second Dahlquist barrier, it is clear that every A-stable numerical method is 

necessarily implicit. The numerical treatment of systems of ODEs by implicit numerical methods is 

much more difficult than the numerical treatment of such systems by explicit numerical methods (this 

topic will be further discussed in Section 4.5).  

 

It can be proved that the θ-method is A-stable when  𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎],  see, for example Hairer and 

Wanner (1991).  Because of this fact, in this chapter we shall, as stated above, consider numerical 

schemes from the class of the θ-methods with  𝛉  varying in this interval. 

 

We defined the concept of A-stability in connection with the simple scalar and linear equation (4.5). 

However, the results can be generalized for some linear systems of ODEs with constant matrices. 

Moreover, there are some reasons to expect that the results will hold also for some more general, linear 

and non-linear, systems of ODEs. These issues have been presented and discussed in Chapter 2 (see 

Section 2.1) and there is no need to repeat the explanations here. 

 

The requirement for A-stability is, as we pointed out above, very restrictive. Unfortunately, in some 

situations even this requirement is not sufficient in the efforts to achieve an efficient computational 

process. This can be explained as follows. Consider the Trapezoidal Rule (4.3). By using (4.7) and 

(4.8) with  𝛉 = 𝟎. 𝟓  the following relationship can be obtained: 

 

 

(𝟒. 𝟏𝟎)     𝐲𝐧  =  
𝟏 + 𝟎. 𝟓𝛎

𝟏 − 𝟎. 𝟓𝛎 
 𝐲𝐧−𝟏  =  (

𝟏 + 𝟎. 𝟓𝛎

𝟏 − 𝟎. 𝟓𝛎 
)

𝐧

 𝐲𝟎 .   

 

 

Assume further that  
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(a)  𝛌  is a very large in absolute value negative number,  

 

(b)  𝐡  is again some fixed positive increment  ( 𝐡𝛌 = 𝛎   being satisfied)  

 

and  

 

(c)  𝐲𝟎 = 𝟏  is the initial value of the scalar test-problem (4.5).  

 

Then the exact solution   𝐲(𝐭)  of (4.5) will very quickly tend to zero. However, if the assumptions (a), 

(b) and (c) are satisfied, then the last term in (4.10) will tend quickly to zero only when the time-

stepsize  𝐡  is very small, which is clearly not desirable when large-scale scientific and engineering 

models are to be handled numerically (because in such a case many time-steps are to be performed and, 

therefore, the computational process will become very expensive). If the assumption for a very small 

time-stepsize is not satisfied, then the term in the parenthesis in (4.10) will be still smaller than one, 

but very close to one. Therefore, it is obvious that the convergence of the numerical solution to zero 

will be very slow. Moreover, note that if three conditions (a), (b) and (c) hold and if   𝐡  is fixed, but  
|𝛌| → ∞ ,   then   |(𝟏 + 𝟎. 𝟓𝛎)/(𝟏 − 𝟎. 𝟓𝛎) |  → 𝟏 .  

 

This example shows very clearly that in some cases the use of the Trapezoidal Rule will not lead to an 

efficient and accurate computational process under the assumptions made above in spite of the fact that 

this numerical method is A-stable. 

 

The situation changes completely when the Backward Euler Formula is used. Indeed, formula (4.8) 

could be rewritten for   𝛉 = 𝟏   as 

 

 

(𝟒. 𝟏𝟏)     𝐲𝐧  =  
𝟏

𝟏 − 𝟎. 𝟓𝛎 
 𝐲𝐧−𝟏  =  (

𝟏

𝟏 − 𝟎. 𝟓𝛎 
)

𝐧

 𝐲𝟎    

 

 

It is clear now, i.e. when    𝛉 = 𝟏,   that    |𝐲𝐧|    will quickly tend to zero when   𝐧 → ∞    even for 

rather large values of the time-stepsize   𝐡   and, furthermore, also in the case where the above three 

conditions (a)  – (c) are satisfied. It is also clear, assuming once again that the assumptions (a) – (c)  

are satisfied, that if   𝐡  is arbitrary large but fixed and if    |𝛌| → ∞ ,   then    |𝟏/(𝟏 − 𝟎. 𝟓𝛎) |  → 𝟎 ,   

which in most of the cases will be quite satisfactory. 

 

The two examples that are presented above, by deriving and applying the two formulae (4.10) and 

(4.11), justify the necessity to introduce a new and more restrictive stability definition, the definition 

for L-stability.  

 

 

Definition 4.2: A numerical method for solving systems of ODEs is said to be L-stable when it is A-

stable and, in addition, when it is applied in the solution to the scalar test-problem (4.5), it leads to the 

relationship (4.7) with   |𝐑(𝛎)|  → 𝟎   as   𝐑𝐞(𝛎)  → −∞ .   

 

                                                                                                                                                     ∎ 
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The real part of the complex number  𝛎  is denoted in Definition 4.2 as usual by  𝐑𝐞(𝛎)  and it is 

perhaps worthwhile to reiterate here that 𝛎 =  𝛂 + 𝛃𝐢    with   𝛂 ≤ 𝟎 ,  see (4.9). This means that 

𝐑𝐞(𝛎) = 𝛂  is a non-positive number. 

 

Sometimes it is very useful to relax a little the requirement for L-stability, by introducing the concept 

of strong A-stability.  

 

 

Definition 4.3: A numerical method for solving systems of ODEs is said to be strongly A-stable when 

it is A-stable and, in addition, if it is applied to the Dahlquist scalar test-problem (4.5), then it leads to 

the relationship (4.7) with   |𝐑(𝛎)|  → 𝐜 < 𝟏   as   𝐑𝐞(𝛎)  → −∞ .  

 

                                                                                                                                                     ∎ 
 

 

It is obvious that the definition for strong A-stability is a compromise between the weaker definition 

for A-stability and the stronger definition for L-stability (compare Definition 4.3 with Definition 4.1 

and Definition 4.2). It will be shown at the end of this chapter that for some non-linear systems of 

ODEs strongly A-stable methods may perform even better than L-stable methods.  
 

As stated above, the Trapezoidal Rule  ( 𝛉 = 𝟎. 𝟓 )  is only A-stable. If    𝛉 ∈ (𝟎. 𝟓, 𝟏. 𝟎) ,  then the 

numerical method (4.1) is strongly A-stable. The Backward Euler Formula  ( 𝛉 = 𝟏. 𝟎 )  is L-stable. 

See more details related to the different concepts of stability in, for example, Hairer and Wanner, 

1991, Hundsdorfer and Verwer, 2003 or Lambert, 1991).  

 

We are ready now first to introduce the Richardson Extrapolation for the class of the θ-methods and 

after that to give an answer to the important question: 

 

 

Are the stability properties of all new methods (the combinations of the 

θ-methods with the Richardson Extrapolation) preserved? 

 

 

 

 

4.3. Combining the θ-method with the Richardson Extrapolation 
 

The Richardson Extrapolation can easily be introduced for the class of the θ-methods by following 

closely the rules, which were applied and explained in Section 1.3 (see also Section 2.3). Since we are 

very interested in the preservation of the stability properties for the obtained in this way new numerical 

methods, we shall explain the application of the Richardson Extrapolation directly for the case where 

the Dahlquist scalar and linear test-problem (4.5) is solved (because precisely these formulae will be 

needed in the study of the stability properties of the resulting new numerical methods; the 

combinations of the Richardson Extrapolation with representatives of the class of the θ-methods). 
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Assume that   𝐭𝐧−𝟏   and   𝐭𝐧   are any two grid-points of the set (1.6) and that a sufficiently accurate 

approximation   𝐲𝐧−𝟏   has already been calculated. Three computational steps should successively be 

carried out by using (4.7) and (4.8) in order to calculate an improved by the Richardson Extrapolation 

vector   𝐲𝐧 . 

 

 

Step 1: Perform one large time-step with a time-stepsize   𝐡   to calculate an approximation   𝐳𝐧   of 

the exact solution   𝐲(𝐭𝐧):  

 

 

(𝟒. 𝟏𝟐)      𝐳𝐧 =  
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎
 𝐲𝐧−𝟏 . 

 

 

 

Step 2: Perform two small time-steps with a time-stepsize   𝟎. 𝟓 𝐡   to calculate another approximation  

𝐰𝐧   of the exact solution   𝐲(𝐭𝐧):  

 

 

(𝟒. 𝟏𝟑)      𝐰𝐧 =  [
𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓 𝛎)

𝟏 − 𝛉(𝟎. 𝟓 𝛎)
]

𝟐

 𝐲𝐧−𝟏 . 

 

 

 

Step 3: Use   𝐳𝐧   and    𝐰𝐧   to calculate an improved approximation   𝐲𝐧   of the exact solution   𝐲(𝐭𝐧)  

according to the following two rules: 

 

 

(𝟒. 𝟏𝟒)      𝐲𝐧 = 𝟐 𝐰𝐧 − 𝐳𝐧              when            𝛉 ≠ 𝟎. 𝟓  
 

 

and 

 

 

(𝟒. 𝟏𝟓)      𝐲𝐧 =  
𝟒𝐰𝐧 − 𝐳𝐧

𝟑
              when            𝛉 = 𝟎. 𝟓 . 

 

 

 

Note that the fact that the θ-method is of first-order of accuracy when   𝛉 ≠ 𝟎. 𝟓   is used in the 

derivation of (4.14), while the fact that the Trapezoidal Rule, which is obtained when   𝛉 = 𝟎. 𝟓 ,   is a 

second-order numerical method, is exploited when (4.15) is obtained. Therefore, it is clearly seen that 

formulae (4.14) and (4.15) are obtained by using (1.8) with    𝐩 = 𝟏   and   𝐩 = 𝟐   respectively. 

 

Note too that it is assumed that the active implementation of the Richardson Extrapolation (see 

Section 1.7) is used in the formulation of the above algorithm. However, this is not a restriction, 

because the derivation of the passive implementation of the Richardson Extrapolation in connection 
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with the  θ-methods  is quite similar: it will only be necessary in such a case to use   𝐳𝐧−𝟏   in (4.12) 

and   𝐰𝐧−𝟏   in (4.13) instead of    𝐲𝐧−𝟏 .       
 

The following two relationships can be obtained by inserting the expressions for   𝐳𝐧   and    𝐰𝐧   from 

(4.12) and (4.13) in (4.14) and (4.15) respectively:   

 

 

(𝟒. 𝟏𝟔)      𝐲𝐧 =   {𝟐 [
𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓 𝛎)

𝟏 − 𝛉(𝟎. 𝟓 𝛎)
]

𝟐

−
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎
} 𝐲𝐧−𝟏         when       𝛉 ≠ 𝟎. 𝟓  

 

 

and 

 

 

(𝟒. 𝟏𝟕)      𝐲𝐧 =  
𝟒 [

𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓 𝛎)
𝟏 − 𝛉(𝟎. 𝟓 𝛎)

]
𝟐

−
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎

𝟑
  𝐲𝐧−𝟏             when       𝛉 = 𝟎. 𝟓 . 

 

 

It is immediately seen from (4.16) and (4.17) that the combinations of the Richardson Extrapolation 

with θ-methods are one-step methods (i.e. only the approximation   𝐲𝐧−𝟏  is used in the calculation of 

the improved value  𝐲𝐧 ), the stability functions of which are given by the following two expressions: 

 

 

(𝟒. 𝟏𝟖)      �̅�(𝛎) =   𝟐 [
𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓 𝛎)

𝟏 − 𝛉(𝟎. 𝟓 𝛎)
]

𝟐

−
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎
             when            𝛉 ≠ 𝟎. 𝟓  

 

 

and 

 

 

(𝟒. 𝟏𝟗)      �̅�(𝛎) =  
𝟒 [

𝟏 + 𝟎. 𝟐𝟓 𝛎
𝟏 − 𝟎. 𝟐𝟓 𝛎

]
𝟐

−
𝟏 + 𝟎. 𝟓𝛎
𝟏 − 𝟎. 𝟓𝛎

𝟑
                                    when            𝛉 = 𝟎. 𝟓 . 

 

 

The stability properties of the new numerical methods that are combinations of the Richardson 

Extrapolation with θ-methods will be studied in the next section.  

 

 

 

4.4. Stability of the Richardson Extrapolation combined with θ-methods 
 

It is necessary to investigate when the application of the Richardson Extrapolation together with 

different θ-methods preserves the stability properties of the underlying methods and when this is not 

the case. We shall show in this section that one should be careful, because stability problems may 
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sometimes arise. More precisely, the following theorem holds; see also Zlatev, Faragó and Havasi 

(2010): 

 

 

Theorem 4.1: The new numerical method consisting of a combination of the active implementation of 

the Richardson Extrapolation with any numerical scheme belonging to the class of the θ-methods is 

strongly A-stable when  𝛉 ∈ (𝛉𝟎, 𝟏]   with   𝛉𝟎 = 𝟐/𝟑 . 
 

 

Proof: According to Definition 4.3 that was given in Section 4.2, a strongly A-stable numerical method 

must in addition be A-stable (see also, for example, Hundsdorfer and Verwer, 2003). In Hairer and 

Wanner (1991) it is shown that a numerical method for solving systems of ODEs is A-stable if and 

only if 

  

(a) it is stable on the imaginary axis (i.e. when   |�̅�(𝐢𝛃)| ≤ 𝟏   holds for all real values of   𝛃 )   

  

and 

 

(b) �̅�(𝛎)  is analytic in  ℂ− .  

 

If we show that the two requirements   (a)   and   (b)   hold (i.e. if we show that the considered numerical 

method is A-stable), then it will be necessary to show additionally that the new numerical method is 

also strongly A-stable, i.e. we must prove that, according to Definition 4.3, the following basic 

relationship    |�̅�(𝛎)|  → 𝐜 < 𝟏   as   𝐑𝐞(𝛎)  → −∞   should be additionally satisfied. 

 

The above analysis indicates that Theorem 4.1 can be proved in three consecutively performed steps: 

 

Step A: Prove that the combination of the Richardson Extrapolation with the θ-methods is 

stable on the imaginary axis. 

 

Step B: Show that the stability function  �̅�(𝛎)  is analytic. 

 

Step C: Prove that |�̅�(𝛎)|  → 𝐜 < 𝟏  as  𝐑𝐞(𝛎)  → −∞ .    

 

We shall start with Step A. 

 

 

Step A – Stability on the imaginary axis 

 

It is immediately seen that the stability function   �̅�(𝛎)   from  (4.18) can be written in the following 

form: 

 

 

(𝟒. 𝟐𝟎)      �̅�(𝛎) =  
𝐏(𝛎)

𝐐(𝛎)
  , 

 

 

where    𝐏(𝛎)    is the following polynomial:       
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(𝟒. 𝟐𝟏)      𝐏(𝛎) =   𝟐 [𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓𝛎)]𝟐 (𝟏 − 𝛉𝛎) −  [𝟏 + (𝟏 − 𝛉)𝛎] [𝟏 − 𝛉(𝟎. 𝟓𝛎)]𝟐 . 
 

 

After some rather long but straight-forward transformations, (4.21) can be rewritten as a third-degree 

(in  𝛎 ) polynomial, whose coefficients depend on the particular choice of parameter  𝛉: 

 

 

(𝟒. 𝟐𝟐)       𝐏(𝛎) = (−𝟎. 𝟐𝟓𝛉𝟑 + 𝟎. 𝟕𝟓𝛉𝟐 − 𝟎. 𝟓𝛉)𝛎𝟑 + (𝟏. 𝟐𝟓𝛉𝟐 − 𝟐𝛉 + 𝟎. 𝟓)𝛎𝟐 

 

                               +(−𝟐𝛉 + 𝟏)𝛎 + 𝟏. 
 

 

The polynomial   𝐐(𝛎)   from (4.20) is represented by the following expression: 

 

 

(𝟒. 𝟐𝟑)      𝐐(𝛎) =  [𝟏 − 𝛉(𝟎. 𝟓𝛎)]𝟐 (𝟏 − 𝛉𝛎) . 
 

 

Also this polynomial can be rewritten as a third-degree (in   𝛎 ) polynomial, whose coefficients depend 

on parameter   𝛉 , however it will be much more convenient to use directly (4.23) in the further 

computations. 

 

Now we shall use a result, proved in Hairer and Wanner (1991), stating that the stability of a 

numerical method on the imaginary axis is ensured if for all (real) values of   𝛃   from the relationship   

𝛎 =  𝛂 + 𝐢𝛃  the inequality 

 

 

(𝟒. 𝟐𝟒)      𝐄(𝛃)  ≥ 𝟎 

   

 

holds. 

 

It is easy to verify that   𝐄(𝛃)   is a polynomial, which is defined by 

 

 

(𝟒. 𝟐𝟓)      𝐄(𝛃) = 𝐐(𝐢𝛃) 𝐐(−𝐢𝛃) −  𝐏(𝐢𝛃) 𝐏(−𝐢𝛃) . 
 

 

Consider the first term in the right-hand-side of (4.25). By performing the following successive 

transformations it can be shown that this term is a sixth-degree polynomial containing only even 

degrees of   𝛃:   

 

   

(𝟒. 𝟐𝟔)      𝐐(𝐢𝛃) 𝐐(−𝐢𝛃) =  [𝟏 − 𝛉(𝟎. 𝟓𝐢𝛃)]𝟐 (𝟏 − 𝛉𝐢𝛃)[𝟏 + 𝛉(𝟎. 𝟓𝐢𝛃)]𝟐 (𝟏 + 𝛉𝐢𝛃) 
 

                                                   =  [(𝟏 − 𝟎. 𝟓𝛉𝐢𝛃)(𝟏 + 𝟎. 𝟓𝛉𝐢𝛃)]𝟐(𝟏 − 𝛉𝐢𝛃)(𝟏 + 𝛉𝐢𝛃) 
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                                                =  (𝟏 + 𝟎. 𝟐𝟓𝛉𝟐𝛃𝟐)𝟐 (𝟏 + 𝛉𝟐𝛃𝟐) 

 

                                                =   (𝟎. 𝟎𝟔𝟐𝟓𝛉𝟒𝛃𝟒 + 𝟎. 𝟓𝛉𝟐𝛃𝟐 + 𝟏)(𝟏 + 𝛉𝟐𝛃𝟐) 
 

 

                                                = 𝟎. 𝟎𝟔𝟐𝟓𝛉𝟔𝛃𝟔 + 𝟎. 𝟓𝟔𝟐𝟓𝛉𝟒𝛃𝟒 + 𝟏. 𝟓𝛉𝟐𝛃𝟐 + 𝟏     
                                                
 

                                                =
𝟏

𝟐𝟒
 (𝛉𝟔𝛃𝟔 + 𝟗𝛃𝟒 + 𝟐𝟒𝛉𝟐𝛃𝟐 + 𝟏𝟔) .  

 

 

Similar transformations are to be carried out in order to represent also the second term in (4.25), the 

term   𝐏(𝐢𝛃) 𝐏(−𝐢𝛃) ,  as a sixth-degree polynomial containing only even degrees of  𝛃 .  Introduce 

first the following three constants: 

 

 

(𝟒. 𝟐𝟕)       𝐀 =  −𝟎. 𝟐𝟓 𝛉𝟑 + 𝟎. 𝟕𝟓 𝛉𝟐 − 𝟎. 𝟓 𝛉 ,        𝐁 = 𝟏. 𝟐𝟓 𝛉𝟐 − 𝟐 𝛉 + 𝟎. 𝟓 ,        𝐂 = −𝟐 𝛉 + 𝟏 . 
 

 

Now the second term in the right-hand-side of (4.25) can be rewritten, by several successively 

performed transformations, in the following form: 

 

 

(𝟒. 𝟐𝟖)      𝐏(𝐢𝛃) 𝐏(−𝐢𝛃) = [𝐀(𝐢𝛃)𝟑 + 𝐁(𝐢𝛃)𝟐 +  𝐂(𝐢𝛃) + 𝟏][𝐀(−𝐢𝛃)𝟑 + 𝐁(−𝐢𝛃)𝟐 + 𝐂(−𝐢𝛃) + 𝟏] 
 

                                               = (−𝐀𝐢𝛃𝟑 − 𝐁𝛃𝟐 + 𝐂𝐢𝛃 + 𝟏) (𝐀𝐢𝛃𝟑 − 𝐁𝛃𝟐 − 𝐂𝐢𝛃 + 𝟏) 

 

                                               =      𝐀𝟐𝛃𝟔 + 𝐀𝐁𝐢𝛃𝟓 − 𝐀𝐂𝛃𝟒 − 𝐀𝐢𝛃𝟑 

 

                                                    − 𝐀𝐁𝐢𝛃𝟓 + 𝐁𝟐𝛃𝟒 + 𝐁𝐂𝐢𝛃𝟑 − 𝐁𝛃𝟐 

 

                                                    − 𝐀𝐂 𝛃𝟒 − 𝐁𝐂𝐢𝛃𝟑 + 𝐂𝟐𝛃𝟐 + 𝐂𝐢𝛃 

 

                                                   + 𝐀𝐢𝛃𝟑 − 𝐁𝛃𝟐 − 𝐂𝐢𝛃 + 𝟏 

 

                                               =      𝐀𝟐𝛃𝟔 − 𝟐𝐀𝐂𝛃𝟒 + 𝐁𝟐𝛃𝟒 − 𝟐𝐁𝛃𝟐 + 𝐂𝟐𝛃𝟐 + 𝟏 

 

                                               =      𝐀𝟐𝛃𝟔 + (𝐁𝟐 − 𝟐𝐀𝐂)𝛃𝟒 + (𝐂𝟐 − 𝟐𝐁)𝛃𝟐 + 𝟏 .  
 

 

By using the expressions for   𝐀 ,   𝐁  and   𝐂   from (4.27), the last equality can be rewritten in the 

following way: 

 

 

(𝟒. 𝟐𝟗)      𝐏(𝐢𝛃) 𝐏(−𝐢𝛃) =     (−𝟎. 𝟐𝟓𝛉𝟑 + 𝟎. 𝟕𝟓𝛉𝟐 − 𝟎. 𝟓𝛉 )𝟐 𝛃𝟔 
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                               + [ (𝟏. 𝟐𝟓𝛉𝟐 − 𝟐𝛉 + 𝟎. 𝟓)𝟐  − 𝟐 (−𝟎. 𝟐𝟓𝛉𝟑 + 𝟎. 𝟕𝟓𝛉𝟐 − 𝟎. 𝟓𝛉)(−𝟐𝛉 + 𝟏 ) ]𝛃𝟒 

 

                                   +[(−𝟐𝛉 + 𝟏 )𝟐 − 𝟐 (𝟏. 𝟐𝟓𝛉𝟐 − 𝟐𝛉 + 𝟎. 𝟓)]𝛃𝟐 

 

                                   + 𝟏  
 

                       =            
𝟏

𝟐𝟒
 (𝛉𝟔 + 𝟗𝛉𝟒 + 𝟒𝛉𝟐 − 𝟔𝛉𝟓 + 𝟒𝛉𝟒 − 𝟏𝟐𝛉𝟑) 𝛃𝟔  

 

                                 + [
𝟏

𝟐𝟒
 (𝟐𝟓𝛉𝟒 − 𝟖𝟎𝛉𝟑 + 𝟖𝟒𝛉𝟐 − 𝟑𝟐𝛉 + 𝟒) − 𝛉𝟒 + 𝟑. 𝟓𝛉𝟑 − 𝟑. 𝟓𝛉𝟐 + 𝛉 ] 𝛃𝟒  

 

                                 +   (𝟒𝛉𝟐 − 𝟒𝛉 + 𝟏 − 𝟐. 𝟓𝛉𝟐 + 𝟒𝛉 − 𝟏)  𝛃𝟐 

 

                                 +  𝟏 

 

                       =          
𝟏

𝟐𝟒
 (𝛉𝟔 − 𝟔𝛉𝟓 + 𝟏𝟑𝛉𝟒 − 𝟏𝟐𝛉𝟑 + 𝟒𝛉𝟐) 𝛃𝟔  

 

                                +
𝟏

𝟐𝟒
 (𝟗𝛉𝟒 − 𝟐𝟒𝛉𝟑 + 𝟐𝟖𝛉𝟐 − 𝟏𝟔𝛉 + 𝟒) 𝛃𝟒  

 

                                +  𝟏, 𝟓𝛉𝟐 𝛃𝟐 

 

                                +  𝟏  .  
 

 

Everything is prepared now for the determination of the sign of the polynomial   𝐄(𝛃)   from (4.25). 

It is necessary to substitute the last terms in the right-hand-sides of  (4.26) and (4.29) in (4.25). The 

result is 

    

 

(𝟒. 𝟑𝟎)      𝐄(𝛃) =        
𝟏

𝟐𝟒
 (𝛉𝟔𝛃𝟔 + 𝟗𝛃𝟒 + 𝟐𝟒𝛉𝟐𝛃𝟐 + 𝟏𝟔) 

 

                                     − 
𝟏

𝟐𝟒
 (𝛉𝟔 − 𝟔𝛉𝟓 + 𝟏𝟑𝛉𝟒 − 𝟏𝟐𝛉𝟑 + 𝟒𝛉𝟐) 𝛃𝟔  

 

                                     −
𝟏

𝟐𝟒
 (𝟗𝛉𝟒 − 𝟐𝟒𝛉𝟑 + 𝟐𝟖𝛉𝟐 − 𝟏𝟔𝛉 + 𝟒) 𝛃𝟒  

 

                                    − 
𝟏

𝟐𝟒
 𝟐𝟒 𝛉𝟐 𝛃𝟐 

 

                                    − 
𝟏

𝟐𝟒
 𝟏𝟔  
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                             =        
𝟏

𝟐𝟒
 (𝟔𝛉𝟓 − 𝟏𝟑𝛉𝟒 + 𝟏𝟐𝛉𝟑 − 𝟒𝛉𝟐) 𝛃𝟔 +  

𝟏

𝟐𝟐
 (𝟔𝛉𝟑 − 𝟕𝛉𝟐 + 𝟒𝛉 − 𝟏) 𝛃𝟒 .  

 

 

It is easily seen that 

 

 

(𝟒. 𝟑𝟏)      𝐄(𝛃) ≥ 𝟎      ⟹      (𝟔𝛉𝟓 − 𝟏𝟑𝛉𝟒 + 𝟏𝟐𝛉𝟑 − 𝟒𝛉𝟐)𝛃𝟐 +  𝟒(𝟔𝛉𝟑 − 𝟕𝛉𝟐 + 𝟒𝛉 − 𝟏) ≥ 𝟎 .   
  

 

Let us introduce the following two polynomials: 

 

 

(𝟒. 𝟑𝟐)      𝐇𝟏(𝛉) =  𝟔𝛉𝟑 − 𝟏𝟑𝛉𝟐 + 𝟏𝟐𝛉 − 𝟒      and       𝐇𝟐(𝛉) =   𝟔𝛉𝟑 − 𝟕𝛉𝟐 + 𝟒𝛉 − 𝟏 .     
 

 

It follows from (4.30) and (4.31) that   𝐄(𝛃)   will be non-negative for all values of   𝛃   and for a given 

value of   𝛉    if and only if both polynomials from (4.32) are non-negative for the selected value of  𝛉.  

It can easily be shown that the inequalities  

 

 

(𝟒. 𝟑𝟑)       
𝐝𝐇𝟏

𝐝𝛉
> 𝟎         and      

𝐝𝐇𝟐

𝐝𝛉
> 𝟎      

 

 

hold when   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎] ,   which implies that the two polynomials  𝐇𝟏(𝛉)  and  𝐇𝟐(𝛉)  are 

increasing in this interval. Since   𝐇𝟏(𝟐/𝟑) = 𝟎   and   𝐇𝟐(𝟐/𝟑) > 𝟎 ,   the two polynomials are clearly 

non-negative for   𝛉 ∈ [𝟐/𝟑, 𝟏. 𝟎]   and, therefore,   𝐄(𝛃)   will certainly be non-negative for all values 

of   𝛉   in the interval   [𝛉𝟎, 𝟏. 𝟎] ,   where   𝛉𝟎 = 𝟐/𝟑   is the unique zero of the polynomial   𝐇𝟏(𝛉)   

in the interval   [𝟎. 𝟓, 𝟏. 𝟎] .   
 

This completes the proof of the first step of Theorem 4.1, because we have shown that the combinations 

of the Richardson Extrapolation with numerical schemes from the class of the θ-methods are stable on 

the imaginary axis when   𝛉 ∈ [𝟐/𝟑, 𝟏. 𝟎] .   
 

Before starting the proof of the second step of the theorem, it is worthwhile to point out that the fact 

that the two polynomials   𝐇𝟏(𝛉)   and   𝐇𝟐(𝛉)   are non-negative for   𝛉 ∈ [𝟐/𝟑, 𝟏. 𝟎]   is demonstrated 

graphically in Fig. 4.1. 

 

 

Step B – A-stability 

 

After the proof that the combination of the Richardson Extrapolation with the 𝛉-method is stable on 

the imaginary axis when   𝛉 ∈ [𝟐/𝟑, 𝟏. 𝟎] ,  it should also be proved that the stability function   𝐑(𝛎)   
is analytic in   ℂ−   for these values of   𝛉 .  The stability function is, according to equality (4.20), a 

ratio of  the two polynomials   𝐏(𝛎)   and   𝐐(𝛎) . It is well-known that polynomials are analytic 

functions and that a ratio of two polynomials is an analytic function in   ℂ−   if the denominator has no 

roots in   ℂ−.   In our case, the roots of the denominator   𝐐(𝛎)   of the stability function   𝐑(𝛎)   are   
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𝛎𝟏 = 1/ 𝛉   (a single root) and   𝛎𝟐,𝟑 = 2/ 𝛉   (a double root). This means  that the stability function   

𝐑(𝛎)   is analytic in   ℂ−  (because these roots are positive), which completes the proof of Step B. 

 

 

 

Figure 4.1 

Variations of the two polynomials  𝐇𝟏(𝛉)  and  𝐇𝟐(𝛉)  for  𝛉 ∈ [𝟐/𝟑, 𝟏. 𝟎] .  The dotted curve 

represents the polynomial  𝐇𝟏 ,  while the continuous curve represents the polynomial  𝐇𝟐 . It is clearly 

seen that the two polynomials are non-negative in the interval  [𝟐/𝟑, 𝟏. 𝟎] .  
 

 

Step C: Strong A-stability 
 

It remains to establish for which values of   𝛉   in the interval   [𝟐/𝟑, 𝟏. 𝟎]    the required relationship   
|𝐑(𝛎)|  → 𝐜 < 𝟏   holds as   𝐑𝐞(𝛎)  → −∞ .  Since   𝛎 =  𝛂 + 𝛃𝐢      with     𝛂 ≤ 𝟎 ,   it is clear that   

𝐑𝐞(𝛎) = 𝛂.   This fact will be exploited in the proof.  

 

Rewrite first (4.18) as 
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(𝟒. 𝟑𝟒)      �̅�(𝛎) =   𝟐 [
𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓 𝛎)

𝟏 − 𝛉(𝟎. 𝟓 𝛎)
]

𝟐

−
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎
 

 

                              =   𝟐  [

𝟏
−𝛎 − 𝟎. 𝟓 + 𝟎. 𝟓𝛉

𝟏
−𝛎 + 𝟎. 𝟓𝛉

]

𝟐

−

𝟏
−𝛎 − 𝟏 + 𝛉

𝟏
−𝛎 + 𝛉

 

 

                              =   𝟐  [

𝟏
−𝛂 − 𝛃𝐢

− 𝟎. 𝟓 + 𝟎. 𝟓𝛉

𝟏
−𝛂 − 𝛃𝐢

+ 𝟎. 𝟓𝛉
]

𝟐

−

𝟏
−𝛂 − 𝛃𝐢

− 𝟏 + 𝛉

𝟏
−𝛂 − 𝛃𝐢

+ 𝛉
  .  

 

 

Assume now that   𝛃   is fixed and  let   𝛂 = 𝐑𝐞(𝛎)  → −∞ .   The result is:   

 

 

(𝟒. 𝟑𝟓)      𝐥𝐢𝐦
𝐑𝐞(𝛎)→−∞

�̅�(𝛎)  =    𝟐  [
𝛉 − 𝟏

𝛉
]

𝟐

−
𝛉 − 𝟏

𝛉
 

 

 

                                                 =       
𝛉𝟐 − 𝟑𝛉 + 𝟐

𝛉𝟐
      .   

 

 

Since the terms in the right-hand-side of (4.35) are real, the requirement   |𝐑(𝛎)|  → 𝐜 < 𝟏   as  

𝐑𝐞(𝛎)  → −∞   reduces to   | (𝛉𝟐 − 𝟑𝛉 + 𝟐)/𝛉𝟐 | ≤ 𝟏 .  This inequality implies that the following two 

relationships are simultaneously satisfied: 
 

 

(𝟒. 𝟑𝟔)      
𝛉𝟐 − 𝟑𝛉 + 𝟐

𝛉𝟐
< 𝟏      ⇒       𝛉𝟐 − 𝟑𝛉 + 𝟐 < 𝛉𝟐        ⇒          𝛉 >

𝟐

𝟑
  ,  

 

 

(𝟒. 𝟑𝟕)      − 𝟏 <
𝛉𝟐 − 𝟑𝛉 + 𝟐

𝛉𝟐
        ⇒         𝟐𝛉𝟐 − 𝟑𝛉 + 𝟐 > 𝟎 .     

 

 

This completes the proof,  because the second inequality in (4.37) holds for all real values of   𝛉   (the 

minimal value of the polynomial   𝟐𝛉𝟐 − 𝟑𝛉 + 𝟐   is   𝟕/𝟖 ,   which is achieved for   𝛉 = 𝟑/𝟒 ).     

 

                                                                                                                                                       ■  

 

 

Corollary 4.1: If  𝛉 = 𝟏. 𝟎  (i.e. if the Backward Euler Formula is used) then the combined method 

(the Backward Euler Formula + the Richardson Extrapolation) is L-stable.        
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Proof: It is immediately seen that the right-hand-side of (4.35) is equal to zero when  𝛉 = 𝟏. 𝟎  and, 

thus, the method is L-stable.    

 

                                                                                                                                                       ■  

 
 

Remark 4.1: It is much easier to prove Theorem 4.1 directly for the Backward Euler Formula. Indeed, 

the stability function (4.18) becomes much simpler with  𝛉 = 𝟏. 𝟎  and the expressions for  

𝐐(𝐢𝛃) 𝐐(−𝐢𝛃)  and  𝐏(𝐢𝛃) 𝐏(−𝐢𝛃)  from (4.26) and (4.29) become also much simpler in this case: 

 

 

(𝟒. 𝟑𝟖)      𝐐(𝐢𝛃) 𝐐(−𝐢𝛃) = 𝟎. 𝟎𝟔𝟐𝟓𝛃𝟔 + 𝟎. 𝟓𝟔𝟐𝟓𝛃𝟒 + 𝟏. 𝟓𝛃𝟐 + 𝟏  
 

 

and 

 

 

(𝟒. 𝟑𝟗)      𝐏(𝐢𝛃) 𝐏(−𝐢𝛃) = 𝟎. 𝟎𝟔𝟐𝟓𝛃𝟒 + 𝟏. 𝟓𝛃𝟐 + 𝟏 .  
 

 

Theorem 4.1 was proved directly for the Backward Euler Formula in Faragó, Havasi and Zlatev 

(2010). 

 

                                                                                                                                                       ■  

 

 

Remark 4.2: Corollary 4.1 and Remark 4.1 show that the main result in Faragó, Havasi and Zlatev 

(2010), the assertion that the Backward Euler Formula is L-stable, is just a special cases of Theorem 

4.1, which was proved above.  

 

                                                                                                                                                       ■  

 

 

Remark 4.3: Equality (4.35) shows that the constant   𝐜   depends on the selected value of parameter  

𝛉 .  For every value of this parameter, the corresponding value of    𝐜    can be calculated by using 

(4.35). Theorem 4.1 shows that  𝐜   is less than one or equal to one for all  𝛉 ≥ 𝟐/𝟑 .  For example, if  

𝛉 = 𝟎. 𝟕𝟓 ,  then  𝐜 = 𝟓/𝟗 .   

 

                                                                                                                                                       ■  

 

 

Remark 4.4: Theorem 4.1 cannot be applied directly for the Trapezoidal Rule. The problem is that the 

expression for the stability function from (4.18), which is valid for the case   𝛉 ≠ 𝟎. 𝟓  was used in the 

proof of this theorem. It is necessary to apply the stability function from (4.17), because the Trapezoidal 

Rule, which is obtained for  𝛉 = 𝟎. 𝟓  from (4.1),  is a second-order numerical method. This is done in 

Theorem 4.2, which is proved below.    

 

                                                                                                                                                       ■  
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Theorem 4.2: The combination of the active implementation of the Richardson Extrapolation with the 

Trapezoidal Rule (i.e. with the 𝛉-method with  𝛉 = 𝟎. 𝟓 )  is not an A-stable numerical method. 

 

Proof: Consider (4.19) and perform the following transformations: 

 

 

(𝟒. 𝟒𝟎)      �̅�(𝛎) =  
𝟒 [

𝟏 + 𝟎. 𝟐𝟓 𝛎
𝟏 − 𝟎. 𝟐𝟓 𝛎

]
𝟐

−
𝟏 + 𝟎. 𝟓𝛎
𝟏 − 𝟎. 𝟓𝛎

𝟑
   

 

                              =  

𝟒 [

𝟏
𝛎 + 𝟎. 𝟐𝟓 

𝟏
𝛎 − 𝟎. 𝟐𝟓 

]

𝟐

−

𝟏
𝛎 + 𝟎. 𝟓

𝟏
𝛎 − 𝟎. 𝟓

𝟑
  .  

  

 

It is obvious that 

 

 

(𝟒. 𝟒𝟏)      𝐥𝐢𝐦
𝛎→∞

 |�̅�(𝛎)| =
𝟓

𝟑
 , 

                                                                                                                                                                                           

                                                                                                                                                                                             

which means that   |�̅�(𝛎)|  > 𝟏   when   |𝛎|   is sufficiently large and, thus, the combination of the 

active implementation of the Richardson Extrapolation with the Trapezoidal Rule is not an A-stable 

numerical method.   

 

                                                                                                                                                       ■  

 

 

It is worthwhile to present additionally the following two remarks here: 

 

Remark 4.5: It is perhaps necessary to explain what is the meaning of    𝛎 → ∞    when   𝛎   is a 

complex number. It is convenient to apply the following definition in this case. If     𝛎 ∈ ℂ ,    then   

𝛎 → ∞   will always mean that    |𝛎|    grows beyond any assigned positive real number.   

                                                                                                                                                       ■  

 

 

Remark 4.6: The numerical schemes from the class of the θ-methods have good stability properties 

when   𝛉 ∈ [𝟎. 𝟓, 𝟐/𝟑) .  The Trapezoidal Rule, obtained with  𝛉 = 𝟎. 𝟓 ,  is A-stable, while the 

numerical methods found when    𝛉 ∈  (𝟎. 𝟓, 𝟐/𝟑)    are even strongly A-stable. Unfortunately the 

good stability properties are lost when these methods are combined with the active implementation of 

the Richardson Extrapolation for    𝛉 ∈ [𝟎. 𝟓, 𝟐/𝟑) .   This means that the new methods obtained 

when the active implementation of the Richardson Extrapolation is combined with the numerical 

schemes from the class of the θ-methods should not be used with    𝛉 ∈ [𝟎. 𝟓, 𝟐/𝟑) .   However, the 

new methods obtained with the passive implementation of the Richardson Extrapolation will very 
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often give good results also for   𝛉 ∈ [𝟎. 𝟓, 𝟐/𝟑)   (because the combination of the passive 

implementation of the Richardson Extrapolation with any numerical method has the same stability 

properties as those of the underlying method).   

                                                                                                                                                       ■  

 

 

 

4.5. The problem with the implicitness 
 

If the problem solved, the initial values problem for systems of ODEs defined by (1.1) and (1.2), is 

stiff, then one is as a rule forced to use A-stable, strongly A-stable or L-stable methods during the 

numerical solution. However, as stated in the previous sections of this chapter, all these methods are 

necessarily implicit (because of the second Dahlquist barrier). The implicitness of the numerical 

schemes is very often causing great difficulties when the problem solved is large. This is especially 

true when combinations of numerical schemes from the class of the θ-methods with the Richardson 

Extrapolation are applied in the solution of (1.1) – (1.2).   

 

The problem of implicitness arising when stiff systems of ODEs are solved will be discussed in this 

section and some recommendations and conclusions that are related to the efficient treatment of the 

computational process in the case where the Richardson Extrapolation is used will be given. Three 

important applications of the well-known Newton iterative method, see, for example, Kantorovich 

and Akilov (1964), in connection with the numerical treatment of stiff systems of ODEs by implicit 

numerical schemes from the class of the θ-methods will be described in this section. After that the 

implications, which arise when these schemes are combined with the Richardson Extrapolation, will 

be explained.  

 

 

 

 

4.5.1. Application of the classical Newton iterative method  

 

Assume that some A-stable, strongly A-stable or L-stable numerical scheme from the class of the θ-

methods with   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎]   is to be used. When such a scheme, which is implicit, is used in the 

solution of the system of ODEs defined with (1.1) and (1.2), the following non-linear system of 

algebraic equations or system of transcendental equations has to be solved at every time-step:  

 

 

(𝟒. 𝟒𝟐)     𝐲𝐧 − 𝐡 𝛉 𝐟(𝐭𝐧, 𝐲𝐧) − 𝐠𝐧−𝟏 = 𝟎       for    𝐧 = 𝟏, 𝟐, … , 𝐍 . 
 

 

The solution of (4.42), which in general must be found by solving a large (or even very large, see, for 

example, Zlatev and Dimov, 2006) non-linear system of algebraic equations and/or system of 

transcendental equations, is    𝐲𝐧 ,   while 

 

 

(𝟒. 𝟒𝟑)     𝐠𝐧−𝟏 =  − 𝐲𝐧−𝟏 − 𝐡 (𝟏 − 𝛉)𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏)  
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is a known vector.  

 

It is clear that (4.42) and (4.43) can easily be obtained by using (4.1). 

 

It is convenient now to introduce the following notation: 

 

 

(𝟒. 𝟒𝟒)     𝐅(𝐲𝐧) = 𝐲𝐧 − 𝐡 𝛉 𝐟(𝐭𝐧, 𝐲𝐧) − 𝐠𝐧−𝟏                     for    𝐧 = 𝟏, 𝟐, … , 𝐍 , 
 

 

(𝟒. 𝟒𝟓)     𝐉 =  
𝛛𝐟(𝐭, 𝐲)

𝛛𝐲
      and         𝐉𝐧 =  

𝛛𝐟(𝐭𝐧, 𝐲𝐧)

𝛛𝐲𝐧
          for    𝐧 = 𝟏, 𝟐, … , 𝐍     

 

 

as well as 

 

 

(𝟒. 𝟒𝟔)     
𝛛𝐅(𝐲𝐧)

𝛛𝐲𝐧
   = 𝐈 − 𝐡 𝛉 𝐉𝐧                                            for    𝐧 = 𝟏, 𝟐, … , 𝐍 , 

 

 

where  𝐈  is the identity matrix in  ℝ𝐬×𝐬 .  

 

Assume that the classical Newton iterative method is used to solve (approximately, according to some 

prescribed in advance accuracy) the non-linear system of algebraic and/or transcendental equations: 

 

 

(𝟒. 𝟒𝟕)     𝐅(𝐲𝐧) = 𝟎 , 
 

 

or, in other words, assume that the classical Newton iterative method is used to solve the non-linear 

system of algebraic and/or transcendental equations     𝐲𝐧 − 𝐡 𝛉 𝐟(𝐭𝐧, 𝐲𝐧) − 𝐠𝐧−𝟏 = 𝟎 ,    which appears 

when an arbitrary implicit numerical algorithm from the class of the  θ-methods  is used with some   

𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎] . 
 

The major formulae that are needed at the   𝐤𝐭𝐡   iteration of the classical Newton iterative method 

can be written in the following form (assuming that the iteration numbers are given as superscripts in 

square brackets): 

 

 

(𝟒. 𝟒𝟖)      (𝐈 − 𝐡 𝛉 𝐉𝐧
[𝐤−𝟏]

) ∆𝐲𝐧
[𝐤]

= −𝐲𝐧
[𝐤−𝟏]

+ 𝐡 𝛉 𝐟 (𝐭𝐧, 𝐲𝐧
[𝐤−𝟏]

) + 𝐠𝐧−𝟏         for    𝐤 = 𝟏, 𝟐, …  

 

 

(𝟒. 𝟒𝟗)      𝐲𝐧
[𝐤]

= 𝐲𝐧
[𝐤−𝟏]

+ ∆𝐲𝐧
[𝐤]

                                                                                    for    𝐤 = 𝟏, 𝟐, …  . 
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Some initial approximation    𝐲𝐧
[𝟎]

   is needed in order to start the iterative process defined by (4.48) 

and (4.49). The following two choices are often used in practice: 

 

 

(𝟒. 𝟓𝟎)      𝐲𝐧
[𝟎]

=   𝐲𝐧−𝟏  
 

 

and 

 

 

(𝟒. 𝟓𝟏)      𝐲𝐧
[𝟎]

=   𝐲𝐧−𝟏 +  
𝐡𝐧

𝐡𝐧−𝟏
 ( 𝐲𝐧−𝟏 −  𝐲𝐧−𝟐), 

 

 

where it is assumed that  𝐡𝐧  and  𝐡𝐧−𝟏  are the last two time-stepsizes that were used in the 

computational process. This means that it is furthermore assumed here that variations of the time-

stepsize are allowed.  It is obvious that (4.51) is reduced to 

 

 

(𝟒. 𝟓𝟐)      𝐲𝐧
[𝟎]

=  𝟐 𝐲𝐧−𝟏 −   𝐲𝐧−𝟐 ,  
 

 

when   𝐡𝐧 =  𝐡𝐧−𝟏 . 

 

It should be mentioned that (4.51) and (4.52) are used in the experiments, results of which will be 

reported in the next section. 

 

Consider an arbitrary iteration step    𝐤     ( 𝐤 = 𝟏 , 𝟐 , …   , 𝐤𝐞𝐧𝐝 )   of the classical Newton iterative 

process applied in the solution of (4.47). It is also assumed that    𝐤𝐞𝐧𝐝    is the last iteration step, i.e. 

the iteration step at which the iterative process will be stopped by using some appropriate stopping 

criteria (the choice of stopping criteria will be discussed in §4.5.4). When the iterative process is 

successfully stopped,   𝐲𝐧

[𝐤𝐞𝐧𝐝]
   is accepted as a sufficiently good approximation of the exact value   

𝐲(𝐭𝐧)   of the solution of (1.1) – (1.2) and    𝐲𝐧   is set equal to   𝐲𝐧

[𝐤𝐞𝐧𝐝]
 .   

 

The computational work during iteration step   𝐤   of the Newton iterative process consists of six parts, 

which must consecutively be performed. The numerical algorithm given below is defined by using 

these six parts: 

 

 

 

Algorithm 1: Performing an arbitrary iteration of the classical Newton Method. 

 

 

Part 1 – Function evaluation. Calculate the   𝐬   components of the right-hand-side vector  

𝐟 (𝐭𝐧, 𝐲𝐧
[𝐤−𝟏]

)  of (1.1). 
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Part 2 – Jacobian evaluation. Calculate the elements of the Jacobian matrix    𝐉𝐧
[𝐤−𝟏]

. 

 

 

Part 3 – Factorize the shifted Jacobian matrix   𝐈 − 𝐡 𝛉 𝐉𝐧
[𝐤−𝟏]

 .  Calculate the elements 

of the shifted Jacobian matrix and the triangular matrices   𝐋𝐧
[𝐤−𝟏]

   and   𝐔𝐧
[𝐤−𝟏]

  

such that   𝐋𝐧
[𝐤−𝟏]

𝐔𝐧
[𝐤−𝟏]

≈ 𝐈 − 𝐡 𝛉 𝐉𝐧
[𝐤−𝟏]

  by using some version of the well-

known Gaussian Elimination. The symbol  ≈  is used here only in order to 

emphasize the fact that, because of the rounding errors, in practice it is 

impossible to obtain an exact factorization of matrix   𝐈 − 𝐡 𝛉 𝐉𝐧
[𝐤−𝟏]

   when the 

calculations are carried out on computers. However,   𝐋𝐧
[𝐤−𝟏]

𝐔𝐧
[𝐤−𝟏]

   will 

normally be a very close approximation of   𝐈 − 𝐡 𝛉 𝐉𝐧
[𝐤−𝟏]

 .  Nevertheless, one 

should not discard totally the effect of the rounding errors especially when the 

shifted Jacobian matrix is very ill-conditioned. We shall assume that some care 

has been taken to reduce or even eliminate to a certain degree the effect of the 

rounding errors (for example by applying extended, quadruple, precision as we 

already did in Chapter 2) and, because of this, we shall use the notation   

𝐋𝐧
[𝐤−𝟏]

𝐔𝐧
[𝐤−𝟏]

= 𝐈 − 𝐡 𝛉 𝐉𝐧
[𝐤−𝟏]

   in the remaining part of this chapter.  

 

 

Part 4 – Solve the system of linear algebraic equations. Use the computational process, 

which is very often called “back substitution” (see, for example, Golub and 

Van Loan, 1983, Jennings, 1977 or Wilkinson, 1963, 1965), in order to obtain 

the solution    ∆𝐲𝐧
[𝐤]

    of the system of linear algebraic equations  

𝐋𝐧
[𝐤−𝟏]

𝐔𝐧
[𝐤−𝟏]

 ∆𝐲𝐧
[𝐤]

= −𝐲𝐧
[𝐤−𝟏]

+ 𝐡 𝛉 𝐟 (𝐭𝐧, 𝐲𝐧
[𝐤−𝟏]

) + 𝐠𝐧−𝟏 . Also here because 

of the rounding errors some approximation of the correction vector   ∆𝐲𝐧
[𝐤]

   will 

be obtained, but as a rule  the calculated vector will be a very close 

approximation of the exact    ∆𝐲𝐧
[𝐤]

 .   As in Part 3, we shall assume that some 

care has been taken in order to reduce the effect of the rounding errors (for 

example by applying again, as in Chapter 2, quadruple precision arithmetic in 

the computational process). 

 

 

Part 5 – Update the solution. Use formula (4.49) to calculate the components of vector  

𝐲𝐧
[𝐤]

 .  
 

 

Part 6 – Perform stopping checks. Apply some stopping criteria in order to decide 

whether the calculated approximation   𝐲𝐧
[𝐤]

   is acceptable or not.   

 

 

 

One of the three actions listed below are to be taken in Part 6 after the check of the stopping criteria: 

 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

152 

 

Action 1: If all stopping criteria are satisfied, then  

 

(a) declare  𝐤  as  𝐤𝐞𝐧𝐝 ,    

 

(b) set   𝐲𝐧  equal to  𝐲𝐧

[𝐤𝐞𝐧𝐝]
   

 

and  

 

(c) stop the iterative process. 

 

 

 

Action 2: If some of the stopping criteria are not satisfied, but the code judges that 

the convergence rate is sufficiently fast, then   

 

(a) set  𝐤 ≔ 𝐤 + 𝟏   

 

and   

 

(b) go to Part 1 of the above algorithm in order to start the next 

iteration. 

 

 

 

Action 3: If there are stopping criteria, which are not satisfied and if the iterative 

process is judged to be either divergent or very slowly convergent, then 

 

(a) set  𝐤 ≔ 𝟏 ,   

 

(b) reduce the time-stepsize   𝐡   

 

and  

 

(c) restart the Newton iteration.     

  

 

The most time-consuming parts when large or very large systems of ODEs are solved are Part 2, Part 

3 and Part 4 of the above algorithm for performing an arbitrary step of the Newton iterative process. 

Very often Part 1 is also time-consuming.  

 

 Different modifications of the algorithm are to be introduced in order to achieve a more efficient 

computational process. Some of the modifications will be discussed in the following two sub-sections.  

 

 

 

4.5.2. Application of the modified Newton iterative method  
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The first attempt to improve the efficiency of the computational process is made by calculating the 

Jacobian matrix and factorizing it only during the first iteration step of the Newton iterative process. 

In other words, the first iteration step, when   𝐤 = 𝟏 ,  is carried out by Algorithm 1, while the algorithm 

given below is used in the next iteration steps, i.e. in the iteration steps with   𝐤 > 𝟏 . 

 

 

Algorithm 2: Performing an arbitrary iteration of the modified Newton Method. 

 

 

Part 1 – Function evaluation. Calculate the  𝐬  components of the right-hand-side vector  

𝐟 (𝐭𝐧, 𝐲𝐧
[𝐤−𝟏]

)  of (1.1). 

 

 

Part 2 – Solve the system of linear algebraic equations. Use the computational process, 

which is called, as mentioned in the previous sub-section, “back substitution”, 

in order to obtain the solution  ∆𝐲𝐧
[𝐤]

  of the system of linear algebraic equations   

𝐋𝐧
[𝟏]

𝐔𝐧
[𝟏]

 ∆𝐲𝐧
[𝐤]

= −𝐲𝐧
[𝐤−𝟏]

+ 𝐡 𝛉 𝐟 (𝐭𝐧, 𝐲𝐧
[𝐤−𝟏]

) + 𝐠𝐧−𝟏 . 

 

 

Part 3 – Update the solution. Use formula (4.49) to calculate the components of vector  

𝐲𝐧
[𝐤]

 .  
 

 

Part 4 – Perform stopping checks. Apply some stopping criteria in order to decide 

whether the calculated approximation  𝐲𝐧
[𝐤]

  is acceptable or not.   

 

 

 

Some modifications of the actions used in the stopping criteria are also needed. The modified actions, 

which are to be taken in Part 4 of Algorithm 2 (after the check of the stopping criteria) are listed below: 

 

 

 

Action 1: If all stopping criteria are satisfied, then  

 

(a) declare  𝐤  as  𝐤𝐞𝐧𝐝 ,    

 

(b) set   𝐲𝐧  equal to  𝐲𝐧

[𝐤𝐞𝐧𝐝]
   

 

and  

 

(c) stop the iterative process. 
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Action 2: If some of the stopping criteria are not satisfied, but the code judges that 

the convergence rate is sufficiently fast, then  

  

(a) set  𝐤 ≔ 𝐤 + 𝟏   

 

and   

 

(b) go to Part 1 of the above algorithm in order to start the next 

iteration. 

 

 

 

Action 3: If there are stopping criteria, which are not satisfied, if  𝐤 > 𝟏  and if the 

iterative process is either divergent or very slowly convergent, then 

 

(a) set  𝐤 ≔ 𝟏 ,   

 

and 

  

(b) restart the Newton iteration (i.e. perform one iteration step by 

using Algorithm 1 and continue after that with Algorithm 2). 

 

 

 

Action 4: If there are stopping criteria, which are not satisfied, if   𝐤 = 𝟏  and if the 

iterative process is either divergent or very slowly convergent, then 

 

(a) reduce the time-stepsize   𝐡   

 

and 

  

(b) restart the Newton iteration.     

  

 

The advantages of this algorithm are two: the expensive (in terms of the performed arithmetic 

operations) Part 2 and Part 3 of Algorithms 1 are carried out as a rule only during the first iteration step 

(and omitted at the next iteration steps as long as the process is converging and the convergence rate is 

sufficiently fast). However, one has to pay something for the reduction of the number of arithmetic 

operations. The problem is that, while the classical Newton iterative process is of second order of 

accuracy, the modified one is of first order only (see more details in Chapter XVIII of Kantorovich 

and Akilov, 1964). This will often lead to an increase of the number of iterations. Nevertheless, the 

gains are achieved because of the reductions of the numbers of Jacobian evaluations and matrix 

factorizations is normally greater than the increase of the number of iterations. 

 

 

 

4.5.3. Achieving better efficiency by keeping an old decomposition of the Jacobian matrix  
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The efficiency of the computational process could in many cases be further improved by trying to keep 

the factorized, at some previous time-step, Jacobian matrix as long as possible. Let   𝐣 < 𝐧   and   𝐢 ≥ 𝟏   

be the time-step and the iteration number at which the last evaluation of the Jacobian matrix and the 

last factorization of this matrix were performed. One can attempt to apply the triangular factors   𝐋𝐣
[𝐢]

   

and   𝐔𝐣
[𝐢]

    of the Jacobian matrix   𝐈 − 𝐡 𝛉 𝐉𝐣
[𝐢]

   also when time-step   𝐧   is carried out.  

 

The advantage of using this approach is due to the fact that very often there will be no need to calculate 

the elements of the Jacobian matrix at step 𝐧  and no need to factorize it. The disadvantage is the same 

as that mentioned in the previous sub-section: the convergence rate may become slow. However, as in 

the case with the modified Newton iterative process, the experimental results indicate that often this 

algorithm works rather well in practice and this approach is implemented in many standard codes for 

solving stiff systems of ODEs.  

 

It should be emphasized that, as mentioned in the previous sub-section, the computational scheme 

described below is normally very effective when the solved problems are large. Some discussion about 

the convergence of the Newton iterative process in this case is given in Zlatev (1981a).  

 

More details about the implementation of this algorithm as well as many numerical results obtained in 

the treatment of many problems can be found for example in Hindmarsh (1980), Krogh (1973), 

Shampine (1984, 1994), Shampine and Gordon (1976) or Zlatev and Thomsen (1979).          

 

 

Algorithm 3: Further improvement of the performance of the Newton Method. 

 

 

Part 1 – Function evaluation. Calculate the   𝐬   components of the right-hand-side vector  

𝐟 (𝐭𝐧, 𝐲𝐧
[𝐤−𝟏]

)   of (1.1). 

 

 

Part 2 – Solve the system of linear algebraic equations. Use the computational process, 

which is normally called “back substitution”, in order to obtain the solution  

∆𝐲𝐧
[𝐤]

  of the system of linear algebraic and/or transcendental equations   

𝐋𝐣
[𝐢]

𝐔𝐣
[𝐢]

 ∆𝐲𝐧
[𝐤]

= −𝐲𝐧
[𝐤−𝟏]

+ 𝐡 𝛉 𝐟 (𝐭𝐧, 𝐲𝐧
[𝐤−𝟏]

) + 𝐠𝐧−𝟏   where     𝐣 ≤ 𝐧     and     

𝐣 ≥ 𝟏 . 

 

 

Part 3 – Update the solution. Use formula (4.49) to calculate the components of vector  

𝐲𝐧
[𝐤]

 .  
 

 

Part 4 – Perform stopping checks. Apply some stopping criteria in order to decide 

whether the calculated approximation   𝐲𝐧
[𝐤]

   is acceptable or not.   
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Also in this case some modifications of the actions used in the stopping criteria are needed. The 

modified actions, which are carried out in Part 4 of Algorithm 3 are listed below: 

 

 

Action 1: If all stopping criteria are satisfied, then  

 

(a) declare   𝐤   as   𝐤𝐞𝐧𝐝 ,    

 

(b) set    𝐲𝐧   equal to   𝐲𝐧

[𝐤𝐞𝐧𝐝]
   

 

and  

 

(c) stop the iterative process. 

 

 

 

Action 2: If some of the stopping criteria are not satisfied, but the code judges that 

the convergence rate is sufficiently fast, then   

 

(a) set   𝐤 ≔ 𝐤 + 𝟏   

 

and   

 

(b) go to Part 1 of the above algorithm in order to start the next 

iteration. 

 

 

 

 

Action 3: If there are stopping criteria, which are not satisfied, if    𝐣 < 𝐧    or   𝐣 = 𝐧  

but   𝐤 > 𝟏 ,  and if  the iterative process is either divergent or very slowly 

convergent, then 

 

(a) set   𝐣: = 𝐧  as well as   𝐤 ≔ 𝟏 ,   

 

and  

 

(b) restart the Newton iteration (i.e. perform one iteration step by 

using Algorithm 1 and continue after that with Algorithm 3). 

 

 

 

Action 4: If there are some stopping criteria, which are not satisfied, if   𝐣 = 𝐧   and   

𝐤 = 𝟏  and if the iterative process is either divergent or very slowly 

convergent, then 

 

(a) reduce the time-stepsize   𝐡   

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

157 

 

and  

 

(b) restart the Newton iteration.     

 

 

 

 

4.5.4. Selecting stopping criteria  

 

By using different stopping criteria in the three algorithms describes in §4.5.1, §4.5.2 and §4.5.3 one 

is mainly trying:  

 

(A) to achieve sufficiently good accuracy,  

 

(B)  to avoid the use of too many iterations,  

 

(C) to decide whether it is worthwhile to continue the iterative process  

 

and   

 

(D)  to find out whether it is necessary to update the Jacobian matrix and its 

factorization when Algorithm 2 and Algorithm 3 are used.  

 

 

These four categories of stopping criteria are discussed in the following part of this sub-section.  

 

(A) Efforts to ensure sufficiently accurate approximations. One is first and foremost interested in 

achieving sufficiently accurate approximations. Therefore, the first group of the stopping checks is 

related to the evaluation of the accuracy of the approximation   𝐲𝐧
[𝐤]

   calculated at iteration   𝐤   of the 

Newton iterative process.    

 

Assume that the accuracy requirement is prescribed by some error tolerance   𝐓𝐎𝐋 ,  which is provided 

by the user (for example, if it is required that the numerical errors are kept less than   𝟏𝟎−𝟑   then   

𝐓𝐎𝐋 = 𝟏𝟎−𝟑   should be specified). By using the error tolerance   𝐓𝐎𝐋   one can try to control, at every 

iteration step, the accuracy checking whether either 

 

 

(𝟒. 𝟓𝟑)     ‖∆𝐲𝐧
[𝐤]

‖ < 𝐓𝐎𝐋                                                                                      for    𝐤 = 𝟏, 𝟐, …   

 

 

or 

 

 

(𝟒. 𝟓𝟒)     
‖∆𝐲𝐧

[𝐤]
‖

‖𝐲𝐧
[𝐤]

‖
 < 𝐓𝐎𝐋                                                                                      for    𝐤 = 𝟏, 𝟐, …  . 
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The choice of a particular norm in our opinion is in many cases not very critical (because all norms in 

finite spaces are in some sense equivalent).  

 

The first check is absolute, the second one is relative. One should be careful with the choice of any of 

these two checks. The absolute check can give problems when   ‖𝐲𝐧
[𝐤]

‖   is large, because it will lead 

to the performance of too many iterations. Therefore, the relative stopping check is more preferable in 

such a case. However, the relative check can cause problems when   ‖𝐲𝐧
[𝐤]

‖ → 𝟎   and the absolute 

check should be used in this situation. 

 

One can try to combine the two check and force the code to select automatically the better check by 

requiring: 

 

 

(𝟒. 𝟓𝟓)     
‖∆𝐲𝐧

[𝐤]
‖

𝐦𝐚𝐱 ( ‖𝐲𝐧
[𝐤]

‖ , 𝟏 ) 
 < 𝐓𝐎𝐋                                                                          for    𝐤 = 𝟏, 𝟐, …  . 

 

 

It is clear that the check introduced by (4.55) will work as an absolute stopping criterion when  

‖𝐲𝐧
[𝐤]

‖ < 𝟏  and as a relative one otherwise. The check (4.55) is often called mixed stopping criterion. 

Some positive constant (say,  𝐜 ) can be used instead of  𝟏  in (4.55).  

 

It should be pointed out here that in all three stopping criteria, which were introduced above, it is 

implicitly assumed that all components of vector  𝐲𝐧
[𝐤]

  are of the same order of magnitude. 

Unfortunately, this requirement is not always satisfied when different problems arising in science and 

engineering are to be treated numerically. One such example is the atmospheric chemical scheme used 

in the Unified Danish Eulerian Model (UNI-DEM, see Zlatev, 1995, or Zlatev and Dimov, 2006), 

which was mentioned in Chapter 1 and will be discussed in detail in the next section. The 

concentrations of the chemical species involved in this scheme differ by many orders of magnitude. 

Therefore, it is necessary to introduce and to use component-wise stopping criteria (instead of stopping 

criteria based on norms) when such problems are to be handled.  

 

Assume that the components of vectors   𝐲𝐧
[𝐤]

   and   ∆𝐲𝐧
[𝐤]

   are denoted by   𝐲𝐧𝐪
[𝐤]

   and   ∆𝐲𝐧𝐪
[𝐤]

   where  

𝐪 = 𝟏 , 𝟐 , …   , 𝐬 .  By using this notation, three component-wise stopping criteria, corresponding to 

the stopping criteria defined by (4.53), (4.54) and (4.55)  are given below:  

 

 

(𝟒. 𝟓𝟔)          𝐦𝐚𝐱
𝐪=𝟏 ,   𝟐 ,   …  ,   𝐬 

(|∆𝐲𝐧𝐪
[𝐤]

|)  < 𝐓𝐎𝐋                                                             for    𝐤 = 𝟏, 𝟐, … ,   

 

 

(𝟒. 𝟓𝟕)           𝐦𝐚𝐱
𝐪=𝟏 ,   𝟐 ,   …  ,   𝐬 

(
|∆𝐲𝐧𝐪

[𝐤]
|

|𝐲𝐧𝐪
[𝐤]

|
)  < 𝐓𝐎𝐋                                                            for    𝐤 = 𝟏, 𝟐, …  , 
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(𝟒. 𝟓𝟖)           𝐦𝐚𝐱
𝐪=𝟏 ,   𝟐 ,   …  ,   𝐬 

(
|∆𝐲𝐧𝐪

[𝐤]
|

𝐦𝐚𝐱 (|𝐲𝐧𝐪
[𝐤]

|  ,   𝟏)
)  < 𝐓𝐎𝐋                                       for    𝐤 = 𝟏, 𝟐, …  . 

 

 

Also here some positive constant (say,  𝐜 ) can be used instead of  𝟏 . 

 

It should be mentioned that the check (4.56) is not very different from the checks based on the norm 

of the calculated solution vector. In fact the quantity in the right-hand-side of (4.56) is a particular norm 

of this vector. 

 

It is clear that the stopping criteria based on (4.56) will cause difficulties when the absolute values of 

all components of the solution vector are large numbers, while problems will appear when (4.57) is 

used and all components of the solution are very small in absolute value. Therefore, stopping criteria 

based on the use of (4.58) with some positive constant   𝐜    seems to be most reliable when the 

components of the involved vectors vary in a wide range. It should be mentioned that some of the 

problems arising when the stopping criteria (4.56) and (4.57) are used will disappear if appropriate 

scaling could be performed. 

 

It should also be mentioned here that the component-wise stopping criteria (4.58) is used in the 

numerical experiments, which will be described in the next section. 

 

 

(B) Preventing performance of too many iterations. If the convergence is too slow or if the 

computational process is divergent, the computations should be stopped. A special parameter  𝐤𝐦𝐚𝐱     

should be used and the iterative process should be carried out as long as the iteration number   𝐤   is 

less than   𝐤𝐦𝐚𝐱 .  

 

 

(C) Efforts to discover whether the computational process will be convergent. The use of 

parameter  𝐤𝐦𝐚𝐱  only may be quite inefficient. Assume, for example, that  𝐤𝐦𝐚𝐱 = 𝟓𝟎  or   𝐤𝐦𝐚𝐱 =
𝟏𝟎𝟎 .  It will not be very efficient to perform  𝟓𝟎  or  𝟏𝟎𝟎  iterations and only after that to find out that 

the required accuracy could not be achieved (because the Newton method converges too slowly). It is 

much more desirable to control, from the very beginning, whether the convergence of the iterative 

process is sufficiently fast and to stop the iterations if there is a danger that this is not the case. Very 

often this is done by requiring that 

 

 

(𝟒. 𝟓𝟗)     ‖∆𝐲𝐧
[𝐤]

‖ <  𝛄 ‖∆𝐲𝐧
[𝐤−𝟏]

‖                                                                              for    𝐤 = 𝟐, 𝟑, …   

 

 

and stopping the iterative process if this condition is not satisfied at some iteration   𝐤 .   Parameter   𝛄  

with   𝟎 < 𝛄 ≤ 𝟏   is some appropriately chosen factor, by which one attempts to measure the 

convergence rate.   
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This stopping criterion in some situations is rather stringent, because the errors sometimes may 

fluctuate also when the iterative process is convergent (the fluctuations becoming smaller and smaller). 

Therefore, it is relaxed sometimes by requiring that (4.59) is not satisfied several consecutive times 

(say, two or three times) before stopping the iterations.  

 

If either Algorithm 2 or Algorithm 3 is used, then (4.59) is also used to decide whether the Jacobian 

matrix has to be updated and factorized (see below). 

 

 

(D) Updating the Jacobian matrix and factorizing it. One has to decide when to update the Jacobian 

matrix and to re-factorize it when Algorithm 2 and Algorithm 3 are used. As mentioned above the 

check introduced by (4.59) is often used in this decision, i.e. if this check fails and if and old Jacobian 

matrix is used, then the stepsize is not automatically reduced, but first a new Jacobian matrix is 

calculated and factorized. In this way some reductions of the stepsize can be avoided. 

 

Sometimes a much simpler check, based on the accuracy tests, is selected. If an old Jacobian matrix is 

used and if the required accuracy is not achieved after some prescribed number of iterations (often this 

number is set to three), then a new Jacobian matrix is calculated and factorized. 

 

It is assumed in this subsection that the system of ODEs is non-linear. Then it is necessary to apply 

some version of the Newton iterative method (or some other iterative procedure). If the systems of 

ODEs is linear, then the situation is not very clear. The application of any representative of the θ-

methods with   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎]   leads in this situation to the solution of systems of linear algebraic 

equations. In principle, one must try to exploit the linearity by solving the system of linear algebraic 

equation directly. However, if the system of ODEs is very large, then the resulting system of linear 

algebraic equations is very large too. Therefore, it may be worthwhile to keep, as long as possible, an 

old Jacobian matrix (calculated and factorized at some previous step) and to use again an iterative 

method. 

 

It was assumed in this sub-section that the shifted Jacobian matrix   𝐈 − 𝐡 𝛉 𝐉𝐧    is a general matrix, 

which has no special properties. However, shifted Jacobian matrices with special properties do appear 

in many scientific and engineering problems. The shifted Jacobian matrix can, for example, be  

 

(a) positive definite,  

 

(b) diagonally dominant,  

 

(c) banded  

 

and  

 

(d) general sparse. 

 

The shifted Jacobian matrix could possess simultaneously even several of these properties. It is 

worthwhile to try to exploit these properties. It is not necessary to discuss this topic here, but 

good explanation of different techniques for exploiting these properties can be found in many 

text books; see, for example, Demmel (1997), Duff, Erisman and Reid (1986), George and 
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Liu (1981), Golub and Van Loan (1983), Parlett (1980), Sewell (2004), Trefethen and Bau 

(1997) and Zlatev (1991). Standard well-optimized programs for the solution of systems of linear 

algebraic equations in different situations can be found in Anderson et al. (1992) or in Barker 

et al. (2001).  

 

 

 

4.5.5. Richardson Extrapolation and the Newton Method  

 

It was explained in the previous sub-section that the problem of implicitness is causing great difficulties 

when numerical schemes from the class of the θ-methods with   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎]   are to be used directly 

in the solution of stiff systems of ODEs. However, the difficulties become in general considerably 

bigger when the θ-methods are combined with the Richardson Extrapolation. In this sub-section we 

shall discuss these difficulties. 

 

Let us assume that the underlying numerical method, i.e. the selected numerical scheme from the class 

of the θ-methods with some particular value of parameter   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎] ,   is called (as in Section 

1.6) Method A, while the new numerical method, which is obtained when Method A is combined with 

the Richardson Extrapolation, is called Method B. In this sub-section we shall be interested in the 

comparison of the performance of Method A and Method B, when the three versions of the Newton 

iterative procedure, which were discussed in §4.5.1, §4.5.2 and §4.5.3, are used.      

 

Assume first that the classical Newton iterative procedure from §4.5.1 is to be applied. Assume 

further that Method A and Method B are used with the same time-stepsize. Then Method B will be 

approximately three times more expensive with regard to the computing time needed than Method A. 

Indeed for every time-step performed with Method A, three time-steps (one large and two small) have 

to be carried out with Method B. In fact, the computing time needed when Method B is used will often 

be less than three times the computing time needed when Method A is used in the numerical solution 

of the solved systems of ODEs. The reduction is due to the fact that the number of iterations needed 

when the two small time-stepsizes are carried out will often be less than the corresponding number, 

which is needed in the case where the large time-stepsize is used. Nevertheless, this reduction, if it 

takes place (i.e. if the number of iterations is really reduced when the halved time-stepsize is used), 

will be rather small (because not the time for performing the iterations but the factorization time is as 

a rule dominant) and the situation in this case is similar to the situation which occurs when explicit 

numerical methods are used. As in that case, i.e. when explicit methods are used, the amount of the 

computational work is increased by a factor approximately equal to three when Method B is used 

instead of Method A and when additionally both methods are used with the same time-stepsize.    

 

Assume now that the modified Newton iterative process from §4.5.2 is to be applied. Assume again 

that Method A and Method B are used with the same time-stepsize. Then the situation remains very 

similar to the situation, which occurs when the classical Newton iterative process is used. Also in this 

case Method B will be approximately three times more expensive with regard to the computing time 

needed than Method A. 

 

The real difficulties related to the use of the Richardson Extrapolation appear when Algorithm 3 from 

§4.5.3 is used. If Method A is used, then an old Jacobian matrix (in fact, its factorization to two 

triangular matrices) can be kept and used during several consecutive time-steps (as long as the time-

stepsize remains constant and the convergence rate is sufficiently fast). This will, unfortunately, not be 
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possible when Method B is used (because the two time-stepsizes, the time-stepsize used in the large 

time-step and the halved time-stepsize used in the two small time-steps, are different and, thus, the 

corresponding shifted Jacobian matrices are also different). This means that it is not very easy to 

implement efficiently Algorithm 3 together with Method B.  

 

Therefore, it is time now to point out again that it is not necessary to run the selected numerical 

scheme and its combination with the Richardson Extrapolation with the same stepsize (the latter 

numerical method could be run with a larger stepsize, because it is more accurate). This means that it 

is much more worthwhile to try to find out by how much the stepsize should be increased in order to 

make the combination of the selected method with the Richardson Extrapolation at least competitive 

with the case where the selected method is used directly. We shall try to answer this question in the 

remaining part of this sub-section.    

 

Denote, as in Chapter 1, by   𝐡𝐀   and   𝐡𝐁   the maximal time-stepsizes by which the prescribed 

accuracy will be achieved when respectively Method A and Method B are used. It is clear that the 

computing time spent when Method B is applied will be comparable to the computing time spent by 

using Method A if  𝐡𝐁 ≈ 𝟑𝐡𝐀  when Algorithm 1 or Algorithm 2 is used in the treatment of the Newton 

iterative method. 

 

As stated above, Algorithm 3 cannot be used together with Method B (the attempt to use Algorithm 3 

separately for the large and the small stepsizes will at least lead to a large increase of the storage 

requirements). It will be more efficient to apply Algorithm 2 than Algorithm 1 with this method. It is 

clear that Algorithm 2 is the best choice for Method B, while Algorithm 3 is normally the best choice 

for Method A. Assume now that Algorithm 2 is used with Method B and Algorithm 3 with Method A 

in the treatment of the Newton iterative method.  

 

Then the computing time spent by Method B will be comparable to the computing time spent by using 

Method A if    𝐡𝐁 ≈ 𝟑𝐦𝐡𝐀 ,   where    𝐦 > 𝟑 .  Moreover, the factor  𝐦  could sometimes be 

considerably larger than  𝟑 .  Therefore, the big question now is:  

 

 

Will it be nevertheless possible to obtain better results with regard to 

the computing time when Method B is used? 

 

 

It will be demonstrated in the next section, by applying appropriate numerical examples, that the answer 

to this question is positive (this was also demonstrated in Table 1.1 of Chapter 1 but only as a fact, 

with no explanation of the reasons for achieving the good results). 

 

 

 

4.6. Numerical experiments 
 

Also in this section we shall use the abbreviations Method A for the underlying numerical method (in 

the next sub-sections the underlying method will be the selected numerical scheme from the class of 

the θ-methods with some particular value of parameter  𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎] ) and Method B for the new 

numerical method, obtained when Method A is combined with the Richardson Extrapolation. 
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We shall demonstrate (by using appropriate numerical experiments) that the two methods, Method A 

and Method B, have the following useful properties: 

 

(a) Method B behaves as a second-order numerical method when the stability properties 

of the underlying numerical scheme, i.e. the stability properties of Method A, are 

preserved (this is the case, according to the results proved in the previous section, when 

the relationship  𝛉 ∈ [𝟐/𝟑, 𝟏. 𝟎]  holds). 

  

(b) For some values of  𝛉 < 𝟏  the results produced by both Method A and Method B are 

more accurate than the corresponding results produced when the Backward Euler 

Formula (which is obtained when  𝛉 = 𝟏 ) is used either directly or in a combination 

with the Richardson Extrapolation.  

 

(c) Method B is often much more efficient than Method A in terms of the computing time 

needed to obtain the desired results when some prescribed but not too low accuracy is 

required. 

 

(d) If the conditions of Theorem 4.1 are not satisfied, i.e. if  [𝛉 ∈ 𝟎. 𝟓, 𝟐/𝟑) , then Method 

B produces, as should be expected, unstable results; the well-known Trapezoidal Rule 

will be used in order to demonstrate this fact. 

 

Several numerical experiments were carried out in order to illustrate the fact that statements  (a) – (d) 

hold. A representative atmospheric chemical scheme was briefly introduced and used in Chapter 1. 

More details about this chemical scheme will be discussed in the following sub-section and, after that, 

it will be used in the calculations, the results of which will be presented in this chapter.  

 

 

4.6.1. Atmospheric chemical scheme  

 

An atmospheric chemical scheme, in which   𝐬 = 𝟓𝟔   chemical species are involved, is applied in all 

experiments, results of which will be presented in the next subsections. This scheme contains all 

important air pollutants, which can be potentially dangerous when their levels are high (ozone, sulphur 

pollutants, nitrogen pollutants, ammonium-ammonia pollutants, several radicals and many hydro-

carbons). This atmospheric chemical scheme is used, together with two other chemical schemes, in the 

Unified Danish Eulerian Model (UNI-DEM), see, Alexandrov et al. (1997, 2004), Zlatev (1995) and 

Zlatev and Dimov (2006). Similar atmospheric chemical schemes are used in several other well-

known large-scale environmental models as, for example, in the EMEP models (see Simpson et al., 

2003), in the EURAD model (see Ebel et al., 2008 and Memmesheimer, Ebel and Roemer, 1997) 

and in the model system carefully adjusted for application in different studies of air pollution levels in 

Bulgaria and in its surrounding countries (see Syrakov et al., 2011). In all these models the chemical 

species are mainly concentrations of pollutants, which are transported in the atmosphere and 

transformed under the transportation.   

 

The atmospheric chemistry scheme is described mathematically by a non-linear system of ODEs of 

type (1.1) and (1.2). The numerical treatment of this system is extremely difficult not only because  

 

(a) it is non-linear, 
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but also because 

 

(b) it is very badly scaled  

 

and  

 

(c) some chemical species vary very quickly during the periods of changes from day-time 

to night-time and from night-time to day-time when some quick chemical reactions 

(called photo-chemical) are activated or deactivated. 

 

The fact that the system of ODEs (by which the atmospheric chemical scheme is described 

mathematically) is non-linear, badly scaled and stiff implies, as was pointed out in the previous 

sections,  

 

(A) the use of implicit numerical methods for solving systems of ODEs  

 

and  

 

(B) the application of the Newton iterative procedure in the treatment of the arising at every 

time-step non-linear system of algebraic equations.  

 

The greatest problems are related to the shifted Jacobian matrix, which has to be used in the Newton 

iterative procedure. The shifted Jacobian matrix that appear and has to be treated during the 

performance of this procedure is both very ill-conditioned and extremely badly scaled. 

 

The bad scaling and the ill-conditioning of the Jacobian matrix  𝐉 = 𝐝𝐟/𝐝𝐱  is causing difficulties also 

in the treatment of the systems of linear algebraic equations, which have to be solved at each iteration 

of the Newton method. 

 

The bad scaling is generated mainly by the fact that the concentrations of some of the chemical species 

vary in quite different and very wide ranges.  

 

The quick diurnal variation of some of the concentrations is due to the fact that the involved species 

participate in the so-called photo-chemical reactions which are activated in the morning at the sun-rise 

and deactivated in the evening after the sun-set. This means that the periods of changes from day-time 

to night-time and from night-time to day-time are very critical for some of the chemical species.  

 

Both the bad scaling of the chemical species and the steep gradients in the periods of changes from 

day-time to night-time and from night-time to day-time are clearly demonstrated in in Table 4.1 in 

connection with four chemical species. It is seen, for example, that while the maximal concentration 

of ozone,  𝐎𝟑 ,  is about   𝟏𝟎𝟏𝟐  molecules per cubic centimetre, the minimal concentration of  𝐎𝐏  is 

about  𝟏𝟎−𝟑𝟓  molecules per cubic centimetre (i.e. the difference is about  47  orders of magnitude!).  

 

Also the condition numbers of the Jacobian matrices appearing in the same period of 24 hours were 

calculated at every time-step (by calling standard LAPACK subroutines, see Anderson et al., 1992, or 

Barker et al., 2001). The abbreviation   𝐂𝐎𝐍𝐃   is used for the condition number calculated at any 

time-step during the numerical integration. It was established that the condition numbers are varied in 
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the interval   𝐂𝐎𝐍𝐃 ∈   [ 𝟒. 𝟓𝟔 × 𝟏𝟎𝟖 , 𝟗. 𝟐𝟕 × 𝟏𝟎𝟏𝟐 ] ,   which shows very clearly that the condition 

number of the Jacobian matrix   𝐉 = 𝛛𝐟/𝛛𝐭    can really be very large (this topic will be further discussed 

in the next sub-section). 

 

Plots, which illustrate the diurnal variation of two chemical species as well as the sharp gradients that 

appear in the periods of  changes from day-time to night-time and from night-time to day-time are 

given in Fig. 4.2 and Fig. 4.3. Also the fact that some of the concentrations are decreased during the 

night, while others are increased in this period is demonstrated in these two figures. Moreover, the 

changes of the concentrations are very quick and create steep gradients. Other examples will be given 

in Chapter 5. 

 

 

Chemical 

species 

Maximal 

concentration 

Minimal 

concentration 

Mean 

concentration 

   𝐎𝟑 𝟏. 𝟖 × 𝟏𝟎𝟏𝟐 𝟏. 𝟒 × 𝟏𝟎𝟏𝟐 𝟏. 𝟓 × 𝟏𝟎𝟏𝟐 

    𝐏𝐀𝐍 𝟏. 𝟑 × 𝟏𝟎𝟏𝟎 𝟗. 𝟒 × 𝟏𝟎𝟓 𝟐. 𝟑 × 𝟏𝟎𝟗 

  𝐈𝐒𝐎𝐏𝐑𝐄𝐍𝐄 𝟑. 𝟕 × 𝟏𝟎𝟗 𝟏. 𝟏 × 𝟏𝟎𝟔 𝟏. 𝟓 × 𝟏𝟎𝟗 

𝐎𝐏 𝟏. 𝟔 × 𝟏𝟎𝟒 𝟏. 𝟕 × 𝟏𝟎−𝟑𝟓 𝟓. 𝟗 × 𝟏𝟎𝟑 

Table 4.1 

The orders of magnitude and the variations of the concentrations of some 

chemical species during a period of   𝟐𝟒   hours (from twelve o’clock at the 

noon on a given day to twelve o’clock at the noon on the next day). The units 

are (numbers of molecules) / (cubic centimetre). 
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Figure 4.2 

Diurnal variation of the concentrations of the chemical species  𝐎𝐇 . 
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Figure 4.3 

Diurnal variation of the concentrations of the chemical species  𝐍𝟐𝐎𝟓 . 

 

 

 

4.6.2. Organization of the computations  

 

The organization of the computations, which were carried out in connection with the atmospheric 

chemical scheme, is very similar to that, which was discussed in the previous chapters, in Chapter 1, 

Chapter 2 and  Chapter 3. However, a more detailed description is needed here, because of the 

implicitness of the applied in this chapter numerical methods. Such description will be given in this 

sub-section. 

 

The atmospheric chemical scheme, which was discussed in the previous sub-section, was treated 

numerically on the time-interval  [ 𝐚, 𝐛 ] =  [ 𝟒𝟑𝟐𝟎𝟎 , 𝟏𝟐𝟗𝟔𝟎𝟎 ] .  The value  𝐚 = 𝟒𝟑𝟐𝟎𝟎  

corresponds to twelve o’clock at the noon (measured in seconds and starting from mid-night), while  

𝐛 = 𝟏𝟐𝟗𝟔𝟎𝟎  corresponds to twelve o’clock at the next day (measured also in seconds from the same 

starting point). Thus, the length of the time-interval used in the numerical experiments in this chapter 

is  𝟐𝟒  hours and it contains the important changes from day-time to night-time and from night-time to 

day-time (when most of the chemical species, as stated in the previous sub-section, are very quickly 
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varying, because the photo-chemical reactions are deactivated and activated when these changes take 

place).        

 

Several long sequences of runs were carried out and some of the obtained results will be presented 

below. The first run in any of these sequences was performed by using   𝐍 = 𝟏𝟔𝟖   time-steps, which 

means that the time-stepsize was   𝐡 ≈ 𝟓𝟏𝟒. 𝟐𝟖𝟓   seconds. Several runs were successively carried out 

after the first one. As in the previous two chapters, the time-stepsize  𝐡  was halved after each successful 

run (which means that the number of time-steps was doubled). The behaviour of the errors made during 

all the runs was studied. The error made at time   𝐭̅𝐣   in any of the runs was measured in the following 

way. Assume that   �̅�    runs are to be carried out. The errors calculated during step  𝐣  of run   𝐤 ,   𝐤 =
𝟏 , 𝟐, …   , �̅�    are estimated by using the following formula: 

 

 

(𝟒. 𝟔𝟎)      𝐄𝐑𝐑𝐎𝐑𝐣
(𝐤)

=  𝐦𝐚𝐱
𝐢=𝟏 ,𝟐,…𝟓𝟔

 (
| 𝐲𝐢,𝐣 − 𝐲𝐢,𝐣

𝐫𝐞𝐟)|

𝐦𝐚𝐱(|𝐲𝐢,𝐣
𝐫𝐞𝐟| , 𝟏. 𝟎)

)   ,   𝐣 = 𝟐𝐤−𝟏, 𝟐 × 𝟐𝐤−𝟏  ,   … , 𝟏𝟔𝟖 × 𝟐𝐤−𝟏 ,  

 

 

where    𝐲𝐢,𝐣   and   𝐲𝐢,𝐣
𝐫𝐞𝐟   are the calculated values and the values of the reference solution  of the   𝐢𝐭𝐡   

chemical species at time    𝐭̅𝐣 = 𝐭𝟎  + 𝐣𝐡𝟎  (where    𝐣 = 𝟏 , 𝟐, …   ,   𝟏𝟔𝟖    and    𝐡𝟎 ≈ 𝟓𝟏𝟒. 𝟐𝟖𝟓    was 

the time-stepsize that has been used in the first run). The values of the reference solution were 

calculated by using the three-stage fifth-order L-stable Fully Implicit Runge-Kutta (FIRK) Method 

(this method will be further discussed in next section) with    𝐍 = 𝟗𝟗𝟖𝟐𝟒𝟒𝟑𝟓𝟐   time-steps and a time-

stepsize    𝐡𝐫𝐞𝐟  ≈ 𝟔. 𝟏𝟑𝟎𝟕𝟔𝟑𝟒 × 𝟏𝟎−𝟓 . Also the errors made for selected chemical species were 

calculated for some important pollutants (by fixing the index  𝐢 ). In this section we shall use (4.60), 

but in the next section we shall fix index  𝐢  and report results related to the important pollutant ozone.   

 

This means that we estimate the error at the same set of grid-points in each of the    �̅�   runs when (4.60) 

is used. More precisely, the error is estimated at every time-step during the first run, at every second 

time-step during the second run, at every fourth time-step during the third run and we continue in the 

same manner after the third run. Thus, the number of grid-points, at which the error is estimated, is   

𝟏𝟔𝟖  for any of the    �̅�     runs. It should be pointed out that    �̅� = 𝟏𝟗    is used in this section.  

 

It is clear from the above discussion that only the values of the reference solution at the grid-points of 

the coarse grid (which is used in the first run) have been stored and applied in the evaluation of the 

error (it is, of course, also possible to store all values of the reference solution, but such an action will 

increase tremendously the storage requirements). It is much more important and must be emphasized 

here that errors of the calculated approximations were always, in all nineteen runs, computed at the 

same   𝟏𝟔𝟖   grid points.   

 

The global error made at run  𝐤 ,   𝐤 = 𝟏 , 𝟐, …   , �̅�     is estimated by:  

 

 

(𝟒. 𝟔𝟏)      𝐄𝐑𝐑𝐎𝐑(𝐤)  =  𝐦𝐚𝐱
 𝐣=𝟐𝐤−𝟏,𝟐×𝟐𝐤−𝟏 ,   … ,𝟏𝟔𝟖×𝟐𝐤−𝟏

 ( 𝐄𝐑𝐑𝐎𝐑𝐣
(𝐤)

)  .  
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It is highly desirable to eliminate the influence of the rounding errors when the quantities involved in 

(4.42) and (4.43) are calculated. This is not very easy in this situation. Normally, this task can 

successfully be accomplished when double precision arithmetic is used during the computations. 

Unfortunately, this is not always true when the atmospheric chemical scheme is handled. The difficulty 

can be explained as follows. If the problem is stiff, and the atmospheric chemical scheme is as 

mentioned above a very stiff non-linear system of ODEs, then implicit numerical methods are to be 

used. The application of such numerical methods leads to the solution of systems of non-linear 

algebraic equations, which are treated, as described in the previous sub-section, at each time-step by 

the Newton Iterative Method (see also, for example, Hairer and Wanner, 1991). This means that long 

sequences of systems of linear algebraic equations are to be handled during the iterative process. As a 

rule, this does not cause great problems. However, the atmospheric chemical scheme is, as mentioned 

in the previous sub-section, very badly scaled and the condition numbers of the involved in the solution 

of the systems of linear algebraic equations matrices are very large. It was found, as mentioned above, 

by applying a LAPACK subroutine for calculating eigenvalues and condition numbers (Anderson et 

al., 1992 and Barker et al., 2001), that the condition numbers of the matrices involved in the Newton 

Iterative Process during the numerical integration of the atmospheric chemical scheme with  𝟓𝟔  

chemical species on the time-interval  [ 𝐚, 𝐛 ] =  [ 𝟒𝟑𝟐𝟎𝟎 , 𝟏𝟐𝟗𝟔𝟎𝟎 ]  vary in the range  

[ 𝟒. 𝟓𝟔 × 𝟏𝟎𝟖 , 𝟗. 𝟐𝟕 × 𝟏𝟎𝟏𝟐 ] . Simple application of some error analysis arguments from Stewart 

(1973) and Wilkinson (1963, 1965) indicates that there is a danger that the rounding errors could affect 

the accuracy up to twelve of the sixteen significant digits of the approximate solution on most of the 

existing computers when double precision arithmetic (based on the use of REAL*8 declarations of the 

real numbers and leading to the use of about 16-digit arithmetic on many computers) is applied. 

Therefore, all computations reported in the next sub-sections were performed by selecting quadruple-

precision (i.e. by using REAL*16 declarations for the real numbers and, thus, about 32-digit 

arithmetic) in order to eliminate completely the influence of the rounding errors in the first 16 

significant digits of the computed approximate solutions. This is done in order to demonstrate the 

possibility of achieving very accurate results under the assumption that stable implementations of the 

Richardson Extrapolation for the class of the θ-methods are developed and used and, furthermore, to 

show that the rounding errors do not affect the accuracy of the results in our runs. 

 

After the explanation of the organization of the computations, we are now ready to present some of the 

results from the numerical experiments, which were carried out in order to demonstrate the advantages 

of the application of Richardson Extrapolation. 

 

 

4.6.3. Achieving second order of accuracy  

 

Numerical results, which are obtained by using first-order numerical schemes belonging to the class of 

the θ-methods in combination with the Richardson Extrapolation are given in Table 4.2. The value  

𝛉 = 𝟎. 𝟕𝟓    is selected, which means that the relationship   |𝐑(𝛎)|  → 𝐜 < 𝟏   as   𝐑𝐞(𝛎)  → −∞    holds 

with   𝐜 = 𝟓/𝟗 ,  see (4.35).  The results in Table  4.2 show clearly that the θ-method with  𝛉 = 𝟎. 𝟕𝟓    
performs: 

 

(a) as a first-order method (as it should) when it is applied directly  

 

and  
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(b) as a stable second-order method when it is used as an underlying method in the 

Richardson Extrapolation.  

 

Indeed, the decrease of the time-stepsize by a factor of two leads to an increase of the accuracy by a 

factor of two when the θ-method with    𝛉 = 𝟎. 𝟕𝟓    is used directly and by a factor of four when this 

method is combined with the Richardson Extrapolation. Moreover, it is also seen that these two 

relations (increases of the achieved accuracy by factors of two and four respectively) are fulfilled in a 

nearly perfect way. 

 

 

Job 

Number 

Number of 

time-steps 

Direct use of the θ-method Richardson Extrapolation 

Accuracy Rate Accuracy Rate 

1   168 1.439E-00 - 3.988E-01 - 

2 336 6.701E-01 2.147 5.252E-02 7.593 

3 672 3.194E-01 2.098 1.503E-03 3.495 

4 1344 1.550E-01 2.060 3.787E-03 3.968 

5 2688 7.625E-02 2.033 9.502E-04 3.985 

6 5376 3.779E-02 2.018 2.384E-04 3.986 

7 10752 1.881E-02 2.009 5.980E-05 3.986 

8 21504 9.385E-03 2.005 1.499E-05 3.989 

9 43008 4.687E-03 2.002 3.754E-06 3.993 

10 86016 2.342E-03 2.001 9.394E-07 3.996 

11 172032 1.171E-03 2.001 2.353E-07 3.993 

12 344064 5.853E-04 2.000 6.264E-08 3.756 

13 688128 2.926E-04 2.000 1.618E-08 3.873 

14 1376256 1.463E-04 2.000 4.111E-09 3.935 

15 2752512 7.315E-05 2.000 1.036E-09 3.967 

16 5505024 3.658E-05 2.000 2.601E-10 3.984 

17 11010048 1.829E-05 2.000 6.514E-11 3.993 

18 22020096 9.144E-06 2.000 1.628E-11 4.001 

19         44040192 4.572E-06 2.000 4.051E-12 4.019 

Table 4.2 

Numerical results that are obtained  (a) in nineteen runs, in which the direct implementation 

of the  θ-method  with    𝛉 = 𝟎. 𝟕𝟓    is used, and (b) in the corresponding nineteen runs in 

which the combination consisting of the Richardson Extrapolation and the  θ-method with    

𝛉 = 𝟎. 𝟕𝟓    is applied. The errors obtained by using formula (4.61) are given in the columns 

under “Accuracy”. The ratios of two successive errors (the convergence rates) are given in 

the columns under “Rate”.  

 

 

 

4.6.4. Comparison of the θ-method with  𝛉 = 𝟎. 𝟕𝟓  and the Backward Euler Formula 

 

It can theoretically be justified that the θ-method with    𝛉 = 𝟎. 𝟕𝟓    should normally give more 
accurate results than the Backward Euler Formula. More precisely, the following theorem holds:  
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Theorem 4.3: The principal part of the local truncation error of the  θ-method with    𝛉 = 𝟎. 𝟕𝟓    is 

twice smaller than that of the Backward Euler Formula. 

 

Proof: Consider two approximations  𝐲𝐧
𝐛𝐚𝐜𝐤𝐰𝐚𝐫𝐝  and  𝐲𝐧

𝛉=𝟎.𝟕𝟓  of the exact solution  𝐲(𝐭𝐧)  of the 

problem defined by (1.1) and (1.2), which are obtained at time-step  𝐧  by applying respectively the 

Backward Euler Formula and  the  θ-method with    𝛉 = 𝟎. 𝟕𝟓     assuming that the same initial value  

𝐲𝐧 ≈ 𝐲(𝐭𝐧)  is applied. The equations, which are used in the calculation of the approximations   

𝐲𝐧
𝐛𝐚𝐜𝐤𝐰𝐚𝐫𝐝   and   𝐲𝐧

𝛉=𝟎.𝟕𝟓 ,   can be written in the following form: 

 

 

(𝟒. 𝟔𝟑)     𝐲𝐧
𝐛𝐚𝐜𝐤𝐰𝐚𝐫𝐝 − 𝐲𝐧−𝟏 − 𝐡 𝐟(𝐭𝐧, 𝐲𝐧

𝐛𝐚𝐜𝐤𝐰𝐚𝐫𝐝) = 𝟎 ,    
 

 

and 

 

 

(𝟒. 𝟔𝟒)     𝐲𝐧
𝛉=𝟎.𝟕𝟓 −  𝐲𝐧−𝟏 − 𝟎. 𝟐𝟓 𝐡 𝐟(𝐭𝐧−𝟏, 𝐲𝐧−𝟏) − 𝟎. 𝟕𝟓 𝐡 𝐟(𝐭𝐧, 𝐲𝐧

𝛉=𝟎.𝟕𝟓) = 𝟎 .    
 

 

 

Replace:  

 

(a)  𝐲𝐧
𝐛𝐚𝐜𝐤𝐰𝐚𝐫𝐝   and   𝐲𝐧

𝛉=𝟎.𝟕𝟓   with   𝐲(𝐭𝐧)   

 

and 

 

(b)   𝐲𝐧−𝟏   with   𝐲(𝐭𝐧−𝟏)     

 

in the left-hand-side of (4.63) and (4.64).  

 

Use the relationship   𝐝𝐲(𝐭)/𝐝𝐭 = 𝐟(𝐭, 𝐲(𝐭))   and introduce, as on p. 48 in Lambert (1991), two linear 

difference operators in order to express the fact that the right-hand-sides of the expressions obtained 

from (4.63) and (4.64) will not be equal to zero when the above substitutions are made. The following 

two relationships can be obtained when these actions are performed: 

 

 

(𝟒. 𝟔𝟓)     𝐋𝐛𝐚𝐜𝐤𝐰𝐚𝐫𝐝[𝐲(𝐭𝐧); 𝐡] =  𝐲(𝐭𝐧) −  𝐲(𝐭𝐧−𝟏)  − 𝐡 
𝐝𝐲(𝐭𝐧)

𝐝𝐭
     

 

 

and 

 

 

(𝟒. 𝟔𝟔)     𝐋𝛉=𝟎.𝟕𝟓[𝐲(𝐭𝐧); 𝐡] =  𝐲(𝐭𝐧) −  𝐲(𝐭𝐧−𝟏) −  𝟎. 𝟐𝟓 𝐡 
𝐝𝐲(𝐭𝐧−𝟏)

𝐝𝐭
−  𝟎. 𝟕𝟓 𝐡 

𝐝𝐲(𝐭𝐧)

𝐝𝐭
  .  
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Expanding  𝐲(𝐭𝐧)  and  𝐝𝐲(𝐭𝐧)/𝐝𝐭  in Taylor series about  𝐭𝐧−𝟏  and keeping the terms containing  𝐡𝟐  

one can rewrite (4.65) and (4.66) in the following way: 

 

 

(𝟒. 𝟔𝟕)     𝐋𝐛𝐚𝐜𝐤𝐰𝐚𝐫𝐝[𝐲(𝐭𝐧); 𝐡] = − 
𝐡𝟐

𝟐
 
𝐝𝟐𝐲(𝐭𝐧−𝟏)

𝐝𝐭𝟐
+ 𝐎(𝐡𝟑)      

 

 

and 

 

(𝟒. 𝟔𝟖)     𝐋𝛉=𝟎.𝟕𝟓[𝐲(𝐭𝐧); 𝐡] =  −
𝐡𝟐

𝟒
 
𝐝𝟐𝐲(𝐭𝐧−𝟏)

𝐝𝐭𝟐
+ 𝐎(𝐡𝟑) .  

 

 

The terms in the right-hand-sides of (4.67) and (4.68) are called local truncation errors (see p. 56 in 

Lambert, 1991). It is seen that the principal part of the local truncation error of the θ-method applied 

with   𝛉 = 𝟎. 𝟕𝟓    is twice smaller than that of the Backward Euler Formula. This completes the proof 

of the theorem. 

 

                                                                                                                                                       ■  

 
 

Theorem 4.3 demonstrates very clearly the fact that one should expect, as stated above, the  θ-method 

with    𝛉 = 𝟎. 𝟕𝟓     to be more accurate than the Backward Euler Formula.  

 

Several experiments were carried out to confirm this expectation. Some of the obtained results are 

shown in  Table 4.3.  It is seen that the accuracy of the numerical results obtained by using the  θ-

method with    𝛉 = 𝟎. 𝟕𝟓     is indeed considerably better than that obtained by the Backward Euler 

Formula (see the figures given in the third and the fifth columns of Table 4.3).  

 

It is remarkable that the accuracy is improved precisely by a factor of two when the time-stepsize 

becomes sufficiently small and, which is very important, when the influence of the rounding errors in 

the first sixteen digits is eliminated. 

 

It is not clear how to derive corresponding expressions for the principal parts of the local truncation 

error when the Richardson Extrapolation is used together with these two numerical methods for solving 

systems of ODEs (i.e. together with the Backward Euler Formula and with the  θ-method with    𝛉 =
𝟎. 𝟕𝟓 ).   Probably the same approach (or at least a similar approach) as that which was used in Theorem 

4.3 can be applied to compare the leading terms of the local truncation error also in this case.  

 

The results presented in Table 4.3 show that the accuracy of the calculated approximations is in general 

improved by a factor, which is greater than two, when the  θ-method with  𝛉 = 𝟎. 𝟕𝟓  is used as an 

underlying method instead of the Backward Euler Differentiation Formula.  
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Job 

Number 

Number of 

time-steps 

Backward Euler Formula The θ-method with θ = 0.75 

Direct Richardson Direct Richardson 

1 168 2.564E-00 3.337E-01 1.439E-00 (0.561) 3.988E-01 (1.195) 

2 336 1.271E-00 1.719E-01 6.701E-01 (0.527) 5.252E-02 (0.306) 

3 672 6.227E-01 5.473E-02 3.194E-01 (0.513) 1.503E-03 (0.027) 

4 1344 3.063E-01 7.708E-03 1.550E-01 (0.506) 3.787E-03 (0.491) 

5 2688 1.516E-01 1.960E-03 7.625E-02 (0.503) 9.502E-04 (0.484) 

6 5376 7.536E-02 5.453E-04 3.779E-02 (0.501) 2.384E-04 (0.437) 

7 10752 3.757E-02 1.455E-04 1.881E-02 (0.501) 5.980E-05 (0.411) 

8 21504 1.876E-02 3.765E-05 9.385E-03 (0.500) 1.499E-05 (0.398) 

9 43008 9371E-03 9583E-06 4.687E-03 (0.500) 3.754E-06 (0.392) 

10 86016 4.684E-03 2.418E-06 2.342E-03 (0.500) 9.394E-07 (0.389) 

11 172032 2.341E-03 6.072E-07 1.171E-03 (0.500) 2.353E-07 (0.388) 

12 344064 1.171E-03 1.522E-07 5.853E-04 (0.500) 6.264E-08 (0.411) 

13 688128 5.853E-04 3.809E-08 2.926E-04 (0.500) 1.618E-08 (0.425) 

14 1376256 2.926E-04 9.527E-09 1.463E-04 (0.500) 4.111E-09 (0.432) 

15 2752512 1.463E-04 2.382E-09 7.315E-05 (0.500) 1.036E-09 (0.435) 

16 5505024 7.315E-05 5.957E-10 3.658E-05 (0.500) 2.601E-10 (0.437) 

17 11010048 3.658E-05 1.489E-10 1.829E-05 (0.500) 6.514E-11 (0.437) 

18 22020096 1.829E-05 3.720E-11 9.144E-06 (0.500) 1.628E-11 (0.438) 

19 44040192 9.144E-6 9.273E-12 4.572E-06 (0.500) 4.051E-12 (0.437) 

Table 4.3 

Comparison of the accuracy achieved when the Backward Euler Formula (obtained by 

using   𝛉 = 𝟏. 𝟎 ) and the  θ-method  with    𝛉 = 𝟎. 𝟕𝟓    are run with 19 different time-

stepsizes. The errors obtained by (4.61) are given in the last four columns in this table. The 

ratios (the errors obtained when the  θ-method  with   𝛉 = 𝟎. 𝟕𝟓   is used divided by the 

corresponding errors obtained when the Backward Euler Formula is used) are given in 

brackets.  

 

 

4.6.5. Comparing the computing times needed to obtain prescribed accuracy 

 

Three time-steps (one large and two small) with the underlying numerical method are necessary when 

one time-step of the Richardson Extrapolation is performed. This means that if the Richardson 

Extrapolation and the underlying numerical method are used with the same time-stepsize, then the 

computational cost of the Richardson Extrapolation will be more than three times greater than that of 

the underlying numerical method (see the analysis performed in the previous section).  

 

However, the use of the Richardson Extrapolation leads also to an improved accuracy of the calculated 

approximations (see Table 4.2 and Table 4.3). Therefore, it is not relevant (and not fair either) to 

compare the Richardson Extrapolation with the underlying method under the assumption that both 

devices are run with equal number of time-steps. It is much more relevant to investigate how much 

computational work will be needed in order to achieve the same accuracy in the cases where  

 

(a) the  θ-method  with    𝛉 = 𝟎. 𝟕𝟓    is applied directly 

 

and  
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(b) when the same numerical method is combined with the Richardson Extrapolation.  

 

The computing times needed in the efforts to achieve prescribed accuracy are given in Table 4.4. If 

the desired accuracy is  𝟏𝟎−𝐤   (𝐤 =  𝟏, 𝟐 , …  , 𝟏𝟏  ) ,   then the computing times achieved in the first 

run in which the quantity  𝐄𝐑𝐑𝐎𝐑  from (4.43) becomes less than   𝟏𝟎−𝐤   are given in Table 4.4. This 

means that the actual error, found in this way, is in the interval  [𝟏𝟎−(𝐤+𝟏) , 𝟏𝟎−𝐤)   when accuracy of 

order  𝟏𝟎−𝐤  is required. 

 
 

Desired 

Accuracy of the 

calculated 

approximations 

Application of the θ-method with  

θ=0.75   
Combination with the 

Richardson Extrapolation 

CPU time (in 

hours) 

Number of the 

time-steps 

CPU time 

(in hours) 

Number of the 

time-steps 

[1.0E-02, 1.0E-01) 0.0506 2688 0.0614 336 

[1.0E-03, 1.0E-02) 0.1469 21504 0.0897 1344 

[1.0E-04, 1.0E-03) 1.1242 344032 0.1192 2688 

[1.0E-05, 1.0E-04) 6.6747 2752512 0.2458 10752 

[1.0E-06, 1.0E-05) 43.0650 22020096 0.6058 43008 

[1.0E-07, 1.0E-06) Required accuracy was not achieved 1.0197 86016 

[1.0E-08, 1.0E-07) Required accuracy was not achieved 3.1219 344064 

[1.0E-09, 1.0E-08) Required accuracy was not achieved 10.3705 1376256 

[1.0E-10, 1.0E-09) Required accuracy was not achieved 35.3331 5505024 

[1.0E-11, 1.0E-10) Required accuracy was not achieved 66.1322 11010048 

[1.0E-12, 1.0E-11) Required accuracy was not achieved 230.2309 44040192 

Table 4.4 

Comparison of the computational costs (measured by the CPU hours) needed to achieve 

prescribed accuracy in the cases where (a) the  θ-method  with    𝛉 = 𝟎. 𝟕𝟓    is implemented 

directly and (b) the Richardson Extrapolation is used in combination with the same 

underlying numerical scheme.  

 

 

Four important conclusions can immediately be drawn by studying the numerical results that are shown 

in Table 4.4: 

 

 The direct use of  the  θ-method  with    𝛉 = 𝟎. 𝟕𝟓    is slightly more efficient with 

regard to the computing time than the implementation of the Richardson Extrapolation 

when the desired accuracy is very low, for example when it is required that  𝐄𝐑𝐑𝐎𝐑  

from (4.61)  should be in the interval  [𝟏𝟎−𝟐 , 𝟏𝟎−𝟏) ;  compare the CPU times in the 

first row of Table 4.4. 

 

 The implementation of the Richardson Extrapolation becomes much more efficient 

than the direct  θ-method  with    𝛉 = 𝟎. 𝟕𝟓     when the accuracy requirement is 

increased (see the second, the third, the fourth and the fifth lines of Table 4.4). If it is 

desirable to achieve accuracy, which is better than  𝟏𝟎−𝟓 ,  and more precisely if it is 

required to have that the  𝐄𝐑𝐑𝐎𝐑  from (4.61)  should be in the interval  [𝟏𝟎−𝟔 ,
𝟏𝟎−𝟓),  then the computing time spent with the Richardson Extrapolation is more than  
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70  times smaller than the corresponding computing time for the  θ-method  with    𝛉 =
𝟎. 𝟕𝟓     when it is used directly (compare the CPU times in the fifth line of Table 4.4). 

  

 Accuracy better than  𝟏𝟎−𝟓  has not been achieved in the  𝟏𝟗  runs with  the  θ-method  

with    𝛉 = 𝟎. 𝟕𝟓    when it is used directly (see Table 4.4), while even accuracy better 

than  𝟏𝟎−𝟏𝟏  is achievable when the Richardson extrapolation is used (see the last lines 

of Table 4.4 and Table 4.2). 

 

 The major conclusion is that not only is the Richardson Extrapolation a powerful tool 

for improving the accuracy of the underlying numerical method, but it is also extremely 

efficient with regard to the computational cost (this being especially true when the 

accuracy requirement is not very low). 

 

 

 

4.6.6. Using the Trapezoidal Rule in the computations 

 

Consider the Trapezoidal Rule (which is a special numerical scheme  belonging to the class of the θ-

methods and can be found from this class by setting    𝛉 = 𝟎. 𝟓  ). It has been shown (see Theorem 4.2) 

that, while the Trapezoidal Rule itself is a second-order A-stable numerical method, its combination 

with the active implementation of the Richardson Extrapolation is not an A-stable numerical method. 

However the passive implementation of the Richardson Extrapolation together with the Trapezoidal 

Rule is remaining A-stable. Now we shall use the atmospheric chemical scheme to confirm 

experimentally these facts. More precisely,  

 

(a) we shall investigate whether the Trapezoidal Rule behaves as a second-order 

numerical method when it is directly applied in the solution of the atmospheric 

chemical scheme, 

 

(b)  we shall show that the results are unstable when this numerical method is combined 

with the active implementation of the Richardson Extrapolation  

 

and 

 

(c)  we shall verify the fact that the results remain stable when the Trapezoidal Rule is 

combined with the passive implementation of the Richardson Extrapolation. 

     

Numerical results are presented in  Table 4.5 .  Several important conclusions can be drawn from 

the results shown in this table (it should be mentioned here that many other runs were also 

performed and the conclusions were similar): 
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Job 

Number 

 

Number 

of steps 

Direct 

Implementation 

Richardson Extrapolation 

Active Passive 

Accuracy Rate Accuracy Rate Accuracy Rate 

1 168 3.605E-01 - Unstable n.a. 4.028E-02 - 

2 336 7.785E-02 4.631 Unstable n.a. 3.246E-03 12.407 

3 672 1.965E-02 3.961 Unstable n.a. 1.329E-03 2.443 

4 1344 4.915E-03 3.998 Unstable n.a. 1.462E-04 9.091 

5 2688 1.228E-03 4.001 Unstable n.a. 5.823E-05 2.510 

6 5376 3.071E-04 4.000 Unstable n.a. 3.765E-05 1.547 

7 10752 7.677E-05 4.000 Unstable n.a. 2.229E-05 1.689 

8 21504 2.811E-05 2.731 Unstable n.a. 1.216E-05 1.833 

9 43008 1.615E-05 1.741 Unstable n.a. 6.300E-06 1.930 

10 86016 8.761E-06 1.843 Unstable n.a. 3.188E-06 1.976 

11 172032 4.581E-06 1.912 Unstable n.a. 1.600E-06 1.993 

12 344064 2.345E-06 1.954 Unstable n.a. 8.007E-07 1.998 

13 688128 1.187E-06 1.976 Unstable n.a. 4.005E-07 1.999 

14 1376256 5.970E-07 1.988 Unstable n.a. 2.002E-07 2.000 

15 2752512 2.994E-07 1.994 Unstable n.a. 1.001E-07 2.000 

16 5505024 1.499E-07 1.997 Unstable n.a. 5.005E-08 2.000 

17 11010048 7.503E-08  1.998 Unstable n.a. 2.503E-08 2.000 

18 22020092 3.753E-08 1.999 Unstable n.a. 1.252E-08 2.000 

19 44040192 1.877E-08 2.000 Unstable n.a. 6.257E-09 2.000 

Table 4.5 

Numerical results obtained in 19 runs of (i) the direct implementation of the Trapezoidal 

Rule, (ii) the Active Richardson Extrapolation with the Trapezoidal Rule and (iii) the 

Passive Richardson Extrapolation with the Trapezoidal Rule are given. The errors 

obtained by (4.61) are given in the columns under “Accuracy”. The ratios of two 

successive errors are given in the columns under “Rate”.  “Unstable” means that the code 

detected that the computations are not stable, while “n.a.” stands for not applicable.  

 

   

(a) The order of the Trapezoidal Rule is two. Therefore, it should be expected that doubling 

the number  N    of time-steps, which leads to a decrease of the time-stepsize  𝐡 =
( 𝟏𝟐𝟗𝟔𝟎𝟎 − 𝟒𝟑𝟐𝟎𝟎 )/𝐍 =  𝟖𝟔𝟒𝟎𝟎/𝐍    by a factor of two, will in general lead to an 

improvement of the accuracy by a factor of four. It is seen that in the beginning this is 

the case. However, after the seventh run the convergence rates are quickly shifting from 

four to two. It is not clear why the rate of convergence is deteriorated and the method 

behaves as a first-order numerical scheme for small time-stepsizes. 

 

(b) The application of the Active Richardson Extrapolation with the Trapezoidal Rule leads 

to unstable computations. As mentioned above this is a consequence of Theorem 4.2. It 

is only necessary to explain here how the instability is detected. Two stability checks are 

carried out. The first check is based on monitoring the norm of the calculated approximate 

solutions: if this norm becomes  𝟏𝟎𝟏𝟎  times greater than the norm of the initial vector, 

then the computations are stopped and the computational process is declared to be 

unstable. The second check is based on the convergence of the Newton Iterative Process. 

If this process is not convergent or very slowly convergent at some time-step  𝐧 ,  then 
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the stepsize  𝐡  is halved. This can happen several times at the time-step  𝐧 .  If the reduced 

time-stepsize becomes less than  𝟏𝟎−𝟓𝐡 ,  then the computational process is stopped and 

declared to be unstable. If the time-stepsize is reduced at time-step  𝐧 ,  then the remaining 

calculations from  𝐭𝐧−𝟏  to  𝐭𝐧  are performed with the reduced time-stepsize (with the 

reduced time-stepsizes, if the time-stepsize has been reduced several times), however an 

attempt is carried out to perform the next time-step  𝐧 + 𝟏  (i.e. to proceed from  𝐭𝐧−𝟏  to  

𝐭𝐧 )  with the time-stepsize  𝐡 = ( 𝟏𝟐𝟗𝟔𝟎𝟎 − 𝟒𝟑𝟐𝟎𝟎 )/𝐍 =  𝟖𝟔𝟒𝟎𝟎/𝐍    that is used 

in the current run  𝐣  where  𝐣 = 𝟏 , 𝟐 , …  , 𝟏𝟗 . 

 

(c) The order of the Passive Richardson Extrapolation with the Trapezoidal Rule should be 

three. Therefore, it should be expected that doubling the number    𝐍    of time-steps, 

which leads to a decrease of the time-stepsize  𝐡 = ( 𝟏𝟐𝟗𝟔𝟎𝟎 − 𝟒𝟑𝟐𝟎𝟎 )/𝐍 =
 𝟖𝟔𝟒𝟎𝟎/𝐍   by a factor of two, will in general lead to an improvement of the accuracy 

by a factor of eight. It is seen from Table 4.2 that this is not the case, the convergence 

rates are increased by a factor of two only and, therefore, the Trapezoidal Rule combined 

with the passive implementation of the Richardson Extrapolation behaves as a first-order 

numerical scheme (excepting perhaps, to some degree, the first three runs). However, it 

is also seen that the Passive Richardson Extrapolation combined with the Trapezoidal 

Rule is a stable method and gives consistently more accurate results than those obtained 

when the Trapezoidal Rule is applied directly. It should be mentioned here that the 

combination of the Backward Differentiation Formula with the Richardson Extrapolation 

behaves (as it should) as a second-order numerical scheme (see, Faragó, Havasi and 

Zlatev, 2010). 

 

 

 

4.7. Using Implicit Runge-Kutta Methods 
 

The use of the Richardson Extrapolation together with numerical schemes from the class of the θ-

methods, which are very often used by scientists and engineers, was studied in detail in the previous 

sections of this chapter. Some results about the application of Implicit Runge-Kutta Methods together 

with the Richardson Extrapolation will be presented in this section. The emphasis will again be on the 

stability properties of the combined methods.  

 

 

4.7.1. Fully Implicit Runge Kutta Methods 

 

Implicit Runge-Kutta Methods can be introduced by the following formulae:  

 
 

(𝟒. 𝟔𝟗)      𝐲𝐧 = 𝐲𝐧−𝟏 + 𝐡 ∑ 𝐜𝐢

𝐦

𝐢=𝟏

𝐤𝐢
𝐧  . 

 

 

The coefficients   𝐜𝐢   are given constants (the requirement to achieve at least first-order of accuracy 

implies that the sum of the coefficients   𝐜𝐢    should be equal to one) , while at an arbitrary time-step   

𝐧    the stages    𝐤𝐢
𝐧    are defined by 
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(𝟒. 𝟕𝟎)       𝐤𝐢
𝐧 = 𝐟 ( 𝐭𝐧−𝟏 + 𝐡 𝐚𝐢 ,   𝐲𝐧−𝟏 + 𝐡 ∑ 𝐛𝐢𝐣

𝐦

𝐣=𝟏

𝐤𝐣
𝐧 )  ,               𝐢 = 𝟏, 𝟐, 𝟑, … , 𝐦 , 

 

 

with 

 

 

(𝟒. 𝟕𝟏)      𝐚𝐢 = ∑ 𝐛𝐢𝐣

𝐦

𝐣=𝟏

  ,                     𝐢 = 𝟏, 𝟐, 𝟑, … , 𝐦  ,       

 

 

where  𝐛𝐢𝐣  are also some given constants depending on the particular numerical method. 

 

Many alternative, but in some cases equivalent, formulations can be found in Butcher (2003), in 

Hairer and Wanner (1991) or in Hundsdorfer and Verwer (2003). 

 

The vectors    𝐤𝐢
𝐧   participating in the right-hand-side of (4.69) and defined in (4.70) are called stages 

as in Chapter 2. Each of these vectors consists of    𝐬   components where   𝐬    is the number of equations 

in the system of ODEs, defined by (1.1) and (1.2). The numerical method defined by the equalities 

(4.69)-(4.71) is an implicit 𝐦–stage Runge-Kutta numerical scheme (the term “fully implicit” is often 

used and it is also adopted here). The implicitness arises in (4.70), because the stage vectors   𝐤𝐢
𝐧    

appear in both sides of these  𝐦   relationships. This means that at every time-step we have to solve a 

system of    𝐦𝐬    equations, which is in general non-linear. 

 

The major advantages of  the Fully Implicit Runge-Kutta (FIRK) Methods are two: 

 

 (a) these methods are very accurate  

 

and  

 

(b) numerical schemes from this class, which have very good stability properties, can be 

derived. 

 

The major drawback of the Fully Implicit Runge-Kutta Methods is caused by the necessity to handle 

systems consisting of   𝐦𝐬   algebraic equations at every time-step, which are in many cases non-linear. 

These systems can be enormously big when   𝐬   is a large integer. Serious computational problems 

arise when this is true. Therefore, an attempt to design simplified numerical methods, which are based 

on the same basic idea, but are not so expensive, is worthwhile. Such methods were developed and will 

be discussed in the next sub-section. 
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4.7.2. Diagonally Implicit Runge-Kutta Methods 

 

It was emphasized in the previous sub-section that if the system of ODEs defined by (1.1) and (1.2) is 

large, i.e. if   𝐬   is large, then the solution of the system (4.70) becomes very time-consuming even 

when high speed modern computers are available and efficiently used. Therefore, it is necessary to find 

some way of reducing  the computational complexity of the Fully Implicit Runge-Kutta Methods. This 

can be done by applying the approach proposed by Alexander (1977). The truth is that there are several 

other works as, for example, an institutional report written by Nørsett (1974) and a conference 

proceedings paper written by Cruziex (1976), where this approach or at least a very similar approach 

is also introduced. The methods, which were developed by Nørsett, Cruziex and Alexander as well as 

by some other scientists, form the class of Diagonally Implicit Runge-Kutta Methods (DIRK 

Methods). The name “diagonally implicit” has been introduced first by R. Alexander, but there is some 

confusion related to these methods, because some authors use occasionally the terms “semi-implicit 

methods” or “semi-explicit methods” instead of diagonally implicit methods. It should be pointed out 

here that these two classes of methods are in some sense similar but not the same as the class of the 

Diagonally Implicit Runge-Kutta Methods.  

 

The DIRK Methods are based on the following formulae:   

 
 

(𝟒. 𝟕𝟐)      𝐲𝐧 = 𝐲𝐧−𝟏 + 𝐡 ∑ 𝐜𝐢

𝐦

𝐢=𝟏

𝐤𝐢
𝐧  . 

 

 

The coefficients   𝐜𝐢   are again, as in the previous sub-section, given constants (the requirement to 

achieve at least first-order of accuracy implies that the sum of the coefficients   𝐜𝐢    should be equal to 

one) , while the stages    𝐤𝐢
𝐧    are defined at an arbitrary time-step   𝐧   by 

 

 

(𝟒. 𝟕𝟑)       𝐤𝐢
𝐧 = 𝐟 ( 𝐭𝐧−𝟏 + 𝐡 𝐚𝐢 ,   𝐲𝐧−𝟏 + 𝐡 ∑ 𝐛𝐢𝐣

𝐢−𝟏

𝐣=𝟏

𝐤𝐣
𝐧 + 𝛄𝐤𝐢

𝐧 )  ,               𝐢 = 𝟏, 𝟐, 𝟑, … , 𝐦 , 

 

 

with 

 

 

(𝟒. 𝟕𝟒)      𝐚𝐢 = ∑ 𝐛𝐢𝐣 + 𝛄

𝐢−𝟏

𝐣=𝟏

  ,                     𝐢 = 𝟏, 𝟐, 𝟑, … , 𝐦  ,       

 

 

where   𝐛𝐢𝐣   and  𝛄   are also some given constants depending on the particular numerical method. 

 

The sums in (4.73) and (4.74) are by definition assumed to be equal to zero when the upper index is 

less than the lower one. 
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It is immediately seen that (4.72) is the same as (4.69), but the equalities presented in (4.73) is different 

from those given in (4.70) and the difference is indeed very essential. While the relations (4.70) have 

to be handled as a large and in the general case non-linear system of    𝐦𝐬    algebraic equations that 

has to be solved at every time-step, (4.73) leads to the solution of   𝐦   systems, each of them consisting 

of    𝐬    equations. Indeed, when  𝐢 = 𝟏 ,  the first of the  𝐦   formula (4.73) contains only one unknown 

vector, vector   𝐤𝟏
𝐧 .  If the first vector    𝐤𝟏

𝐧   is found by solving (4.73) for   𝐢 = 𝟏 ,   then the second 

of the   𝐦   formulae (4.73), which is obtained for  𝐢 = 𝟐 ,   will contain only one unknown vector, 

vector    𝐤𝟐
𝐧 .   If this vector is also found, then for  𝐢 = 𝟑   the third of the   𝐦   formula (4.73) will 

contain only one unknown vector, vector   𝐤𝟑
𝐧 .   It is clear that continuing the computations in this 

way, we shall be able to obtain all stage vectors    𝐤𝐢
𝐧 ,     𝐢 = 𝟏, 𝟐, 𝟑, … , 𝐦 ,     by treating successively 

a sequence of   𝐦   smaller systems, each of them containing    𝐬    equations. 

 

A reasonable question can be asked here: 

 

 

How significant is the reduction of the computational work made in the 

transition from Fully Implicit Runge-Kutta Methods to Diagonally 

Implicit Runge-Kutta Methods? 

 

 

We shall try to answer this question in the next sub-section. 

 

 

 

4.7.3. Evaluating the reduction of the computational cost when DIRK Methods are used 

 

The following example indicates that the reduction obtained when a Diagonally Implicit Runge-Kutta 

(DIRK) Method is used instead of a corresponding Fully Implicit Runge-Kutta (FIRK) Method could 

indeed be rather large. Here “corresponding”  means that the number of stage vectors used in the DIRK 

Method and the FIRK Method is the same.  

 

Consider a system of ODEs defined by (1.1) and (1.2), which is linear and for which the following 

relationships hold: 

 

 

(𝟒. 𝟕𝟓)      
𝐝𝐲

𝐝𝐭
= 𝐀(𝐭) 𝐲,         𝐭 ∈ [𝐚, 𝐛] ,        𝐲 ∈  𝐃 ⊂  ℝ𝐬 ,         𝐬 ≥ 𝟏 ,         𝐲(𝐚) = 𝛈 ,       𝛈 ∈  𝐃  . 

 

 

It is additionally assumed that   𝐀(𝐭)  ∈   ℝ𝐬𝐱𝐬    is a given real matrix, which depends on the 

independent variable   𝐭    and that    𝛈 ⊂  ℝ𝐬    is some given real vector with    𝐬   components. Then 

linear systems of algebraic equations have to be solved at every time-step when either a Fully Implicit 

Runge-Kutta Method or a Diagonally Implicit Runge-Kutta Method is applied. 

 

If a Fully Implicit Runge-Kutta Method is used in the solution of (4.75), then the coefficient matrix   �̅�  

of the linear system, which is represented by formula (4.70), is dependent on matrix   𝐀(𝐭)   and it can 

be partitioned into    𝐦 × 𝐦    blocks. Each of these blocks is a   𝐬 × 𝐬   square matrix. It can be 
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established that any of the off-diagonal blocks of matrix   �̅�   can be expressed by the formulae   

�̅�𝐢𝐣 = −𝐡𝐛𝐢𝐣𝐀(𝐭𝐧−𝟏 + 𝐡𝐚𝐢),   𝐢 = 𝟏, 𝟐, … , 𝐦 ,    𝐣 = 𝟏, 𝟐, … , 𝐦 ,    𝐢 ≠ 𝐣 ,   while the diagonal 

blocks are given by    �̅�𝐢𝐢 = 𝐈 − 𝐡𝐛𝐢𝐢𝐀(𝐭𝐧−𝟏 + 𝐡𝐚𝐢) ,    𝐣 = 𝟏, 𝟐, … , 𝐦 ,    where   𝐈   is the identity 

matrix in   ℝ𝐬𝐱𝐬 .     
 

Assume furthermore that   𝐬   is large and that the matrix  𝐀(𝐭)  is dense. It is clear that matrix   �̅�   will 

also be dense and the  number of arithmetic operations that are to be performed during the most time-

consuming process in the solution of the system (4.70), i.e. during the factorization of matrix    �̅� ,   

will be  𝐎(𝐦𝟑𝐬𝟑) .  

 

If a Diagonally Implicit Runge-Kutta (DIRK) Method is to be used in the solution of (4.75), then the 

coefficient matrix   �̂�  of the linear system that is represented by (4.73) is also dependent on matrix  

𝐀(𝐭)  and can again be partitioned into   𝐦 × 𝐦    blocks, each of the diagonal blocks being a  𝐬 × 𝐬  

square matrix. However, all elements in the blocks, which are over the main diagonal of the partitioned 

matrix    �̂�    are now equal to zero. This means that the coefficient matrix of the systems defined by 

(4.73) is a lower block-diagonal matrix. The sub-diagonal blocks of matrix   �̂�   are given by the 

formulae   �̂�𝐢𝐣 = −𝐡𝐛𝐢𝐣𝐀(𝐭𝐧−𝟏 + 𝐡𝐚𝐢),   𝐢 = 𝟐, 𝟑, … , 𝐦 ,    𝐣 = 𝟏, 𝟐, … , 𝐦 ,   𝐢 > 𝐣 , while the 

diagonal blocks are    �̂�𝐢𝐢 = 𝐈 − 𝐡𝛄𝐀(𝐭𝐧−𝟏 + 𝐡𝐚𝐢), 𝐢 = 𝟏, 𝟐, … , 𝐦 ),   where   𝐈   is again the identity 

matrix in  ℝ𝐬𝐱𝐬 .   The above statements show clearly that now it is necessary to treat a sequence of   𝐦   

systems of dimension   𝐬   instead of one large system of dimension  𝐦𝐬   as was the case when Fully 

Implicit Runge-Kutta Methods are used and (4.70 ) is to be handled. Therefore, the computational cost 

of the factorization of the coefficient matrix in (4.73) will be   𝐎(𝐦𝐬𝟑) ,  i.e. a reduction of order  

𝐎(𝐦𝟐)  is achieved when the coefficient matrix of the linear system (4.73) is factorized instead of the 

coefficient matrix of the linear system (4.70). It is quite clear that this reduction will be rather 

substantial when   𝐬   is a large integer. 

 

It should be noted that a very special example has been discussed above (it was assumed that the 

coefficient matrix is dense). However, the situation will not change too much when other examples are 

to be treated. Assume, for instance, that matrix   𝐀(t)   from (4.75) has some special property and this 

property is to be exploited in the treatment of both (4.70) and (4.73). In order to be more specific, let 

us assume that   𝐀(t)   is a banded matrix. Then the situation will not be improved because the bandwidth 

of the diagonal blocks  �̂�𝐢𝐢   in (4.73) remain the same as that of     𝐀(t) ,   while the bandwidth of matrix  

�̅�   emerging from (4.70) will become much wider. This will lead to a very significant increase of the 

number of arithmetic operations not only because this matrix is much bigger than the diagonal blocks    

�̂�𝐢𝐢   of  (4.73), which have to be treated when the Diagonally Implicit Runge-Kutta Method is used, 

but also because much more non-zero elements will be created during the factorization of matrix   �̅� ,   

as a consequence of the fact that its bandwidth is much broader. Thus, the reduction of the 

computational work obtained when some DIRK Method is used instead of a corresponding Runge-

Kutta Method will in most of the cases become even greater than the reduction achieved when matrix   

𝐀(t)   is dense. 

 

It is necessary to explain why a requirement that all coefficients   𝐚𝐢𝐢,   𝐢 = 𝟏, 𝟐, … , 𝐦 ,   should be 

equal to   𝛄   is imposed for the Diagonally Implicit Runge-Kutta Methods. Consider now  the general 

non-linear case and assume that some version of the Newton Iterative Method is to be used in the 

successive solution of the  𝐦  systems that that appear in (4.73). Each of these systems contain  𝐬   non-

linear algebraic equations and one have to use the   𝐋𝐔   factorizations of the shifted Jacobian matrices   

𝐉𝐢 = 𝐈 − 𝐡𝛄(𝛛𝐟/𝛛𝐤𝐢
𝐧) .  The expectation is that if    𝐚𝐢𝐢 = 𝛄,    𝐢 = 𝟏, 𝟐, … , 𝐦 ,   then it will be 
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sufficient to factorize only the first shifted Jacobian matrix and then to use the same   𝐋𝐔   factorization 

during the solution of all remaining systems. If the attempt to apply the same   𝐋𝐔   factorization in the 

treatment of all   𝐦   systems in (4.73) is successful, then the reduction will indeed be very significant, 

but one will be able to use the same   𝐋𝐔   factorization for all systems, after the first one, only when 

the shifted Jacobian matrix is slowly varying in   𝐭  .   However, it should be noted that a rather 

substantial reduction will be achieved when a Diagonally Implicit Runge-Kutta Method is used instead 

of the corresponding Fully Implicit Runge-Kutta Method even if the requirement for slow variation of 

the shifted Jacobian matrix in   𝐭   is not satisfied. Finally, let us mentioned here that the methods are 

called semi-implicit Runge-Kutta methods if it is not assumed that      𝐚𝐢𝐢 = 𝛄,    𝐢 = 𝟏, 𝟐, … , 𝐦 .           
 

 

 

 

 

4.7.4. Applying Richardson Extrapolation for Fully Implicit Runge-Kutta Methods 

 

The Richardson Extrapolation can be implemented in relation to Fully Implicit Runge-Kutta methods 

in the same way as it was implemented for general methods for solving systems of ODEs in Chapter 1 

and for  Explicit Runge-Kutta methods in Chapter 2. Consider any Fully Implicit Runge-Kutta Method 

defined by the formulae (4.69)-(4.71). Assume that the calculations have already been performed  for 

all grid-points  𝐭𝐢 ,   ( 𝐢 = 𝟏, 𝟐, … , 𝐧 − 𝟏 )  by using some numerical method, the order of accuracy of 

which is   𝐩 .   If approximations  𝐲𝐢 ≈ 𝐲(𝐭𝐢)  of the exact solution are available (i.e. these 

approximations have already been calculated at the grid-points  𝐭𝐢 ,   ( 𝐢 = 𝟎, 𝟏, 𝟐, … , 𝐧 − 𝟏 ), then 

three actions are to be carried out successively in order to obtain the next approximation  𝐲𝐧 : 
 

 (a) Perform one large time-step, with a time-stepsize  𝐡  when the grid (1.6) is used or 

with a time-stepsize  𝐡𝐧  if the grid (1.7) has been selected, in order to calculate an 

approximation  𝐳𝐧  of  𝐲(𝐭𝐧) . 

 

 (b) Perform two small time-steps, with a time-stepsize  𝟎. 𝟓 𝐡 , when the grid (1.6) is used 

or with a time-stepsize  𝟎. 𝟓 𝐡𝐧  if the grid (1.7) has been selected, in order to calculate 

another approximation  𝐰𝐧  of  𝐲(𝐭𝐧) . 

 

 (c) calculate an improved approximation  𝐲𝐧  by applying the formula: 

 

 

(𝟒. 𝟕𝟔)      𝐲𝐧 =  
𝟐𝐩𝐰𝐧 − 𝐳𝐧

𝟐𝐩 − 𝟏
 .   

 

 
As was pointed out in Chapter 1 and Chapter 2, the above algorithm is applicable to any numerical 

method for solving systems of ODEs (in Chapter 6 it will be shown that it is also applicable, after 

introducing some additional requirements, when some systems of PDEs are to be handled). There are 

only two requirements: 

 

(A) The same numerical method should be used in the calculation of the two 

approximations   𝐳𝐧  and   𝐰𝐧 . 
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(B) The order of the selected numerical method should be   𝐩 .  This second requirement 

is utilized in the derivation of formula (1.8), in which the positive integer  𝐩  is 

involved; this will be done in the next section.   

 

It is clear, see Chapter 1 and Chapter 2 as well as Zlatev, Faragó and Havasi (2010, 2012), that that 

order of accuracy of the improved approximation   𝐲𝐧    will be at least    𝐩 + 𝟏 .   
 

If the stability properties of the Richardson Extrapolation are to be studied, then it will be worthwhile, 

as we did in Chapter 2, to apply both the Fully Implicit Runge-Kutta Method formulated with (4.69)-

(4.71) and the Richardson Extrapolation associated with this computational scheme in the solution of 

the Dahlquist scalar and linear test-equation: 

 

 

(𝟒. 𝟕𝟕)      
𝐝𝐲

𝐝𝐭
= 𝛌 𝐲,      𝐭 ∈  [𝟎, ∞] ,      𝐲 ∈  ℂ ,     𝛌 = �̅� + �̅�𝐢 ∈  ℂ ,     �̅� ≤ 𝟎,     𝐲(𝟎) = 𝛈 . 

 

 

It is appropriate now to select some particular Fully Implicit Runge-Kutta Method in order to facilitate 

the explanation of the results. The method, which was originally proposed in Ehle (1968), see also 

Hairer, Nørsett and Wanner (1987) or Hairer and Wanner (1991), and which is based on the 

formulae listed below, is used:    

 

 

(𝟒. 𝟕𝟖)       𝐤𝟏
𝐧 = 𝐟 (𝐭𝐧−𝟏 +

𝟒 − √𝟔

𝟏𝟎
𝐡,   𝐲𝐧−𝟏 +

𝟖𝟖 − 𝟕√𝟔

𝟑𝟔𝟎
𝐡𝐤𝟏

𝐧 +
𝟐𝟗𝟔 − 𝟏𝟔𝟗√𝟔

𝟏𝟖𝟎𝟎
𝐡𝐤𝟐

𝐧

+
−𝟐 + 𝟑√𝟔

𝟐𝟐𝟓
𝐡𝐤𝟑

𝐧), 

 

 

(𝟒. 𝟕𝟗)       𝐤𝟐
𝐧 = 𝐟 (𝐭𝐧−𝟏 +

𝟒 + √𝟔

𝟏𝟎
𝐡,   𝐲𝐧−𝟏 +

𝟐𝟗𝟔 + 𝟏𝟔𝟗√𝟔

𝟏𝟖𝟎𝟎
𝐡𝐤𝟏

𝐧 +
𝟖𝟖 + 𝟕√𝟔

𝟑𝟔𝟎
𝐡𝐤𝟐

𝐧

+
−𝟐 − 𝟑√𝟔

𝟐𝟐𝟓
𝐡𝐤𝟑

𝐧), 

 

 

(𝟒. 𝟖𝟎)       𝐤𝟑
𝐧 = 𝐟 (𝐭𝐧−𝟏 + 𝐡,   𝐲𝐧−𝟏 +

𝟏𝟔 − √𝟔

𝟑𝟔
𝐡𝐤𝟏

𝐧 +
𝟏𝟔 + √𝟔

𝟑𝟔
𝐡𝐤𝟐

𝐧 +
𝟏

𝟗
𝐡𝐤𝟑

𝐧), 

 

 

(𝟒. 𝟖𝟏)      𝐲𝐧 =
𝟏𝟔 − √𝟔

𝟑𝟔
𝐡𝐤𝟏

𝐧 +
𝟏𝟔 + √𝟔

𝟑𝟔
𝐡𝐤𝟐

𝐧 +
𝟏

𝟗
𝐡𝐤𝟑

𝐧  .   
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This method is a very well-known three-stage five-order  L-stable Fully Implicit Runge-Kutta method 

(see again the above references) and can be found in many text books on numerical methods for systems 

of ODEs. 

 

If this algorithm is applied in the solution of the Dahlquist test-problem (4.77), then the following 

relationship (see Hairer and Wanner (1991), p. 42) can be obtained after the elimination of the 

quantities   𝐤𝟏
𝐧 ,    𝐤𝟐

𝐧   and   𝐤𝟑
𝐧 :  

 

 

(𝟒. 𝟖𝟐)      𝐲𝐧 = (

𝟏
𝟐𝟎 𝛎𝟐 −

𝟐
𝟓

𝛎 + 𝟏

−
𝟏

𝟔𝟎 𝛎𝟑 +
𝟑

𝟐𝟎 𝛎𝟐 −
𝟑
𝟓

𝛍 + 𝟏
) 𝐲𝐧−𝟏 = (

𝟏
𝟐𝟎 𝛎𝟐 −

𝟐
𝟓

𝛎 + 𝟏

−
𝟏

𝟔𝟎 𝛎𝟑 +
𝟑

𝟐𝟎 𝛎𝟐 −
𝟑
𝟓

𝛍 + 𝟏
)

𝐧

𝐲𝟎  .   

 

 

The parameter    𝛎   is equal as usual to the product   𝐡 𝛌 .   

 

From (4.82) it follows that the stability function of the Fully Implicit Runge-Kutta Method defined by 

the equalities (4.78)-(4.81) is determined by the following expression: 

 

 

(𝟒. 𝟖𝟑)      𝐑(𝛎) =

𝟏
𝟐𝟎 𝛎𝟐 −

𝟐
𝟓

𝛎 + 𝟏

−
𝟏

𝟔𝟎 𝛎𝟑 +
𝟑

𝟐𝟎 𝛎𝟐 −
𝟑
𝟓

𝛎 + 𝟏
  .   

 

 

Let us turn back to the three actions mentioned in the beginning of this section. It is clear that, if the 

Dahlquist test-example (4.77) is solved, then we can write: 

 

 

(𝟒. 𝟖𝟒)      𝐳𝐧 = (

𝟏
𝟐𝟎 𝛎𝟐 −

𝟐
𝟓

𝛎 + 𝟏

−
𝟏

𝟔𝟎 𝛎𝟑 +
𝟑

𝟐𝟎 𝛎𝟐 −
𝟑
𝟓

𝛎 + 𝟏
) 𝐲𝐧−𝟏 = 𝐑(𝛎) 𝐲𝐧−𝟏  .   

 

 

and 

 

 

(𝟒. 𝟖𝟓)      𝐰𝐧 = (

𝟏
𝟐𝟎 (

𝛎
𝟐)

𝟐

−
𝟐
𝟓

𝛎
𝟐 + 𝟏

−
𝟏

𝟔𝟎 (
𝛎
𝟐)

𝟑

+
𝟑

𝟐𝟎 (
𝛎
𝟐)

𝟐

−
𝟑
𝟓

𝛎
𝟐 + 𝟏

)

𝟐

𝐲𝐧−𝟏 = [𝐑 (
𝛎

𝟐
)]

𝟐

𝐲𝐧−𝟏   .   

 

 

Substitute now the last terms of the above equalities in (4.76) and use the fact that   𝐩 = 𝟓  for the 

numerical method defined by (4.78)-(4.81).   The results is: 
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(𝟒. 𝟖𝟔)      𝐲𝐧 =  
𝟑𝟐 [𝐑 (

𝛎
𝟐)]

𝟐

− 𝐑(𝛎)

𝟑𝟏
𝐲𝐧−𝟏 .   

 

 
The last equality shows that the new method, consisting of the combination of the Fully Explicit Runge-

Kutta Method defined by (4.78)-(4.81), is a one-step method and its stability function   �̅�(𝛎)   can be 

expressed by the stability function   𝐑(𝛎)   of the underlying method by the following formula: 

 

 

(𝟒. 𝟖𝟕)       �̅�(𝛎) =  
𝟑𝟐 [𝐑 (

𝛎
𝟐)]

𝟐

− 𝐑(𝛎)

𝟑𝟏
 .   

 

 

It should be mentioned here that similar results that are related to the stability functions for numerical 

methods, which are combinations of the Richardson Extrapolation with schemes for solving systems 

of ODEs, were obtained in Chapter 2 in connection with Explicit Runge-Kutta Methods and in the 

previous sections of this chapter in connection with the class of the θ-methods. 
 

 

 

4.7.5. Applying Richardson Extrapolation for Diagonally Implicit Runge-Kutta Methods 

 

The same rules, as those discussed in the previous section, can be used in the implementation of the 

Richardson Extrapolation for DIRK methods, i.e. after the calculation of the approximations   𝐳𝐧   and   

𝐰𝐧 ,  the improved by applying the Richardson extrapolation value   𝐲𝐧  can again be obtained from 

(6). It is again appropriate to select a particular method. We have chosen one of the two methods listed 

on p. 196 in Lambert (1991): 

 

 

(𝟒. 𝟖𝟖)       𝐤𝟏
𝐧 = 𝐟 (𝐭𝐧−𝟏 +

𝟑 ± √𝟑

𝟔
𝐡,   𝐲𝐧−𝟏 +

𝟑 ± √𝟑

𝟔
𝐡𝐤𝟏

𝐧), 

 

 

(𝟒. 𝟖𝟗)       𝐤𝟐
𝐧 = 𝐟 (𝐭𝐧−𝟏 +

𝟑 ∓ √𝟑

𝟔
𝐡,   𝐲𝐧−𝟏 +

∓√𝟑

𝟑
𝐡𝐤𝟏

𝐧 +
𝟑 ± √𝟑

𝟔
𝐡𝐤𝟐

𝐧), 

 

 

(𝟒. 𝟗𝟎)      𝐲𝐧 =
𝟏

𝟐
𝐡𝐤𝟏

𝐧 +
𝟏

𝟐
𝐡𝐤𝟐

𝐧 .   

 

 

The two methods, any of them can be obtained from the above formulae by selecting one of the two 

alternative signs, are two-stage third-order Diagonally Implicit Runge-Kutta Methods. The stability 

functions of these methods are given by 
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(𝟒. 𝟗𝟏)      𝐑(𝛎) =
−

𝟏 ± √𝟑
𝟔 𝛎𝟐 ∓

√𝟑
𝟑 𝛎 + 𝟏

𝟐 ± √𝟑
𝟔 𝛎𝟐 −

𝟑 ± √𝟑
𝟑 𝛎 + 𝟏

  .   

 

 

The stability function of the combined numerical method, the method obtained by using (18)-(20) 

together with the Richardson Extrapolation, is given by 

 

 

(𝟒. 𝟗𝟐)       �̅�(𝛎) =  
𝟖 [𝐑 (

𝛎
𝟐)]

𝟐

− 𝐑(𝛎)

𝟕
 .   

 

 

This function will be used to investigate the stability properties of the numerical method based on the 

combination of the active Richardson Extrapolation and the Diagonally Implicit Runge-Kutta Method 

described by (4.88)-(4.98). 

 

 

 

4.7.6. Stability results related to the active Richardson Extrapolation 

 

The three-stage fifth-order Fully Implicit Runge-Kutta Method defined by (4.78)-(4.81) is L-stable. 

The two-stage third-order Diagonally Implicit Runge-Kutta Method described by the formulae (4.88)-

(4-90) is A-stable when the upper of the alternative signs is selected (and it will be assumed in the 

remaining part of this chapter that precisely this choice is made).   

  

The above statements are telling us that the computational process will remain stable when any of these 

two methods, the FIRK Method and the DIRK Method, is used directly in the solution of the Dahlquist 

test-equation (7). The same is true for the passive Richardson Extrapolation.   

 

We did not succeed to establish that the combinations of the active Richardson Extrapolation with the 

two selected above numerical methods have the same stability properties (L-stability and A-stability 

respectively) as the underlying methods. This means that there is no guarantee that the two stability 

functions from (17) and (22) satisfy the inequality   |�̅�(𝛎)| ≤ 𝟏  for all values of    𝛎 = �̅� + �̅�𝐢    when    

�̅� ≤ 𝟎 .  However,  the requirement for A-stability (as well as the requirement for the stronger concept 

of L-stability) is only a sufficient condition for the preservation of the stability of the computational 

process. It is not necessary and could successfully be replaced by a requirement that the absolute 

stability region of the selected method is in some sense very large (absolute stability regions are 

discussed in detail, for example, in Lambert (1991); see also the previous chapters).   

 

We succeeded to establish that the important inequality   |�̅�(𝛎)| ≤ 𝟏   is satisfied, for both of the two 

selected numerical methods, in a huge square domain with vertices: (𝟎. 𝟎 ,   𝟎. 𝟎), (𝟎. 𝟎 ,   𝟏𝟎𝟓 𝐢),   

(−𝟏𝟎𝟓 𝐢 ,   𝟏𝟎𝟓 𝐢)  and  (−𝟏𝟎𝟓 , 𝟎. 𝟎).  The parts of the domains, in which the active Richardson 

Extrapolation is absolutely stable when it is combined with the three-stage fifth-order Fully Implicit 

Runge-Kutta Method and the two-stage third-order Diagonally Implicit Runge-Kutta Method, are 
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given in Fig. 4.4 and Fig. 4.5. The procedure used to obtain these large parts of the absolute stability 

regions of the two selected methods was nearly the same as that applied in the previous chapters, see 

also Zlatev, Georgiev and Dimov (2014), and can be described in the following way. Assume that  𝛎   

is equal to    �̅� + �̅�𝐢    with    �̅�  ≤ 𝟎   and select some small positive increment   𝛆    (in our runs the 

value   𝛆 = 𝟎. 𝟎𝟏   was chosen). Start the computational procedure by setting the real part   �̅�   of the 

complex number   𝛎 = �̅� + �̅�𝐢   equal to zero and calculate successively the values of the stability 

functions (4.87) and (4.92) for    �̅� = 𝟎    and for     �̅� = 𝟎, 𝛆, 𝟐𝛆, 𝟑𝛆, …  .   Continue this process as 

long as   �̅�    becomes equal to  𝟏𝟎𝟓   under the condition that   |�̅�(𝛎)|   stays less than one during all 

these computations. Repeat successively the same procedure for a sequence of new values of   �̅�   that 

are equal to    −𝛆, −𝟐𝛆, − 𝟑𝛆, …   Continue to decrease the parameter   �̅�   until it becomes equal to   

−𝟏𝟎𝟓  (again under the requirement that   |�̅�(𝛎)|   stays always less than one). It is clear that one 

should expect that all points within the squares plotted in Fig. 4.4 and Fig. 4.5, obtained by applying 

the above algorithm, belong to the absolute stability regions of the studied numerical methods.  

 

It is obvious that the applied approach is very robust, but, on the other hand, it is computationally very 

expensive. One must calculate the values of each of the stability functions from (4.87) and (4.92) at 

𝟏𝟎𝟏𝟒  points (i.e. a lot of computations in complex arithmetic have to be performed!). However, this 

task is not extremely difficult if modern high-speed computers are available. Moreover, the process 

can be parallelized efficiently and in a very easy way, because the computations along the vertical lines 

for each value of parameter   �̅�    are independent of the computations related to the other values of this 

parameter.  

 

Only the parts of the stability regions located above the real axis are drawn in Fig. 4.4 and Fig. 4.5. 

This is quite sufficient, because the stability regions of the numerical methods for solving systems of 

ODEs are symmetric with regard to the real axis.  
 

We must emphasize here that we do not claim that the two methods are unstable outside the domains 

shown in the two figures. We succeeded to establish that the inequality   |�̅�(𝛎)| ≤ 𝟏   is satisfied in 

these domains, but it might be satisfied, and it is most probably satisfied, also for some points outside 

these domains (even for the whole part of the complex plane located to the left of the imaginary axis). 

 
 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

188 

 

 

Figure 4.4 

A part of the absolute stability region of the three-stage fifth-order Fully Implicit Runge-Kutta (FIRK) 

Method defined by the equalities (4.78)-(4.81) is given. This method is stable in a very large square 

whose side is   𝟏. 𝟎 ∗ 𝟏𝟎𝟓 . 

 

 

The solution depictured in Fig. 4.4 and Fig. 4.5 and based on finding very large absolute stability 

regions is a compromise. We did not succeed to prove that the active Richardson Extrapolation 

combined with the two selected algorithms results in new numerical methods, which are stable for all 

values of    𝛎 = �̅� + �̅�𝐢   when   �̅� ≤ 𝟎 ,  i.e. in the whole   ℂ− .  On the other hand, we did succeeded 

to show that the stability of each of the selected two numerical methods is preserved in a huge domain. 

R. W. Hamming claimed in one of the first monographs on numerical analysis, [Hamming, 1962], 

that the choice of a numerical method is a question of finding some working compromise. Our solution 

is a good compromise. Let us emphasize, however, that it will, of course, be good to prove in a strict 

manner that the active Richardson Extrapolation applied either with the three-stage fifth-order Fully 

Implicit Runge-Kutta Method or with the two-stage third-order Diagonally Implicit Runge-Kutta 

Method results at least in an A-stable numerical algorithm. Nevertheless, from a practical point of view, 

the solution sketched above is as good as a proof. It gives the user a guarantee that the computational 

process will remain stable if the Dahlquist test-example is solved by applying any of the two particular 
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methods discussed above with reasonably large time-stepsizes. Moreover, one should expect that the 

computations remain stable also when other systems of ODEs are handled. The last statement will be 

verified in the next section, where an atmospheric chemical scheme from a well-known large-scale 

environmental model, fully described and tested in Alexandrov et al. (2004), Bastrup-Birk et al. 

(1997), Zlatev (1995) and Zlatev and Dimov (2006), will be used in some numerical experiments. 
 

 

 

Figure 4.5 

A part of the absolute stability region of the two-stage third-order Diagonally Implicit Runge-Kutta 

(DIRK) Method defined by the equalities (4.88)-(4.90) is given. This method is also stable within a 

very large square domain, whose side is    𝟏. 𝟎 ∗ 𝟏𝟎𝟓 . 

 

 

 

4.7.7. Numerical experiments 

 

Three numerical examples will be presented in this section. The first two of the selected examples are 

linear systems of ODEs with constant coefficients. This means that the Dahlquist theory presented in 

Dahlquist (1963) is valid for these two problems and the calculations must remain stable when 

parameter   𝛎    is inside the stability regions shown in Fig. 4.4 and Fig. 4.5.  The third example is the 
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extremely badly scaled and very stiff non-linear system of ODEs arising in atmospheric chemistry, 

which was discussed in the previous sections of this chapter. The stability of the computational process 

is not guaranteed for the third example when the active implementation of the Richardson Extrapolation 

together with the two selected implicit Runge-Kutta methods is used (and the stability of the 

calculations will not be guaranteed even if the active implementation of the Richardson Extrapolation 

is A-stable or L-stable). The results presented in this section will show clearly that the computations 

remain nevertheless stable even when the time-stepsizes are very large.  

 

 

Numerical example 1: Jacobian matrix with a large negative eigenvalue  

 

This example was introduced in § 2.5.1 and it is a system of three equations with constant coefficients. 

The eigenvalues of its Jacobian matrix are   𝛍𝟏 = −𝟕𝟓𝟎 ,       𝛍𝟐 = −𝟎. 𝟑 + 𝟖𝐢 ,       𝛍𝟑 = −𝟎. 𝟑 − 𝟖𝐢   
and it is clearly seen that the real eigenvalue is the dominant one. The system was integrated over the 

interval   𝐭 ∈  [𝟎, 𝟏𝟑. 𝟏𝟎𝟕𝟐]   in § 2.5.1 and the largest time-stepsize used there was  𝐡 = 𝟎. 𝟎𝟎𝟓𝟏𝟐 .  

We shall treat the same system over a much larger time-interval,  𝐭 ∈  [𝟎, 𝟐𝟔𝟖𝟒. 𝟑𝟓𝟒𝟓],   and will 

show that the computational process remains stable even if the time-stepsize becomes very large (time-

stepsizes up to    𝐡 = 𝟐𝟎. 𝟗𝟕𝟏𝟓𝟐   will be used in this section). 

 

The computations were organized as follow. A sequence of   𝟐𝟐   runs was handled. The time-stepsize 

used during the first run was  𝐡 = 𝟐𝟎. 𝟗𝟕𝟏𝟓𝟐 .    The time-stepsize was reduced by a factor of two 

after every run (which means the number of steps was increased by a factor of two). The last stepsize 

was   𝐡 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 .   The error made during step  𝐣   of run   𝐤,   𝐤 = 𝟏 , 𝟐, 𝟑, …  , 𝟐𝟐 ,  is estimated 

by  

 

  

(𝟒. 𝟗𝟒)      𝐄𝐑𝐑𝐎𝐑𝐣
(𝐤)

=  𝐦𝐚𝐱
𝐢=𝟏 ,𝟐,𝟑

 (
| 𝐲𝐢,𝐣 − 𝐲𝐢(𝐭𝐣)|

𝐦𝐚𝐱 ( |𝐲𝐢(𝐭𝐣)| , 𝟏. 𝟎)
)  ,    𝐣 = 𝟐𝐤−𝟏, 𝟐 × 𝟐𝐤−𝟏  ,   … , 𝟏𝟐𝟖 × 𝟐𝐤−𝟏 ,  

 

 

where   𝐲𝐢,𝐣   and   𝐲𝐢(𝐭𝐣)   are components of the calculated approximation and the exact solution 

respectively. This means that we estimate the error at the same set of grid-points in each of the   𝟐𝟐   

runs. More precisely, the error is estimated at every time-step during the first run, at every second time-

step during the second run, at every fourth time-step during the third run and we continue in the same 

manner after the third run. Thus, the number of grid-points, at which the error is estimated, is   𝟏𝟐𝟖   

for any of the   𝟐𝟐   runs.  

  

The global error made at run    𝐤,     𝐤 = 𝟏 , 𝟐, 𝟑, …  , 𝟐𝟐     is estimated by:  

 

 

(𝟒. 𝟗𝟓)      𝐄𝐑𝐑𝐎𝐑(𝐤)  =  𝐦𝐚𝐱
 𝐣=𝟐𝐤−𝟏,𝟐×𝟐𝐤−𝟏 ,   … ,𝟏𝟐𝟖×𝟐𝐤−𝟏

 ( 𝐄𝐑𝐑𝐎𝐑𝐣
(𝐤)

)  .  

 

 

The obtained results are given in Table 4.6 for the three-stage fifth-order Fully Implicit Runge-Kutta 

Method and its active combination with the Richardson Extrapolation.  
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Job 
number 

Number of 
steps 

Stepsize 
used 

Direct FIRK Richardson + FIRK  

Accuracy  Rate  Accuracy  Rate  

  1  128  20.97152  3.005E-02    2.216E-03    

  2  256  10.48576  3.004E-03  1.00  2.945E-03  0.72  

  3  512  5.24288  2.930E-03  1.03  2.959E-03  1.00  

  4  1024  2.62144  2.969E-03  0.99  2.959E-03  1.00  

  5  2048  1.31072  2.969E-03  1.00  2.959E-03  1.00  

  6  4096  0.65536  2.969E-03  1.00  2.216E-03  1.34  

  7  8192  0.32768  2.637E-03  1.13  8.043E-05  27.55  

  8  16384  0.16384  1.957E-04  13.47  1.125E-06  71.49  

  9  32768  0.08192  7.107E-06  27.54  1.544E-08  72.86  

10  65536  0.04096  2.325E-07  30.57  2.233E-10  69.14  

11  131072  0.02048  3.398E-09  68.42  3.349E-12  66.68  

12  262144  0.01024  2.330E-10  14.58  5.125E-14  65.34  

13  524288  0.00512  7.310E-12  31.87  7.926E-16  64.66  

14  1048576  0.00256  2.288E-13  31.95  1.232E-17  64.33  

15  2097152  0.00128  7.158E-15  31.96  1.920E-19  64.17  

16  4194304  0.00064  2.238E-16  31.98  2.996E-21  64.09  

17  8388608  0.00032  6.995E-18  31.99  4.678E-23  64.04  

18  16777216  0.00016  2.186E-19  32.00  7.308E-25  64.01  

19  33554432  0.00008  6.832E-21  32.00  1.142E-26  64.00  

20  67108864  0.00004  2.135E-22  32.00  1.786E-28  63.94  

21  134217728  0.00002  6.672E-24  32.00  2.787E-30  64.08  

22  268439456  0.00001  2.085E-25  32.00  4.376E-32  62.32  

Table 4.6 

Numerical results obtained in  𝟐𝟐  runs when the example with a large negative 

eigenvalue of the Jacobian matrix is treated with: (i) the direct implementation and (ii) 

the Active Richardson Extrapolation of the L-stable three-stage fifth-order Fully Implicit 

Runge-Kutta (FIRK) Method. The errors obtained in the different runs are given in the 

columns under “Accuracy”. The ratios of two successive errors are given in the columns 

under “Rate” (the perfect rates being   𝟑𝟐    for the direct method and   𝟔𝟒   for the 

Richardson Extrapolation).   

 

 

The corresponding results for the two-stage third-order Runge-Kutta Method are presented in Table 

4.7. It should be mentioned here that quadruple precision was used in the computations. The 

following conclusions can be drawn from the results given in Table 4.6 and Table 4.7:  
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Job 

number 

Number of 

steps 

Stepsize 

used 

Direct FIRK  Richardson + FIRK  

Accuracy  Rate  Accuracy  Rate  

  1  128  20.97152  1.611E-00    1.524E-00    

  2  256  10.48576  1.132E-00  1.42  9.076E-01  1.68  

  3  512  5.24288  4.909E-01  2.31  2.112E-01  4.30  

  4  1024  2.62144  7.218E-02  6.80  1.957E-01  1.08  

  5  2048  1.31072  2.133E-02  3.38  5.357E-02  3.65  

  6  4096  0.65536  2.971E-03  7.18  2.987E-02  1.79  

  7  8192  0.32768  2.970E-03  1.00  6.710E-03  4.45  

  8  16384  0.16384  2.969E-03  1.00  2.399E-03  2.80  

  9  32768  0.08192  3.092E-03  0.96  2.520E-04  9.52  

10  65536  0.04096  9.985E-04  3.10  1.969E-05  12.80  

11  131072  0.02048  1.637E-04  6.10  2.038E-06  9.66  

12  262144  0.01024  2.218E-05  7.38  1.106E-07  13.80  

13  524288  0.00512  2.852E-06  7.78  8.017E-09  14.92  

14  1048576  0.00256  3.606E-07  7.91  5.048E-10  15.88  

15  2097152  0.00128  4.533E-08  7.95  3.193E-11  15.81  

16  4194304  0.00064  5.682E-09  7.98  2.007E-12  16.03  

17  8388608  0.00032  7.111E-10  7.99  1.252E-13  16.03  

18  16777216  0.00016  8.895E-11  7.99  7.815E-15  16.02  

19  33554432  0.00008  1.112E-11  8.00  4.881E-16  16.01  

20  67108864  0.00004  1.390E-12  8.00  3.050E-17  16.00  

21  134217728  0.00002  1.738E-13  8.00  1.906E-18  16.00  

22 268439456  0.00001  2.173E-14  8.00  1.191E-19  16.00  

Table 4.7 

Numerical results obtained in  𝟐𝟐   runs when the example with large complex 

eigenvalues is treated with: (i) the direct implementation and (ii) the Active Richardson 

Extrapolation of the A-stable version of the two-stage third-order Diagonally Implicit 

Runge-Kutta (DIRK) Method. The errors obtained in the different runs are given in the 

columns under “Accuracy”. The ratios of two successive errors are given in the columns 

under “Rate” (the perfect rates being  𝟖  for the direct method and  𝟏𝟔   for the 

Richardson Extrapolation).   
  

 

(a) The rates of convergence are close to the expected theoretical rates (assuming here that the 

stepsize becomes sufficiently small) see the results given in Table 4.6 and Table 4.7.   

  

(b) The rates of convergence of the three-stage fifth-order Fully Implicit Method when it is 

applied directly are slightly closer to the expected rates than the rates of convergence for 
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the combination of this method with the Richardson Extrapolation, but in both cases the 

results are very good (see Table 4.6).   

  

(c) The rates of convergence of the two-stage third-order Diagonally Implicit Runge-Kutta 

method and its combination with the Richardson Extrapolation are closer to the expected 

values than those obtained with the three-stage fifth-order Fully Implicit Method, but in the 

latter case the results are much more accurate (compare the results given in Table 4.6 with 

those given in Table 4.7).  

  

(d) The results obtained by the Richardson Extrapolation are nearly always more accurate, and 

very often much more accurate, than those obtained by the underlying methods (compare 

again the two tables).    

 

 

 

Numerical example 2: Jacobian matrix with large complex eigenvalues  

  

This example was introduced in § 2.5.2 and it is also a system of three equations with constant 

coefficients. The eigenvalues of the Jacobian matrix of the linear system of ODEs from § 2.5.2 are 

 𝛍𝟏 = −𝟕𝟓𝟎 + 𝟕𝟓𝟎𝐢,       𝛍𝟐 = −𝟕𝟓𝟎 − 𝟕𝟓𝟎𝐢 ,       𝛍𝟑 = −𝟎. 𝟑   and it is clearly seen that the two 

complex eigenvalue are much larger than the real eigenvalue (in absolute value). This system was also 

integrated in § 2.5.2 over the time-interval   𝐭 ∈  [𝟎, 𝟏𝟑. 𝟏𝟎𝟕𝟐]   and the largest time-stepsize used 

there was  𝐡 = 𝟎. 𝟎𝟎𝟓𝟏𝟐 .  We shall treat the same system over a much larger time-interval,  𝐭 ∈
 [𝟎, 𝟐𝟔𝟖𝟒. 𝟑𝟓𝟒𝟓],   and will show that the computational process remains stable even if the time-

stepsize becomes very large (time-stepsizes up to    𝐡 = 𝟐𝟎. 𝟗𝟕𝟏𝟓𝟐   will be used in this section). 

 

The computations were organized precisely in the same way as in the previous example. A sequence 

of   𝟐𝟐   runs was handled also in this case. The time-stepsize that has been used during the first run 

was   𝐡 = 𝟐𝟎. 𝟗𝟕𝟏𝟓𝟐 .    The time-stepsize was reduced by a factor of two after every run (which 

means the number of steps was increased by a factor of two). The last stepsize was   𝐡 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 .   

The error made during step   𝐣    of run    𝐤,     𝐤 = 𝟏 , 𝟐, 𝟑, …  , 𝟐𝟐 ,   is estimated by using formulae 

(4.94) and (4.95).  

 

Numerical results are shown in Table 4.8 for the three-stage fifth-order Fully Implicit Runge-Kutta 

Method and in Table 4.9 for the two-stage third-order Diagonally Implicit Runge-Kutta Method. 

Similar conclusions (as those drawn in the previous sub-section) can be drawn from the results given 

in Table 4.8 and Table 4.9. It should additionally be noted that the accuracy obtained when the second 

example was run is greater than that obtained in the runs with the first example (compare the results 

shown in Table 4.6 and Table 4.7 with the results presented in this sub-section). This is not very 

surprising, because the oscillations in the solution of the second example are considerably smaller than 

those in the first one, see the formulae giving the exact solution of the two examples in § 2.5.1 and 

§2.5.2.  
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Job 

number 

Number of 

steps 

Stepsize 

used 

Direct FIRK  Richardson + FIRK  

Accuracy  Rate  Accuracy  Rate  

  1  128  20.97152  7.062E-01    7.863E-02    

  2  256  10.48576  5.410E-02  13.05  3.871E-02  2.06  

  3  512  5.24288  3.887E-02  1.39  1.082E-02  3.58  

  4  1024  2.62144  9.268E-03  4.19  1.032E-03  10.48  

  5  2048  1.31072  7.098E-04  13.06  1.511E-05  68.30  

  6  4096  0.65536  7.544E-06  94.09  3.287E-08  459.69  

  7  8192  0.32768  2.039E-07  37.00  1.559E-10  21.08  

  8  16384  0.16384  6.221E-09  32.78  2.664E-13  58.52  

  9  32768  0.08192  1.942E-10  32.03  1.205E-14  22.11  

10  65536  0.04096  6.079E-12  31.95  3.146E-16  38.30  

11  131072  0.02048  1.903E-13  31.94  5.906E-18  53.27  

12  262144  0.01024  5.952E-15  31.97  1.000E-19  59.06  

13  524288  0.00512  1.861E-16  31.98  1.624E-21  61.58  

14  1048576  0.00256  5.817E-18  31.99  2.585E-23  62.82  

15  2097152  0.00128  1.818E-19  31.99  4.075E-25  63.44  

16  4194304  0.00064  5.682E-21  32.00  6.397E-27  63.70  

17  8388608  0.00032  1.776E-22  31.99  1.002E-28  63.84  

18  16777216  0.00016  5.549E-24  32.01  1.567E-30  63.94  

19  33554432  0.00008  1.734E-25  32.01  2.449E-32  63.99  

20  67108864  0.00004  5.419E-27  32.00  1.851E-34  132.31  

21  134217728  0.00002  1.693E-28  32.01  4.893E-34  0.37  

22  268439456  0.00001  5.292E-30  31.99  3.824E-35  12.80  

Table 4.8 

Numerical results obtained in  𝟐𝟐  runs when the example with large complex 

eigenvalues of the Jacobian matrix is treated with: (i) the direct implementation and (ii) 

the Active Richardson Extrapolation of the L-stable three-stage fifth-order Fully Implicit 

Runge-Kutta (FIRK) Method. The errors obtained in the different runs are given in the 

columns under “Accuracy”. The ratios of two successive errors are given in the columns 

under “Rate” (the perfect rates being    𝟑𝟐      for the direct method and    𝟔𝟒    for the 

Richardson Extrapolation).   

 

 

Numerical Example 3: Atmospheric Chemical Scheme  

 

An important module, taken from the Unified Danish Eulerian Model (UNI-DEM), see Alexandrov 

et al. (2004), Bastrup-Birk et al. (1997), Zlatev (1995) and Zlatev and Dimov (2006), was applied, 

as mentioned above, in several tests with the two selected numerical methods, the three-stage fifth-

order Fully Implicit Runge-Kutta (FIRK) Method defined by (4.78)-(4.81) and the two-stage third-

order Diagonally Implicit Runge-Kutta Method (DIRK) defined by (4-88)-(4.90) as well as with their 
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combinations of the Richardson Extrapolation. We shall use in this sub-section both the active 

implementation and the passive implementation of the Richardson Extrapolation.   

 

 

Job 

number 

Number of 

steps 

Stepsize 

used 

Direct FIRK  Richardson + FIRK  

Accuracy  Rate  Accuracy  Rate  

  1  128  20.97152  3.089E-00    1.181E-00    

  2  256  10.48576  1.199E-00  2.58  8.026E-01  1.47  

  3  512  5.24288  4.342E-01  2.76  3.575E-01  2.25  

  4  1024  2.62144  1.104E-01  3.93  9.895E-02  3.61  

  5  2048  1.31072  1.208E-02  9.14  5.669E-03  17.45  

  6  4096  0.65536  1.510E-04  80.00  2.632E-05  215.39  

  7  8192  0.32768  8.025E-06  18.82  3.891E-07  67.64  

  8  16384  0.16384  6.627E-07  12.11  2.191E-08  17.76  

  9  32768  0.08192  6.367E-08  10.41  1.921E-09  11.42  

10  65536  0.04096  6.802E-09  9.36  8.145E-11  23.59  

11  131072  0.02048  7.790E-10  8.73  5.061E-12  16.09  

12  262144  0.01024  9.295E-11  8.38  3.961E-13  12.78  

13  524288  0.00512  1.134E-11  8.20  2.772E-14  14.29  

14  1048576  0.00256  1.401E-12  8.09  1.596E-15  17.37  

15  2097152  0.00128  1.740E-13  8.05  8.185E-17  19.50  

16  4194304  0.00064  2.168E-14  8.03  4.803E-18  17.04  

17  8388608  0.00032  2.706E-15  8.01  3.001E-19  16.00  

18  16777216  0.00016  3.380E-16  8.01  1.876E-20  16.00  

19  33554432  0.00008  4.222E-17  8.01  1.172E-21  16.01  

20  67108864  0.00004  5.278E-18  8.00  7.327E-23  16.00  

21  134217728  0.00002  6.597E-19  8.00  4.579E-24  16.00  

22  268439456  0.00001  8.246E-20  8.00  2.862E-25  16.00  

Table 4.9 

Numerical results obtained in  𝟐𝟐    runs when the example with a large complex 

eigenvalues is treated with: (i) the direct implementation and (ii) the Active Richardson 

Extrapolation of the A-stable version of the two-stage third-order Diagonally Implicit 

Runge-Kutta (DIRK) Method. The errors obtained in the different runs are given in the 

columns under “Accuracy”. The ratios of two successive errors are given in the columns 

under “Rate” (the perfect rates being    𝟖     for the direct method and   𝟏𝟔    for the 

Richardson Extrapolation).  

  

 

The atmospheric chemical scheme was discussed in the previous sections. It is worthwhile to add here 

only the following facts. The air pollution model, UNI-DEM, in which this scheme is implemented, 

has been successfully applied in many comprehensive scientific investigations related to potentially 

harmful pollution levels in   
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(a) the Balkan Peninsula (Zlatev, Georgiev and Dimov, 2013b),   

  

(b) Bulgaria (Zlatev, 1995, Zlatev and Dimov, 2006, Zlatev, Dimov and 

Georgiev (2016), Zlatev and Syrakov, 2004a, 2004b),  

  

(c) Denmark (Zlatev, 1995, Zlatev and Dimov, 2006, Zlatev and Moseholm, 

2008),    

  

(d) England (Abdalmogith, Harrison and Zlatev, 2004),  

  

(e) Europe (Ambelas Skøth et al., 2000, Bastrup-Birk et al., 1997, Csomós et 

al., 2006, Geernaert and Zlatev, 2004, Zlatev, 1995, 2010, Zlatev and 

Dimov, 2006),   

  

(f) Hungary (Havasi and Zlatev, 2002, Zlatev, Havasi and Faragó, 2011])   

  

and   

  

(g) the North Sea (Harrison, Zlatev and Ottley, 1994).   

   

Most of the above studies, and especially Zlatev, (2010), are related to the important topic of the 

influence of the future climatic changes on the high pollution levels in different parts of Europe. The 

model was furthermore used in a long  sequence of comprehensive inter-comparisons of several well-

known European large-scale models (Hass et al., 2004, Roemer et al., 2004).  

 

The computations were organized as in Section 4.6, where more details about the atmospheric chemical 

scheme are given. Assume that   �̅�    runs are to be carried out. The errors calculated during step  𝐣  of 

run   𝐤 ,   𝐤 = 𝟏 , 𝟐, …   , �̅�    are estimated by using the formula (4.60). The number of grid-points, at 

which the error is estimated, is   𝟏𝟔𝟖   for any of the    �̅�     runs. Only the values of the reference 

solution at the grid-points of the coarse grid (which is used in the first run) have been stored and applied 

in the evaluation of the error (it is, of course, also possible to store all values of the reference solution, 

but such an action will increase tremendously the storage requirements). It is much more important and 

must be emphasized here that errors of the calculated approximations were always, in all nineteen runs, 

computed at the same   𝟏𝟔𝟖    grid points. The global error made at run  𝐤 ,    𝐤 = 𝟏 , 𝟐, …   , �̅�     is 

estimated by using formula (4.61). All computations in this section were performed as in the previous 

sections by selecting quadruple precision (i.e. by using REAL*16 declarations for the real numbers 

and, thus, about 32-digit arithmetic) in an attempt to eliminate completely the influence of the rounding 

errors in the first 16 significant digits of the computed approximate solutions. The calculations were 

carried out until the rounding errors start to interfere with the truncation errors. For the three-stage five-

order FIRK method defined by (4.78)-(4.81) this happened for  �̅� = 𝟏𝟒 ,  while for the DIRK method 

the calculations could be performed without some very visible effect of the rounding errors until   �̅�   

becomes  𝟏𝟕 .  It should be pointed out, however, that the convergence rate is deteriorated when the 

number of correct digits becomes about sixteen. Now, after the explanation of the organization of the 

computations, we are ready to present some of the results from the numerical experiments, which were 

carried out in order to demonstrate the advantages of the application of Richardson Extrapolation. 
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Results obtained by using the three-stage fifth-order Fully Implicit Runge-Kutta Method are presented 

in Table 4.10. Several conclusions can be drawn from the results presented in Table 4.10:   

  

(a) the direct method behaves in the beginning as a method of order five, but the rate of 

convergence becomes very slow after the run in which the accuracy becomes equal to    

𝟐. 𝟓 × 𝟏𝟎−𝟏𝟔 ,  

  

(b) the two implementations of the Richardson Extrapolation are behaving as methods of 

order six in the beginning, but also here the rate of convergence is very slow when the 

accuracy becomes high, approximately equal to  𝟏. 𝟎 × 𝟏𝟎−𝟏𝟓,  

  

(c) during the last runs, the interference of the rounding errors becomes clear (the accuracy 

is no more increasing when the time-stepsize is reduced)  

  
 

  

Job  

Number  

  

Number of 

steps  

Direct  

Implementation  

Richardson Extrapolation  

Active  Passive  

Accuracy  Rate  Accuracy  Rate  Accuracy  Rate  

1  168  1.041E-06    3.986E-08    3.985E-08    

2  336  7.116E-08  14.64  5.989E-10  66.55  1.939E-09  20.56  

3  672  3.451E-09  20.62  2.086E-11  28.71  3.091E-10  62.83  

4  1344  9.673E-11  35.68  4.639E-12  44.97  4.649E-12  66.38  

5  2688  7.527E-12  12.85  9.112E-14  50.91  9.117E-14  50.99  

6  5376  2.804E-13  26.84  1.357E-15  67.15  1.357E-15  67.18  

7  10752  8.515E-15  32.93  2.884E-16  4.71  2.889E-16  4.70  

8  21504  2.508E-16  33.95  3.821E-17  7.55  3.871E-17  7.64  

9  43008  5.413E-16  3.48  1.783E-17  2.14  1.796E-17  2,11  

10  86016  1.114E-17  4.86  6.682E-18  2.69  6.682E-18  2.69  

11  172032  6.599E-18  1.69  3.970E-18  1.68  3.970E-18  1.68  

12  344064  2.382E-18  3.11  9.359E-19  4.24  9.359E-19  4.24  

13  688128  1.179E-18  2.02  4.958E-19  1.89  4.958E-19  1.89  

14  1376256  4.435E-19  2.66  1.596E-19  3.11  1.596E-19  3.11  

Table 4.10 

Numerical results obtained for ozone in    �̅� = 𝟏𝟒   runs with three algorithms: (i) the 

direct implementation, (ii) the Active Richardson Extrapolation and (iii) the Passive 

Richardson Extrapolation of the L-stable three-stage fifth-order Fully Implicit Runge-

Kutta (FIRK) Method defined by (8)-(11). The atmospheric chemical scheme with   𝟓𝟔      
species is handled. The errors obtained in the different runs are given in the columns 

under “Accuracy”. The ratios of two successive errors are given in the columns under 

“Rate” (the perfect rates being   𝟑𝟐    for the direct method and   𝟔𝟒   for the Richardson 

Extrapolation).  
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and   

  

(a) the accuracy is rather high from the very beginning and the situation where the 

rounding errors start to interfere with the truncation errors occurs quicker than for the 

two-stage third-order DIRK Method.       

 

Results, obtained when the simpler two-stage third-order Diagonally Implicit Runge-Kutta Method is 

used, are given in Table 4.11.  

  

  

  
Job  

Number  

  
Number 
of steps  

Direct  
Implementation  

Richardson Extrapolation  

Active  Passive  

Accuracy  Rate  Accuracy  Rate  Accuracy  Rate  

1  168  1.581E-05    8.047E-06    8.047E-06    

2  336  5.555E-06  2.85  1.390E-06  5.79  3.597E-07  22.37  

3  672  7.276E-07  7.63  5.173E-08  26.87  7.674E-08  4.69  

4  1344  1.528E-07  4.76  9.852E-09  5.25  1.126E-08  6.82  

5  2688  2.895E-08  5.28  1.353E-09  7.28  1.423E-09  7.91  

6  5376  4.864E-09  5.95  1.419E-10  9.53  1.441E-10  9.87  

7  10752  7.341E-10  6.63  1.214E-11  11.69  1.217E-11  11.85  

8  21504  1.024E-10  7.17  9.007E-13  13.48  8.977E-13  13.55  

9  43008  1.359E-11  7.54  6.070E-14  14.84  6.035E-14  14.87  

10  86016  1.751E-12  7.76  3.847E-15  15.78  3.812E-15  15.83  

11  172032  2.222E-13  7.88  2.268E-16  16.96  2.263E-16  16.85  

12  344064  2.798E-14  7.94  1.478E-17  15.34  1.473E-17  15.37  

13  688128  3.510E-15  7.97  6.133E-19  24.11  6.116E-19  24.08  

14  1376256  4.393E-16  7.99  6.048E-20  10.14  6.051E-20  10.11  

15  2752512  5.493E-17  8.00  5.652E-20  1.01  5.652E-20  1.01  

16  5505024  6.844E-18  8.03  5.618E-20  1.01  5.618E-20  1.01  

17  11010048  8.321E-19  8.23  5.618E-20  1.00  5.618E-20  1.00  

Table 4.11 

Numerical results obtained for ozone in   �̅� = 𝟏𝟕    runs with three algorithms: (i) the 

direct implementation, (ii) the Active Richardson Extrapolation and (iii) the Passive 

Richardson Extrapolation of the A-stable version of the Diagonally Implicit Runge-

Kutta (DIRK) Method defined by (18)-(20). The atmospheric chemical scheme with  𝟓𝟔    

species is handled. The errors obtained in the different runs are given in the columns 

under “Accuracy”. The ratios of two successive errors are given in the columns under 
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“Rate” (the perfect rates being    𝟖     for the direct method and   𝟏𝟔    for the Richardson 

Extrapolation).   

  

 

It is clearly seen that   

  

(a) for sufficiently small values of the time-stepsize the direct implementation of the 

algorithm (18)-(20) behaves as a third-order numerical method (i.e. reducing the 

stepsize by a factor of three leads to an improvement of the accuracy by a factor 

approximately equal to eight),  

  

(b) the two implementations of the Richardson Extrapolation are giving approximately the 

same degree of accuracy, which is nearly always higher that the corresponding 

accuracy of the direct method,  

  

(c) if the time-stepsize becomes rather small, then the two implementations of the 

Richardson Extrapolation are gradually beginning to behave as methods of order four 

(i.e. reduction of the time-stepsize by a factor of two leads to an increase of the 

accuracy by a factor greater than eight, but in general less than sixteen)  

  

and   

  

(d) during the last runs with the Richardson Extrapolation, the interference of the rounding 

errors becomes very clear (the accuracy is no more increasing when the time-stepsize 

is reduced). 

 

 

 

 

 

4.8. Some General Conclusions related to Chapter 4 
 

Implicit Runge Kutta Methods were discussed in this chapter. We started with full description of the 

use of Richardson Extrapolation together with numerical schemes from the relatively simple class of 

the θ-methods. There are several reasons to study this case in detail: 

 

(a) these methods are very popular and are implemented in many models treating different 

scientific and engineering problems,  

 

(b) theoretical results can easily be achieved,  

 

(c) it is clear, in principle at least, how these results can be extended for more complicated 

numerical methods,  

 

(d) numerical experiments, which confirm the conclusions derived theoretically, can easily 

be organized and run. 
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It has been shown that the use of some methods can be worthwhile even if important properties of the 

numerical methods, such as A-stability and L- stability, cannot be established. These properties are 

only sufficient conditions for achieving stable computations. Stability of the computational process can 

also be achieved if the absolute stability properties of the numerical method under consideration are 

sufficiently large. 

 

Also in this chapter we were mainly interested in the application of the Richardson Extrapolation, this 

time in relation to implicit numerical methods. The preservation of the stability of the computational 

process was our major aim as in the previous chapters. Several results obtained in this direction were 

presented and discussed. It is necessary to emphasize here the fact that all results related to the 

preservation of the stability in the numerical solution of ODEs  are formulated and proved only for 

very special problems (as, for example, the scalar and linear test-problem proposed by Dahlquist, 

1963, and some obvious generalization of this very special problem). One expects that if the numerical 

method under consideration preserves the stability during the computations related to these very special 

test-problems, then the calculation of the solution of much more complex systems of ODEs will also 

remain stable. It is, of course, worthwhile to verify the fact that such an expectation is fulfilled. A rather 

difficult from a computational point of view problem arising in atmospheric chemistry was chosen in 

order to illustrate the ability of the numerical method to produce stable numerical results also when 

non-linear, badly scaled and extremely ill-conditioned stiff systems of ODEs are handled.     

 

 

 

 

 

4.9. Topics for further research 

 
Several questions arise when the results presented in this chapter are carefully studied. It will be 

worthwhile to answer these questions, which are formulated as topics for future research below. 

 

(A) It was shown that the two particular numerical methods (the combinations 

of the Richardson Extrapolation with the three-stage fifth-order Fully 

Implicit Runge-Kutta Method and with the two-stage third-order 

Diagonally Implicit Runge-Kutta Method), which were introduced in 

Section 4.7, have very large absolute stability regions and, therefore, could 

be successfully used in the solution of stiff systems of ODEs. Will it be 

possible to prove that these methods are at least A-stable (probably, by 

using the approach applied when the stability of the combinations of the 

Richardson Extrapolation with numerical algorithms from the class of the 

θ-methods was studied in Section 4.4)? 

 

(B) Will it be possible to establish that also some other Implicit Runge-Kutta 

Methods (preferably methods of higher orders of accuracy) have also very 

large absolute stability regions when these are combined with the 

Richardson Extrapolation?    
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Chapter 5 

 

Richardson Extrapolation for splitting techniques 

 
The application of splitting procedures in the treatment of many large scientific and engineering 

problems is an excellent tool (and, very often, the only tool) by which huge computational tasks can 

be made tractable on the available computers by dividing them to a sequence of tasks, which are both 

smaller and simpler (see, for example, Zlatev and Dimov, 2006). The use of the Richardson 

Extrapolation in connection with two well-known and commonly used splitting procedures will be 

discussed in this chapter.  We shall again be mainly interested in the preservation of the stability 

properties when the splitting procedures are combined with the Richardson Extrapolation. 

 

Only rather simple examples will be used in Chapter 5 in order to make the understanding of the main 

ideas easier. We do believe that when these ideas are well understood, then it will be possible to apply 

them in different advanced and complex scientific models. The  𝛉-methods  with   𝟎. 𝟓 ≤ 𝛉 ≤ 𝟏. 𝟎   

will be used as underlying numerical methods when the simple sequential splitting procedure is used. 

Runge-Kutta methods will be used together with the Marchuk-Strang splitting procedure. 

 

The simplest splitting technique, the so-called sequential splitting, will be introduced in the first 

section. 

 

An expression for the stability function of the sequential splitting procedure will be derived in the 

second section. 

 

Several results related to the stability properties will be proved in the third section. 

 

Numerical results will be presented in the fourth section. 

 

The Marchuk-Strang splitting procedure will be studied in the fifth section. Stability problems and 

numerical results will also be presented there. 

 

Several concluding remarks are given in Section 5.6. 

 

Some suggestions for research investigations will be formulated in the last section, Section 5.7.  

 

 

 

 

 

5.1. Richardson Extrapolation for sequential splitting 
 

Rewrite the initial value problem given in (1.1) in the following form: 
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(𝟓. 𝟏)      
𝐝𝐲

𝐝𝐭
= 𝐟𝟏(𝐭, 𝐲) + 𝐟𝟐(𝐭, 𝐲),   𝐭 ∈  [𝐚, 𝐛] ,   𝐚 < 𝐛,   𝐲 ∈  ℝ𝐬 ,   𝐟𝟏 ∈  ℝ𝐬 ,   𝐟𝟐 ∈  ℝ𝐬 ,   𝐬 ≥ 𝟏 , 

 

 

where   𝐟𝟏(𝐭, 𝐲) + 𝐟𝟐(𝐭, 𝐲) = 𝐟(𝐭, 𝐲)   and   𝐲(𝐚) = 𝛈   being a given initial value. It is also assumed, 

only in an attempt to make the presentation of the results simpler, that the numerical solution of (5.1) 

is to be calculated on an equidistant grid (non-equidistant grids can also be introduced and used): 

 

 

(𝟓. 𝟐)     𝐭𝟎 = 𝐚 ,     𝐭𝐧 = 𝐭𝐧−𝟏 + 𝐡 = 𝐭𝟎 + 𝐧𝐡,      𝐧 = 𝟏, 𝟐, . . . , 𝐍, 𝐭𝐍 = 𝐛 . 
 

 

The simplest splitting procedure, the sequential splitting, can be introduced in the following way. 

Consider two systems of ODEs defined by 

 

 

(𝟓. 𝟑)      
𝐝𝐲[𝟏]

𝐝𝐭
= 𝐟𝟏(𝐭, 𝐲[𝟏]),      𝐭 ∈  [𝐚, 𝐛] ,     𝐚 < 𝐛,      𝐲[𝟏]  ∈  ℝ𝐬 ,      𝐟𝟏 ∈  ℝ𝐬 ,      𝐬 ≥ 𝟏 , 

 

 

(𝟓. 𝟒)      
𝐝𝐲[𝟐]

𝐝𝐭
= 𝐟𝟐(𝐭, 𝐲[𝟐]),      𝐭 ∈  [𝐚, 𝐛] ,      𝐚 < 𝐛,      𝐲[𝟐]  ∈  ℝ𝐬 ,      𝐟𝟐 ∈  ℝ𝐬 ,       𝐬 ≥ 𝟏 , 

 

 

It is normally assumed here that it is easier (or even much easier) to solve numerically any of the two 

systems (5.3) and (5.4) than to solve the original system (5.1). 

 

Assume that approximations of the exact solution   𝐲(𝐭)   of (5.1) are calculated, step by step, at the 

grid-points of the equidistant grid (5.2). Assume also that some approximation    𝐲𝐧−𝟏 ≈ 𝐲(𝐭𝐧−𝟏)    is 

available and that it is necessary to calculate the next approximation   𝐲𝐧 ≈ 𝐲(𝐭𝐧) .  This can be done 

by carrying out three successive steps:  

 

(a) Find an approximate solution   𝐲𝐧
[𝟏]

   of system (5.2) by using the selected numerical 

method  and    𝐲𝐧−𝟏  as initial value.   

 

(b) Find an approximate solution   𝐲𝐧
[𝟐]

  of system (5.3)  by using the selected numerical 

method and    𝐲𝐧
[𝟏]

  as initial value.  

 

(c) Set   𝐲𝐧 = 𝐲𝐧
[𝟐]

  and consider it as an acceptable approximation to the solution  𝐲(𝐭𝐧)   

of (5.1).   

 

The algorithm described by the three consecutive steps (a), (b) and (c) defines fully the calculations at 

an arbitrary step. It is only necessary to explain how to start the computations, i.e. how to calculate the 

first approximation    𝐲𝟏 ≈ 𝐲(𝐭𝟏) ,   but this is not causing problems, because the initial value    𝐲(𝐭𝟎) =
𝐲(𝐚) = 𝛈 = 𝐲𝟎  is available.   
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We are interested in the first part of this chapter to study the combination of the Richardson 

Extrapolation with the sequential splitting procedure. It will be necessary, as in the previous chapters, 

to calculate some intermediate results, when the Richardson Extrapolation is used together with the 

sequential splitting procedure. More precisely, we shall need the vectors    𝐳𝐧
(𝟏)

 ,   𝐳𝐧
(𝟐)

 ,   𝐰𝐧
(𝟏)

  and   

𝐰𝐧
(𝟐)

.    For the sake of simplicity we shall assume, as in the first part of Chapter 4, that the calculations 

are carried out by using the  𝛉-method  with   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎] .   It is appropriate to consider additionally 

two approximations     𝐰𝐧−𝟎.𝟓
(𝟏)

     and     𝐰𝐧−𝟎.𝟓
(𝟐)

 ,    which are calculated at the point    𝐭𝐧−𝟎.𝟓 =  𝐭𝐧 −

𝟎. 𝟓𝐡 ,  where   𝐡   is, as always in this book, the time-stepsize.   

 

Under these assumptions, the calculations at time-step  𝐧  that are related to the Richardson 

Extrapolation when it is combined with the sequential splitting procedure and with the  𝛉-method  can 

be carried out in the following three consecutive steps.              

 

 

Step 1: Use a large time-stepsize  𝐡  to calculate an approximation  𝐳𝐧  of the exact value  𝐲(𝐭𝐧)  of 

the solution of (5.1) by selecting some of the  𝛉-methods  and by starting with the 

approximation  𝐲𝐧−𝟏  of  𝐲(𝐭𝐧−𝟏)  obtained at the previous time-step: 

 

 

(𝟓. 𝟓)      𝐳𝐧
(𝟏)

= 𝐲𝐧−𝟏 + 𝐡 [(𝟏 − 𝛉)𝐟𝟏(𝐭𝐧−𝟏, 𝐲𝐧−𝟏) + 𝛉𝐟𝟏(𝐭𝐧, 𝐳𝐧
(𝟏)

)] , 

 

 

(𝟓. 𝟔)      𝐳𝐧
(𝟐)

= 𝐳𝐧
(𝟏)

+ 𝐡 [(𝟏 − 𝛉)𝐟𝟐(𝐭𝐧−𝟏, 𝐳𝐧
(𝟏)

) + 𝛉𝐟𝟐(𝐭𝐧, 𝐳𝐧
(𝟐)

)] , 

 

 

(𝟓. 𝟕)      𝐳𝐧 ≝ 𝐳𝐧
(𝟐)

 . 
 

                                                                                                                                                       ■  

 
 

         

 

Step 2: Perform two small time-steps by using the same  𝛉-method  with a time-stepsize  𝟎. 𝟓𝐡  and 

by  starting with the approximation  𝐲𝐧−𝟏  of  𝐲(𝐭𝐧−𝟏)  obtained at the previous time-step to 

calculate a second approximation  𝐰𝐧  of the exact value  𝐲(𝐭𝐧)  of the solution of (5.1): 

 

 

(𝟓. 𝟖)      𝐰𝐧−𝟎.𝟓
(𝟏)

= 𝐲𝐧−𝟏 + 𝟎. 𝟓𝐡 [(𝟏 − 𝛉)𝐟𝟏(𝐭𝐧−𝟏, 𝐲𝐧−𝟏) + 𝛉𝐟𝟏(𝐭𝐧−𝟎.𝟓, 𝐰𝐧−𝟎.𝟓
(𝟏)

)] , 

 

 

(𝟓. 𝟗)      𝐰𝐧−𝟎.𝟓
(𝟐)

= 𝐰𝐧−𝟎.𝟓
(𝟏)

+ 𝟎. 𝟓𝐡 [(𝟏 − 𝛉)𝐟𝟐(𝐭𝐧−𝟏, 𝐰𝐧−𝟎.𝟓
(𝟏)

) + 𝛉𝐟𝟐(𝐭𝐧−𝟎.𝟓, 𝐰𝐧−𝟎.𝟓
(𝟐)

)] , 

 

 

(𝟓. 𝟏𝟎)      𝐰𝐧
(𝟏)

= 𝐰𝐧−𝟎.𝟓
(𝟐)

+ 𝟎. 𝟓𝐡 [(𝟏 − 𝛉)𝐟𝟏(𝐭𝐧−𝟎.𝟓, 𝐰𝐧−𝟎.𝟓
(𝟐)

) + 𝛉𝐟𝟏(𝐭𝐧, 𝐰𝐧
(𝟏)

)] , 
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(𝟓. 𝟏𝟏)      𝐰𝐧
(𝟐)

= 𝐰𝐧
(𝟏)

+ 𝟎. 𝟓𝐡 [(𝟏 − 𝛉)𝐟𝟐(𝐭𝐧−𝟎.𝟓, 𝐰𝐧
(𝟏)

) + 𝛉𝐟𝟐(𝐭𝐧, 𝐰𝐧
(𝟐)

)] , 

 

 

(𝟓. 𝟏𝟐)      𝐰𝐧 ≝ 𝐰𝐧
(𝟐)

 . 
 

                                                                                                                                                       ■  

 
 

 

Step 3: Assume that  𝟎. 𝟓 < 𝛉 ≤ 𝟏. 𝟎  and apply the formula  𝐲𝐧  = (𝟐𝐩𝐰𝐧 − 𝐳𝐧)/(𝟐𝐩 − 𝟏)     for 

computing the Richardson Extrapolation with  𝐩 = 𝟏  to obtain an improved approximation  

𝐲𝐧  of   𝐲(𝐭𝐧): 

 

 

(𝟓. 𝟏𝟑)      𝐲𝐧  = 𝟐𝐰𝐧 − 𝐳𝐧 . 
 

                                                                                                                                                       ■  

 

 

Note that if   𝟎. 𝟓 < 𝛉 ≤ 𝟏. 𝟎   then the combination consisting of the  𝛉-method  and the sequential 

splitting procedure is a first-order numerical method and, as stated in Chapter 1, the formula  𝐲𝐧  =
(𝟐𝐩𝐰𝐧 − 𝐳𝐧)/(𝟐𝐩 − 𝟏)     for computing the Richardson Extrapolation should be used with  𝐩 = 𝟏 . 

The order of the Trapezoidal Rule, the  𝛉-method  with  𝛉 = 𝟎. 𝟓 ,  is two, but the combination of the 

Trapezoidal Rule and the sequential splitting is again a first-order numerical method. It is not very 

clear what to do in this situation, but the decision is not very important because the new method will 

anyway be unstable in this situation. One can formally apply the Richardson Extrapolation scheme 

with    𝐩 = 𝟐    when the Trapezoidal Rule is directly used.   

 

The combination consisting of the Richardson Extrapolation, the sequential splitting procedure and the  

𝛉-method  will be a second-order numerical method and, therefore, it should be expected that the 

accuracy will be improved when the stability is preserved and the time-stepsize is sufficiently small. 

 

 

 

5.2. Derivation of the stability function for the sequential splitting procedure 
 

 

It is again (as in the previous chapters) appropriate to consider the simple scalar and linear test-problem 

proposed by Dahlquist (1963), instead of the non-linear systems of ODEs (5.3) and (5.4), when the 

stability properties of the combined numerical method (consisting of the Richardson Extrapolation, the 

Sequential Splitting Procedure and the  𝛉-method)  is studied: 

 

 

(𝟓. 𝟏𝟒)      
𝐝𝐲[𝟏]

𝐝𝐭
= 𝛌 𝐲[𝟏] ,        

𝐝𝐲[𝟐]

𝐝𝐭
= 𝛌 𝐲[𝟐],  
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                     𝐭 ∈  [𝟎, ∞] , 𝐲[𝟏]  ∈  ℂ , 𝐲[𝟐]  ∈  ℂ ,    𝛌 = �̅� + �̅�𝐢 ∈  ℂ ,     �̅� ≤ 𝟎, 𝐲(𝟎) = 𝛈 . 
 

 

The exact solution of each of the two systems in (2.14) is given by 

 

 

(𝟓. 𝟏𝟓)      𝐲[𝟏](𝐭) =  𝐲[𝟐](𝐭) =  𝛈 𝒆𝛌𝐭 ,      𝐭 ∈  [𝟎, ∞] . 
 

 

The three steps defined in the previous section can be rewritten in the following way under the 

assumption that the equalities (5.5) - (5.7) and (5.8) – (5.12) are used to calculate the approximations  

𝐳𝐧  and  𝐰𝐧  of the exact values  𝐲[𝟏](𝐭)  and  𝐲[𝟐](𝐭)   from (5.15).  

 

Step 1A: Use a large time-stepsize  𝐡  to calculate an approximation  𝐳𝐧  of the exact value  𝐲(𝐭𝐧)  of 

the solution of (5.14) by using the  𝛉-method     𝟎. 𝟓 < 𝛉 ≤ 𝟏. 𝟎       and by starting with the 

approximation    𝐲𝐧−𝟏    of    𝐲(𝐭𝐧−𝟏)   obtained at the previous time-step: 

 

 

(𝟓. 𝟏𝟔)      𝐳𝐧
(𝟏)

= 𝐲𝐧−𝟏 + 𝐡(𝟏 − 𝛉)𝛌𝐲𝐧−𝟏 + 𝐡𝛉𝛌𝐳𝐧
(𝟏)

    
 

                             ⇒    𝐳𝐧
(𝟏)

=
𝟏 + 𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝐡𝛉𝛌
𝐲𝐧−𝟏 , 

 

 

(𝟓. 𝟏𝟕)      𝐳𝐧
(𝟐)

= 𝐳𝐧
(𝟏)

+ 𝐡(𝟏 − 𝛉)𝛌𝐳𝐧
(𝟏)

+ 𝐡𝛉𝛌𝐳𝐧
(𝟐)

    
 

                            ⇒    𝐳𝐧
(𝟐)

=
𝟏 + 𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝐡𝛉𝛌
 𝐳𝐧

(𝟏)
 

 

                            ⇒     𝐳𝐧
(𝟐)

= [
𝟏 + 𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝐡𝛉𝛌
]

𝟐

𝐲𝐧−𝟏  , 

 
 

(𝟓. 𝟏𝟖)      𝐳𝐧 ≝ 𝐳𝐧
(𝟐)

=  [
𝟏 + 𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝐡𝛉𝛌
]

𝟐

𝐲𝐧−𝟏  . 

 

                                                                                                                                                       ■  

 

 

 

Step 2A: Perform two small time-steps by using the same  𝛉-method  with a time-stepsize  𝟎. 𝟓𝐡  and 

by starting with the approximation  𝐲𝐧−𝟏  of  𝐲(𝐭𝐧−𝟏)  obtained at the previous time-step to 

calculate a second approximation  𝐰𝐧  of the exact value  𝐲(𝐭𝐧)  of the solution of (5.14): 
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(𝟓. 𝟏𝟗)      𝐰𝐧−𝟎.𝟓
(𝟏)

= 𝐲𝐧−𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌𝐲𝐧−𝟏 + 𝟎. 𝟓𝐡𝛉𝛌𝐰𝐧−𝟎.𝟓
(𝟏)

    
 

                                 ⇒    𝐰𝐧−𝟎.𝟓
(𝟏)

=
𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝟎. 𝟓𝐡𝛉𝛌
𝐲𝐧−𝟏 , 

 

 

(𝟓. 𝟐𝟎)      𝐰𝐧−𝟎.𝟓
(𝟐)

= 𝐰𝐧−𝟎.𝟓
(𝟏)

+ 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌𝐰𝐧−𝟎.𝟓
(𝟏)

+ 𝟎. 𝟓𝐡𝛉𝛌𝐰𝐧−𝟎.𝟓
(𝟐)

    
 

                                  ⇒    𝐰𝐧−𝟎.𝟓
(𝟐)

=
𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝟎. 𝟓𝐡𝛉𝛌
 𝐰𝐧−𝟎.𝟓

(𝟏)
  

 

                                  ⇒     𝐰𝐧−𝟎.𝟓
(𝟐)

=  [
𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝟎. 𝟓𝐡𝛉𝛌
]

𝟐

𝐲𝐧−𝟏 , 

 

 

(𝟓. 𝟐𝟏)      𝐰𝐧
(𝟏)

= 𝐰𝐧−𝟎.𝟓
(𝟐)

+ 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌𝐰𝐧−𝟎.𝟓
(𝟐)

+ 𝟎. 𝟓𝐡𝛉𝛌𝐰𝐧
(𝟏)

    
 

                                 ⇒    𝐰𝐧
(𝟏)

=
𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝟎. 𝟓𝐡𝛉𝛌
 𝐰𝐧−𝟎.𝟓

(𝟐)
  

 

                                 ⇒     𝐰𝐧
(𝟏)

=  [
𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝟎. 𝟓𝐡𝛉𝛌
]

𝟑

𝐲𝐧−𝟏 , 

 

 

(𝟓. 𝟐𝟐)      𝐰𝐧
(𝟐)

= 𝐰𝐧
(𝟏)

+ 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌𝐰𝐧
(𝟏)

+ 𝟎. 𝟓𝐡𝛉𝛌𝐰𝐧
(𝟐)

    
 

                                 ⇒    𝐰𝐧
(𝟐)

=
𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝟎. 𝟓𝐡𝛉𝛌
 𝐰𝐧

(𝟏)
  

 

                                 ⇒     𝐰𝐧
(𝟐)

=  [
𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝟎. 𝟓𝐡𝛉𝛌
]

𝟒

𝐲𝐧−𝟏 , 

 

 

(𝟓. 𝟐𝟑)      𝐰𝐧 ≝ 𝐰𝐧
(𝟐)

=  [
𝟏 + 𝟎. 𝟓𝐡(𝟏 − 𝛉)𝛌

𝟏 − 𝟎. 𝟓𝐡𝛉𝛌
]

𝟒

𝐲𝐧−𝟏   

 

                                                                                                                                                       ■  

 

 

 

 

Step 3A: Apply, as in in the previous section, the formula  𝐲𝐧  = (𝟐𝐩𝐰𝐧 − 𝐳𝐧)/(𝟐𝐩 − 𝟏)     for 

computing the Richardson Extrapolation with  𝐩 = 𝟏  to obtain an improved approximation  

𝐲𝐧  of   𝐲(𝐭𝐧): 
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(𝟓. 𝟐𝟒)      𝐲𝐧  = 𝟐𝐰𝐧 − 𝐳𝐧 =  �̃�(𝛎) 𝐲𝐧−𝟏 
 

                                                

where  𝛎 = 𝐡𝛌   and 

 

 

(𝟓. 𝟐𝟓)      �̃�(𝛎) = 𝟐 [
𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓𝛎)

𝟏 − 𝛉(𝟎. 𝟓𝛎)
]

𝟒

−  [
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎
]

𝟐

  

 

                                                                                                                                                       ■  

 

 

 

The last two formulae show clearly that the application of the Richardson Extrapolation combined with 

the sequential splitting procedure and the  𝛉-method  is resulting in a one-step numerical method for 

solving ODEs with a stability function  �̃�(𝛎)  when the test-problem (5.11) is solved under the 

assumptions made above. This means that all definitions used in the previous chapters are also valid 

for the new numerical methods which are combinations of  

 

(a) a sequential splitting procedure,  

 

(b) a scheme from the class of the  𝛉-methods with   𝟎. 𝟓 < 𝛉 ≤ 𝟏. 𝟎      

 

and  

 

(c) the Richardson Extrapolation. 

   

 

It should also be noted that the active implementation of the Richardson Extrapolation is used in the 

algorithm described above. The passive implementation can also be applied. This implementation does 

not cause any stability problems, but may in some situations be not very accurate. 

 

Note that if the underlying  𝛉-method  is applied directly (i.e. without combining it with the splitting 

procedure and the Richardson Extrapolation), then the stability function, see (4.8) in Chapter 4, is given 

by 

 

 

(𝟓. 𝟐𝟔)     𝐑(𝛎)  =  
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎
 .   

 

 

If the underlying  𝛉-method is combined only with the Richardson Extrapolation (but not with the 

sequential splitting procedure), then the stability function, see (4.18) in Chapter 4, is given by 
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(𝟓. 𝟐𝟕)      �̅�(𝛎) =   𝟐 [
𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓 𝛎)

𝟏 − 𝛉(𝟎. 𝟓 𝛎)
]

𝟐

−
𝟏 + (𝟏 − 𝛉)𝛎

𝟏 − 𝛉𝛎
             when       𝛉 ≠ 𝟎. 𝟓  

 

 

and 

 

 

(𝟓. 𝟐𝟖)      �̅�(𝛎) =  
𝟒 [

𝟏 + 𝟎. 𝟐𝟓 𝛎
𝟏 − 𝟎. 𝟐𝟓 𝛎

]
𝟐

−
𝟏 + 𝟎. 𝟓𝛎
𝟏 − 𝟎. 𝟓𝛎

𝟑
               when       𝛉 = 𝟎. 𝟓 . 

 

 

Comparing (5.25) with (5.26) or with (5.27) – (5.28) it is seen that the stability function becomes much 

more complicated when the Richardson Extrapolation is combined both with the scheme from the class 

of the  𝛉-methods and with the sequential splitting procedure. Therefore, one should expect that the 

requirement    |�̃�(𝛎)|  ≤ 𝟏 ,  which is imposed in the different stability definitions, will be much more 

difficult than the corresponding requirements   |�̅�(𝛎)|  ≤ 𝟏   and   |𝐑(𝛎)|  ≤ 𝟏  used in the previous 

chapter. This fact explains why it is necessary to study the stability properties of the new numerical  

methods, which are combinations of a sequential splitting procedure, a scheme from the class of the  

𝛉-methods and the Richardson Extrapolation. Stability properties will be studied in the next section. 

 

 

 

5.3. Stability properties of the sequential splitting procedure 
 

We shall mainly be interested in the application of the splitting procedure for stiff systems of ODEs. 

Therefore, it is necessary to require that the new numerical methods, the combinations of a sequential 

splitting procedure, a scheme from the class of the  𝛉-methods and the Richardson Extrapolation, are 

at least A-stable. Sometimes more restrictive definitions, the definitions for strongly A-stable and L-

stable numerical methods for solving systems of ODEs, will be needed. These three definitions are 

given in Chapter 4, but it is convenient to repeat them also here.   

 

When the system of ODEs is stiff, it is reasonable to require that 

 

 

(𝟓. 𝟐𝟗)     �̃�(𝛎)  ≤ 𝟏      for      ∀ 𝛎 =  𝛂 + 𝛃𝐢     with    𝛂 ≤ 𝟎 , 
 

 

where   �̃�(𝛎)   is the stability function from (5.25). 

 

In other words, we shall again, as in Section 4, require that the crucial inequality  �̃�(𝛎)  ≤ 𝟏  is satisfied 

everywhere in the negative part of the complex plane and that the absolute stability regions of the 

numerical methods are infinitely large (containing the whole negative part of the complex plane). 

More precisely, the definition for A-stability is formulated in the following way by using the concepts 

defined in this chapter. 
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Definition 5.1: It is said that the numerical method for solving systems of ODEs is A-stable when the 

relationship  �̃�(𝛎)  ≤ 𝟏 is fulfilled  for      ∀ 𝛎 =  𝛂 + 𝛃𝐢     with    𝛂 ≤ 𝟎  in the case where the selected 

numerical method is applied in the solution of the two Dahlquist scalar and linear test-examples (5.14).  

                                                                                                                                                       ■  

 

 

It is worthwhile to emphasize again the fact that, because of the second Dahlquist barrier, which was 

introduced in Chapter 4, every A-stable numerical method is necessarily implicit. The numerical 

treatment of the implicit numerical methods is much more difficult than the numerical treatment of 

explicit numerical methods (this topic has been discussed in detail in Section 4.5).  

 

As mentioned in Chapter 4, the  θ-method  is A-stable when   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎].   Because of this fact, 

also in this chapter we shall, as stated above, consider numerical schemes of the class of the  θ-methods  

with  𝛉  varying in this interval. 

 

We defined the concept of A-stability in connection with the simple scalar and linear equations (5.14). 

However, the results can be generalized for some linear systems of ODEs with constant matrices. 

Moreover, there are some reasons to expect that the results will hold also for some more general, linear 

and non-linear, systems of ODEs. These issues have been presented and discussed in Chapter 2 (see 

Section 2.1) and there is no need to repeat these explanations here. 

 

As was pointed out in Section 4, the A-stability is sometimes not sufficient in the efforts to achieve an 

efficient computational process (an example was also given there to justify this statement). L-stability 

is necessary in the solution of some more difficult problems. This stronger concept is defined below. 

 

 

Definition 5.2: A numerical method for solving systems of ODEs is said to be L-stable when it is A-

stable and, in addition, when it is applied in the numerical solution to the two scalar and linear test-

problems (5.14) proposed by Dahlquist, it leads to the relationship  𝐲𝐧  =  �̃�(𝛎) 𝐲𝐧−𝟏 = [�̃�(𝛎)]
𝐧

 𝐲𝟎  

with  |�̃�(𝛎)|  → 𝟎  as  𝐑𝐞(𝛎)  → −∞ .   

 

                                                                                                                                                       ■  

 

 

 

Sometimes it is very useful to relax a little the requirement for L-stability, by introducing the concept 

of strong A-stability.  

 

 

Definition 5.3: A numerical method for solving systems of ODEs is said to be strongly A-stable when 

it is A-stable and, in addition, when it is applied in the numerical solution of the two scalar and linear 

test-problems (5.14) proposed by Dahlquist, it leads to the relationship  𝐲𝐧  =  �̃�(𝛎) 𝐲𝐧−𝟏 = [�̃�(𝛎)]
𝐧

 𝐲𝟎  

with  |�̃�(𝛎)|  → 𝐜 < 𝟏  as  𝐑𝐞(𝛎)  → −∞ .  

 

                                                                                                                                                       ■  
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It is obvious that the definition for strong A-stability is a compromise between the weaker definition 

for A-stability and the stronger definition for L-stability (compare Definition 5.3 with Definition 5.1 

and Definition 5.2). It is follows from the above statement that the class of the L-stable methods is a 

sub-class of the class of the strongly A-stable methods. The strongly A-stable methods form in their 

turn a class which is a sub-class of the class of A-stable methods. 

 

It will be shown at the end of this chapter that for some systems of ODEs strongly A-stable methods 

may perform better than L-stable methods. 
 

The stability properties of the combination of the Richardson Extrapolation applied together with the 

sequential splitting procedure and the  𝛉-method  when   𝛉 ∈ [𝟎. 𝟓, 𝟏. 𝟎]   will be studied in the 

remaining part of this chapter. More precisely, the following theorem will be proved: 

 

 

Theorem 5.1: The numerical method consisting of a combination of the Richardson Extrapolation 

applied together with the sequential splitting procedure and the  θ-method  is strongly A-stable if  𝛉 ∈
[𝛉𝟎, 𝟏. 𝟎]  with  𝛉𝟎 ≈ 𝟎. 𝟔𝟑𝟖 .  
 

 

Proof: The same main principles, as those used in the proof of Theorem 4.1, can also be applied in the 

proof of Theorem 5.1. According to Definition 5.3 that was given above, a strongly A-stable numerical 

method must also be A-stable (see also, for example, Hundsdorfer and Verwer, 2003). In Hairer 

and Wanner (1991) it is shown that a numerical method for solving systems of ODEs is A-stable if 

and only if 

  

(a) it is stable on the imaginary axis (i.e. when  |�̃�(𝐢𝛃)| ≤ 𝟏  holds for all real values of   𝛃 )   

  

and 

 

(b) �̃�(𝛎)  is analytic in  ℂ− .  

 

If we succeed to prove that (a) and (b) hold (i.e. if we show that the considered numerical method is 

A-stable), then it will be necessary to show additionally that the new numerical method is also strongly 

A-stable, i.e. that, according to Definition 5.3, the relationship   |�̃�(𝛎)|  → 𝐜 < 𝟏    holds as  𝐑𝐞(𝛎)  →
−∞ . 

 

The above analysis indicates that Theorem 5.1 can be proved in three steps: 

 

Step A: Show that the combination of the Richardson Extrapolation with the θ-methods 

and the sequential splitting procedure is stable on the imaginary axis. 

 

Step B: Verify that the stability function  �̃�(𝛎)  is analytic. 

 

Step C: Prove that |�̃�(𝛎)|  → 𝐜 < 𝟏  as  𝐑𝐞(𝛎)  → −∞ .    

 

 

We shall start with Step A. 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

211 

 

 

 

Step A – Stability on the imaginary axis 

 

The stability function  �̃�(𝛎) from (5.25) can be rewritten as a ratio of two polynomials: 

 

 

(𝟓. 𝟑𝟎)     �̃�(𝛎) =
𝐏(𝛎)

𝐐(𝛎)
  . 

 

 

The  polynomial  𝐏(𝛎)   can be represented by the following expression: 

 

 

(𝟓. 𝟑𝟏)     𝐏(𝛎) = 𝟐[𝟏 + (𝟏 − 𝛉)(𝟎. 𝟓𝛎)]𝟒(𝟏 − 𝛉𝛎)𝟐 − [𝟏 + (𝟏 − 𝛉)𝛎]𝟐[𝟏 − 𝛉(𝟎. 𝟓𝛎)]𝟒 , 
 

 

which is of order six with respect to   𝛎 ,   depends on the parameter  𝛉   and can be rewritten in the 

following form: 

 

 

(𝟓. 𝟑𝟐)     𝐏(𝛎) = 𝐀𝛎𝟔 + 𝐁𝛎𝟓 + 𝐂𝛎𝟒 + 𝐃𝛎𝟑 + 𝐄𝛎𝟐 + 𝐅𝛎 + 𝟏 , 
 

 

where the coefficients are given by 

 

 

(𝟓. 𝟑𝟑)     𝐀 =
𝛉𝟐 (𝟏 − 𝛉)𝟐(𝛉𝟐 − 𝟒𝛉 + 𝟐)

𝟐𝟒
 , 

 

 

(𝟓. 𝟑𝟒)     𝐁 =
𝛉(𝟏 − 𝛉)[−𝟐(𝟏 − 𝛉)𝟑 + 𝟖𝛉(𝟏 − 𝛉)𝟐 + 𝟒𝛉𝟐 (𝟏 − 𝛉) − 𝛉𝟑 ]

𝟐𝟑
 , 

 

 

(𝟓. 𝟑𝟓)     𝐂 =
𝟐(𝟏 − 𝛉)𝟒 − 𝟑𝟐𝛉(𝟏 − 𝛉)𝟑 + 𝟐𝟒𝛉𝟐(𝟏 − 𝛉)𝟐 + 𝟏𝟔𝛉𝟑(𝟏 − 𝛉) − 𝛉𝟒 

𝟐𝟒
 , 

 

 

(𝟓. 𝟑𝟔)     𝐃 =
𝟐(𝟏 − 𝛉)𝟑 − 𝟖𝛉(𝟏 − 𝛉)𝟐 + 𝟐𝛉𝟐 (𝟏 − 𝛉) + 𝛉𝟑 

𝟐
 , 

 

 

(𝟓. 𝟑𝟕)     𝐄 =
𝟏𝟑𝛉𝟐 − 𝟏𝟔𝛉 + 𝟒

𝟐
 , 
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(𝟓. 𝟑𝟖)     𝐅 = 𝟐 − 𝟒𝛉 . 
 

 

The denominator of (5.30) can be written as 

 

 

(𝟓. 𝟑𝟗)     𝐐(𝛎) = [𝟏 − 𝛉(𝟎. 𝟓𝛎)]𝟒(𝟏 − 𝛉𝛎)𝟐 . 
 

 

Assume that the complex variable   𝛎   is represented as   𝛎 = 𝛂 + 𝐢𝛃 .  It is shown in Hairer and 

Wanner (1991) that the numerical method with a stability function   �̃�(𝛎)   is stable on the imaginary 

axis if       

 

 

(𝟓. 𝟒𝟎)     𝐄(𝛃) ≥ 𝟎 

 

 

for all real values of   𝛃 , where  𝐄(𝛃)   is defined by 

 

 

(𝟓. 𝟒𝟏)     𝐄(𝛃) = 𝐐(𝐢𝛃)𝐐(−𝐢𝛃) − 𝐏(𝐢𝛃)𝐏(−𝐢𝛃) . 
 

 

After long but straight-forward transformations the following two relationships can be derived:  

 

 

(𝟓. 𝟒𝟐)     𝐐(𝐢𝛃)𝐐(−𝐢𝛃) =
𝛉𝟏𝟐

𝟐𝟖
𝛃𝟏𝟐 +

𝟗𝟎𝛉𝟏𝟎

𝟐𝟕
𝛃𝟏𝟎 +

𝟏𝟐𝟗𝛉𝟖

𝟐𝟖
𝛃𝟖 +

𝟐𝟗𝛉𝟔

𝟐𝟒
𝛃𝟔 +

𝟐𝟕𝛉𝟒

𝟐𝟑
𝛃𝟒 + 𝟑𝛉𝟐𝛃𝟐 + 𝟏 . 

 

 

(𝟓. 𝟒𝟑)     𝐏(𝐢𝛃)𝐏(−𝐢𝛃) =  𝐀𝟐𝛃𝟏𝟐 + (𝐁𝟐 − 𝟐𝐀𝐂)𝛃𝟏𝟎 + (𝐂𝟐 − 𝟐𝐁𝐃 + 𝟐𝐀𝐄)𝛃𝟖 

 

                                             +(𝐃𝟐 − 𝟐𝐂𝐄 + 𝟐𝐁𝐅 − 𝟐𝐀)𝛃𝟔 + (𝐄𝟐 − 𝟐𝐃𝐅 + 𝟐𝐂)𝛃𝟒 + (𝐅𝟐 − 𝟐𝐄)𝛃𝟐 + 𝟏 . 
 

 

Substitute the expressions on the right-hand-sides of (5.42) and (5.43) in (5.41): 

 

 

(𝟓. 𝟒𝟒)     𝐄(𝛃) =  
𝛉𝟏𝟐 − 𝟐𝟖𝐀𝟐

𝟐𝟖
𝛃𝟏𝟐 +

𝟗𝛉𝟏𝟎−𝟐𝟕(𝐁𝟐 − 𝟐𝐀𝐂)

𝟐𝟕
𝛃𝟏𝟎 

 

                             +
𝟏𝟐𝟗𝛉𝟖 − 𝟐𝟖(𝐂𝟐 − 𝟐𝐁𝐃 + 𝟐𝐀𝐄)

𝟐𝟖
𝛃𝟖 +

𝟐𝟗𝛉𝟔 − 𝟐𝟒(𝐃𝟐 − 𝟐𝐂𝐄 + 𝟐𝐁𝐅 − 𝟐𝐀)

𝟐𝟒
𝛃𝟔 

 

                             +
𝟐𝟕𝛉𝟒 − 𝟐𝟒(𝐄𝟐 − 𝟐𝐃𝐅 + 𝟐𝐂)

𝟐𝟒
𝛃𝟒 . 
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Introduce the following notations: 

 

 

(𝟓. 𝟒𝟓)     𝐇𝟏(𝛉) =  
𝛉𝟏𝟐 − 𝟐𝟖𝐀𝟐

𝟐𝟖
  , 

 

 

(𝟓. 𝟒𝟔)     𝐇𝟐(𝛉) =  
𝟗𝛉𝟏𝟎−𝟐𝟕(𝐁𝟐 − 𝟐𝐀𝐂)

𝟐𝟕
  , 

 

 

(𝟓. 𝟒𝟕)     𝐇𝟑(𝛉) =  
𝟏𝟐𝟗𝛉𝟖 − 𝟐𝟖(𝐂𝟐 − 𝟐𝐁𝐃 + 𝟐𝐀𝐄)

𝟐𝟖
 , 

 

 

(𝟓. 𝟒𝟖)     𝐇𝟒(𝛉) =  
𝟐𝟗𝛉𝟔 − 𝟐𝟒(𝐃𝟐 − 𝟐𝐂𝐄 + 𝟐𝐁𝐅 − 𝟐𝐀)

𝟐𝟒
  , 

 

 

(𝟓. 𝟒𝟗)     𝐇𝟓(𝛉) =  
𝟐𝟕𝛉𝟒 − 𝟐𝟒(𝐄𝟐 − 𝟐𝐃𝐅 + 𝟐𝐂)

𝟐𝟒
  . 

 

 

It is clear that   𝐄(𝛃)   will be non-negative for all values of  𝛃   and for a given value of   𝛉   if all  the 

five polynomials (5.45) – (5.49)  are non-negative for the selected values of parameter   𝛉 .  The curves 

representing these polynomials for  𝛉 ∈ [ 𝟎. 𝟓 , 𝟏. 𝟎 ]  are drawn in Fig. 5.1 – Fig. 5.5. The results 

show that the combination of the Richardson Extrapolation, the sequential splitting and the 𝛉-method 

for all values of   𝛉   is stable on the imaginary axis in the interval  [ 𝛉𝟎 , 𝟏. 𝟎 ]   with   𝛉𝟎  ≈ 0.638 .  

Thus the first part of Theorem 5.1 is proved.  
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Figure 5.1  

Variation of the polynomial   𝐇𝟏(𝛉) in the interval  [ 𝟎. 𝟓 , 𝟏. 𝟎 ] . 
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Figure 5.2  

Variation of the polynomial  𝐇𝟐(𝛉) in the interval  [ 𝟎. 𝟓 , 𝟏. 𝟎 ] . 
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Figure 5.3:  

Variation of the polynomial  𝐇𝟑(𝛉) in the interval  [ 𝟎. 𝟓 , 𝟏. 𝟎 ] . 
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Figure 5.4 

 Variation of the polynomial  𝐇𝟒(𝛉)  in the interval  [ 𝟎. 𝟓 , 𝟏. 𝟎 ] . 
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Figure 5.5 

 Variation of the polynomial  𝐇𝟓(𝛉) in the interval  [ 𝟎. 𝟓 , 𝟏. 𝟎 ] . 
 

 

 

Step B – A-stability 

 

After the proof that the combination of the Richardson Extrapolation, the sequential splitting and the 

𝛉-method is stable on the imaginary for all values of   𝛉  in the interval  [ 𝛉𝟎 , 𝟏. 𝟎 ]   with   𝛉𝟎  ≈ 

0.638  it is necessary to prove that the stability function    �̃�(𝛎)   is analytic in  ℂ− , which will ensure 

that the combined numerical method is A-stable. The stability function    �̃�(𝛎)   is a ratio of two 

polynomials,  𝐏(𝛎)   and   𝐐(𝛎); see (5.27). It is well-known that polynomials are analytic functions 

and a ratio of two polynomials is an analytic function in   ℂ−  if the denominator  𝐐(𝛎)   of    �̃�(𝛎)   has 

no zero in   ℂ− .   All zeros of the denominator  𝛎𝟏 = 𝛎𝟐 = 𝟏/𝛉 > 𝟎  and  𝛎𝟑 = 𝛎𝟒 = 𝛎𝟓 = 𝛎𝟔 = 𝟐/𝛉 >
𝟎  are positive, which means that  �̃�(𝛎)  is analytic in  ℂ−  and, thus, the method is A-stable. This 

proves the second part of Theorem 5.1.     
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Step C – Strong A-stability 

 

Rewrite (5.25) as 

 

 

(𝟓. 𝟓𝟎)      �̃�(𝛎) = 𝟐 [

𝟏
𝛎 + 𝟎. 𝟓(𝟏 − 𝛉)

𝟏
𝛎 − 𝟎. 𝟓𝛉

]

𝟒

−  [

𝟏
𝛎 + (𝟏 − 𝛉)

𝟏
𝛎 − 𝛉

]

𝟐

  

 

 

Assume that the imaginary part of   𝛎   is fixed. Then the expression   lim
𝐑𝐞(𝛎)→∞

[�̃�(𝛎)]    can be evaluated 

in the following way for any fixed value of the imaginary part of   𝛎 : 

 

 

(𝟓. 𝟓𝟏)     lim
𝐑𝐞(𝛎)→∞

[�̃�(𝛎)] = 𝟐 [
𝟎. 𝟓(𝟏 − 𝛉)

−𝟎. 𝟓𝛉
]

𝟒

− [
(𝟏 − 𝛉)

−𝛉
]

𝟐

=  
𝟐(𝟏 − 𝛉)𝟒

𝛉𝟒
−

(𝟏 − 𝛉)𝟐

𝛉𝟐
 

 

                                               =
𝟐 − 𝟖𝛉 + 𝟏𝟏𝛉𝟐 − 𝟔𝛉𝟑 + 𝛉𝟒

𝛉𝟒
   

 

 

Since the last expression in (5.51) is real, the requirement  lim
𝐑𝐞(𝛎)→∞

[�̃�(𝛎)] ≤ 𝛏 < 𝟏   is satisfied when 

the following two relationships hold: 

 

 

(𝟓. 𝟓𝟐)         
𝟐 − 𝟖𝛉 + 𝟏𝟏𝛉𝟐 − 𝟔𝛉𝟑 + 𝛉𝟒

𝛉𝟒
< 𝟏                ⟹             −𝟐 + 𝟖𝛉 − 𝟏𝟏𝛉𝟐 + 𝟔𝛉𝟑 > 𝟎   

 

 

and 

 

 

 

(𝟓. 𝟓𝟑)        − 𝟏 <  
𝟐 − 𝟖𝛉 + 𝟏𝟏𝛉𝟐 − 𝟔𝛉𝟑 + 𝛉𝟒

𝛉𝟒
             ⟹             𝟐 − 𝟖𝛉 + 𝟏𝟏𝛉𝟐 − 𝟔𝛉𝟑 + 𝛉𝟒 > 𝟎  . 

 

 

It can easily be established that (5.52) and (5.53) are satisfied for all values of   𝛉   in the interval   
[ 𝟎. 𝟓 , 𝟏. 𝟎 ] , but since the method should be A-stable, we have to take the interval   [ 𝛉𝟎 , 𝟏. 𝟎 ]   with   

𝛉𝟎 ≈ 𝟎. 𝟔𝟑𝟖 . This completes the third part of Theorem 5.1. 

 

                                                                                                                                                       ■  
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Corollary 5.1 If   𝛉 = 𝟏 , i.e. if the Backward Euler Formula is used, then the new numerical method 

(the combination of the underlying method, the sequential splitting procedure and the Richardson 

Extrapolation)  is L-stable. 

 

Proof: It is immediately seen that the right-hand-side of (5.51) is zero and, thus, the combined method 

is L-stable when the Backward Euler Formula is the underlying method. 

 

                                                                                                                                                      ■  

 

 

 

5.4. Some numerical experiments 
 

We shall use again, as in the previous chapter, the atmospheric chemical scheme in order to 

demonstrate the usefulness of the results described in the previous sections of this chapter.  More 

precisely, the following actions are carried out in this section: 

 

(a) The atmospheric chemical scheme is split into two parts.  

 

(b) The organization of the computations is carried out as in the previous chapter. 

 

(c) Numerical results obtained by using the sequential splitting scheme and the 

Backward Euler Formula are given. 

 

(d) Some results, which are obtained by using the sequential splitting with θ-

method with   𝛉 = 𝟎. 𝟕𝟓   are shown. 

 

(e) Results from runs of the sequential splitting with the Trapezoidal Rule are also 

given. 

 

(f) Some conclusions related to the numerical results are drawn at the end of 

Section 5.4.   

 

 

 

5.4.1. Splitting the atmospheric chemical scheme 

 

The atmospheric chemical scheme with  56  species from the Unified Danish Eulerian Model (UNI-

DEM), which was considered in the previous chapter will be considered also here. In this chapter, the 

atmospheric chemical scheme is split into two parts. The first part,  𝐟𝟏(𝐭, 𝐲) ,   contains mainly the 

chemical reactions in which ozone participates. The second part,  𝐟𝟐(𝐭, 𝐲) ,  contains all the other 

chemical reactions.  

 

 

5.4.2. Organization of the computations 
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The same approach as in the previous chapters will be used also in this section. This means that the 

computations were organized as in Section 4.6, where more details about the atmospheric chemical 

scheme are given. Assume that   �̅� = 𝟏𝟏    runs are to be carried out. The errors calculated during an 

arbitrary step  𝐣  of run   𝐤 ,   𝐤 = 𝟏 , 𝟐, …   , �̅�    are estimated by using the formula (4.60). The number 

of grid-points, at which the error is estimated, is   𝟏𝟔𝟖  for any of the    �̅� = 𝟏𝟏     runs. Only the values 

of the reference solution at the grid-points of the coarse grid (which is used in the first run) have been 

stored and applied in the evaluation of the error (it is, of course, also possible to store all values of the 

reference solution, but such an action will increase tremendously the storage requirements). It is much 

more important and must be emphasized also in this chapter that errors of the calculated approximations 

were always, in all the nineteen runs, computed at the same   𝟏𝟔𝟖   grid points. The global error made 

at run  𝐤 ,   𝐤 = 𝟏 , 𝟐, …   , �̅� = 𝟏𝟏     is estimated by using formula (4.61). All computations in this 

section were performed as in the previous sections by selecting quadruple precision (i.e. by using 

REAL*16 declarations for the real numbers and, thus, about 32-digit arithmetic) in an attempt to 

eliminate completely the influence of the rounding errors in the first 16 significant digits of the 

computed approximate solutions. 

 

 

5.4.3. Results obtained when the Backward Euler Formula is used 

 

The Backward Euler Formula (obtained when   𝛉 = 𝟏  is used) was run in combination  

 

(a) only with the sequential splitting procedure  

 

and  

 

(b) with both the sequential splitting procedure and with the Richardson Extrapolation.  

 

Results are given in Table 5.1. 

 

It is clearly seen that the application of the Richardson Extrapolation together with the Backward Euler 

Formula and the sequential splitting procedure results in a second-order numerical method and, thus, 

the results are significantly more accurate. 

 

 

5.4.4. Results obtained when the 𝛉-method with  𝛉 = 𝟎. 𝟕𝟓  is used 

 

The θ-method with   𝛉 = 𝟎. 𝟕𝟓   was run as in the previous sub-section in combination  

 

(a) only with the sequential splitting procedure  

 

and  

 

(b) with both the sequential splitting procedure and with the Richardson Extrapolation.  

 

Results are given in Table 5.2. It is again clearly seen that the application of the Richardson 

Extrapolation together with the θ-method with  75.0   and the sequential splitting procedure results 

in a second-order numerical method and, thus, in significantly more accurate results. Moreover, 

comparing the results in Table 5.2 with those in Table 5.1, shows clearly that the results presented in 
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this paragraph are more accurate than those presented in the previous one (in Chapter 4 it was explained 

that the θ-method with  75.0   is more accurate than the Backward Euler Formula). 
 

 

Job 

Number 

Number 

of time-

steps 

Only sequential 

splitting 

Richardson 

Extrapolation 

Accuracy Rate Accuracy Rate 

1 168 5.965E-00 - 7.521E-01 - 

2 336 1.214E-00 4.147 1.261E-01 5.965 

3 672 4.294E-01 2.827 4.542E-02 2.776 

4 1344 2.154E-01 1.993 1.799E-02 2.525 

5 2688 1.093E-01 1.970 5.862E-03 3.068 

6 5376 5.509E-02 1.985 1.698E-03 3.453 

7 10752 2.764E-02 1.993 4.598E-04 3.692 

8 21504 1.384E-03 1.997 1.199E-04 3.835 

9 43008 6.926E-03 1.998 3.062E-05 3.915 

10 86016 3.464E-03 1.999 7.740E-06 3.956 

11 172032 1.733E-03 2.000 1.946E-06 3.978 

Table 5.1 

Numerical results that are obtained in 11 runs when the Backward Euler Formula is used 

(a) only with the sequential splitting procedure and (b) with both the sequential splitting 

procedure and the Richardson Extrapolation. The errors are given in the columns under 

“Accuracy”. The ratios of two successive errors (calculated in an attempt to measure the 

rate of convergence) are given in the columns under “Rate”.  

 

 

 

Job 

Number 

Number 

of time-

steps 

Only sequential 

splitting 

Richardson 

Extrapolation 

Accuracy Rate Accuracy Rate 

1 168 4.081E-00 - 5.843E-02 - 

2 336 5.965E-01 6.842 3.681E-02 1.587 

3 672 2.087E-01 2.859 1.863E-02 1.976 

4 1344 1.052E-01 1.984 6.797E-03 2.741 

5 2688 5.386E-02 1.952 2.1.05E-03 3.229 

6 5376 2.731E-02 1.972 5.921E-04 3.555 

7 10752 1.376E-02 1.985 1.576E-04 3.756 

8 21504 6.904E-03 1.993 4.073E-05 3.869 

9 43008 3.459E-03 1.996 1.037E-05 3.928 

10 86016 1.731E-03 1.999 2.620E-06 3.957 

11 172032 8.659E-04 1.999 6.597E-07 3.972 

Table 5.2 

The same as Table 5.1 but for the case when the θ-method with  75.0    is used instead 

of the Backward Euler Formula. 

 

 

 

5.4.4. Results obtained when the Trapezoidal Rule is used 
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The Trapezoidal Rule obtained with   𝛉 = 𝟎. 𝟓   was run as in the previous two sub-sections in 

combination  

 

(a) only with the sequential splitting procedure  

 

and  

 

(b) with both the sequential splitting procedure and with the Richardson Extrapolation.  

 

Results are given in Table 5.3. It is seen that the application of the second-order Trapezoidal Rule with 

the sequential splitting results in a stable numerical scheme, but its order of accuracy is one. The 

application of the Trapezoidal Rule with the sequential splitting and with the Richardson Extrapolation 

results in an unstable numerical algorithm. This should be expected (see Theorem 5.4). 
 

 

 

Job 

Number 

Number 

of time-

steps 

Only sequential 

splitting 

Richardson 

Extrapolation 

Accuracy Rate Accuracy Rate 

1 168 2.419E-00 - not stable - 

2 336 1.881E-01 12.859 not stable n.a 

3 672 2.807E-01   6.704 not stable n.a 

4 1344 7.317E-01   3.836 not stable n.a 

5 2688 2.670E-01   2.741 not stable n.a 

6 5376 1.335E-02   1.999 not stable n.a 

7 10752 6.678E-02   2.000 not stable n.a 

8 21504 3.339E-03   2.000 not stable n.a 

9 43008 1.670E-03   2.000 not stable n.a 

10 86016 8.349E-03   2.000 not stable n.a 

11 172032 4.174E-03   2.000 not stable n.a 

Table 5.3 

The same as Table 1 but for the case when the Trapezoidal Rule is used instead of the 

Backward Euler Formula; “not stable” means that the method is not stable, “n.a” means 

not applicable.  

 

 

5.4.6. Some conclusions from the numerical experiments 

 

Several conclusions can be drawn from the results of the numerical experiments that were presented in 

Table 5.1 – Table 5.3: 

 

(A) The sequential procedure behaves, when it is stable, always as a numerical method of 

order one. This is also true when this procedure is used together with the Trapezoidal 

Rule, the order of accuracy of which is two (although in the first runs the order of 

accuracy in this case seems to be greater than one). 
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(B) The  θ-method with   𝛉 = 𝟎. 𝟕𝟓  produces more accurate results than the Backward 

Euler formula. The errors are reduced approximately by a factor of two, (the reason for 

this was explained in the previous chapter). 

 

(C) The accuracy achieved by using the combination of the sequential procedure with the 

Trapezoidal Rule, which is a second order numerical method, are less accurate than 

those obtained when the other two methods, which are first-order numerical 

algorithms, are used; compare the results in Table 5. 3 with the results in the previous 

two tables. It is not very clear what is the reason for this behavior.   

 

(D) The combination of the sequential procedure with the two first-order numerical 

methods and the Richardson Extrapolation leads, in accordance with Theorem 5.1, to 

a stable computational process, its order of accuracy being two.  

 

(E) As should be expected from Theorem 5.1, the combination of the sequential procedure, 

the Trapezoidal Rule and the Richardson Extrapolation leads to an unstable 

computational process.  

 

 

 

5.5. Marchuk-Strang splitting procedure 
 

Only θ-methods were used in the previous sections of this chapter. This is justified, because the 

combination of any numerical method for solving systems of ordinary differential equations with the 

sequential splitting procedure results in a new combined numerical method the order of accuracy of 

which is one (the additional application of the Richardson Extrapolation leading to a new combined 

method of order two). In this section some results related to the application of the Marchuk-Strang 

splitting procedure will be used. Its order of accuracy is two. Therefore, it is necessary to apply 

numerical methods of higher order in the treatment of the systems of ODEs. Some Runge-Kutta 

methods will be used in the remaining part of this section.   

 

 

5.5.1. Some introductory remarks 

 

Consider again, as in the first four chapters and as in the previous sections of this chapter, the system 

of ordinary differential equations (ODEs) defined by 

 

 

(𝟓. 𝟓𝟒)      
𝐝𝐲

𝐝𝐭
= 𝐟(𝐭, 𝐲),     𝐭 ∈  [𝐚, 𝐛] ,      𝐚 < 𝐛,        𝐲 ∈  ℝ𝐬 ,      𝐟 ∈  ℝ𝐬 ,       𝐬 ≥ 𝟏 ,     𝐲(𝐚) = 𝛈   . 

 

 

Assume that a Runge-Kutta method, explicit or implicit, see, for example, Burrage (1995), 

Butcher(2003), Hairer, Nørsett and Wanner (1987), Hundsdorfer and Verwer (2003), 

Lambert(1991), is used in the numerical solution of (5.54). Assume furthermore that the time-interval 

is discretized by using an equidistant grid (but it should be emphasized that this assumption is made 

only in order to simplify the presentation of the results; most of the results in the following part of this 

chapter are also valid when non-equidistant grids are used): 
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(𝟓. 𝟓𝟓)     𝐭𝟎 = 𝐚 ,     𝐭𝐧 = 𝐭𝐧−𝟏 + 𝐡 = 𝐭𝟎 + 𝐧𝐡,      𝐧 = 𝟏, 𝟐, . . . , 𝐍, 𝐭𝐍 = 𝐛,      𝐡 >
𝐛 − 𝐚

𝐍
 . 

 

 

Under these assumptions, the Runge-Kutta methods can be based on the following formulae: 

 

 

(𝟓. 𝟓𝟔)      𝐲𝐧 = 𝐲𝐧−𝟏 + 𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡)

𝐦

𝐢=𝟏

 ,   

 

 

where for    𝐢 = 𝟏, 𝟐, 𝟑, … , 𝐦 ∶ 
 
 

(𝟓. 𝟓𝟕)     𝐤𝐢(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) = 𝐟 (𝐭𝐧−𝟏 + 𝐡 𝐚𝐢 , 𝐲𝐧−𝟏 + 𝐡 ∑ 𝐛𝐢𝐣

𝐦

𝐣=𝟏

𝐤𝐣(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡)) , 𝐚𝐢 = ∑ 𝐛𝐢𝐣  

𝐦

𝐣=𝟏

, 

 

 

The coefficients   𝐜𝐢   and   𝐛𝐢𝐣 ,    𝐢, 𝐣 = 𝟏, 𝟐, 𝟑, … , 𝐦 ,    are constants dependent on the selected 

particular Runge-Kutta method. If all    𝐛𝐢𝐣 = 𝟎   when   𝐣 ≥ 𝐢 ,   then the selected Runge-Kutta method 

is explicit, while the method is implicit when at least one  𝐛𝐢𝐣 ≠ 𝟎   when   𝐣 ≥ 𝐢 . The vectors  

𝐤𝐢(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡)  are called stages. Simple notation, 𝐤𝐢   instead of  𝐤𝐢(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) ,  is often used 

(and was also applied in the previous chapters). The above notation will simplify the introduction of 

the combination of the Marchuk-Strang splitting procedure with Runge-Kutta methods in Sub-section 

5.5.2.    

 

We are interested in the case where the method based on (5.55)-(5.57) is used in a combination with 

both the Marchuk-Strang splitting procedure, see Marchuk (1968, 1980, 1982, 1986, 1988) and 

Strang (1968) and the Richardson Extrapolation, see Faragó, Havasi and Zlatev (2010) and 

Richardson (1911, 1927). This combination is a new numerical method and we shall study some 

stability properties of the combined numerical method both in the general case when the Runge-Kutta 

methods is defined by (5.56)-(5.57) and in some particular cases. The accuracy and the stability of the 

obtained results will be validated by applying an atmospheric chemical scheme, which is described 

mathematically by a non-linear system of   𝟓𝟔    ordinary differential equations. It is convenient to re-

iterate here that this chemical scheme has successfully been used in the Unified Danish Eulerian Model, 

UNI-DEM, which is a large-scale mathematical model for studying:  

 

(a) transport of air pollution over Europe (Alexandrov et al., 2004, Ambelas Skjøth et 

al., 2000, Bastrup-Birk et al., 1997, Hass et al., 2004, Roemer et al., 2004, Zlatev, 

2010, Zlatev and Dimov, 2006,  

 

(b) pollution distribution in different countries (Abdalmogith, Harrison and Zlatev, 

2004, Harrison, Zlatev and Ottley, 1994, Havasi and Zlatev, 2002, Zlatev, 

Georgiev and Dimov, 2013b, Zlatev and Syrakov, 2004a, 2004b)  
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and  

 

(c) impact of climate changes on some critical air pollution levels (Csomós et al., 2006, 

Zlatev, 2010, Zlatev, Faragó and Havasi, 2010, Zlatev, Dimov and Georgiev, 2016, 

Zlatev, Georgiev and Dimov, 2013b, Zlatev, Havasi and Faragó, 2011, Zlatev and 

Moseholm, 2008). 

 

The contents of this section of Chapter 5 can be outlined as follows. The application of the Marchuk-

Strang splitting procedure together with the Richardson Extrapolation is discussed in Sub-section 

5.5.2. An expression for the stability function of the combination of the Runge-Kutta methods with the 

Marchuk-Strang splitting procedure and the Richardson Extrapolation is derived in Sub-section 5.5.3. 

Some special Runge-Kutta methods, the two-stage Diagonally Implicit Runge-Kutta (DIRK) methods 

and the Implicit Mid-point Rule, will be introduced in Sub-section 5.5.4. Absolute stability regions of 

the selected methods will be presented in Sub-section 5.5.5. Numerical results, based on the 

application of the atmospheric chemical scheme with  𝟓𝟔  species, will be given in Sub-section 5.5.6. 

Several conclusions will be drawn in Sub-section 5.5.7. 

 

 

 

5.5.2. The Marchuk-Strang splitting procedure and the Richardson Extrapolation 

 

Rewrite, as in the previous sections, the initial value problem given in (5.54) in the following form: 

 

 

(𝟓. 𝟓𝟖)      
𝐝𝐲

𝐝𝐭
= 𝐟𝟏(𝐭, 𝐲) + 𝐟𝟐(𝐭, 𝐲),   𝐭 ∈  [𝐚, 𝐛] ,   𝐚 < 𝐛,   𝐲 ∈  ℝ𝐬 ,   𝐟𝟏 ∈  ℝ𝐬 ,   𝐟𝟐 ∈  ℝ𝐬 ,   𝐬 ≥ 𝟏 , 

 

 

where   𝐟𝟏(𝐭, 𝐲) + 𝐟𝟐(𝐭, 𝐲) = 𝐟(𝐭, 𝐲)   and   𝐲(𝐚) = 𝛈   being again a given initial value. Consider two 

systems of ODEs defined by 

 

 

(𝟓. 𝟓𝟗)      
𝐝𝐲[𝟏]

𝐝𝐭
= 𝐟𝟏(𝐭, 𝐲[𝟏]),        𝐭 ∈  [𝐚, 𝐛] ,       𝐚 < 𝐛,        𝐲[𝟏]  ∈  ℝ𝐬 ,        𝐟𝟏 ∈  ℝ𝐬 ,        𝐬 ≥ 𝟏 , 

 

 

(𝟓. 𝟔𝟎)      
𝐝𝐲[𝟐]

𝐝𝐭
= 𝐟𝟐(𝐭, 𝐲[𝟐]),        𝐭 ∈  [𝐚, 𝐛] ,        𝐚 < 𝐛,        𝐲[𝟐]  ∈  ℝ𝐬 ,        𝐟𝟐 ∈  ℝ𝐬 ,         𝐬 ≥ 𝟏 , 

 

 

It is normally assumed that it is easier (or even much easier) to solve numerically any of the two systems 

(5.59) and (5.60) than to solve the system of ODEs (5.58). The combined use of the Marchuk-Strang 

splitting procedure and the Richardson Extrapolation consists of the following three steps: 

 

 

Step 1 
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Apply any algorithm from the class of the Runge-Kutta methods defined by formulae (5.56)-(5.57) and 

the Marchuk-Strang splitting procedure to calculate an approximation   𝐳𝐧 ≈ 𝐲(𝐭𝐧)   by using the 

following formulae:    

 

 

(𝟓. 𝟔𝟏)      𝐳𝐧−𝟎.𝟓
[𝟏]

= 𝐲𝐧−𝟏 + 𝟎. 𝟓𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟏, 𝐭𝐧−𝟏, 𝐭𝐧−𝟎.𝟓; 𝟎. 𝟓𝐡)

𝐦

𝐢=𝟏

   

 

 

(𝟓. 𝟔𝟐)      𝐳𝐧
[𝟐]

= 𝐳𝐧−𝟎.𝟓
[𝟏]

+ 𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟐, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡)

𝐦

𝐢=𝟏

     

 

 

(𝟓. 𝟔𝟑)      𝐳𝐧
[𝟑]

= 𝐳𝐧
[𝟐]

+ 𝟎. 𝟓𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟏, 𝐭𝐧−𝟎.𝟓, 𝐭𝐧; 𝟎. 𝟓𝐡)

𝐦

𝐢=𝟏

    

 

 

(𝟓. 𝟔𝟒)      𝐳𝐧 = 𝐳𝐧
[𝟑]

 

 

                                                                                                                                                       ■  

 

 

Step 2 

 

Apply twice the same algorithm from the class of Runge-Kutta methods defined by formulae (5.56)-

(5.57) and the Marchuk-Strang splitting procedure to calculate another approximation   𝐰𝐧 ≈ 𝐲(𝐭𝐧)   

by using the following formulae:    

 

 

(𝟓. 𝟔𝟓)   𝐰𝐧−𝟎.𝟕𝟓
[𝟏]

= 𝐲𝐧−𝟏 + 𝟎. 𝟐𝟓𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟏, 𝐭𝐧−𝟏, 𝐭𝐧−𝟎.𝟕𝟓; 𝟎. 𝟐𝟓𝐡)

𝐦

𝐢=𝟏

  

 

 

(𝟓. 𝟔𝟔)   𝐰𝐧−𝟎.𝟓
[𝟐]

= 𝐰𝐧−𝟎.𝟕𝟓
[𝟏]

+ 𝟎. 𝟓𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟐, 𝐭𝐧−𝟏, 𝐭𝐧−𝟎.𝟓; 𝟎. 𝟓𝐡)

𝐦

𝐢=𝟏

     

 

 

(𝟓. 𝟔𝟕)   𝐰𝐧−𝟎.𝟓
[𝟑]

= 𝐰𝐧−𝟎.𝟓
[𝟐]

+ 𝟎. 𝟐𝟓𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟏, 𝐭𝐧−𝟎.𝟕𝟓, 𝐭𝐧−𝟎.𝟓; 𝟎. 𝟐𝟓𝐡)

𝐦

𝐢=𝟏
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(𝟓. 𝟔𝟖)   𝐰𝐧−𝟎.𝟐𝟓
[𝟏]

= 𝐰𝐧−𝟎.𝟓
[𝟑]

+ 𝟎. 𝟐𝟓𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟏, 𝐭𝐧−𝟎.𝟓, 𝐭𝐧−𝟎.𝟐𝟓; 𝟎. 𝟐𝟓𝐡)

𝐦

𝐢=𝟏

  

 

 

(𝟓. 𝟔𝟗)   𝐰𝐧
[𝟐]

= 𝐰𝐧−𝟎.𝟐𝟓
[𝟏]

+ 𝟎. 𝟓𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟐, 𝐭𝐧−𝟎.𝟓, 𝐭𝐧; 𝟎. 𝟓𝐡)

𝐦

𝐢=𝟏

     

 

 

(𝟓. 𝟕𝟎)   𝐰𝐧
[𝟑]

= 𝐰𝐧
[𝟐]

+ 𝟎. 𝟐𝟓𝐡 ∑ 𝐜𝐢𝐤𝐢(𝐟𝟏, 𝐭𝐧−𝟎.𝟐𝟓, 𝐭𝐧; 𝟎. 𝟐𝟓𝐡)

𝐦

𝐢=𝟏

  

 

 

(𝟓. 𝟕𝟏)    𝐰𝐧 = 𝐰𝐧
[𝟑]

 

 

                                                                                                                                                       ■  

 

 

Step 3 

 

Form the Richardson Extrapolation:  

 

 

(𝟓. 𝟕𝟐)      𝐲𝐧 =
𝟒𝐰𝐧 − 𝐳𝐧

𝟑
  .  

 

                                                                                                                                                       ■  

 

 

The Richardson Extrapolation formula    𝐲𝐧 = (𝟐𝐩𝐰𝐧 − 𝐳𝐧)/(𝟐𝐩 − 𝟏)    is used with    𝐩 = 𝟐    in 

(5.72).  This means that the order of accuracy of the selected underlying Runge-Kutta method should 

be at least two. 

 

Note that although the two auxiliary and simpler problems (5.59) and (5.60) are used in the 

computations involved in the three steps described above, the calculated by (5.72) vector  𝐲𝐧  is an 

approximation of the original problem (5.54).   

 

 

5.5.3. Stability function of the combined numerical method 

 

The stability properties of the combined numerical method, the combination of the selected Runge-

Kutta method with the Marchuk-Strang splitting procedure and the Richardson Extrapolation, will be 

studied in this section. We shall start with the stability properties of the underlying Runge-Kutta 

method, which are often studied by using the famous test-equation introduced in Dahlquist (1963), see 

also Burrage (1995), Butcher (2003), Hairer, Nørsett and Wanner (1987), Hairer and Wanner 

(1991), Hundsdorfer and Verwer (2003), Lambert (1991): 
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(𝟓. 𝟕𝟑)      
𝐝𝐲

𝐝𝐭
= 𝛌 𝐲,    

 

 

                     𝐭 ∈  [𝟎, ∞] , 𝐲 ∈  ℂ ,        𝛌 = �̅� + �̅�𝐢 ∈  ℂ ,       �̅� ≤ 𝟎,       𝐲(𝟎) = 𝛈 ∈  ℂ . 
 

 

Denote   𝐡𝛌 = 𝛍 . Then the stability of the computations with any Runge-Kutta method is related to a 

stability function   𝐑(𝛍).  If the particular Runge-Kutta method is explicit, then this function is a 

polynomial, while it is a rational function (a ratio of two polynomials) when the method is implicit. 

The stability function of a special class of Runge-Kutta methods will be derived in the next section. 

For our purposes here, it is important to emphasize two facts: 

 

 (a) if for a given value of  𝛍 ∈ ℂ−   we have   𝐑(𝛍) ≤ 𝟏 , then the computations with the 

particular method will remain stable for the stepsize  𝐡   when (5.73) is solved (and 

one should expect that the computational process will remain stable also when other 

problems are to be handled)  

 

and 

 

(b) the stability function of the combined numerical method (the particular Runge-Kutta 

method + the Marchuk-Strang splitting procedure + the Richardson Extrapolation) can 

be expressed by the stability function   𝐑(𝛍)    of the underlying Runge-Kutta method. 

  

The second fact is very important. It is telling us that if we know the stability function of the underlying 

Runge-Kutta method then we shall be able to calculate easily the stability function of the combined 

method. We can formulate this statement in a strict manner as follows:  

 

 

Theorem 5.2: Consider an arbitrary Runge-Kutta method, explicit or implicit, with a stability function   

𝐑(𝛍)   and combine it with the Marchuk-Strang splitting procedure and with the Richardson 

Extrapolation. Then the absolute stability function   �̅�(𝛍)   of the combined method is given by 

 

 

(𝟓. 𝟕𝟒)     �̅�(𝛍) =
[𝐑 (

𝛍
𝟐)]

𝟐

{𝟒 [𝐑 (
𝛍
𝟒)]

𝟒

− 𝐑(𝛍)}

𝟑
 .  

 

 

Proof: Consider first two different special problems that are quite similar to (5.73): 

 

 

(𝟓. 𝟕𝟓)      
𝐝𝐲[𝟏]

𝐝𝐭
= 𝛌𝟏𝐲[𝟏],    𝐭 ∈  [𝟎, ∞] ,    𝐲[𝟏]  ∈  ℂ ,     𝛌𝟏 = 𝛂𝟏 + 𝛃𝟏𝐢 ,     𝛂𝟏 ≤ 𝟎 ,     𝐲 (𝟎) = 𝛈  , 
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(𝟓. 𝟕𝟔)      
𝐝𝐲[𝟐]

𝐝𝐭
= 𝛌𝟐𝐲[𝟐],    𝐭 ∈  [𝟎, ∞] ,    𝐲[𝟐]  ∈  ℂ ,     𝛌𝟐 = 𝛂𝟐 + 𝛃𝟐𝐢 ,     𝛂𝟐 ≤ 𝟎 ,     𝐲 (𝟎) = 𝛈  , 

 

 

Denote   𝐡𝛌𝟏 = 𝛍𝟏  and  𝐡𝛌𝟐 = 𝛍𝟐 .  The assumption that the selected Runge-Kutta method has a 

stability function   𝐑(𝛍)   means that the relationship   𝐲𝐧 = 𝐑(𝛍)𝐲𝐧−𝟏    is satisfied when a time-step 

with a step-size   𝐡   is carried out to obtain an approximation   𝐲𝐧  of the solution of  (5.73)  by using  

𝐲𝐧−𝟏    as a starting approximation, see, for example, Lambert (1991). It is clear that a similar 

relationship is satisfied, then the problems (5.75) and (5.76) are handled. By using this fact in 

connection to (5.61), (5.62), (5.63) and (5.64), we can successively obtain: 

 

(𝟓. 𝟕𝟕)       𝐳𝐧−𝟎.𝟓
[𝟏]

= 𝐑 (
𝛍𝟏

𝟐
) 𝐲𝐧−𝟏 ,  

 

 

(𝟓. 𝟕𝟖)       𝐳𝐧−𝟎.𝟓
[𝟐]

= 𝐑(𝛍𝟐)𝐳𝐧−𝟎.𝟓
[𝟏]

= 𝐑(𝛍𝟐)𝐑 (
𝛍𝟏

𝟐
) 𝐲𝐧−𝟏 ,  

 

 

(𝟓. 𝟕𝟗)       𝐳𝐧 = 𝐳𝐧
[𝟑]

= 𝐑 (
𝛍𝟏

𝟐
) 𝐳𝐧−𝟎.𝟓

[𝟐]
 = 𝐑 (

𝛍𝟏

𝟐
) 𝐑(𝛍𝟐)𝐑 (

𝛍𝟏

𝟐
) 𝐲𝐧−𝟏 = [𝐑 (

𝛍𝟏

𝟐
)]

𝟐

𝐑(𝛍𝟐) 𝐲𝐧−𝟏  .  

 

 

In the same way, by using this time the equalities (5.65)-(5.71), it will be possible to obtain: 

 

 

(𝟓. 𝟖𝟎)      𝐰𝐧 = [𝐑 (
𝛍𝟏

𝟒
)]

𝟒

[𝐑 (
𝛍𝟐

𝟐
)]

𝟐

𝐲𝐧−𝟏  

 

 

Use now (5.72) to derive the following expression: 

 

 

(𝟓. 𝟖𝟏)      𝐲𝐧 =
𝟒 [𝐑 (

𝛍𝟏

𝟒 )]
𝟒

[𝐑 (
𝛍𝟐

𝟐 )]
𝟐

− [𝐑 (
𝛍𝟏

𝟐 )]
𝟐

𝐑(𝛍𝟐)

𝟑
𝐲𝐧−𝟏  .  

 

 

Assume that   𝛌𝟏 = 𝛌𝟐 = 𝛌 , which leads to   𝛍𝟏 = 𝛍𝟐 = 𝛍 .  Then we have:  

 

 

(𝟓. 𝟖𝟐)      𝐲𝐧 =
𝟒 [𝐑 (

𝛍
𝟒)]

𝟒

[𝐑 (
𝛍
𝟐)]

𝟐

− [𝐑 (
𝛍
𝟐)]

𝟐

𝐑(𝛍)

𝟑
𝐲𝐧−𝟏  .  

 

 

It follows from (5.82) that the stability function of the combined numerical algorithm is   
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(𝟓. 𝟖𝟑)     �̅�(𝛍) =
𝟒 [𝐑 (

𝛍
𝟒)]

𝟒

[𝐑 (
𝛍
𝟐)]

𝟐

− [𝐑 (
𝛍
𝟐)]

𝟐

𝐑(𝛍)

𝟑
=

[𝐑 (
𝛍
𝟐)]

𝟐

{𝟒 [𝐑 (
𝛍
𝟒)]

𝟒

− 𝐑(𝛍)}

𝟑
 ,  

 

 

which completes the proof of Theorem 5.2.  

 

                                                                                                                                                   ■  

 

 

Remark 5.1: Equality (5.83) shows that the stability polynomial   �̅�(𝛍)   of the combined method 

depends only on the stability polynomial   𝐑(𝛍)    of the underlying method, but this does not mean 

that if the underlying method is stable when the Dahlquist test-problem (5.73) is solved, then the 

combined method is also stable when this equation is handled. Indeed,   𝐑(𝛍) ≤ 𝟏   does not necessarily 

imply    �̅�(𝛍) ≤ 𝟏 . Therefore, the stability properties of the combined method have to be investigated 

very carefully also in the case where the underlying method is stable. 

 

                                                                                                                                                  ■  

 

 

 

 

 

5.5.4. Selection of an appropriate class of Runge-Kutta methods 

 

Good candidates of underlying methods when the combination a Runge-Kutta method + the Marchuk-

Strang splitting procedure + the Richardson Extrapolation is to be used are the two-stage Diagonally 

Implicit Runge-Kutta (DIRK) methods, see Chapter 4 and Alexander (1977), Cruziex (1976), Nørsett 

(1976), which can be introduced by the following formulae:  

 

 

(𝟓. 𝟖𝟒)      𝐲𝐧 = 𝐲𝐧−𝟏 + 𝐡 [𝐜𝟏𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) + 𝐜𝟐𝐤𝟐(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡)] ,       𝐜𝟏 + 𝐜𝟐 = 𝟏 ,   
 

 

where 

 

 

(𝟓. 𝟖𝟓)     𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) = 𝐟( 𝐭𝐧−𝟏 + 𝐡𝛄,   𝐲𝐧−𝟏 + 𝐡𝛄𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡)), 

 

                   𝐤𝟐(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) = 𝐟( 𝐭𝐧−𝟏 + 𝐡𝐚𝟐, 𝐲𝐧−𝟏 + 𝐡𝐛𝟐𝟏𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) + 𝐡𝛄𝐤𝟐(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) ). 
 

 

The advantages of using the method introduced by (5.84) and (5.85) are three:  

 

(a) The order of accuracy of the Marchuk-Strang splitting procedure is two and, therefore, 

it is desirable to use an underlying method, which is at least of order two also. That is 

easily achievable when the class of DIRK methods defined by (5.84) and (5.85) is 

selected.  
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(b) The implementation of any method defined by (5.84) and (5.85) leads to the solution 

of two small systems of   𝐬   algebraic equations while a general two-stage Runge-

Kutta method will lead to the solution of one large system of   𝟐𝐬   algebraic equations.  

 

(c) One has to treat  𝐬 × 𝐬  matrices during every time-step, while   𝟐𝐬 × 𝟐𝐬  have to be 

treated if a general two-stage Runge-Kutta method is used.      

 

More details about the advantages of the DIRK methods can be found in Burrage (1995), Butcher 

(2003), Hairer, Nørsett and Wanner (1987), Hairer and Wanner(1991), Hundsdorfer and Verwer 

(2003), Lambert (1991).   

 

The stability function of any numerical algorithm belonging to the class of the two-stage DIRK 

methods defined by (5.84) and (5.85) can be derived as follows. Assume again that the Dahlquist test-

equation (5.73) is used. The following formulae can be derived by using the  relation   𝐟(𝐭, 𝐲) = 𝛌𝐲 ,   

which follows from the comparison of (5.54) with (5.73) and from the notation 𝐡𝛌 = 𝛍 :    

 

 

(𝟓. 𝟖𝟔)     𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) = 𝛌(𝐲𝐧−𝟏 + 𝐡𝛄 𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡)) = 𝛌𝐲𝐧−𝟏 + 𝛄𝛍 𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) , 
      

 

(𝟓. 𝟖𝟕)     𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) − 𝛄𝛍 𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) = 𝛌𝐲𝐧−𝟏 , 
 

 

(𝟓. 𝟖𝟖)      𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) =
𝟏

𝟏 − 𝛄𝛍
𝛌𝐲𝐧−𝟏  .  

 

 

Similar, but slightly more complicated calculations lead to      

 

 

(𝟓. 𝟖𝟗)      𝐤𝟐(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) =
𝟏 − 𝛄𝛍 + 𝐛𝟐𝟏𝛍

(𝟏 − 𝛄𝛍)𝟐
 𝛌𝐲𝐧−𝟏  .  

 

 

Insert the right-hand-sides of (5.88) and (5.89) in (5.84) to obtain the following result after some not 

very complicated computations: 

 

 

(𝟓. 𝟗𝟎)      𝐲𝐧 =
(𝟏 − 𝛄𝛍 + 𝛍)(𝟏 − 𝛄𝛍) + 𝐜𝟐𝟏𝐛𝟐𝟏𝛍𝟐

(𝟏 − 𝛄𝛍)𝟐
 𝐲𝐧−𝟏   ,     

 

 

The last formula shows that the stability function of the class of the two-stage Diagonally Implicit 

Runge-Kutta (DIRK) methods is the expression given below: 
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(𝟓. 𝟗𝟏)      𝐑[𝟐−𝐬𝐭𝐚𝐠𝐞]
[𝐃𝐈𝐑𝐊] (𝛍) =

(𝟏 − 𝛄𝛍 + 𝛍)(𝟏 − 𝛄𝛍) + 𝐜𝟐𝐛𝟐𝟏𝛍𝟐

(𝟏 − 𝛄𝛍)𝟐
  .   

 

 

According to Theorem 1, the stability function of the combined  method (the two-stage DIRK method 

+ the Marchuk-Strang splitting + the Richardson Extrapolation) can be obtained by using the formula: 

 

 

(𝟓. 𝟗𝟐)     �̅�[𝟐−𝐬𝐭𝐚𝐠𝐞]
[𝐃𝐈𝐑𝐊] (𝛍) =

[𝐑[𝟐−𝐬𝐭𝐚𝐠𝐞]
[𝐃𝐈𝐑𝐊]

(
𝛍
𝟐)]

𝟐

{𝟒 [𝐑[𝟐−𝐬𝐭𝐚𝐠𝐞]
[𝐃𝐈𝐑𝐊]

(
𝛍
𝟒)]

𝟒

− 𝐑[𝟐−𝐬𝐭𝐚𝐠𝐞]
[𝐃𝐈𝐑𝐊] (𝛍)}

𝟑
 .  

 

 

It is necessary now to select a particular method from the class of the two-stage DIRK methods. This 

can be done by the following choice of the coefficients: 

 

 

(𝟓. 𝟗𝟑)     𝛄 = 𝟏 −
√𝟐

𝟐
,         𝐚𝟐 =

√𝟐

𝟐
,        𝐛𝟐𝟏 = √𝟐 − 𝟏,      𝐜𝟏 = 𝐜𝟐 = 𝟎. 𝟓   .  

 

 

The resulting method is A-stable. The concept of A-stability was defined above, see more details in 

Burrage (1995), Butcher (2003), Hairer, Nørsett and Wanner (1987), Hairer and Wanner(1991), 

Hundsdorfer and Verwer (2003), Lambert (1991). More about the particular method obtained by 

the choice made in (5.93) can be found in Zlatev (1981).  

 

We shall also use in the experiments the one-stage second-order Runge-Kutta method, which is much 

better known under the name Implicit Mid-point Rule: 

 

 

(𝟓. 𝟗𝟒)      𝐲𝐧 = 𝐲𝐧−𝟏 + 𝐡 𝐤𝟏(𝐟, 𝐭𝐧−𝟏, 𝐭𝐧; 𝐡) = 𝐲𝐧−𝟏 + 𝐡𝐟(𝐭𝐧−𝟎.𝟓 , 𝟎. 𝟓(𝐲𝐧 + 𝐲𝐧−𝟏 )) . 
 

 

This method belongs also to the class of the so-called one-leg methods, it is A-stable and it is identical 

with the Trapezoidal Rule when it is used to handle systems of linear ODEs, see more details in 

Lambert (1991). The stability function of the Mid-point Rule, which is the same as the stability 

function of the Trapezoidal Rule, is 

 

 

(𝟓. 𝟗𝟓)      𝐑[𝟏−𝐬𝐭𝐚𝐠𝐞]
[𝐌𝐢𝐝−𝐩𝐨𝐢𝐧𝐭]

(𝛍) =
𝟏 + 𝟎. 𝟓𝛍

𝟏 − 𝟎, 𝟓𝛍
  .   

 

 

The application of the assertion of Theorem 1 to the Implicit Mid-Point Rule combined with the 

Marchuk-Strang splitting procedure and the Richardson Extrapolation leads to the following 

expression for the stability function: 
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(𝟓. 𝟗𝟔)    �̅�[𝟏−𝐬𝐭𝐚𝐠𝐞]
[𝐌𝐢𝐝−𝐩𝐨𝐢𝐧𝐭]

(𝛍) =
[𝐑[𝟏−𝐬𝐭𝐚𝐠𝐞]

[𝐌𝐢𝐝−𝐩𝐨𝐢𝐧𝐭]
(

𝛍
𝟐)]

𝟐

{𝟒 [𝐑[𝟏−𝐬𝐭𝐚𝐠𝐞]
[𝐌𝐢𝐝−𝐩𝐨𝐢𝐧𝐭]

(
𝛍
𝟒)]

𝟒

− 𝐑[𝟏−𝐬𝐭𝐚𝐠𝐞]
[𝐌𝐢𝐝−𝐩𝐨𝐢𝐧𝐭]

(𝛍)}

𝟑
 .  

 

 

The stability properties of the particular numerical algorithm from the class of the two-stage DIRK 

methods, the coefficients of which are given in (5.93), and the Implicit Mid-point Rule, when these are 

combined with the Marchuk-Strang splitting procedure and the Richardson Extrapolation, will be 

studied in the next section. 

 

 

5.5.5. Absolute stability regions of the combined numerical methods 

 

It is difficult to investigate the stability properties of the combinations of the two selected methods with 

Marchuk-Strang splitting procedure and the Richardson Extrapolation. Indeed, the stability functions 

of the underlying methods are ratios of complex polynomials of degree two, while the corresponding 

degrees of the complex polynomials in the combined methods are eight. This is why the same approach 

as that successfully used in the first previous chapters as well as in Zlatev et al. (2016) was also applied 

in this case.  

 

It was established that the important inequality   |�̅�(𝛎)| ≤ 𝟏   holds in a big square domain with 

vertices: (𝟎. 𝟎 ,   𝟎. 𝟎) , (𝟎. 𝟎 ,   𝟏𝟎𝟓 𝐢),  (−𝟏𝟎𝟓 𝐢 ,   𝟏𝟎𝟓 𝐢)  and  (−𝟏𝟎𝟓 , 𝟎. 𝟎)   for the two-stage DIRK 

method combined with the Marchuk-Strang splitting procedure and the Richardson Extrapolation.    A 

part of the domain, in which the combined method is absolutely stable is given in Fig. 5.6. The same 

approach as that used in Zlatev, Georgiev and Dimov (2014) was applied. It can be described as 

follows. Let  𝛍  be equal to   �̅� + �̅�𝐢   with   �̅�  ≤ 𝟎  and select some increment   𝛆 > 𝟎    (we have 

chosen   𝛆 = 𝟎. 𝟎𝟏). Start the calculations with   �̅� = 𝟎   and compute successively the values  |�̅�(𝛎)|  
for  �̅� = 𝟎    and for     �̅� = 𝟎, 𝛆, 𝟐𝛆, 𝟑𝛆, …  .  Continue the calculations until   �̅�    becomes equal to  

𝟏𝟎𝟓   under the condition that   |�̅�(𝛎)|   stays less than one during all these computations. Repeat this 

procedure for values of   �̅�   equal to  −𝛆, −𝟐𝛆, − 𝟑𝛆, …   Continue to decrease   �̅�  until it becomes 

equal to   −𝟏𝟎𝟓  (requiring again   |�̅�(𝛎)|   stays always less than one). It is clear that one should expect 

that all points within the squares plotted in Fig. 5.6  that are obtained by applying the above algorithm, 

belong to the absolute stability regions of the studied numerical methods. 

  

The same approach applied to the combination of the Implicit Mid-point Rule with the Marchuk-Strang 

splitting procedure and the Richardson Extrapolation shows that the absolute stability region of this 

method is finite but quite large, see Fig. 5.7. 
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Figure 5.6 

Part of the absolute stability region of the two-stage second-order diagonally implicit Runge-Kutta 

method defined with  𝛄 = 𝟏 − √𝟐/𝟐,    𝐚𝟐 = √𝟐/𝟐,    𝐛𝟐𝟏 = √𝟐 − 𝟏,    𝐜𝟏 = 𝐜𝟐 = 𝟎. 𝟓  and combined 

with the Marchuk-Strang splitting procedure and the Richardson Extrapolation.  
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Figure 5.7 

The absolute stability region of the Implicit Mid-point Rule combined with the Marchuk-Strang 

splitting procedure and the Richardson Extrapolation. 

 

 

 

5.5.6. Some numerical results 

 

As mentioned in the beginning of this section, an important module, taken from the Unified Danish 

Eulerian Model (UNI-DEM), see Abdalmogith, Harrison and Zlatev (2004), Alexandrov et al. 

(2004), Ambelas Skøth et al. (2000), Bastrup Birk et al. (1997), Geenaert and Zlatev (2004), 

Harrison, Zlatev and Ottley (1994), Hass et al. (2004), Havasi and Zlatev (2002), Roemer et al. 

(2004] , Zlatev (1995), Zlatev and Dimov (2006), will be used in several numerical experiments. This 

module is an atmospheric chemical scheme with 𝟓𝟔 species, which is represented by a non-linear, 

badly scaled and stiff system of ODEs. The badly scaling of the components in the system of ODE’s 

is demonstrated in Table 5.4. The maximal concentration of 𝐂𝐇𝟑𝐂𝐇𝐎  is  𝟔. 𝟗 ×
𝟏𝟎𝟏𝟎 , while the minimal concentration of  𝐎𝐃 is  𝟔. 𝟓 × 𝟏𝟎−𝟒𝟎 i.e., the difference is about 50 orders 

of magnitude. The diurnal variations of many concentrations are both rapid and very large, which is 

shown in Fig. 5.8 and Fig. 5.9. It is also seen that some of the concentrations are decreasing during the 
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night, while others are increasing in this period. Furthermore, the variations of the concentrations in 

these two rather short but very critical time-periods are extremely quick and create steep gradients.  

 

 

Chemical 

species 

Maximal 

concentrations 

Minimal 

concentrations 

Mean 

concentrations 

   𝐂𝐇𝟑𝐂𝐇𝐎 𝟔. 𝟗 × 𝟏𝟎𝟏𝟎 𝟔. 𝟒 × 𝟏𝟎𝟓 𝟔. 𝟖 × 𝟏𝟎𝟗 

    𝐍𝟐𝐎𝟓 𝟏. 𝟖 × 𝟏𝟎𝟗 𝟓. 𝟑 × 𝟏𝟎𝟒 𝟒. 𝟑 × 𝟏𝟎𝟖 

OH 𝟐. 𝟑 × 𝟏𝟎𝟕 𝟑. 𝟑 × 𝟏𝟎𝟒 𝟔. 𝟑 × 𝟏𝟎𝟔 

 𝐎𝐃 𝟒. 𝟒 × 𝟏𝟎−𝟐 𝟐. 𝟓 × 𝟏𝟎−𝟒𝟎 𝟏. 𝟏 × 𝟏𝟎−𝟐 

Table 5.4 

Orders of magnitude of the concentrations of four chemical species in a period 

of 𝟐𝟒 hours; from 𝟏𝟐 o’clock at the noon on a given day to 𝟏𝟐 o’clock at the 

noon on the next day. Units: (numbers of molecules) / (cubic centimetre). 

 

 

The condition numbers of the Jacobian matrices   𝐉 = 𝛛𝐟/𝛛𝐭  appearing in the period of  𝟐𝟒  hours 

were calculated at every time-step (by using LAPACK software from Anderson et al. (1992) and 

Barker et al. (2001). Introduce the abbreviation   𝐂𝐎𝐍𝐃   for the condition number computed at any 

time-step. We found out that   𝐂𝐎𝐍𝐃 ∈   [ 𝟒. 𝟓𝟔 × 𝟏𝟎𝟖 , 𝟗. 𝟐𝟕 × 𝟏𝟎𝟏𝟐 ]  during the time-period of   

𝟐𝟒   hours. This shows that difficulties might appear not only because the selected numerical scheme 

is not sufficiently accurate, but also because the rounding errors may interfere with the truncation 

errors, see, for example, Hamming (1962), Stewart (1973), Wilkinson (1963, 1965). 

 

It is necessary for the computer programs to define the time-interval in seconds. Then the chemical 

atmospheric scheme was handled on the interval  [ 𝐚, 𝐛 ] = [ 𝟒𝟑𝟐𝟎𝟎 , 𝟏𝟐𝟗𝟔𝟎𝟎 ] .  The starting value   

𝐚 = 𝟒𝟑𝟐𝟎𝟎     corresponds to 𝟏𝟐 o’clock at the noon (measured in seconds and starting from mid-

night), while   𝐛 = 𝟏𝟐𝟗𝟔𝟎𝟎   corresponds to   𝟏𝟐   o’clock at the next day (measured also in seconds 

from the starting point).  

 

Sequences of  𝟏𝟗  runs were carried out and selected results are presented below. The first run was 

always performed by using   𝐍 = 𝟏𝟔𝟖   time-steps, the time-stepsize being   𝐡 ≈ 𝟓𝟏𝟒. 𝟐𝟖𝟓   seconds. 

The time-stepsize  𝐡  was halved after each run. This implies that the number of time-steps was doubled. 

The local error made at   𝐭̅𝐣   in any of the runs was measured for   𝐤 = 𝟏 , 𝟐, …   , 𝟏𝟗    by using the 

following formula: 

 

 

(𝟓. 𝟗𝟕)      𝐄𝐑𝐑𝐎𝐑𝐣
(𝐤)

=  𝐦𝐚𝐱
𝐢=𝟏 ,𝟐,…𝟓𝟔

 (
| 𝐲𝐢,𝐣 − 𝐲𝐢,𝐣

𝐫𝐞𝐟)|

𝐦𝐚𝐱(|𝐲𝐢,𝐣
𝐫𝐞𝐟| , 𝟏. 𝟎)

)   ,   𝐣 = 𝟐𝐤−𝟏, 𝟐 × 𝟐𝐤−𝟏  ,   … , 𝟏𝟔𝟖 × 𝟐𝐤−𝟏 ,  

 

 

where    𝐲𝐢,𝐣   and   𝐲𝐢,𝐣
𝐫𝐞𝐟   are respectively the calculated values and the values of the reference solution  

of the   𝐢𝐭𝐡   chemical species at   𝐭̅𝐣 = 𝐭𝟎  + 𝐣𝐡𝟎  (where    𝐣 = 𝟏 , 𝟐, …   ,   𝟏𝟔𝟖    and    𝐡𝟎 ≈ 𝟓𝟏𝟒. 𝟐𝟖𝟓    

was the time-stepsize that has been used in the first run). The values of the reference solution were 

calculated, as in Chapter 4, by using a very accurate method (three-stage fifth-order L-stable Fully 

Implicit Runge-Kutta (FIRK) Method), Ehle (1968), see also Burrage (1995), Butcher (2003), 
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Hairer, Nørsett and Wanner (1987), Hairer and Wanner (1991), Hundsdorfer and Verwer 

(2003), Lambert (1991), with    𝐍 = 𝟗𝟗𝟖𝟐𝟒𝟒𝟑𝟓𝟐   time-steps and a time-stepsize    𝐡𝐫𝐞𝐟  ≈
𝟔. 𝟏𝟑𝟎𝟕𝟔𝟑𝟒 × 𝟏𝟎−𝟓 . This means that we estimate the local errors at the same set of grid-points in 

each of the   𝟏𝟗  runs. Moreover, the number of grid-points, at which the error is estimated, is   𝟏𝟔𝟖  

for any of the    𝟏𝟗     runs. It should also be mentioned that the values of the reference solution at the 

grid-points of the coarse grid used in the first run have been preserved and applied in the evaluation of 

the local errors. It is possible to store all values of the reference solution, but such an action will increase 

too much the storage requirements. It is more important that the local errors of the calculated 

approximations were computed at the same   𝟏𝟔𝟖    grid points.    

  

 

 

 

Figure 5.8 

Diurnal variation during the time-interval of 24 hours.  
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Figure 5.9 

Diurnal variation during the time-interval of 24 hours.  

 

 

The global error made at run  𝐤 ,   𝐤 = 𝟏 , 𝟐, …   , 𝟏𝟗     is estimated by:  

 

 

(𝟓. 𝟗𝟖)      𝐄𝐑𝐑𝐎𝐑(𝐤)  =  𝐦𝐚𝐱
 𝐣=𝟐𝐤−𝟏,𝟐×𝟐𝐤−𝟏 ,   … ,𝟏𝟔𝟖×𝟐𝐤−𝟏

 ( 𝐄𝐑𝐑𝐎𝐑𝐣
(𝐤)

)  .  

 

 

An attempt was made to eliminate the influence of the rounding errors when the quantities involved in 

(5.97) and (5.98) are calculated. This is indeed needed, because the Jacobian matrices involved in the 

treatment of the atmospheric chemical scheme are badly scaled and extremely ill-conditioned. Accurate 

results, without large rounding errors, can as a rule be obtained by using double precision arithmetic in 

the calculations, but that is not always sufficient when the chemical scheme is handled. The reason for 

this can be explained as follows. The atmospheric chemical scheme is a stiff non-linear system of 

ODEs. Therefore, implicit numerical methods must be used, which leads to the solution of systems of 

non-linear equations at each time-step by the Newton Iterative Method, see Hairer and Wanner 

(1991), Hamming (1962), Hundsdorfer and Verwer (2003), Stewart (1973), and, thus, to treatment 
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of long sequences of systems of linear algebraic equations during the iterative process. Let us reiterate 

here that it was found, by calculating eigenvalues and condition numbers with subroutines from 

Anderson et al. (1992) and Barker et al. (2001), that the condition numbers of the matrices involved 

in the Newton Iterative Process on the time-interval   [𝐚 , 𝐛 ] =  [ 𝟒𝟑𝟐𝟎𝟎 , 𝟏𝟐𝟗𝟔𝟎𝟎 ]   vary in a very 

wide range   [ 𝟒. 𝟓𝟔 × 𝟏𝟎𝟖 , 𝟗. 𝟐𝟕 × 𝟏𝟎𝟏𝟐 ] .  If  𝐑𝐄𝐀𝐋 ∗ 𝟖  declarations for the real numbers are used 

in the computer programs, then computations involving about   𝟏𝟔   significant digits are carried out. 

Simple application of error analysis arguments from Stewart (1973), Wilkinson (1963, 1965) show 

clearly that there is a danger that the rounding errors could appear in the last twelve significant digits 

of the calculated numbers. Therefore, the computations presented in this section were carried out by 

selecting quadruple precision leading to the use of  𝐑𝐄𝐀𝐋 ∗ 𝟏𝟔   declarations for the real numbers 

and, thus, working with about   𝟑𝟐    significant digits during all computations). We eliminated in this 

way the influence of the rounding errors at least in the first twenty significant digits of the 

approximate solutions. We did this in order to demonstrate the possibility of achieving very accurate 

results under the assumption that stable implementations of the Richardson Extrapolation were 

developed and used.   

  

The results obtained by using the rules discussed above are given in Table 5.5 for the two-stage second-

order Diagonally Implicit Runge-Kutta (DIRK) methods used (a) directly, (b) together with the 

Marchuk-Strang splitting procedure and (c) together with both the Marchuk-Strang splitting procedure 

and the Richardson Extrapolation. The corresponding results obtained when the Implicit Mid-Point 

Rule are given in Table 5.6.  

 

Several major conclusions can be drawn by studying the numerical results presented in Table 2 and 

Table 3: 

 

(A) The results obtained by the direct implementation of a second-order method are as a 

rule more accurate than the corresponding results obtained when the Marchuk-Strang 

splitting procedure is additionally used. The hope is that the splitting procedure will 

lead to a better computational efficiency, because each of the two problems (5.59) and 

(5.60) is easier or even much easier than the original problem (5.54). 

 

(B) The application of the two-stage second-order DIRK method together with both the 

Marchuk-Strang splitting procedure and the Richardson Extrapolation leads to a third-

order combined numerical method for sufficiently small stepsizes. 

 

(C) The application of the second order Implicit Mid-point Rule together with both the 

Marchuk-Strang splitting procedure and the Richardson Extrapolation is not stable for 

large time-stepsizes. This fact shows clearly that one should study carefully the 

stability properties of the combined method when the Richardson Extrapolation is to 

be used. 

 

(D) The application of the second-order Implicit Mid-point Rule together with both the 

Marchuk-Strang splitting procedure and the Richardson Extrapolation with small 

stepsizes leads to a combined numerical method which behaves as a fourth-order 

numerical scheme and gives very accurate results. 
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Number 

of jobs 

 

Number 

of steps 

Length 

of the 

stepsize 

Direct DIRK 

method 

Marchuk-Strang 

Splitting 

Richardson 

Extrapolation 

Accuracy Rate Accuracy Rate Accuracy Rate 

  1 168  514.28571 4.16E-01 - 4.15E-01 - 1.60E-01 - 

  2 336  257.14285 8.29E-02 5.02 2.01E-01 2.06 7.03E-02 2.28 

  3 672  128.57143 1.89E-02 4.39 9.52E-02 2.11 2.65E-02 2.66 

  4 1344    64.28571 4.55E-03 4.15 3.94E-02 2.42 8.61E-03 3.08 

  5 2688    32.14286 1.12E-03 4.07 1.47E-02 2.69 2.42E-03 3.56 

  6 5376    16.07143 2.77E-04 4.03 4.92E-03 2.95 5.83E-04 4.15 

  7 10752      8.03571 6.91E-05 4.02 1.55E-03 3.20 1.19E-04 4.89 

  8 21504      4.01786 1.72E-05 4.01 4.49E-04 3.46 1.99E-05 5.99 

  9 43008      2.00893 4.30E-06 4.00 1.22E-04 3.68 2.73E-06 7.29 

10 86016      1.00446 1.07E-06 4.00 3.19E-05 3.82 3.30E-07 8.29 

11 172032      0.50223 2.69E-07 4.00 8.17E-06 3.91 3.83E-08 8.62 

12 344064      0.25112 6.72E-08 4.00 2.07E-06 3.95 4.56E-09   8.39 

13 688128      0.12556 1.68E-08 4.00 5.19E-07 3.98 5.64E-10 8.09 

14 1376256      0.06278 4.20E-09 4.00 1.30E-07 3.99 7.09E-11 7.96 

15 2752512     0.03139 1.05E-09 4.00 3.26E-08 3.94 8.95E-12 7.93 

16 5505024     0.01569 2.62E-10 4.00 8.16E-09 4.00 1.13E-12 7.94 

17 11010048     0.00785 6.56E-11 4.00 2.04E-09 4.00 1.41E-13 7.97 

18 22020096     0.00392 1.64E-11 4.00 5.10E-10 4.00 1.77E-14 7.98 

19 44040192     0.00196 4.10E-12 4.00 1.27E-10 4.00 2.21E-15 7.99 

Table 5.5 

Running the atmospheric chemical scheme with  𝟓𝟔  species by using the two-stage DIRK method 

(directly, together with the Marchuk-Strang splitting procedure and in combination with both the 

Marchuk-Strang splitting procedure and the Richardson Extrapolation). Nineteen values of the stepsize 

were successively applied.  

 

5.5.7. Concluding remarks 

 

The implementation of some methods of Runge-Kutta type together with the Marchuk-Strang splitting 

procedure and the Richardson Extrapolation was studied in the previous sections. It was shown that 

the stability function of the combined numerical method can be expressed by a formula, which contains 

only the stability function of the underlying Runge-Kutta method. Moreover, the accuracy order of the 

resulting combined numerical methods is in general three, but may also be four in some cases. The 

stability properties of the combined numerical methods should be carefully investigated, because 

stability of the underlying methods cannot guarantee stability of the combined method when the 

Richardson Extrapolation is also used. 
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Number 

of jobs 

 

Number 

of steps 

Length 

of the 

stepsize 

Implicit Mid-

point Rule 

Marchuk-Strang 

Splitting 

Richardson 

Extrapolation 

Accuracy Rate Accuracy Rate Accuracy Rate 

  1 168  514.28571 1.30E-00 - 3.37E-00 - N.S. N.A. 

  2 336  257.14285 1.58E-01 8.23 1.77E-01 19.04 N.S. N.A. 

  3 672  128.57143 3.70E-02 4.27 6.54E-02 2.71 N.S. N.A. 

  4 1344    64.28571 9.12E-03 4.06 1.39E-02 4.72 N.S. N.A. 

  5 2688    32.14286 2.27E-03 4.01 3.72E-03 3.72 N.S. N.A. 

  6 5376    16.07143 5.67E-04 4.00 9.47E-04 3.93 2.44E-04 - 

  7 10752      8.03571 1.42E-04 4.00 2.38E-04 3.98 4.13E-05   5.91 

  8 21504      4.01786 3.54E-05 4.00 5.95E-05 4.00 8.61E-06   4.80 

  9 43008      2.00893 8.86E-06 4.00 1.49E-05 4.00 1.53E-06   5.63 

10 86016      1.00446 2.22E-06 4.00 3.72E-06 4.00 2.10E-07   7.27 

11 172032      0.50223 5.54E-07 4.00 9.31E-07 4.00 2.23E-08   9.42 

12 344064      0.25112 1.38E-07 4.00 2.33E-07 4.00 1.94E-09 11.53 

13 688128      0.12556 3.46E-08 4.00 5.82E-08 4.00 1.46E-10 13.26 

14 1376256      0.06278 8.65E-09 4.00 1.45E-08 4.00 1.01E-11 14.46 

15 2752512     0.03139 2.16E-09 4.00 3.64E-09 4.00 6.65E-13 15.18 

16 5505024     0.01569 5.41E-10 4.00 9.09E-10 4.00 4.27E-14 15.57 

17 11010048     0.00785 1.35E-10 4.00 2.27E-10 4.00 2.71E-15 15.78 

18 22020096     0.00392 3.38E-11 4.00 5.68E-11 4.00 2.60E-18 10.18 

19 44040192     0.00196 8.45E-12 4.00 1.42E-11 4.00 3.32E-17 7.83 

Table 5.6 

Running the atmospheric chemical scheme with  𝟓𝟔  species by using the Implicit Mid-point Rule 

(directly, together with the Marchuk-Strang splitting procedure and in combination with both the 

Marchuk-Strang splitting procedure and the Richardson Extrapolation). Nineteen values of the stepsize 

were successively applied. “N.S.” and “N.A” mean “not stable” and “not applicable” respectively. 

 

 

 

5.6. General conclusions related to Chapter 5 
 

Only θ-methods were used in the first four sections of this chapter. This is justified, because the 

combination of any numerical method with the sequential procedure results in new numerical methods, 

the order of which is one. Therefore, it will not be very useful to apply numerical methods of higher 

order. Moreover, it was proved that for a larger sub-class of the class of the θ-methods, the 

computational process remains stable also when stiff systems of ODEs are treated by combinations of 

the sequential splitting procedure, the θ-methods for all values of   𝛉  in the interval  [ 𝛉𝟎 , 𝟏. 𝟎 ]   with   

𝛉𝟎 ≈ 𝟎. 𝟔𝟑𝟖   and the Richardson Extrapolation; see Theorem 5.1. 

 

Implicit methods of higher order may become relevant if splitting procedures of higher order are used 

in combination with the Richardson Extrapolation. This will certainly be true if the Marchuk-Strang 

splitting procedure is used. This procedure, which was introduced in Marchuk (1968), see also 

Marchuk (1980, 1982, 1986, 1988), and Strang (1968), is of order two. Therefore, it will be optimal 

to use this procedure together with second-order numerical methods. Then the combination of the 

Marchuk-Strang splitting procedure with second-order numerical methods and the Richardson 
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Extrapolation will be a numerical method of third-order of accuracy. It should be noted however, that 

the Marchuk-Strang splitting procedure is more expensive computationally than the sequential 

splitting. 

  

It has been shown in Theorem 5.1 that the combination of the sequential splitting procedure, the θ-

methods for all values of   𝛉   in the interval  [ 𝛉𝟎 , 𝟏. 𝟎 ]   with   𝛉𝟎  ≈ 0.638  and the Richardson 

Extrapolation, see Theorem 5.1, is a new numerical method, which is strongly A-stable. However, it 

should be emphasized also in this chapter that the requirement of strong A-stability is only a sufficient 

condition for achieving stable computations. Numerical methods, which do not possess this property 

should not automatically be discarded. Such methods could be very useful if one can show that their 

absolute stability regions are very large, as was done in the end of the previous chapter. 

 

It was assumed that the right-hand-side of the system of ODEs is a sum of two operators only. The 

results can be generalized for the case where more operators are presented. 

 

 

 

5.7. Topics for further research 
 

The following topics might lead to some very interesting and useful results: 

 

(A) It was mentioned in the previous section that the Marchuk-Strang splitting 

procedure is of order two and, therefore, it might be a good candidate for 

combined methods, also when the Richardson Extrapolation is used. Some 

stability results for the combinations (the Marchuk-Strang splitting 

procedure, some classes of second order implicit numerical methods and 

the Richardson Extrapolation) will be very useful. 

 

(B) If the Marchuk-Strang splitting procedure is used, then the use of the 

numerical schemes from the class of the θ-methods will not be a good 

choice, because these numerical schemes are of first order of accuracy 

when   𝛉 ≠ 𝟎. 𝟓 ,   while the Marchuk-Strang splitting procedure is of 

second order of accuracy. Therefore, the use of numerical schemes, the 

order of accuracy of which is two, will be optimal in this case. It should 

be noted, however, that the Trapezoidal Rule, which belongs to the class 

of the θ-methods and can be found by setting   𝛉 = 𝟎. 𝟓 ,  is not a good 

choice, because it will lead to unstable computations. Some second-order 

Implicit Runge-Kutta method should be selected. 

 

(C) It is also possible to apply first order numerical scheme to each of the 

problems (5.3) and (5.4) obtained after applying splitting in relation to 

problem (5.1). Some numerical schemes from the class of the  θ-methods 

can be selected (different numerical schemes can be used). The Richardson 

Extrapolation can be used for each of the two sub-problems. Thus, second 

order of accuracy will be obtained during the computations with each of 

the two sub-problems and it will be appropriate to apply the Marchuk-

Strang splitting procedure.     
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(D) Some other splitting procedures can also be applied together with the 

Richardson Extrapolation in a similar manner as the sequential splitting 

was treated in this chapter. 
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Chapter 6 

 

Richardson Extrapolation for advection problems 

 
The application of the Richardson Extrapolation in connection with initial value problems for systems 

of ODEs was studied in the previous five chapters. Some applications of this approach in the case 

where partial differential equations (PDEs) are to be handled numerically on computers will be 

presented and discussed in this chapter. There are two ways to apply the Richardson Extrapolation in 

the treatment of PDEs: 

 

(A)  One may first semi-discretize the partial differential equation (or the system of partial 

differential equations). This is often performed by applying either finite elements of finite 

differences in relation to the spatial derivatives. Then the Richardson Extrapolation can 

be applied to the resulting (normally very large) system of ordinary differential equations. 

 

(B)  One can apply the Richardson Extrapolation directly to the partial differential equation 

(or to the system of partial differential equations). 

 

The implementation of the Richardson Extrapolation in  Case (A)  is in principle the same as the 

implementation of this device, which was studied in the previous chapters. It is only necessary first to 

discretize the spatial derivatives: the result of this semi-discretization will be a system of ODEs of the 

same type as the systems of ODEs studied in Chapter 1 – Chapter 4. Therefore, it is not necessary to 

consider again this case here. Only two important facts must be stressed:  

 

(a) the system of ODEs that is obtained after the semi-discretization of the system of PDEs 

is normally very large, which causes or at least may very often cause serious technical 

difficulties 

 

and  

 

(b) the accuracy of the results will be improved when the Richardson Extrapolation is 

implemented only if the errors due to the spatial discretization are considerably smaller 

than the error due to the use of the selected time-integration numerical method.  

 

The short discussion in the previous paragraphs shows clearly that it is necessary to study here only 

Case (B). This will be done in connection with some special partial differential equations, the advection 

equations, which are a very substantial part of large-scale air pollution models and in these applications 

describe mathematically the transport of air pollutants in the atmosphere (see Alexandrov et al., 2004, 

Zlatev, 1995 or Zlatev and Dimov, 2006), but such equations appear in many other problems arising 

in science and engineering. 

 

One-dimensional advection equations will be introduced in Section 6.1. The discretization of these 

equations by using the Crank-Nicolson numerical scheme will be briefly discussed there. The Crank-
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Nicolson numerical scheme is of second order of accuracy in regard both to the time variable and to 

the space variable (see, for example, Strikwerda, 2004).  

 

In  Section 6.2 it will be shown how the Richardson Extrapolation can be combined with a rather 

general numerical method for solving PDEs.  

 

Four different implementations of the Richardson Extrapolation in connection with the Crank-Nicolson 

scheme will be introduced and discussed in Section 6.3. 

 

In Section 6.4 it will be proved that the new method (the combination of the Richardson Extrapolation 

with the Crank-Nicolson scheme) is of order four. 

 

Three numerical examples will be given in Section 6.5 in order to illustrate the fact that under certain 

assumptions the accuracy is indeed increased by two orders when the Richardson Extrapolation is used. 

 

In the next section, in Section 6.6, the result proved in the fourth section for the one-dimensional 

advection will be generalized for the multi-dimensional case. Several special cases, one-dimensional 

advection, two-dimensional advection and three-dimensional advection will also be presented and 

discussed in Section 6.6. 

 

Some conclusions and remarks will be presented in Section 6.7.  

 

Some topics for further research in this area will be suggested in Section 6.8. 

 

 

 

6.1. The one-dimensional advection problem 
 

In the first five sections of this chapter, we shall mainly consider a very simple one-dimensional 

advection equation, which appears (very often after performing some kind of splitting) in many 

advanced mathematical models describing different processes arising in fluid dynamics; see, for 

example Zlatev, 1995, Zlatev and Dimov, 2006), but it should immediately be emphasized that this 

simplification is made only in order to facilitate the understanding of the main ideas. Most of the results 

can easily be extended for other and more complicated cases. One particular example for such an 

extension will be presented in Section 6.6.  

 

We are interested in applying the Richardson Extrapolation for the following scalar partial differential 

equation: 

 

 

(𝟔. 𝟏)     
𝛛𝐜

𝛛𝐭
 =  −𝐮  

𝛛𝐜

𝛛𝐱
  ,      𝐱 ∈ [𝐚𝟏, 𝐛𝟏]  ⊂ (−∞, ∞) ,        𝐭 ∈ [𝐚, 𝐛]  ⊂ (−∞, ∞) .   

 

  

It will be assumed that   𝐮 = 𝐮(𝐱, 𝐭)   is a given function, which varies both in time and in space. The 

physical meaning of this function depends on the particular area in which equation (6.1) arises. For 

example, in many fluid dynamics applications it is interpreted as a velocity field. More specifically, in 

atmospheric modelling of long-range transport of air pollutants,   𝐮(𝐱, 𝐭)   represents the wind velocity 
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field in the considered spatial domain (see, for example, Alexandrov, 2004, Zlatev, 1995, Zlatev and 

Dimov, 2006). It should be mentioned here that in this special case the unknown function   𝐜(𝐱, 𝐭)   is 

the concentration of some air pollutant, which could be dangerous for humans, animals and plants. 

 

The well-known Crank-Nicolson numerical scheme (see, for example, Strikwerda, 2004, page 63) can 

be used in the treatment of (6.1) on computers. The calculations are carried out by applying the 

following formula: 

 

 

(𝟔. 𝟐)     𝛔𝐢,𝐧+𝟎.𝟓 𝐜𝐢+𝟏,𝐧+𝟏 + 𝐜𝐢,𝐧+𝟏 − 𝛔𝐢,𝐧+𝟎.𝟓 𝐜𝐢−𝟏,𝐧+𝟏 + 𝛔𝐢,𝐧+𝟎.𝟓 𝐜𝐢+𝟏,𝐧 − 𝐜𝐢,𝐧 − 𝛔𝐢,𝐧+𝟎.𝟓 𝐜𝐢−𝟏,𝐧 =  𝟎 ,  
 

 

when the Crank-Nicolson numerical scheme is used (more details about this particular numerical 

scheme as well as for other numerical schemes can also be found in Crank and Nicolson, 1947, 

Lapidus and Pinder, 1982, Morton, 1996, Smith, 1978). 

 

Equation (6.1) must always be considered together with some appropriate initial and boundary 

conditions. In principle, it is only necessary to provide a boundary condition at the left-hand-side end-

point of the spatial interval  [𝐚𝟏, 𝐛𝟏]  when  𝐮(𝐚𝟏, 𝐭)  is positive.  However, the use of the Crank-

Nicolson numerical scheme (6.2) requires also a boundary condition on the right-hand-side end-point 

of this interval. Therefore, it will always be assumed that Dirichlet boundary conditions are available 

at the two end-points of the interval [𝐚𝟏, 𝐛𝟏] .    
 

Particular initial and boundary conditions will be discussed in Section 6.4, where some numerical 

examples will be introduced and handled. 

 

The quantity   𝛔𝐢,𝐧+𝟎.𝟓    is defined by 

 

 

(𝟔. 𝟑)     𝛔𝐢,𝐧+𝟎.𝟓 =  
𝐤

𝟒𝐡
 𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓) ,  

 

 

where   𝐭𝐧+𝟎.𝟓 = 𝐭𝐧 + 𝟎. 𝟓𝐤   and the increments   𝐡   and   𝐤   of the spatial and time variables 

respectively are introduced by using two equidistant grids: 

 

 

(𝟔. 𝟒)     𝐆𝐱 = { 𝐱𝐢 |  𝐱𝟎 = 𝐚𝟏,    𝐱𝐢 = 𝐱𝐢−𝟏 + 𝐡,    𝐢 = 𝟏, 𝟐,   …,   𝐍𝐱 ,   𝐡 =
𝐛𝟏 − 𝐚𝟏

𝐍𝐱
 ,   𝐱𝐍𝐱

= 𝐛𝟏 }  

 

 

and 

 

 

(𝟔. 𝟓)     𝐆𝐭 = { 𝐭𝐧 |  𝐭𝟎 = 𝐚,    𝐭𝐧 = 𝐭𝐧−𝟏 + 𝐤,    𝐧 = 𝟏, 𝟐,   …,   𝐍𝐭 ,   𝐤 =
𝐛 − 𝐚

𝐍𝐭
 ,   𝐭𝐍𝐭

= 𝐛 } . 
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It should be possible to vary the increments   𝐡   and   𝐤   (for example, the relationships   𝐡 → 𝟎   and   

𝐤 → 𝟎   must be allowed when the convergence of the numerical method and the convergent rates of 

the calculated approximations are to be studied). However, it will be assumed that the ratio   𝐡/𝐤    
remains always constant when the increments are varied. This implies a requirement that if, for 

example,   𝐡   is halved, then   𝐤   is also halved. More precisely, it will be assumed that if an arbitrary 

pair of increments   (𝐡𝟏, 𝐤𝟏)   is replaced with another pair   (𝐡𝟐, 𝐤𝟐),   then the following relationship 

must hold: 

 

 

(𝟔. 𝟔)     
𝐡𝟏

𝐤𝟏
=  

𝐡𝟐

𝐤𝟐
= 𝛄 . 

 

 

where   𝛄   is a constant which does not depend on the increments. The requirement to keep   𝐡/𝐤   

constant is not a serious restriction. 

 

Assume that   𝐜(𝐱𝐢, 𝐭𝐧)   is the exact solution of the advection equation (6.1) at an arbitrary grid-point   
(𝐱𝐢, 𝐭𝐧)   belonging to the two sets of points defined by the equidistant grids (6.4) and (6.5). Then the 

values   𝐜𝐢,𝐧     ( 𝐢 = 𝟎 , 𝟏 , … , 𝐍𝐱      and      𝐧 = 𝟏 , 𝟐 , … , 𝐍𝐭 )  calculated by (6.2) will be 

approximations of the exact solution at the grid-points   (𝐱𝐢, 𝐭𝐧) ,   i.e. the relationships   𝐜𝐢,𝐧 ≈ 𝐜(𝐱𝐢, 𝐭𝐧)   

will hold for all grid-points. Our major task in the following part of this chapter will be to show how 

the accuracy of the calculated approximations   𝐜𝐢,𝐧   can be improved essentially by using additionally 

the Richardson Extrapolation. 

 

The application of the Richardson Extrapolation, when an arbitrary one-dimensional partial differential 

equation (not only the particular equation which was introduced in the beginning of this section) is 

treated by any numerical method, will be described in Section 6.2. 

 

 Four different implementations of the Richardson Extrapolation will be presented in Section 6.3.  

 

The order of accuracy of the new numerical method consisting of the combination of the Crank-

Nicolson scheme and the Richardson Extrapolation will be established in Section 6.4. The error 

constants in the leading terms of the numerical error for the Crank-Nicolson scheme will also be 

calculated there.  

 

Numerical results will be presented in Section 6.5 in order to demonstrate the applicability of the 

theorems proved in Section 6.4 and the fact that the application of the Richardson Extrapolation leads 

always to more accurate results. Several concluding remarks will also be given there. 

 

 

 

 

6.2. Combining the advection problem with the Richardson Extrapolation 
 

Assume that a one-dimensional time-dependent partial differential equation is treated by an arbitrary 

numerical method, which is of order   𝐩 ≥ 𝟏   with regard to the two independent variables   𝐱   and   𝐭.   
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Let   {𝐳𝐢,𝐧}
𝐢=𝟎

𝐍𝐱
   be the set of approximations of the solution of (6.1) calculated for   𝐭 = 𝐭𝐧 ∈ 𝐆𝐭   at all 

grid-points   𝐱𝐢 ∈ 𝐆𝐱 ,   where   𝐢 = 𝟎 , 𝟏 , … , 𝐍𝐱 .   Assume furthermore that the set   {𝐳𝐢,𝐧}
𝐢=𝟎

𝐍𝐱
   is 

calculated by using the numerical method chosen and consider the corresponding approximations   

{𝐳𝐢,𝐧−𝟏}
𝐢=𝟎

𝐍𝐱
   calculated at the previous time-step, i.e. for   𝐭 = 𝐭𝐧−𝟏 ∈ 𝐆𝐭 .   Introduce the following 

three vectors   �̅�(𝐭𝐧) ,   �̅�𝐢,𝐧−𝟏   and   �̅�𝐢,𝐧   the components of which are   {𝐜(𝐱𝐢, 𝐭𝐧)}𝐢=𝟎
𝐍𝐱   ,   {𝐳𝐢,𝐧−𝟏}

𝐢=𝟎

𝐍𝐱
   

and   {𝐳𝐢,𝐧}
𝐢=𝟎

𝐍𝐱
   respectively. Since the order of the numerical method is assumed to be   𝐩   with regard 

both to   𝐱   and   𝐭 ,   we can write: 

 

 

(𝟔. 𝟕)     �̅�(𝐭𝐧) = �̅�𝐢,𝐧 + 𝐡𝐩𝐊𝟏 + 𝐤𝐩𝐊𝟐 + 𝐎(𝐤𝐩+𝟏), 
 

 

where   𝐊𝟏   and   𝐊𝟐   are some quantities, which do not depend on the increments   𝐡   and   𝐤 .   In 

fact, the last term in (6.7) will in general depend  both on   𝐡𝐩+𝟏   and   𝐤𝐩+𝟏 .   However, by using the 

assumption (6.6), we can write   𝐡𝐩+𝟏 = 𝛄𝐩+𝟏𝐤𝐩+𝟏   and since   𝛄   is a constant which does not depend 

on the increments   𝐡   and   𝐤 ,   it is clear that in our case, i.e. when the assumption (6.6) is made, the 

last term in (6.7) depends essentially only on   𝐤 .       

 

It is convenient to rewrite, by using once again (6.6), the last equality in the following form: 

 

 

(𝟔. 𝟖)     �̅�(𝐭𝐧) = �̅�𝐧 + 𝐤𝐩𝐊 + 𝐎(𝐤𝐩+𝟏) . 
 

 

where 

 

 

(𝟔. 𝟗)     𝐊 = (
𝐡

𝐤
)

𝐩

𝐊𝟏 + 𝐊𝟐 . 

 

 

If the increments   𝐡   and   𝐤   are sufficiently small, then the sum   𝐡𝐩𝐊𝟏 + 𝐤𝐩𝐊𝟐 ,   which occurs in 

(6.7) will be a good approximation of the truncation errors in the calculated values of the numerical 

solution   {𝐳𝐢,𝐧}
𝐢=𝟎

𝐍𝐱
 .   Of course, if the relationship (6.6) is satisfied and if again   𝐡   and   𝐤   are 

sufficiently small, then   𝐤𝐩𝐊   from (6.8) will also be a good approximation of the error of the numerical 

solution   �̅�𝐢,𝐧 .   This means that if we succeed to eliminate the term   𝐤𝐩𝐊   in (6.8), then we shall 

obtain approximations of higher order, of order at least equal to   𝐩 + 𝟏 .   The Richardson Extrapolation 

can be applied in the attempt to achieve such an improvement of the accuracy. In order to apply the 

Richardson Extrapolation it is necessary to introduce an additional grid: 

 

 

(𝟔. 𝟏𝟎)     𝐆𝐱
𝟐 = {𝐱𝐢 | 𝐱𝟎 = 𝐚𝟏,    𝐱𝐢 = 𝐱𝐢−𝟏 +

𝐡

𝟐
,    𝐢 = 𝟏, 𝟐, …  𝟐𝐍𝐱 ,   𝐡 =

𝐛𝟏 − 𝐚𝟏

𝐍𝐱
 ,   𝐱𝟐𝐍𝐱

= 𝐛𝟏} . 
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Assume that approximations   {𝐰𝐢,𝐧−𝟏}
𝐢=𝟎

𝟐𝐍𝐱
   (calculated at the grid-points of   𝐆𝐱

𝟐   for   𝐭 = 𝐭𝐧−𝟏 ∈ 𝐆𝐭)   

are available and perform two small time-steps with a stepsize   𝐤/𝟐   to compute  the approximations   

{𝐰𝐢,𝐧}
𝐢=𝟎

𝟐𝐍𝐱
 .   Use only the components with even indices   𝐢 ,    𝐢 = 𝟎 , 𝟐 , … , 𝟐𝐍𝐱 ,   to form the vector   

�̃�𝐧 .   It is easily seen that the following equality holds for this vector: 

 

 

(𝟔. 𝟏𝟏)     �̅�(𝐭𝐧) = �̃�𝐧 + (
𝐤

𝟐
)

𝐩

𝐊 + 𝐎(𝐤𝐩+𝟏) . 

 
 

where the quantity   𝐊   is defined as in (6.9).  

 

Now, it is possible to eliminate the quantity   𝐊   from (6.8) and (6.11). This can successfully be done 

in the following way:  

 

(a) remove the last terms in (6.8) and (6.11),  

 

(b) multiply (6.11) by   𝟐𝐩     

and  

(c) subtract (6.8) from the modified equality (6.11).  

 

The result is: 

 

 

(𝟔. 𝟏𝟐)     �̅�(𝐭𝐧) =
𝟐𝐩 �̃�𝐧 − �̅�𝐧

𝟐𝐩 − 𝟏
 + 𝐎(𝐤𝐩+𝟏) . 

 

 

Denote: 

 

 

(𝟔. 𝟏𝟑)     �̅�𝐧 =
𝟐𝐩 �̃�𝐧 − �̅�𝐧

𝟐𝐩 − 𝟏
 . 

 

 

It is clear that the approximation   �̅�𝐧 ,   being of order at least equal to   𝐩 + 𝟏 ,   will in general be 

more accurate than both   �̅�𝐧  and   �̃�𝐧   when the increments   𝐡   and   𝐤   are sufficiently small. The 

device used to construct the approximation   �̅�𝐧   is obviously the Richardson Extrapolation, which is 

applied this time in order to improve the accuracy of a numerical method of order   𝐩   for solving 

partial differential equations, not necessarily the particular equation (6.1). Indeed, if we assume that 

the partial derivatives of the unknown function   𝐜(𝐱, 𝐭)   up to order   𝐩 + 𝟏   exist and are continuous, 

then it should be expected that the approximation calculated by using (6.13) will produce more accurate 

results than the two approximations   �̅�𝐧   and   �̃�𝐧   that are obtained by applying directly the underlying 

numerical method. 
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Remark 6.1: No specific assumptions about the particular partial differential equation or about the 

numerical method used to solve it were made in this section excepting only the requirement that the 

order of the applied numerical method is   𝐩    with regard to the two independent variables   𝐱   and   

𝐭 .   This approach was used in order to demonstrate how general is the idea, on which the Richardson 

Extrapolation is based. It must be emphasized, however, that in the following part of this chapter we 

shall consider the case where  

 

(a) equation (6.1) is solved under the assumptions made in the previous section 

 

and 

  

(b) the underlying numerical algorithm applied to handle it numerically is always the second-

order Crank-Nicolson scheme.  

 

                                                                                                                                                       ■  

 

 

 

6.3. Implementation of the Richardson Extrapolation 
 

When the advection equation (6.1) is solved by using the Crank-Nicolson scheme, Richardson 

Extrapolation can be implemented in four different manners depending on the way in which the 

computations at the next time-step, step   𝐧 + 𝟏 ,   will be carried out. 

 

(1) Simplified Active Richardson Extrapolation: Use   �̅�𝐧   as initial value to 

compute   �̅�𝐧+𝟏 .   Use the set of values   {𝐰𝐢,𝐧}
𝐢=𝟎

𝟐𝐍𝐱
   as initial values to compute   

{𝐰𝐢,𝐧+𝟏}
𝐢=𝟏

𝟐𝐍𝐱−𝟏
   and after that to form   �̃�𝐧+𝟏 .   Since we assumed that Dirichlet 

boundary conditions are available on both end-points of the spatial interval, the 

values of   {𝐰𝐢,𝐧+𝟏}
𝐢=𝟎

𝟐𝐍𝐱
   for   𝐢 = 𝟎   and   𝐢 = 𝟐𝐍𝐱   are also available. 

 

(2) Passive Richardson Extrapolation: Use   �̅�𝐧   as initial value to compute the 

approximation   �̅�𝐧+𝟏 .   Use, in the same way as in the Simplified Active 

Richardson Extrapolation, the set of values   {𝐰𝐢,𝐧}
𝐢=𝟎

𝟐𝐍𝐱
   as initial values to 

compute   {𝐰𝐢,𝐧+𝟏}
𝐢=𝟏

𝟐𝐍𝐱−𝟏
  and after that to form   �̃�𝐧+𝟏 .   The values of   

{𝐰𝐢,𝐧+𝟏}
𝐢=𝟎

𝟐𝐍𝐱
   for   𝐢 = 𝟎   and   𝐢 = 𝟐𝐍𝐱   are again known, because it is assumed 

that Dirichlet boundary conditions are available on both end-points of the 

spatial interval.   

 

(3) Active Richardson Extrapolation with linear interpolation on the finer 

spatial grid (9): Use   �̅�𝐧   as initial values to compute   �̅�𝐧+𝟏 .   Set   𝐰𝟐𝐢,𝐧 =
𝐜𝐢,𝐧   for   𝐢 = 𝟎 , 𝟏, … , 𝐍𝐱 .   Use linear interpolation to obtain approximations 

of the values of   𝐰𝟐𝐢,𝐧   for   𝐢 = 𝟏 , 𝟑, … , 𝟐𝐍𝐱 − 𝟏 .   Use the updated in this 
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way set of values   {𝐰𝐢,𝐧}
𝐢=𝟎

𝟐𝐍𝐱
   and the boundary conditions as initial values to 

compute  {𝐰𝐢,𝐧+𝟏}
𝐢=𝟎

𝟐𝐍𝐱
   and  to form   �̃�𝐧+𝟏 .    

 

(4) Active Richardson Extrapolation with third-order interpolation on the 

finer spatial grid (6.9): Apply again   �̅�𝐧   as initial values to compute   �̅�𝐧+𝟏 .   

Set   𝐰𝟐𝐢,𝐧 = 𝐜𝐢,𝐧   for   𝐢 = 𝟎 , 𝟏, … , 𝐍𝐱 .   Use third-order Lagrangian 

interpolation polynomials to obtain approximations of the values of   𝐰𝟐𝐢,𝐧   for   

𝐢 = 𝟎 , 𝟏, … , 𝟐𝐍𝐱 − 𝟏 .   Use the updated in this way set of values   {𝐰𝐢,𝐧}
𝐢=𝟎

𝟐𝐍𝐱
   

and the boundary conditions as initial values to compute   {𝐰𝐢,𝐧+𝟏}
𝐢=𝟎

𝟐𝐍𝐱
   and to 

form   �̃�𝐧+𝟏 .    

 

The improvements obtained by applying (6.11) are not used in the further computations when the 

Passive Richardson Extrapolation is selected. These improvements are partly used in the calculations 

related to the large step (only to compute   �̅�𝐧+𝟏 )   when the Simplified Active Richardson Extrapolation 

is used. An attempt to produce and exploit more accurate values also in the calculation of   �̃�𝐧+𝟏   is 

made in the last two implementations.  

 

Information about the actual application of the third-order Lagrangian interpolation is given below. 

Assume that   𝐰𝟐𝐢,𝐧 = 𝐜𝐢,𝐧   for   𝐢 = 𝟎 , 𝟏, … , 𝐍𝐱 .   This means that the improved (by the Richardson 

Extrapolation) solution on the coarser grid (6.44) is projected at the grid-points with even indices   𝟎 ,
𝟐, … , 𝟐𝐍𝐱   of the finer grid (6.9). The interpolation rule used to get better approximations at the grid-

points of (6.9) which have odd indices can be described by the following formula: 

 

 

(𝟔. 𝟏𝟒)     𝐰𝐢,𝐧 = −
𝟑

𝟒𝟖
𝐰𝐢−𝟑,𝐧 +

𝟗

𝟏𝟔
𝐰𝐢−𝟏,𝐧 +

𝟗

𝟏𝟔
𝐰𝐢+𝟏,𝐧 −

𝟑

𝟒𝟖
𝐰𝐢+𝟑,𝐧 ,    𝐢 = 𝟑 ,   𝟓, … ,   𝟐𝐍𝐱 − 𝟑 . 

 

 

Formula (6.14) is obtained by using a third-order Lagrangian interpolation for the case where the grid-

points are equidistant and when an approximation at the mid-point   𝐱𝐢   of the spatial interval  

 [𝐱𝐢−𝟑 , 𝐱𝐢+𝟑]   is to be found. Note that only improved values are involved in the right-hand-side of 

(6.14).  

 

Formula (6.14) cannot be used to improve the values at the points   𝐱𝟏   and   𝐱𝟐𝐍𝐱−𝟏   of the finer grid 

(6.9). It is possible to use second-order interpolation at these two points: 

 

 

(𝟔. 𝟏𝟓)     𝐰𝟏,𝐧 = −
𝟑

𝟖
𝐰𝟎,𝐧 +

𝟑

𝟒
𝐰𝟐,𝐧 −

𝟏

𝟖
𝐰𝟒,𝐧 ,     

 

                  𝐰𝟐𝐍𝐱−𝟏,𝐧 = −
𝟑

𝟖
𝐰𝟐𝐍𝐱,𝐧 +

𝟑

𝟒
𝐰𝟐𝐍𝐱−𝟐,𝐧 −

𝟏

𝟖
𝐰𝟐𝐍𝐱−𝟒,𝐧.     

 

 

Some other formulae can be used instead of (6.14) and (6.15) in an attempt to achieve better accuracy 

at the grid-points   𝐰𝐢,𝐧   of set (6.10) with odd indices. 
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6.4. Order of accuracy of the combined numerical method 
 

Before starting the investigation of the accuracy of the combination of the Crank-Nicolson scheme 

with the Richardson Extrapolation, it is necessary to derive a formula showing the leading terms of the 

errors made when the Crank-Nicolson scheme is used directly. 

 

Consider formula (6.2). Following Lambert (1991), we shall replace the approximations contained in 

this formula with the corresponding exact values of the solution of (6.1). The result is: 

 

 

(𝟔. 𝟏𝟔)    𝐋[𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓; 𝐡, 𝐤)] =   𝛔𝐢,𝐧+𝟎.𝟓 𝐜(𝐱𝐢+𝟏, 𝐭𝐧+𝟏) + 𝐜(𝐱𝐢, 𝐭𝐧+𝟏) − 𝐜(𝐱𝐢−𝟏, 𝐭𝐧+𝟏)   
 

                                                            +𝛔𝐢,𝐧+𝟎.𝟓 𝐜(𝐱𝐢+𝟏, 𝐭𝐧) − 𝐜(𝐱𝐢, 𝐭𝐧) − 𝐜(𝐱𝐢−𝟏, 𝐭𝐧) 

 

                                                        =    𝛔𝐢,𝐧+𝟎.𝟓 [𝐜(𝐱𝐢+𝟏, 𝐭𝐧+𝟏) − 𝐜(𝐱𝐢−𝟏, 𝐭𝐧+𝟏)] 
 

                                                            +[𝐜(𝐱𝐢, 𝐭𝐧+𝟏) − 𝐜(𝐱𝐢, 𝐭𝐧)] + 𝛔𝐢,𝐧+𝟎.𝟓 [𝐜(𝐱𝐢+𝟏, 𝐭𝐧) − 𝐜(𝐱𝐢−𝟏, 𝐭𝐧)] .  
 

 

The term   𝐋[𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓; 𝐡, 𝐤)]   on the left hand side of (6.16) appears because the approximations 

participating in equality (6.2) are replaced by the corresponding exact values of the solution of (6.1).  

 

The following theorem can be proved by using this notation: 

 

 

Theorem 6.1: The quantity   𝐋[𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓; 𝐡, 𝐤)]   can be written (assuming that all involved 

derivatives exist and are continuous) as: 

 

 

(𝟔. 𝟏𝟕)    𝐋[𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓; 𝐡, 𝐤)] =     
𝛄𝐡𝟑

𝟔
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐱𝟑
+

𝐤𝟑

𝟐𝟒

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐭𝟑
   

 

                                                            +  
𝐤𝟑

𝟖
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐱𝛛𝐭𝟑
+ 𝐎(𝐤𝟓) .                     

 

 

Proof: Use Taylor expansions, of the functions in two variables involved in (6.16)  around the point   

(𝐱𝐢, 𝐭𝐧+𝟎.𝟓) ,   where, as in Section 6.1, we have   𝐭𝐧+𝟎.𝟓 = 𝐭𝐧 + 𝟎. 𝟓 𝐤   and keep the terms containing   

𝐤𝐫 ,   where   𝐫 = 𝟎 , 𝟏 , 𝟐 , 𝟑 , 𝟒 .   After some rather long but quite straight-forward transformations 

(6.17) will be obtained.  

 

                                                                                                                                                       ■  
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Theorem 6.1 ensures that the Crank-Nicolson scheme is a second-order numerical method, which is, 

of course, well-known. It is much more important for our study that  

 

(A)  it provides the leading terms of the error of this method (which are needed in the 

proof of Theorem 6.2) 

 

and 

  

(B)  it shows that there are no fourth-order terms in the expression for the numerical error. 

 

 

After presenting the above preliminary results connected to  

 

(a) the problem solved,  

 

(b) the Crank-Nicolson scheme 

  

and 

  

(c) the Richardson Extrapolation,  

 

everything is now prepared for the proof of a theorem showing that the use of the combination of the 

Crank-Nicolson scheme and the Richardson Extrapolation leads to a fourth-order numerical method 

when the problem (6.1) is solved. More precisely, the following theorem holds: 

 

 

Theorem 6.2: The combination of the Crank-Nicolson scheme and the Richardson Extrapolation 

behaves as a fourth-order numerical method when (6.1) is solved and all derivatives of the unknown 

function   𝐜(x,t)   up to order four exist and are continuous. 

 

Proof: Assume that all approximations   {𝐜𝐢,𝐧}
𝐢=𝟎

𝐍𝐱
   at time-step   𝐧   have already been found. Then the 

Richardson Extrapolation is carried out by using the Crank-Nicolson scheme to perform one large time-

step with stepsize   𝐤   and two small time-steps with stepsize   𝟎. 𝟓𝐤 .   The major part of the 

computations during the large time-step is carried out by using the formula:  

 

 

(𝟔. 𝟏𝟖)     𝛔𝐢,𝐧+𝟎.𝟓 𝐳𝐢+𝟏,𝐧+𝟏 + 𝐳𝐢,𝐧+𝟏 − 𝛔𝐢,𝐧+𝟎.𝟓 𝐳𝐢−𝟏,𝐧+𝟏 + 𝛔𝐢,𝐧+𝟎.𝟓 𝐜𝐢+𝟏,𝐧 − 𝐜𝐢,𝐧 − 𝛔𝐢,𝐧+𝟎.𝟓 𝐜𝐢−𝟏,𝐧 =  𝟎 .  
 

 

The major part of the computations during the two small time-steps is based on the use of the 

following two formulas: 

 

 

(𝟔. 𝟏𝟗)     𝛔𝐢,𝐧+𝟎.𝟐𝟓 𝐰𝐢+𝟎.𝟓,𝐧+𝟎.𝟓 + 𝐰𝐢,𝐧+𝟎.𝟓 − 𝛔𝐢,𝐧+𝟎.𝟐𝟓 𝐰𝐢−𝟎.𝟓,𝐧+𝟎.𝟓 

 

                +𝛔𝐢,𝐧+𝟎𝟐𝟓 𝐜𝐢+𝟎.𝟓,𝐧 − 𝐜𝐢,𝐧 − 𝛔𝐢,𝐧+𝟎.𝟐𝟓 𝐜𝐢−𝟎.𝟓,𝐧 =  𝟎 
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and 

 

 

(𝟔. 𝟐𝟎)     𝛔𝐢,𝐧+𝟎.𝟕𝟓 𝐰𝐢+𝟎.𝟓,𝐧+𝟏 + 𝐰𝐢,𝐧+𝟏 − 𝛔𝐢,𝐧+𝟎.𝟕𝟓 𝐰𝐢−𝟎.𝟓,𝐧+𝟏 

 

                +𝛔𝐢,𝐧+𝟎𝟕𝟓 𝐰𝐢+𝟎.𝟓,𝐧+𝟎.𝟓 − 𝐰𝐢,𝐧+𝟎.𝟓 − 𝛔𝐢,𝐧+𝟎.𝟕𝟓 𝐰𝐢−𝟎.𝟓,𝐧+𝟎.𝟓 =  𝟎 . 
 

 

Let us start with (6.18). Equality (6.17) will obviously be obtained when all approximate values in 

(6.18) are replaced with the corresponding values of the exact solution. This means that the assertion 

of Theorem 6.1, equality (6.17), holds for the large time-step. 

 

The treatment of the two small time-steps is more complicated. Combining (6.19) and (6.20) leads to 

the formula: 

 

 

(𝟔. 𝟐𝟏)     𝛔𝐢,𝐧+𝟎.𝟕𝟓 𝐰𝐢+𝟎.𝟓,𝐧+𝟏 + 𝐰𝐢,𝐧+𝟏 − 𝛔𝐢,𝐧+𝟎.𝟕𝟓 𝐰𝐢−𝟎.𝟓,𝐧+𝟏 

 

                +𝛔𝐢,𝐧+𝟎𝟕𝟓 𝐰𝐢+𝟎.𝟓,𝐧+𝟎.𝟓 − 𝐰𝐢,𝐧+𝟎.𝟓 − 𝛔𝐢,𝐧+𝟎.𝟕𝟓 𝐰𝐢−𝟎.𝟓,𝐧+𝟎.𝟓 

 

                +𝛔𝐢,𝐧+𝟎.𝟐𝟓 𝐰𝐢+𝟎.𝟓,𝐧+𝟎.𝟓 + 𝐰𝐢,𝐧+𝟎.𝟓 − 𝛔𝐢,𝐧+𝟎.𝟐𝟓 𝐰𝐢−𝟎.𝟓,𝐧+𝟎.𝟓 

 

                +𝛔𝐢,𝐧+𝟎𝟐𝟓 𝐜𝐢+𝟎.𝟓,𝐧 − 𝐜𝐢,𝐧 − 𝛔𝐢,𝐧+𝟎.𝟐𝟓 𝐜𝐢−𝟎.𝟓,𝐧 =  𝟎 

 

 

Replace all approximate values participating in (6.21) with the corresponding exact values of the 

solution of (6.1) to obtain an expression for the local approximation error  �̂�  in the form: 

 

 

(𝟔. 𝟐𝟐)    �̂� = �̂�𝟏 + �̂�𝟐 , 
 

 

where  

 

 

(𝟔. 𝟐𝟑)   �̂�𝟏 = 𝛔𝐢,𝐧+𝟎𝟕𝟓 [𝐜(𝐱𝐢+𝟎.𝟓, 𝐭𝐧+𝟏) − 𝐜(𝐱𝐢−𝟎.𝟓, 𝐭𝐧+𝟏) + 𝐜(𝐱𝐢+𝟎.𝟓, 𝐭𝐧+𝟎.𝟓) − 𝐜(𝐱𝐢−𝟎.𝟓, 𝐭𝐧+𝟎.𝟓)] 
 

                      + 𝐜(𝐱𝐢, 𝐭𝐧+𝟏) − 𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)  
 

 

and 

 

 

(𝟔. 𝟐𝟒)   �̂�𝟐 = 𝛔𝐢,𝐧+𝟎𝟐𝟓 [𝐜(𝐱𝐢+𝟎.𝟓, 𝐭𝐧+𝟎.𝟓) − 𝐜(𝐱𝐢−𝟎.𝟓, 𝐭𝐧+𝟎.𝟓) + 𝐜(𝐱𝐢+𝟎.𝟓, 𝐭𝐧) − 𝐜(𝐱𝐢−𝟎.𝟓, 𝐭𝐧)] 
 

                      + 𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓) − 𝐜(𝐱𝐢, 𝐭𝐧) . 
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Our aim is to derive an expression for   𝐋 . 
 

First, we consider the terms participating in    �̂�𝟏 .   We use Taylor expansions of the involved functions 

around the point   (𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)    and apply a similar transformation as in the proof of Theorem 6.1. In 

this way we can obtain the relation: 

 

 

(𝟔. 𝟐𝟓)    �̂�𝟏 =     
𝛄𝐡𝟑

𝟒𝟖
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝐱𝟑
+

𝐤𝟑

𝟏𝟗𝟐

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝐭𝟑
   

 

                                                            +  
𝐤𝟑

𝟔𝟒
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝐱𝛛𝐭𝟑
 + 𝐎(𝐤𝟓).  

 

 

We repeat the same kind of transformations also when    �̂�𝟐   is considered. Now we apply Taylor 

expansions around the point   (𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)   of the involved functions. Then we obtain: 

 

 

(𝟔. 𝟐𝟔)    �̂�𝟐 =     
𝛄𝐡𝟑

𝟒𝟖
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝐱𝟑
+

𝐤𝟑

𝟏𝟗𝟐

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝐭𝟑
   

 

                                                            +  
𝐤𝟑

𝟔𝟒
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝐱𝛛𝐭𝟑
 + 𝐎(𝐤𝟓).  

 

 

The following result can be found by combining (6.25) and (6.26): 

 

 

(𝟔. 𝟐𝟕)    �̂� =     
𝛄𝐡𝟑

𝟒𝟖
[𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝐱𝟑
+ 𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝐱𝟑
] 

 

                       + 
𝐤𝟑

𝟏𝟗𝟐
 [

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝐭𝟑
 +

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝐭𝟑
] 

 

                       + 
𝐤𝟑

𝟔𝟒
 [𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟕𝟓)

𝛛𝐱𝛛𝐭𝟑
+ 𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟐𝟓)

𝛛𝐱𝛛𝐭𝟑
 ] + 𝐎(𝐤𝟓) .  

 

 

Now, by expanding all terms in the right-hand-side of (6.27) around the point   (𝐱𝐢, 𝐭𝐧+𝟎.𝟓)   and after 

some very long but straight-forward transformations, we obtain 

 

 

(𝟔. 𝟐𝟖)    �̂� =     
𝛄𝐡𝟑

𝟐𝟒
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐱𝟑
+

𝐤𝟑

𝟗𝟔
 
𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐭𝟑
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                         + 
𝐤𝟑

𝟑𝟐
 𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐱𝛛𝐭𝟑
 + 𝐎(𝐤𝟓) .  

 

 

It should be noted here that a detailed derivation of the important relationship (6.28) can be found in 

Zlatev et al. (2011b). 

 

Since the order of the Crank-Nicolson scheme is   𝐩 = 𝟐 ,   it is clear that the improved by the 

Richardson Extrapolation approximate solution at time-step   𝐧 + 𝟏   is obtained by  

 

(a) multiplying the result obtained in (6.28), i.e. at the end of the second small time-step, 

by   𝟒/𝟑 ,     

 

(b) multiplying the result obtained in (6.17), in fact the result found at the end of the large 

time-step, by   𝟏/𝟑    

 

and  

 

(c) subtracting the two results obtained in (a) and (b).  

 

Performing operations (a) –(c) will give: 

 

 

(𝟔. 𝟐𝟗)    
𝟒

𝟑
�̂� −

𝟏

𝟑
𝐋[𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓; 𝐡, 𝐤)] =

𝛄𝐡𝟑

𝟏𝟖
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐱𝟑
+

𝐤𝟑

𝟕𝟐
 
𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐭𝟑
 

 

                                                                       + 
𝐤𝟑

𝟐𝟒
 𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐱𝛛𝐭𝟑
  

 

                                                                      −
𝛄𝐡𝟑

𝟏𝟖
𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐱𝟑
−

𝐤𝟑

𝟕𝟐
 
𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐭𝟑
   

 

                                                                      −
𝐤𝟑

𝟐𝟒
 𝐮(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝟑𝐜(𝐱𝐢, 𝐭𝐧+𝟎.𝟓)

𝛛𝐱𝛛𝐭𝟑
+ 𝐎(𝐤𝟓) .  

 

 

It is immediately seen that the first six terms in the right-hand-side of (6.27) vanish. Therefore, the 

order of accuracy of the combined numerical method (the Crank-Nicolson scheme + the Richardson 

Extrapolation) is four, which completes the proof of the theorem. 

 

                                                                                                                                                       ■  

 

 

It should once again be emphasized that a full proof of Theorem 6.2, containing all needed details, can 

be found in Zlatev et al. (2011c), see also Zlatev at al. (2011b). 
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6.5. Three numerical examples 
 

In this section it will be verified numerically that the following two statements are true:  

 

(a) if the solution is continuously differentiable up to order two, then the direct application 

of the Crank-Nicolson scheme gives second-order accuracy  

 

and 

  

(b) if the solution is continuously differentiable up to order four, then the combined method 

consisting of the Crank-Nicolson scheme and the Richardson Extrapolation behaves 

normally as a fourth-order numerical algorithm. 

 

Furthermore, we shall also demonstrate the fact that if the above requirements are not satisfied, then 

neither the direct use of the Crank-Nicolson scheme leads to second-order accuracy, nor the new 

numerical method based on the combination of the Crank-Nicolson scheme with the Richardson 

Extrapolation behaves as a fourth-order numerical algorithm. 

 

 

 

6.5.1. Organization of the computations 

 

It is convenient for the purposes in this chapter, but not necessary, to divide the time-interval   [𝐚, 𝐛]   
into   𝟐𝟒   equal sub-intervals and to call each of these sub-intervals “hour”. By this convention, the 

length of the time-interval becomes   𝟐𝟒   hours in all three examples given in this section and we shall 

study the size of the numerical errors at the end of every hour. It should also be added that this 

convention is very useful in the air pollution model UNI-DEM where the advection scheme is 

considered together with the atmospheric chemical scheme considered in the previous chapter and the 

calculations have to be synchronized (more details can be found in Zlatev, 1995 or in Zlatev and 

Dimov, 2006). 

 

In each experiment the first run is performed by using   𝐍𝐭 = 𝟏𝟔𝟖   and   𝐍𝐱 = 𝟏𝟔𝟎 .   Ten additional 

runs are performed after the first one. When a run is finished, both   𝐡   and   𝐤   are halved (this means 

that both   𝐍𝐭    and   𝐍𝐱   are doubled) and a new run is started. Thus, in the last run, in the eleventh 

run, we have   𝐍𝐭 = 𝟏𝟕𝟐𝟎𝟑𝟐   and   𝐍𝐱 = 𝟏𝟔𝟑𝟖𝟒𝟎 ,   which means that   𝟏𝟕𝟐𝟎𝟑𝟐   systems of linear 

algebraic equations, each of them containing   𝟏𝟔𝟑𝟖𝟒𝟎   equations, are to be solved. This short 

description is giving some ideas about the size of the problems that have to be handled in numerical 

examples, which were selected by us. It is also becoming quite clear that the problems related to the 

treatment of partial differential equations are in general much bigger than the problems related to the 

solution of systems of ODEs, which were treated in the previous chapters.  

 

It is worthwhile to reiterate here that the ratio   𝐡/𝐤   is kept constant, i.e. the requirement, which was 

introduced by (6.6) in Section 6.1, is satisfied, when the two increments   𝐤   and   𝐡   are varied in the 

manner described above.    
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We are mainly interested in the behavior of the numerical errors. As mentioned above, these errors 

must be evaluated at the end of every hour (i.e.   𝟐𝟒   times in each run). Moreover, the errors are 

evaluated at the grid-points of the coarsest spatial grid.  

 

The evaluation of the errors, which is based on these two assumptions, is described below.  

 

Assume that run number   𝐫 ,   where   𝐫 = 𝟏 , 𝟐 , …  , 𝟏𝟏 ,   is to be carried out and let   𝐑 = 𝟐𝐫−𝟏
 .  

Then the error made at the end of hour   𝐦   is calculated by using the following formula: 

 

 

(𝟔. 𝟑𝟎)     𝐄𝐑𝐑𝐎𝐑𝐦 = 𝐦𝐚𝐱
𝐣=𝟎 ,𝟏 ,… ,𝟏𝟔𝟎

(
|𝐜�̃�,�̃� − 𝐜�̃�,�̃�

𝐞𝐱𝐚𝐜𝐭 |

𝐦𝐚𝐱(|𝐜�̃�,�̃�
𝐞𝐱𝐚𝐜𝐭| ,   𝟏. 𝟎)

), 

 

                                𝐦 = 𝟏 , 𝟐, … , 𝟐𝟒 ,   �̃� = 𝐣𝐑,   �̃� = 𝟕𝐦𝐑 , 
 

 

where   𝐜�̃�,�̃�   and   𝐜�̃�,�̃�
𝐞𝐱𝐚𝐜𝐭   are the calculated approximation and the exact solution of the solved problem 

at the end of hour   𝐦   and at the grid-points of the coarsest spatial grid (i.e., the spatial grid with   

𝐍𝐱 = 𝟏𝟔𝟎 ).   It should be mentioned here that in the three experiments, which will be presented in 

this section, the exact solution is known. 

 

The global error made during the computations is estimated by using the following formula: 

 

 

(𝟔. 𝟑𝟏)     𝐄𝐑𝐑𝐎𝐑 = 𝐦𝐚𝐱
𝐦=𝟎 ,𝟏 ,… ,𝟐𝟒

(𝐄𝐑𝐑𝐎𝐑𝐦) . 

 

 

It is necessary to point out that the numerical values of the unknown function, which are improved by 

the Richardson Extrapolation, i.e. by applying (6.13) with   𝐩 = 𝟐 ,   are available only on the coarser 

spatial grid (6.4). It is necessary to get appropriate approximations for all values on the finer spatial 

grid (6.10). Several devices for obtaining such approximations that have been suggested and tested in 

Zlatev et al. (2011a) were described in Section 6.3.  

 

It was emphasized in Zlatev et al. (2011a) that the application of third-order interpolation polynomials 

gives best results. This device has been used also in the next three paragraphs, but it will also be 

compared with the other options in §6.5.5.   

 

 

6.5.2. Construction of a test-problem with steep gradients of the unknown function 

 

Assume that the spatial and the time intervals are given by 

 

 

(𝟔. 𝟑𝟐)     𝐱 ∈ [𝟎 , 𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝟎] ,       𝐭 ∈ [𝟒𝟑𝟐𝟎𝟎 , 𝟏𝟐𝟗𝟔𝟎𝟎] . 
 

 

and consider a function   𝐮(𝐱, 𝐭)   defined by 
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(𝟔. 𝟑𝟑)     𝐮(𝐱, 𝐭) = 𝟑𝟐𝟎 . 
 

 

Let the initial condition be given by  

 

 

(𝟔. 𝟑𝟒)     𝐟(𝐱) = 𝛏 [𝟏 + 𝟗𝟗. 𝟎 𝐞−𝛚(𝐱−𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎)𝟐
] ,    𝛏 = 𝟏. 𝟒𝟔𝟕𝟗 × 𝟏𝟎𝟏𝟐 ,    𝛚 =  𝟏𝟎−𝟏𝟐 . 

 

 

The exact solution of the test-problem, which is defined as above, is: 

 

 

(𝟔. 𝟑𝟓)     𝐜(𝐱, 𝐭) = 𝐟(𝐱 − 𝟑𝟐𝟎(𝐭 − 𝟒𝟑𝟐𝟎𝟎)) . 
 

 

It is not very important in the treatment of the numerical example defined by (6.1), (6.32), (6.33) and 

(6.34), but it should nevertheless be pointed out that both this example and the next two examples were 

used to test the reliability of the results obtained by using several modules of the Unified Danish 

Eulerian Model (UNI-DEM), see Alexandrov et al. (2004), Zlatev (1995) and Zlatev and Dimov 

(2006).  This is why the same units, as those used in UNI-DEM, are also used here and, more precisely, 

the distances are measured in centimetres, while the time is measured in seconds. 

 

The test-problem introduced in this sub-section was run both by using the Crank-Nicolson scheme 

directly and by applying the combination of this scheme and the Richardson Extrapolation (actually, 

as mentioned above, the fourth implementation of the Richardson Extrapolation, the Active Richardson 

Extrapolation with third-order interpolation on the finer spatial grid was used in this sub-section).  

 

Numerical results are presented in Table 6.1. The following conclusions can be drawn by studying the 

results presented in Table 6.1: 

 

 The direct application of the Crank-Nicolson scheme leads to quadratic convergence of the 

accuracy of the numerical results (i.e. halving the increments   𝐤   and   𝐡   leads to a 

decrease of the error by a factor of four). This behaviour should be expected according to 

Theorem 6.1. 

 

 The combination of the Crank-Nicolson scheme and the Richardson Extrapolation behaves 

in general as a numerical method of order four (or, in other words, halving the increments   

𝐤   and   𝐡   leads to a decrease of the error by a factor of sixteen). This behaviour should 

also be expected (according to Theorem 6.2). 

 

 At the end of the computations with the combined numerical method (the Crank-Nicolson 

scheme + the Richardson Extrapolation) the convergence rate deteriorates. Two facts are 

very important when this happens:  

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

261 

 

               (A) the computed solution is already very accurate  

 

      and  

 

               (B) the rounding errors start to affect the calculated results.  

 

The use of quadruple precision (as in the previous chapters) will eliminate the effect of the 

rounding errors. However, this action will be too expensive in this case. 

 

 

   Direct Solution Richardson Extrapolation 

No. NT NX Error Ratio Error Ratio 

  1 168 160 7.373E-01 - 1.454E-01 - 

  2 336 320 4.003E-01 1.842 1.741E-02 8.350 

  3 672 640 1.254E-01 3.142 1.224E-03 14.220 

  4 1344 1280 3.080E-02 4.135 7.730E-05 15.837 

  5 2688 2560 7.765E-03 3.967 4.841E-06 15.970 

  6 5376 5120 1.954E-03 3.974 3.026E-07 15.999 

  7 10752 10240 4.892E-04 3.994 1.891E-08 16.004 

  8 21504 20480 1.224E-04 3.999 1.181E-09 16.011 

  9 43008 40960 3.059E-05 4.000 7.609E-11 15.519 

10 86016 81920 7.648E-06 4.000 9.848E-12 7.726 

11 172032 163840 1.912E-06 4.000 4.966E-12 1.983 

Table 6.1 
Results obtained when the test-problem defined by (6.32)-(6.34) is handled directly by the 

Crank-Nicolson scheme and by using the combination of the Crank-Nicolson scheme and 

the fourth implementation of the Richardson Extrapolation. The numerical errors 

calculated by (6.30) and (6.31) are given in the columns under “Error”. In row  𝐢 ,  where  

𝐢 = 𝟐 , 𝟑 , …  , 𝟏𝟏  ,  the ratios of the errors in this row and in the previous row are given 

in the columns under “Ratio”. 

 

 

Three plots are presented in Fig. 6.1 – Fig. 6.3. These plots show: 

 

(a) the initial values,  

 

(b) the solution in the middle of the time interval (i.e. after 12 hours)  

 

and  

 

(c) the solution at the end of the time interval  

 

for the test-problem defined by (6.1) and (6.32) - (6.34). 

 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

262 

 

Remark 6.2: A similar test-example was used in Zlatev, Berkowicz and Prahm (1983). It should 

also be noted that a very similar advection module is a part of the large-scale air pollution model UNI-

DEM (Alexandrov et al. 2004, Zlatev, 1995, and Zlatev and Dimov, 2006) and the quantities used 

in (6.32) - (6.34) are either the same or very similar to the corresponding quantities in this model. Note 

too that the values of the unknown function are of the same order of magnitude as the ozone 

concentrations in the atmosphere when these are measured in (number of molecules) / (cubic 

centimetre).  

 

                                                                                                                                                       ■  

 

 

 

Figure 6.1 

The initial value of the solution of the one-dimensional advection equation, which was defined in §6.5.2 

and the solution of which has steep gradients. 
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 Figure 6.2 

The calculated solution at the end of the twelfth hour of the one-dimensional advection equation, which 

was defined in §6.5.2 and the solution of which has steep gradients. 
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Figure 6.3 

The calculated solution at the end of the twenty fourth hour of the one-dimensional advection equation, 

which was defined in §6.5.2 and the solution of which has steep gradients.  

 

 

 

6.5.3. Construction of an oscillatory test-problem 

 

Define the spatial and time intervals of the advection problem (6.1) by 

 

 

(𝟔. 𝟑𝟔)     𝐚 = 𝐚𝟏 = 𝟎 ,        𝐛 = 𝐛𝟏 = 𝟐𝛑  
 

 

and consider a function   𝐮(𝐱, 𝐭)   defined by 

 

 

(𝟔. 𝟑𝟕)     𝐮(𝐱, 𝐭) = 𝟎. 𝟓 . 
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Let the initial values be defined by 

 

 

(𝟔. 𝟑𝟖)     𝐟(𝐱) = 𝛏 [𝟏𝟎𝟎 + 𝟗𝟗 𝐬𝐢𝐧( 𝟏𝟎𝐱)] ,     𝛏 = 𝟏. 𝟒𝟔𝟕𝟗 × 𝟏𝟎𝟏𝟐 . 
 

 

The exact solution of the test-problem, which is defined as above, is: 

 

 

(𝟔. 𝟑𝟗)     𝐜(𝐱, 𝐭) = 𝐟(𝐱 − 𝟎. 𝟓𝐭) . 
 

 

As in §6.5.2, the test-problem introduced above was run both by using the Crank-Nicolson scheme 

directly and by applying the combination of this scheme and the fourth implementation of the 

Richardson Extrapolation.  

 

Numerical results are presented in Table 6.2. 

 

 

   Direct Solution Richardson Extrapolation 

No. NT NX Error Ratio Error Ratio 

  1 168 160 7.851E-01 - 1.560E-02 - 

  2 336 320 2.160E-01 3.635 1.227E-03 12.713 

  3 672 640 5.317E-02 4.062 1.072E-04 11.432 

  4 1344 1280 1.327E-02 4.007 1.150E-05 9.333 

  5 2688 2560 3.319E-03 3.997 1.193E-06 9.641 

  6 5376 5120 8.299E-04 4.000 1.478E-07 8.071 

  7 10752 10240 2.075E-04 4.000 1.618E-08 9.136 

  8 21504 20480 5.187E-05 4.000 1.965E-09 8.233 

  9 43008 40960 1.297E-05 4.000 2.387E-10 8.233 

10 86016 81920 3.242E-06 4.000 3.241E-11 7.365 

11 172032 163840 8.104E-07 4.000 1.267E-11 2.557 

Table 6.2 
Results obtained when the oscillatory test-problem defined by (6.36) - (6.38) is handled 

directly by the Crank-Nicolson scheme and by using the combination of the Crank-

Nicolson scheme and the fourth implementation of the Richardson Extrapolation. The 

numerical errors calculated by (6.30) and (6.31) are given in the columns under “Error”. In 

row  𝐢 ,  where  𝐢 = 𝟐 , 𝟑 , …  , 𝟏𝟏  ,  the ratios of the errors in this row and in the previous 

row are given in the columns under “Ratio”. 

 

 

The conclusions, which can be drawn from the results presented in Table 6.2, are quite similar to those 

given in §6.5.2. However, for the oscillatory test-problem the actual convergence rate achieved in the  

eleven runs is less than four (greater than three in the beginning and after that equal to or less than 

three). It is not very clear what the reason for this behaviour is. Perhaps, the second-order interpolation 

rule, see (6.15) in Section 6.3 and Zlatev et al. (2011a), which is used to improve the precision of the 

values of the solution at grid-points of the finer spatial grid that are close to the boundaries is not 
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sufficiently accurate for this example, because the solution varies very quickly also there. Nevertheless, 

it is clearly seen that the achieved accuracy is nearly the same as the accuracy achieved in the solution 

of the previous test-problem (compare Table 6.1 with Table 6.2).   

 

Plots, which show  

 

(a) the initial values,  

 

(b) the solution in the middle of the time interval (i.e. after 12 hours)  

 

and  

 

(c) the solution at the end of the time interval  

 

for the oscillatory test-problem, are given in Fig. 6.4 – Fig. 6.6, respectively. 

 

 

 

 

6.5.4. Construction of a test-problem with discontinuous derivatives of the unknown function 

 

Assume that the spatial interval, the time-interval and function   𝐮(𝐱, 𝐭)    are defined as in §6.5.2,, i.e. 

by (6.32) and (6.33), and introduce initial values by using the following formulae: 

 

 

(𝟔. 𝟒𝟎)     𝐟(𝐱) = 𝛏  ,    𝛏 = 𝟏. 𝟒𝟔𝟕𝟗 × 𝟏𝟎𝟏𝟐 ,    when    𝐱 ≤ 𝟓𝟎𝟎𝟎𝟎𝟎𝟎      or      𝐱 ≥ 𝟏𝟓𝟎𝟎𝟎𝟎𝟎𝟎 , 
 

 

(𝟔. 𝟒𝟏)     𝐟(𝐱) = 𝛏 [𝟏 + 𝟗𝟗. 𝟎 × 
𝐱 − 𝟓𝟎𝟎𝟎𝟎𝟎𝟎

𝟓𝟎𝟎𝟎𝟎𝟎𝟎
]  ,    when    𝟓𝟎𝟎𝟎𝟎𝟎𝟎 < 𝐱 < 𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ,  

 

 

(𝟔. 𝟒𝟐)     𝐟(𝐱) = 𝛏 [𝟏 + 𝟗𝟗. 𝟎 × 
𝟏𝟓𝟎𝟎𝟎𝟎𝟎𝟎 − 𝐱

𝟓𝟎𝟎𝟎𝟎𝟎𝟎
]  ,    when    𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎 < 𝐱 < 𝟏𝟓𝟎𝟎𝟎𝟎𝟎𝟎 ,  

 

 

The exact solution of the test-problem, which is defined as above, is given by (6.35). 

 

As in the previous two sub-sections, the test-problem introduced above was run both by using the 

Crank-Nicolson scheme directly and by applying the combination of this scheme and the Richardson 

Extrapolation.  

 

Numerical results are presented in Table 6.3. 
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Figure 6.4 

The initial value of the solution of the oscillatory one-dimensional advection equation, which was 

defined in §6.5.3. 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

268 

 

 

Figure 6.5 

The calculated solution at the end of the twelfth hour of the oscillatory one-dimensional advection 

equation, which was defined in §6.5.3. 
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Figure 6.6 

The calculated solution at the end of the twenty fourth hour of the oscillatory one-dimensional 

advection equation, which was defined in §6.5.3. 

 

 

 

 

Two major conclusions can be drawn from the results presented in Table 6.3:  

 

(a) neither the direct Crank-Nicolson scheme, nor the combination of the 

Crank-Nicolson scheme with the Richardson Extrapolation gives the 

prescribed by the theory accuracy (orders two and four, respectively)  

 

and 

 

(b) also in this case, i.e. in the presence of discontinuities, the combination of 

the Crank-Nicolson scheme and the Richardson Extrapolation is 

considerably more accurate than the direct application of the Crank-

Nicolson scheme.   
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   Direct Solution Richardson Extrapolation 

No. NT NX Error Ratio Error Ratio 

  1 168 160 1.353E-01 - 4.978E-02 - 

  2 336 320 7.687E-02 1.760 2.761E-02 1.803 

  3 672 640 4.424E-02 1.737 1.551E-02 1.780 

  4 1344 1280 2.555E-02 1.732 8.570E-03 1.810 

  5 2688 2560 1.636E-02 1.561 4.590E-03 1.867 

  6 5376 5120 1.051E-02 1.552 2.318E-03 1.980 

  7 10752 10240 5.551E-03 1.899 1.188E-03 1.951 

  8 21504 20480 2.921E-03 1.900 6.575E-04 1.807 

  9 43008 40960 2.644E-03 1.105 2.379E-04 2.746 

10 86016 81920 1.619E-03 1.633 1.501E-04 1.585 

11 172032 163840 1.145E-03 1.414 2.787E-05 4.941 

Table 6.3 
Results obtained when the test-problem defined by (6.32), (6.33) and (6.40)-(6.42), i.e. the 

test with discontinuous derivatives of the unknown function   𝐜(𝐱, 𝐭)   is handled directly 

by the Crank-Nicolson scheme and by using the combination of the Crank-Nicolson 

scheme and the fourth implementation of the Richardson Extrapolation. The numerical 

errors calculated by (6.30) and (6.31) are given in the columns under “Error”. In row   𝐢 ,   
where   𝐢 = 𝟐 , 𝟑 , …  , 𝟏𝟏  ,   the ratios of the errors in this row and in the previous row 

are given in the columns under “Ratio”. 

 

 

Plots, which show  

 

(a) the initial values,  

 

(b) the solution in the middle of the time interval (i.e. after 12 hours)  

 

and  

 

(c) the solution at the end of the time interval  

 

for the oscillatory test-problem, are given in Fig. 6.7 – Fig. 6.9, respectively. 
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Figure 6.7 

The initial value of the solution of the one-dimensional advection equation, which was defined in 

§6.5.4, i.e. the example with discontinuities in the derivatives of the unknown function . 
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Figure 6.8 

The calculated at the end of the twelfth hour solution of the one-dimensional advection equation, which 

was defined in §6.5.4, i.e. the example with discontinuities in the derivatives of the unknown function.  
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Figure 6.9 

The calculated at the end of the twenty fourth hour solution of the one-dimensional advection equation, 

which was defined in §6.5.4, i.e. the example with discontinuities in the derivatives of the unknown 

function. 

 

 

6.5.5. Comparison of the four implementations of the Richardson Extrapolation 
 

Only the fourth implementation of the Richardson Extrapolation was used in §6.5.2, §6.5.3 and §6.5.4. 

Now we shall compare this implementation with the other three. Some results, which are obtained by 

applying the oscillatory test-problem from §6.5.3, are given in Table 6.4. 

 

 

The following conclusions can be drawn from the results presented in Table 6.4: 

 

 The fourth implementation of the Richardson Extrapolation, which is based on 

the use of the third-order interpolation rule described in Section 6.3, is 

performing much better than the other three (giving accuracy which is by 

several orders of magnitude better than that obtained by the first three 

implementations). 
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 The first three implementations give accuracy which is slightly better, but 

anyway of the same order as that obtained when the Crank-Nicolson scheme is 

used directly (compare the results given in columns four, five and six of Table 

6.4 with the results in the fourth column of Table 6.2). 

 

 The results show very clearly that one must be very careful when implements 

the Richardson Extrapolation.  

 

More numerical results can be found in Zlatev et al. (2011a). 

 
 

   Richardson Extrapolation 

No. NT NX Active Passive Lin. Interp. Third-order Interp. 

  1 168 160 2.044E-01 2.789E-01 3.829E-01 1.560E-02 

  2 336 320 4.948E-02 7.135E-02 1.185E-01 1.227E-03 

  3 672 640 1.254E-02 1.760E-02 2.466E-02 1.073E-04 

  4 1344 1280 3.145E-03 4.334E-03 6.250E-03 1.150E-05 

  5 2688 2560 7.871E-04 1.074E-03 1.567E-03 1.193E-06 

  6 5376 5120 1.968E-04 2.671E-04 3.921E-04 1.478E-07 

  7 10752 10240 4.922E-05 6.659E-05 9.806E-05 1.618E-08 

  8 21504 20480 1.230E-05 1.663E-05 2.452E-05 1.965E-09 

  9 43008 40960 3.076E-06 4.154E-06 6.129E-06 2.387E-10 

10 86016 81920 7.960E-07 1.038E-06 1.532E-06 3.241E-11 

11 172032 163840 1.923E-07 2.595E-07 3.831Е-07 1.267E-11 

Table 6.4 

Running the oscillatory advection test-example from §6.5.3 by using the Crank-Nicolson 

scheme directly and in combination with four implementations of the Richardson 

Extrapolation. 

 

 

 

6.6. Multi-dimensional advection problem 
 

The results obtained for the one-dimensional advection problem can be extended for the multi-

dimensional case. This will be done in this section. 

 

 

6.6.1. Introduction of the multi-dimensional advection equation 

 

The multi-dimensional advection equation (Zlatev et al., 2014) can be represented by the following 

formula: 
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(𝟔. 𝟒𝟑)     
𝛛𝐜

𝛛𝐭
 =  − ∑ 𝐮𝐪   

𝛛𝐜

𝛛𝐱𝐪

𝐐

𝐪=𝟏

   ,      𝐱𝐪 ∈ [𝐚𝐪, 𝐛𝐪] ,      𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ,       𝐭 ∈ [𝐚, 𝐛] .   

 

 

It is assumed that the coefficients   𝐮𝐪 = 𝐮𝐪(𝐭 , 𝐱𝟏 , 𝐱𝟐 , …  , 𝐱𝐐) ,     𝐪 = 𝟏 ,   𝟐 ,   …  ,   𝐐 ,    before 

the spatial partial derivatives in the right-hand-side of (6.43) are some given functions. 

 

Let   𝐃   be the domain in which the independent variables involved in (6.43) vary and assume that: 

 

 

(𝟔. 𝟒𝟒)       (𝐭 ,  𝐱𝟏 ,   𝐱𝟐  ,   …  , 𝐱𝐐)  ∈ 𝐃    ⟹     𝐭 ∈ [𝐚, 𝐛]   ⋀   𝐱𝐪 ∈ [𝐚𝐪, 𝐛𝐪] ,     𝐪 = 𝟏 , 𝟐 , … , 𝐐   .   

 

 

By applying the definition proposed in (6.44), it is assumed here that the domain  𝐃  is rather special, 

but this is done only for the sake of simplicity. In fact, many of the results will also be valid for some 

more complicated domains. 

 

It will always be assumed that the unknown function   𝐜 = 𝐜(𝐭 ,  𝐱𝟏 ,   𝐱𝟐  ,   …  , 𝐱𝐐)   is continuously 

differentiable up to some order   𝟐𝐩   with   𝐩 ≥ 𝟏   in all points of the domain   𝐃   and for all 

independent variables. Here   𝐩   is the order of the numerical method which will be used in order to 

obtain some approximations of the unknown function at some mesh defined somehow in the domain 

(6.44). For some of the proofs it will also be necessary to assume that continuous derivatives up to 

order two of all functions   𝐮𝐪   exist with respect of all independent variables.    

 

The multi-dimensional advection equation (6.43) must always be considered, as the one-dimensional 

advection equation (6.1), together with appropriate initial and boundary conditions. 

 

The following abbreviations will be useful in the efforts to facilitate the presentation of the results in 

this section.  Note that some given positive increments   𝐡𝐪   appears in the equalities (6.46) – (6.49). 

 

 

(𝟔. 𝟒𝟓)       �̅� = ( 𝐱𝟏 ,   𝐱𝟐  ,   …  , 𝐱𝐐) ,   
 

 

(𝟔. 𝟒𝟔)       �̅�(+𝐪) = ( 𝐱𝟏 ,   𝐱𝟐  ,   …  , 𝐱𝐪−𝟏 ,   𝐱𝐪 + 𝐡𝐪 ,   𝐱𝐪+𝟏  ,   …  , 𝐱𝐐 ) ,     𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ,   

 

 

(𝟔. 𝟒𝟕)       �̅�(−𝐪) = ( 𝐱𝟏 ,   𝐱𝟐  ,   …  , 𝐱𝐪−𝟏 ,   𝐱𝐪 − 𝐡𝐪 ,   𝐱𝐪+𝟏  ,   …  , 𝐱𝐐 ) ,     𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ,   

 

 

(𝟔. 𝟒𝟖)       �̅�(+𝟎.𝟓𝐪) = ( 𝐱𝟏 ,   𝐱𝟐 , … , 𝐱𝐪−𝟏 ,   𝐱𝐪 + 𝟎. 𝟓𝐡𝐪 ,   𝐱𝐪+𝟏 , … , 𝐱𝐐 ) ,     𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ,   

 

 

(𝟔. 𝟒𝟗)       �̅�(−𝟎.𝟓𝐪) = ( 𝐱𝟏 ,   𝐱𝟐 , … , 𝐱𝐪−𝟏 ,   𝐱𝐪 − 𝟎. 𝟓𝐡𝐪 ,   𝐱𝐪+𝟏 , … , 𝐱𝐐 ) ,     𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ,   

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

276 

 

 

 

 

 

6.6.2. Expanding the unknown function in Taylor series 

 

By using appropriate expansions of the unknown function  𝐜(𝐭 ,  𝐱𝟏 ,   𝐱𝟐  ,   …  , 𝐱𝐐) = 𝐜(𝐭 , �̅�)  in 

Taylor series it is possible to find an expression that contains only even degrees of the increments  𝐤  

and  𝐡𝐪 .  More precisely, the following theorem holds.  

 

Theorem 6.3: Consider the multi-dimensional advection equation (6.43), assume that  (𝐭 , �̅�)  ∈ 𝐃  is 

an arbitrary but fixed point and introduce the positive increments    𝐤 > 𝟎    and    𝐡𝐪 > 𝟎     such that    

𝐭 + 𝐤 ∈  [𝐚, 𝐛] ,  𝐱𝐪 − 𝐡𝐪 ∈  [𝐚𝐪, 𝐛𝐪]   and   𝐱𝐪 + 𝐡𝐪 ∈  [𝐚𝐪, 𝐛𝐪]   for all    𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 .   Assume 

furthermore that the unknown function   𝐜(𝐭 , �̅�)   is continuously differentiable up to some order   𝟐𝐩   

with regard to all independent variables. Then there exists an expansion in Taylor series of the unknown 

function   𝐜(𝐭 , �̅�)   around the point   (𝐭 + 𝟎. 𝟓𝐤 , �̅�)   which contains terms involving only even degrees 

of the increments   𝐤   and   𝐡𝐪   (𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ) . 

  

Proof: It is clear that the following two formulae hold when the assumptions of Theorem 6.3 are 

satisfied: 

 

 

(𝟔. 𝟓𝟎)       𝐜(𝐭 + 𝐤 , �̅�) = 𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�) +
𝐤

𝟐
 
𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭
 

 

                                                                             + ∑
𝐤𝐬

𝟐𝐬 𝐬!
 
𝛛𝐬𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝐬

𝟐𝐩−𝟏

𝐬=𝟐

+ 𝐎(𝐤𝟐𝐩) , 

 

 

(𝟔. 𝟓𝟏)       𝐜(𝐭 , �̅�) = 𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�) −
𝐤

𝟐
 
𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭
 

 

                                                +  ∑ (−𝟏)𝐬  
𝐤𝐬

𝟐𝐬 𝐬!
 
𝛛𝐬𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝐬

𝟐𝐩−𝟏

𝐬=𝟐

+ 𝐎(𝐤𝟐𝐩) . 

 

 

Eliminate the quantity   𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)   from (6.50) and ((6.51), which can be achieved by subtracting 

(6.51) from (6.50). The result is: 

 

 

(𝟔. 𝟓𝟐)       𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�) = 𝐤 
𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭
 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

277 

 

                                                             + 𝟐 ∑  
𝐤𝟐𝐬+𝟏

𝟐𝐬+𝟏 (𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬+𝟏

𝐩−𝟏

𝐬=𝟏

+ 𝐎(𝐤𝟐𝐩) . 

 

 

The last equality can be rewritten as 

 

 

(𝟔. 𝟓𝟑)       
𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭
=

𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�)

𝐤
  

 

                                                     + ∑  
𝐤𝟐𝐬

𝟐𝐬 (𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬+𝟏

𝐩−𝟏

𝐬=𝟏

+ 𝐎(𝐤𝟐𝐩−𝟏) . 

 

 

Consider the following two relationships:  
 

 

(𝟔. 𝟓𝟒)       
𝛛𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
=

𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐱𝐪
 +  ∑  

𝐤𝐬

𝟐𝐬 𝐬!
 
𝛛𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝐬𝛛𝐱𝐪

𝟐𝐩−𝟏

𝐬=𝟏

+ 𝐎(𝐤𝟐𝐩) , 

 

 

(𝟔. 𝟓𝟓)       
𝛛𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
=

𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐱𝐪
 +  ∑ (−𝟏)𝐬  

𝐤𝐬

𝟐𝐬 𝐬!
 
𝛛𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝐬𝛛𝐱𝐪

𝟐𝐩−𝟏

𝐬=𝟏

+ 𝐎(𝐤𝟐𝐩) . 

 

 

Add (6.54) to (6.55). The result is: 

 

 

(𝟔. 𝟓𝟔)       
𝛛𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
+  

𝛛𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
= 𝟐 

𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐱𝐪
  

 

                                                                 +  𝟐 ∑  
𝐤𝟐𝐬

𝟐𝟐𝐬 (𝟐𝐬)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪

𝐩−𝟏

𝐬=𝟏

+ 𝐎(𝐤𝟐𝐩) . 

 

 

The last equality can be rewritten as: 

 

 

(𝟔. 𝟓𝟕)       
𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐱𝐪
=

𝟏

𝟐
 [

𝛛𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
+  

𝛛𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
] 
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                                                     −  ∑  
𝐤𝟐𝐬

𝟐𝟐𝐬 (𝟐𝐬)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪

𝐩−𝟏

𝐬=𝟏

+ 𝐎(𝐤𝟐𝐩) . 

 

 

Now the following four relationships can be written: 

 

 

(𝟔. 𝟓𝟖)       𝐜(𝐭 + 𝐤 , �̅�(+𝐪)) = 𝐜(𝐭 + 𝐤 , �̅�) + 𝐡𝐪  
𝛛𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
 

 

                                                                             + ∑
𝐡𝐪

𝐬

𝐬!
 
𝛛𝐬𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
𝐬

𝟐𝐩−𝟏

𝐬=𝟐

+ 𝐎(𝐡𝐪
𝟐𝐩

) , 

 

 

(𝟔. 𝟓𝟗)       𝐜(𝐭 + 𝐤 , �̅�(−𝐪)) = 𝐜(𝐭 + 𝐤 , �̅�) − 𝐡𝐪  
𝛛𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
 

 

                                                                             + ∑ (−𝟏)𝐬  
𝐡𝐪

𝐬

𝐬!
 
𝛛𝐬𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
𝐬

𝟐𝐩−𝟏

𝐬=𝟐

+ 𝐎(𝐡𝐪
𝟐𝐩

) , 

 

 

(𝟔. 𝟔𝟎)       𝐜(𝐭 , �̅�(+𝐪)) = 𝐜(𝐭 , �̅�) + 𝐡𝐪  
𝛛𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
 

 

                                                                             + ∑
𝐡𝐪

𝐬

𝐬!
 
𝛛𝐬𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
𝐬

𝟐𝐩−𝟏

𝐬=𝟐

+ 𝐎(𝐡𝐪
𝟐𝐩

) , 

 

 

(𝟔. 𝟔𝟏)       𝐜(𝐭 , �̅�(−𝐪)) = 𝐜(𝐭 , �̅�) − 𝐡𝐪  
𝛛𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
 

 

                                                                             + ∑ (−𝟏)𝐬  
𝐡𝐪

𝐬

𝐬!
 
𝛛𝐬𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
𝐬

𝟐𝐩−𝟏

𝐬=𝟐

+ 𝐎(𝐡𝐪
𝟐𝐩

) , 

 

 

Subtract (6.59) from (6.58) to obtain: 

 

 

(𝟔. 𝟔𝟐)       
𝛛𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
=

𝐜(𝐭 + 𝐤 , �̅�(+𝐪)) − 𝐜(𝐭 + 𝐤 , �̅�(−𝐪))

𝟐𝐡𝐪
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                                              − ∑
𝐡𝐪

𝟐𝐬

(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

𝐩−𝟏

𝐬=𝟐

+ 𝐎(𝐡𝐪
𝟐𝐩−𝟏

) .    

 

 

Similarly, the following relationship can be obtained by subtracting (6.61) from (6.60): 

 

 

(𝟔. 𝟔𝟑)       
𝛛𝐜(𝐭, �̅�)

𝛛𝐱𝐪
=

𝐜(𝐭, �̅�(+𝐪)) − 𝐜(𝐭, �̅�(−𝐪))

𝟐𝐡𝐪
  

 

                                     − ∑
𝐡𝐪

𝟐𝐬

(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

𝐩−𝟏

𝐬=𝟐

+ 𝐎(𝐡𝐪
𝟐𝐩−𝟏

) .    

 

 

Assume that   (𝐭 + 𝟎. 𝟓, 𝐤 �̅�) = (𝐭 + 𝟎. 𝟓𝐤 ,  𝐱𝟏 ,   𝐱𝟏  ,   …  , 𝐱𝐐)   is some arbitrary but fixed point in 

the domain   𝐃 .   Then use the abbreviation   𝐮𝐪(𝐭 + 𝟎. 𝟓, 𝐤 �̅�) = 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤 ,  𝐱𝟏 ,   𝐱𝟏  ,   …  , 𝐱𝐐)   

in order to obtain, from (6.43), the following formula: 

 

 

(𝟔. 𝟔𝟒)     
𝛛𝐜(𝐭 + 𝟎. 𝟓, 𝐤 �̅�)

𝛛𝐭
 =  − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓, 𝐤 �̅�)  

𝛛𝐜(𝐭 + 𝟎. 𝟓, 𝐤 �̅�)

𝛛𝐱𝐪

𝐐

𝐪=𝟏

   .   

 

 

Use (6.53) and (6.57) in (6.64) to obtain: 

 

 

(𝟔. 𝟔𝟓)       
𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�)

𝐤
=  − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓, 𝐤 �̅�) {

𝟏

𝟐
 [

𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤, �̅�)

𝛛𝐱𝐪
+

𝛛𝐜(𝐭, �̅�)

𝛛𝐱𝐪
]}  

𝐐

𝐪=𝟏

 

 

                                                 +  ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓, 𝐤 �̅�) {∑  
𝐤𝟐𝐬

𝟐𝟐𝐬 (𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪

𝐩−𝟏

𝐬=𝟏

} 

𝐐

𝐪=𝟏

   

 

                                                 + ∑  
𝐤𝟐𝐬

𝟐𝟐𝐬 (𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬+𝟏
+ 𝐎(𝐤𝟐𝐩−𝟏)   .  

𝐩−𝟏

𝐬=𝟏

 

 

 

The last equality can be rewritten as 
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(𝟔. 𝟔𝟔)       
𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�)

𝐤
=  − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓, 𝐤 �̅�) {

𝟏

𝟐
 [

𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤, �̅�)

𝛛𝐱𝐪
+

𝛛𝐜(𝐭, �̅�)

𝛛𝐱𝐪
]}  

𝐐

𝐪=𝟏

 

 

                                                     + ∑  
𝐤𝟐𝐬

𝟐𝟐𝐬 (𝟐𝐬)!
  {

𝟏

(𝟐𝐬 + 𝟏)
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬+𝟏
     

  

𝐩−𝟏

𝐬=𝟏

 

 

                                                    +   ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓, 𝐤 �̅�) 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪
  

𝐐

𝐪=𝟏

} + 𝐎(𝐤𝟐𝐩−𝟏) .    

 

 

Denote: 

 

 

(𝟔. 𝟔𝟕)        𝐊𝐭
(𝟐𝐬)

 

=  
𝟏

𝟐𝟐𝐬(𝟐𝐬)!
  [

𝟏

(𝟐𝐬 + 𝟏)
 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬+𝟏
 

+ ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�) 
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝟎. 𝟓𝐤 , �̅�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪
  

𝐐

𝐪=𝟏

] . 

 

 

Then (6.65) can be rewritten as: 

 

 

(𝟔. 𝟔𝟖)       
𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�)

𝐤
=  − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓, 𝐤 �̅�) {

𝟏

𝟐
 [

𝛛𝐜(𝐭 + 𝟎. 𝟓𝐤, �̅�)

𝛛𝐱𝐪
+

𝛛𝐜(𝐭, �̅�)

𝛛𝐱𝐪
]}  

𝐐

𝐪=𝟏

 

 

                                                                   + ∑   𝐤𝟐𝐬 𝐊𝐭
(𝟐𝐬)

 + 𝐎(𝐤𝟐𝐩−𝟏)   .  

𝐩−𝟏

𝐬=𝟏

 

 

 

Use (6.63) and (6.64) in the expression in the square bracket of (6.67) to obtain 

 

 

(𝟔. 𝟔𝟗)       
𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�)

𝐤
=  − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�) 

𝐜(𝐭 + 𝐤 , �̅�(+𝐪)) − 𝐜(𝐭 + 𝐤 , �̅�−𝐪))

𝟒𝐡𝐪
  

𝐐

𝐪=𝟏
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                                             − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�) 
𝐜(𝐭 , �̅�(+𝐪)) − 𝐜(𝐭 , �̅�−𝐪))

𝟒𝐡𝐪
     

𝐐

𝐪=𝟏

  

 

                                            +
𝟏

𝟐
∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�) {∑

𝐡𝐪
𝟐𝐬

(𝟐𝐬 + 𝟏)!
[
𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝐤, �̅�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

+
𝛛𝟐𝐬+𝟏𝐜(𝐭, �̅�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

]

𝐩−𝟏

𝐬=𝟏

} 

𝐐

𝐪=𝟏

 

 

                                            + ∑   𝐤𝟐𝐬 𝐊𝐭
(𝟐𝐬)

 + 𝐎(𝐤𝟐𝐩−𝟏) + 𝐎(𝐡𝐪
𝟐𝐩+𝟏

)  .  

𝐩−𝟏

𝐬=𝟏

 

 

 

The last equality can be rewritten in the following form: 

 

 

(𝟔. 𝟕𝟎)       
𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�)

𝐤
=  − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�) 

𝐜(𝐭 + 𝐤 , �̅�(+𝐪)) − 𝐜(𝐭 + 𝐤 , �̅�−𝐪))

𝟒𝐡𝐪
  

𝐐

𝐪=𝟏

  

 

                                             − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�) 
𝐜(𝐭 , �̅�(+𝐪)) − 𝐜(𝐭 , �̅�−𝐪))

𝟒𝐡𝐪
     

𝐐

𝐪=𝟏

  

 

                                           + ∑
𝟏

𝟐
  

𝐡𝐪
𝟐𝐬

(𝟐𝐬 + 𝟏)!
 ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�) [

𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝐤, �̅�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

+
𝛛𝟐𝐬+𝟏𝐜(𝐭, �̅�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

]

𝐩−𝟏

𝐬=𝟏

 

𝐐

𝐪=𝟏

 

 

                                            + ∑   𝐤𝟐𝐬 𝐊𝐭
(𝟐𝐬)

 + 𝐎(𝐤𝟐𝐩−𝟏) + 𝐎(𝐡𝐪
𝟐𝐩+𝟏

)  .  

𝐩−𝟏

𝐬=𝟏

 

 

 

Denote: 

 

 

(𝟔. 𝟕𝟏)       𝐊𝐪
(𝟐𝐬)

 =
𝟏

𝟐

𝟏

(𝟐𝐬 + 𝟏)!
 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�) [

𝛛𝟐𝐬+𝟏𝐜(𝐭 + 𝐤 , �̅�)

𝛛𝐱𝐪
𝟐𝒔+𝟏

+
𝛛𝟐𝐬+𝟏𝐜(𝐭 , �̅�)

𝛛𝐱𝐪
𝟐𝒔+𝟏

] .  

 

 

Substitute this value of     𝐊𝐪
(𝟐𝐬)

   in (6.70). The result is: 

 

 

(𝟔. 𝟕𝟐)       
𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�)

𝐤
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                      =  − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�)
𝐜(𝐭 + 𝐤, �̅�(+𝐪)) − 𝐜(𝐭 + 𝐤, �̅�(−𝐪)) + 𝐜(𝐭, �̅�(+𝐪)) − 𝐜(𝐭, �̅�(−𝐪))

𝟒𝐡𝐪 
 

𝐐

𝐪=𝟏

 

 

                          + ∑  [𝐤𝟐𝐬 𝐊𝐭
(𝟐𝐬)

+ ∑ 𝐡𝐪
𝟐𝐬 𝐊𝐪

(𝟐𝐬)

𝐐

𝐪=𝟏

] + 𝐎(𝐤𝟐𝐩−𝟏) + 𝐎(𝐡𝐪
𝟐𝐩−𝟏

)  .  

𝐩−𝟏

𝐬=𝟏

 

 

 

The last equality can also be rewritten as: 

 

 

(𝟔. 𝟕𝟑)       
𝐜(𝐭 + 𝐤 , �̅�) − 𝐜(𝐭 , �̅�)

𝐤
=  

                       =  − ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟓𝐤, �̅�)
𝐜(𝐭 + 𝐤, �̅�(+𝐪)) − 𝐜(𝐭 + 𝐤, �̅�(−𝐪)) + 𝐜(𝐭, �̅�(+𝐪)) − 𝐜(𝐭, �̅�(−𝐪))

𝟒𝐡𝐪 
 

𝐐

𝐪=𝟏

 

                           + ∑  𝐤𝟐𝐬𝐊(𝟐𝐬)  + 𝐎(𝐤𝟐𝐩−𝟏) ,   

𝐩−𝟏

𝐬=𝟏

 

 

 

where 

 

 

(𝟔. 𝟕𝟒)      𝐊(𝟐𝐬)  = 𝐊𝐭
(𝟐𝐬)

+ ∑
𝐡𝐪

𝟐𝐬

𝐤𝟐𝐬
 𝐊𝐪

(𝟐𝐬)

𝐐

𝐪=𝟏

 .    

 

 

Assume that all ratios  𝐡𝐪/𝐤 ,   𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ,   remain constants when   𝐤 → 𝟎   (which can 

easily be achieved, for example, by reducing all   𝐡𝐪   by a factor of two when   𝐤   is reduced by a 

factor of two). Then, the last two equalities, equalities (39) and (40), show that the assertion of Theorem 

6 3 holds. 

 

                                                                                                                                                             ∎ 
 

 

6.6.3. Three special cases 

 

Multi-dimensional advection equations arise when many physical processes are described 

mathematically (for example, in some of the sub-models of a complex large-scale environmental 

model; see Alexandrov et al. (2004), Faragó, Havasi and Zlatev (2010), Zlatev (1995) and Zlatev 

and Dimov (2006). In most of these cases we have   𝐐 = 𝟏 , 𝟐 , 𝟑 .   Therefore, the following three 

corollaries of Theorem 6.2 are important for many applications in science and engineering. 
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Corollary 6.1 (the one-dimensional case): If   𝐐 = 𝟏   then (6.43)) can be written as 

 

 

(𝟔. 𝟕𝟓)     
𝛛𝐜

𝛛𝐭
 =  −𝐮𝟏

𝛛𝐜

𝛛𝐱𝟏
    ,      𝐱𝟏 ∈ [𝐚𝟏, 𝐛𝟏] ,        𝐭 ∈ [𝐚, 𝐛] .                           

 

 

and (6.73) reduces to the following equality: 

 

 

(𝟔. 𝟕𝟔)       
𝐜(𝐭 + 𝐤 , 𝐱𝟏) − 𝐜(𝐭 , 𝐱𝟏)

𝐤
= −𝐮𝟏(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏)

𝐜(𝐭 + 𝐤, 𝐱𝟏 + 𝐡𝟏) − 𝐜(𝐭 + 𝐤, 𝐱𝟏 − 𝐡𝟏)

𝟒𝐡𝟏
 

 

                                                             −𝐮𝟏(𝐭 + 𝟎. 𝟓𝐤, �̅�) 
𝐜(𝐭, 𝐱𝟏 + 𝐡𝟏) − 𝐜(𝐭, 𝐱𝟏 − 𝐡𝟏)

𝟒𝐡𝟏
  

 

                                                             +𝐤𝟐𝐊(𝟐) + 𝐤𝟒𝐊(𝟒) + ⋯ + 𝐤𝟐𝐩−𝟐𝐊(𝟐𝐩−𝟐)  + 𝐎(𝐤𝟐𝐩−𝟏)   
 

 

where the values of   𝐊(𝟐𝐬),    𝐬 = 𝟏, 𝟐, … , 𝟐𝐩 − 𝟐    for the one-dimensional case can be obtained in 

an obvious way from (6.66), (6.71) and (6.74). 

 

                                                                                                                                                             ∎ 

 

 

Corollary 6.2 (the two-dimensional case): If   𝐐 = 𝟐    then (6.43) can be written as 

 

 

(𝟔. 𝟕𝟕)     
𝛛𝐜

𝛛𝐭
 =  −𝐮𝟏   

𝛛𝐜

𝛛𝐱𝟏
 − 𝐮𝟐  

𝛛𝐜

𝛛𝐱𝟐
   ,      𝐱𝟏 ∈ [𝐚𝟏, 𝐛𝟏] ,       𝐱𝟐 ∈ [𝐚𝟐, 𝐛𝟐] ,         𝐭 ∈ [𝐚, 𝐛] .         

 

 

and (6.73) reduces to the following equality: 

 

 

(𝟔. 𝟕𝟖)       
𝐜(𝐭 + 𝐤 , 𝐱𝟏, 𝐱𝟐) − 𝐜(𝐭 , 𝐱𝟏, 𝐱𝟐)

𝐤

= −𝐮𝟏(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐)
𝐜(𝐭 + 𝐤, 𝐱𝟏 + 𝐡𝟏, 𝐱𝟐) − 𝐜(𝐭 + 𝐤, 𝐱𝟏 − 𝐡𝟏, 𝐱𝟐)

𝟒𝐡𝟏
 

 

                                                         −𝐮𝟏(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐) 
𝐜(𝐭, 𝐱𝟏 + 𝐡𝟏, 𝐱𝟐) − 𝐜(𝐭, 𝐱𝟏 − 𝐡𝟏, 𝐱𝟐)

𝟒𝐡𝟏
  

 

                                                        −𝐮𝟐(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐)
𝐜(𝐭 + 𝐤, 𝐱𝟏, 𝐱𝟐 + 𝐡𝟐) − 𝐜(𝐭 + 𝐤, 𝐱𝟏, 𝐱𝟐 − 𝐡𝟐)

𝟒𝐡𝟐
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                                                         −𝐮𝟐(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐) 
𝐜(𝐭, 𝐱𝟏, 𝐱𝟐 + 𝐡𝟐) − 𝐜(𝐭, 𝐱𝟏, 𝐱𝟐 − 𝐡𝟐)

𝟒𝐡𝟐
 

 

                                                         +𝐤𝟐𝐊(𝟐) + 𝐤𝟒𝐊(𝟒) + ⋯ + 𝐤𝟐𝐩−𝟐𝐊(𝟐𝐩−𝟐)  + 𝐎(𝐤𝟐𝐩−𝟏) ,  
 

 

where the values of   𝐊(𝟐𝐬),    𝐬 = 𝟏, 𝟐, … , 𝟐𝐩 − 𝟐    for the two-dimensional case can be obtained in 

an obvious way from (6.66), (6.71) and (6.74). 

 

                                                                                                                                                          ∎ 
 

 

Corollary 6.3 (the three-dimensional case): If    𝐐 = 𝟑   then (6.43) can be written as 

 

 

(𝟔. 𝟕𝟗)     
𝛛𝐜

𝛛𝐭
 =  −𝐮𝟏

𝛛𝐜

𝛛𝐱𝟏
 −  𝐮𝟐

𝛛𝐜

𝛛𝐱𝟐
 −  𝐮𝟑

𝛛𝐜

𝛛𝐱𝟑
 ,     

 

 

                            𝐱𝟏 ∈ [𝐚𝟏, 𝐛𝟏] ,    𝐱𝟐 ∈ [𝐚𝟐, 𝐛𝟐] ,   𝐱𝟑 ∈ [𝐚𝟑, 𝐛𝟑] ,      𝐭 ∈ [𝐚, 𝐛] .   
 

 

and (6.73) reduces to the following equality: 

 

 

(𝟔. 𝟖𝟎)       
𝐜(𝐭 + 𝐤 , 𝐱𝟏, 𝐱𝟐, 𝐱𝟑) − 𝐜(𝐭 , 𝐱𝟏, 𝐱𝟐, 𝐱𝟑)

𝐤
 

 

                                = −𝐮𝟏(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑)
𝐜(𝐭 + 𝐤, 𝐱𝟏 + 𝐡𝟏, 𝐱𝟐, 𝐱𝟑) − 𝐜(𝐭 + 𝐤, 𝐱𝟏 − 𝐡𝟏, 𝐱𝟐, 𝐱𝟑)

𝟒𝐡𝟏
 

 

                                    −𝐮𝟏(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑) 
𝐜(𝐭, 𝐱𝟏 + 𝐡𝟏, 𝐱𝟐, 𝐱𝟑) − 𝐜(𝐭, 𝐱𝟏 − 𝐡𝟏, 𝐱𝟐, 𝐱𝟑)

𝟒𝐡𝟏
  

 

                                     −𝐮𝟐(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑)
𝐜(𝐭 + 𝐤, 𝐱𝟏, 𝐱𝟐 + 𝐡𝟐, 𝐱𝟑) − 𝐜(𝐭 + 𝐤, 𝐱𝟏, 𝐱𝟐 − 𝐡𝟐, 𝐱𝟑)

𝟒𝐡𝟐
 

 

                                     −𝐮𝟐(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑) 
𝐜(𝐭, 𝐱𝟏, 𝐱𝟐 + 𝐡𝟐, 𝐱𝟑) − 𝐜(𝐭, 𝐱𝟏, 𝐱𝟐 − 𝐡𝟐, 𝐱𝟑)

𝟒𝐡𝟐
 

 

                                     −𝐮𝟑(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑)
𝐜(𝐭 + 𝐤, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑 + 𝐡𝟑) − 𝐜(𝐭 + 𝐤, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑 − 𝐡𝟑)

𝟒𝐡𝟑
 

 

                                     −𝐮𝟑(𝐭 + 𝟎. 𝟓𝐤, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑) 
𝐜(𝐭, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑 + 𝐡𝟑) − 𝐜(𝐭, 𝐱𝟏, 𝐱𝟐, 𝐱𝟑 − 𝐡𝟑)

𝟒𝐡𝟑
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                                     +𝐤𝟐𝐊(𝟐) + 𝐤𝟒𝐊(𝟒) + ⋯ + 𝐤𝟐𝐩−𝟐𝐊(𝟐𝐩−𝟐)  + 𝐎(𝐤𝟐𝐩−𝟏)   
 

 

where the values of   𝐊(𝟐𝐬),    𝐬 = 𝟏, 𝟐, … , 𝟐𝐩 − 𝟐    for the three-dimensional case can be obtained in 

an obvious way from (6.66), (6.71) and (6.74). 

 

                                                                                                                                                               ∎ 

 

6.6.4. Designing a second-order numerical method for multi-dimensional advection 

 

Consider the grids: 

 

 

(𝟔. 𝟖𝟏)     𝐆𝐭 = { 𝐭𝐧 |  𝐭𝟎 = 𝐚,    𝐭𝐧 = 𝐭𝐧−𝟏 + 𝐤,    𝐧 = 𝟏, 𝟐,   …,   𝐍𝐭 ,   𝐤 =
𝐛 − 𝐚

𝐍𝐭
 ,   𝐭𝐍𝐭

= 𝐛 }   

 

 

and (for   𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐   and   𝐡𝐪 = (𝐛𝐪 − 𝐚𝐪)/𝐍𝐪 ) 

 

 

(𝟔. 𝟖𝟐)     𝐆𝐱
(𝐪)

= {𝐱𝐪

𝐢𝐪 , 𝐢𝐪 = 𝟎, 𝟏, … , 𝐍𝐪 | 𝐱𝐪
𝟎 = 𝐚𝐪,  𝐱𝐪

𝐢𝐪 = 𝐱𝐪

𝐢𝐪−𝟏
+ 𝐡𝐪,  𝐢𝐪 = 𝟏, 𝟐, … , 𝐍𝐪,  𝐱𝐪

𝐍𝐪 = 𝐛𝐪} . 

 

 

Consider (assuming that   𝐣𝐪 ∈ {𝟎, 𝟏, … , 𝐍𝐪} ): 

 

 

(𝟔. 𝟖𝟑)       �̃� = (𝐱𝟏
𝐣𝟏  ,   𝐱𝟐

𝐣𝟐  ,   …  , 𝐱
𝐐

𝐣𝐐) , 𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ,  

 

 

(𝟔. 𝟖𝟒)       �̃�(+𝐪) = (𝐱𝟏
𝐣𝟏 , 𝐱𝟐

𝐣𝟐  , … , 𝐱𝐪

𝐣𝐪−𝟏
,  𝐱𝐪

𝐣𝐪 + 𝐡𝐪,  𝐱𝐪

𝐣𝐪+𝟏
, … ,  𝐱

𝐐

𝐣𝐐)  ,       𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 ,  

 

 

(𝟔, 𝟖𝟓)       �̃�(−𝐪) = (𝐱𝟏
𝐣𝟏 , 𝐱𝟐

𝐣𝟐  , … , 𝐱𝐪

𝐣𝐪−𝟏
,  𝐱𝐪

𝐣𝐪 − 𝐡𝐪,  𝐱𝐪

𝐣𝐪+𝟏
, … ,  𝐱

𝐐

𝐣𝐐)  ,       𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 , 

 

 

where    𝐱𝐪

𝐣𝐪 ∈ 𝐆𝐱
(𝐪)

    for    𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐 . 

 

In this notation the following numerical method can be defined: 

 

 

(𝟔. 𝟖𝟔)       
�̃�(𝐭𝐧+𝟏, �̃�) − �̃�(𝐭𝐧, �̃�)

𝐤
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                   = − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̅�)
�̃�(𝐭𝐧+𝟏, �̃�(+𝐪)) − �̃�(𝐭𝐧+𝟏, �̃�(−𝐪)) + �̃�(𝐭𝐧, �̃�(+𝐪)) − �̃�(𝐭𝐧, �̃�(−𝐪))

𝟒𝐡𝐪
,

 
 

𝐐

𝐪=𝟏

 

 

 

where   �̃�(𝐭𝐧+𝟏, �̃�),   �̃�(𝐭𝐧, �̃�),   �̃�(𝐭𝐧+𝟏, �̃�(+𝐪)) ,    �̃�(𝐭𝐧+𝟏, �̃�(−𝐪)) ,    �̃�(𝐭𝐧, �̃�(+𝐪))   and    �̃�(𝐭𝐧, �̃�(−𝐪))   are 

some approximations of the exact values of the solution of multi-dimensional equation (6.43 calculated 

at appropriate grid-points of (6.81) and (6.82). It is clear that (6,86) can be obtained from (6.73) by 

neglecting the terms in the last line and by considering only values of the independent variables, which 

belong to (6.81) and (6.82). It is clear (see the assertion of Theorem 6.3) that the method defined by 

(6.52) is of order two with respect to all independent variables. 

 

Assume that the values of   �̃�(𝐭𝐧, �̃�)   have been calculated at some time   𝐭 = 𝐭𝐧 ∈ 𝐆𝐭    for all grid-

points of (6.82). Then the values    �̃�(𝐭𝐧+𝟏, �̃�)    of the unknown function at the next time-point   

𝐭 = 𝐭𝐧+𝟏 = 𝐭𝐧 + 𝐤 ∈ 𝐆𝐭  can be obtained by solving a huge system of linear algebraic equations of 

dimension   �̃�,   where  �̃�   is defined by 

 

 

(𝟔. 𝟖𝟕)     �̃� = ∏(𝐍𝐪 − 𝟏) .

𝐐

𝐪=𝟏

  

 

 

It should be mentioned that the numerical method defined by (6.86) is called the Crank-Nicolson 

scheme when   𝐐 = 𝟏 ,   see, for example Strikwerda (2004). 

 

 

6.6.5. Application of Richardson Extrapolation 

 

Consider (6.86) with �̃� replaced by 𝐳 when  𝐭 = 𝐭𝐧+𝟏: 

 

 

(𝟔. 𝟖𝟖)       
𝐳(𝐭𝐧+𝟏, �̃�) − �̃�(𝐭𝐧, �̃�)

𝐤
  

 

                 =  − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)
𝐳(𝐭𝐧+𝟏, �̃�(+𝐪)) − 𝐳(𝐭𝐧+𝟏, �̃�(−𝐪)) + �̃�(𝐭𝐧, �̃�(+𝐪)) − �̃�(𝐭𝐧, �̃�(−𝐪))

𝟒𝐡𝐪
.  

𝐐

𝐪=𝟏

 

 

 

Suppose that   𝟎. 𝟓𝐤   and   𝟎. 𝟓𝐡𝐪   are considered instead of   𝐤   and   𝐡𝐪   (𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐) 

respectively. Consider the formulae (6.47) and (6.49), but assume that the independent variables are 

restricted to the grid-points of the grids (6.81) and (6.62). Then, by using the notation introduced in 

(6.84) and (6.85) for    𝐪 = 𝟏 ,   𝟐 ,   … ,   𝐐,   the following two formulae can be derived: 
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(𝟔. 𝟖𝟗)       
𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − �̃�(𝐭𝐧, �̃�)

𝟎. 𝟓𝐤
 

 

                                   = − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)
𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
   

𝐐

𝐪=𝟏

  

 

                                        − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̅�)
�̃�(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − �̃�(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
 ,

 
 

𝐐

𝐪=𝟏

 

 

 

(𝟔. 𝟗𝟎)       
𝐰(𝐭𝐧+𝟏, �̃�) − 𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝟎. 𝟓𝐤
 

 

                                 = − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)
𝐰(𝐭𝐧+𝟏, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧+𝟏, �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
               

𝐐

𝐪=𝟏

 

 

                                      − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̅�)
𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
  

 
.

𝐐

𝐪=𝟏

 

 

 

Add (6.89) to (6.90) and multiply by   𝟎. 𝟓   the obtained equation. The result is: 

 

 

(𝟔. 𝟗𝟏)       
𝐰(𝐭𝐧+𝟏, �̃�) − �̃�(𝐭𝐧, �̃�)

𝐤
 

 

                       = − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)
𝐰(𝐭𝐧+𝟏, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧+𝟏, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
   

𝐐

𝐪=𝟏

 

 

                            − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)
𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
    

𝐐

𝐪=𝟏

 

 

                           − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)
𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
               

𝐐

𝐪=𝟏

 

 

                           − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̅�)
�̃�(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − �̃�(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
 .

 
 

𝐐

𝐪=𝟏
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Multiply (6.88) by   𝟏/𝟑   and (6.91) by   𝟒/𝟑 .  Subtract the modified equality (6.88) from the modified 

equality (6.91). Then the following equality will be obtained: 

 

 

(𝟔. 𝟗𝟐)       
𝟒

𝟑
 
𝐰(𝐭𝐧+𝟏, �̃�) − �̃�(𝐭𝐧, �̃�)

𝐤
−

𝟏

𝟑
 
𝐳(𝐭𝐧+𝟏, �̃�) − �̃�(𝐭𝐧, �̃�)

𝐤
 

 

                      = −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝐰(𝐭𝐧+𝟏, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧+𝟏, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
                       

𝐐

𝐪=𝟏

 

 

                          −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
           

𝐐

𝐪=𝟏

 

 

 

                          −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐰(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
          

𝐐

𝐪=𝟏

 

 

                          −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̅�)

�̃�(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − �̃�(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
  

 
 

𝐐

𝐪=𝟏

 

 

                          +
𝟏

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝐳(𝐭𝐧+𝟏, �̃�(+𝐪)) − 𝐳(𝐭𝐧+𝟏, �̃�(−𝐪))

𝟒𝐡𝐪
         

𝐐

𝐪=𝟏

  

 

                          +
𝟏

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̅�)

�̃�(𝐭𝐧, �̃�(+𝐪)) − �̃�(𝐭𝐧, �̃�(−𝐪))

𝟒𝐡𝐪
 .

 
 

𝐐

𝐪=𝟏

 

 

 

Replace the approximate values 𝐳, 𝐰 and �̃�  in (6.92) with the corresponding exact values of the 

unknown function to derive the following formula: 

 

 

(𝟔. 𝟗𝟑)       
𝟒

𝟑
 
𝐜(𝐭𝐧+𝟏, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝐤
−

𝟏

𝟑
 
𝐜(𝐭𝐧+𝟏, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝐤
 

 

                    = −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝐜(𝐭𝐧+𝟏, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧+𝟏, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
                       

𝐐

𝐪=𝟏

 

 

                           −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
       

𝐐

𝐪=𝟏
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                           −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
      

𝐐

𝐪=𝟏

 

 

                           −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̅�)

𝐜(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
  

 
 

𝐐

𝐪=𝟏

 

 

                          +
𝟏

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝐜(𝐭𝐧+𝟏, �̃�(+𝐪)) − 𝐜(𝐭𝐧+𝟏, �̃�(−𝐪))

𝟒𝐡𝐪
         

𝐐

𝐪=𝟏

  

 

                          +
𝟏

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̅�)

𝐜(𝐭𝐧, �̃�(+𝐪)) − 𝐜(𝐭𝐧, �̃�(−𝐪))

𝟒𝐡𝐪
   

 
 

𝐐

𝐪=𝟏

 

 

                          +
𝟒

𝟑
 𝐤𝟐(𝟎. 𝟓�̅�(𝟐) + 𝟎. 𝟓�̃�(𝟐)) −  

𝟏

𝟑
𝐤𝟐𝐊(𝟐) + 𝐎(𝐤𝟒) .   

 

 

Equation (6.73) with   𝐩 = 𝟐   can be used, together with transformations similar to those made in 

§6.6.2 (some of the needed transformations will in fact be performed in the remaining part of this 

section), in order to obtain the last terms in (6.93). Note too, that the assumed in §6.6.2 after equation 

(6.74), relationship   𝐡𝐪/𝐤 = 𝐜𝐨𝐧𝐬𝐭    is used to get the last term in (5.93). 

 

Subtract (6.92) from (6.93) and use the notation   𝛆   for the differences between the corresponding 

exact and approximate values of the unknown function. The result is: 

 

 

(𝟔. 𝟗𝟒)       
𝟒

𝟑
 
𝛆(𝐭𝐧+𝟏, �̃�) − 𝛆(𝐭𝐧, �̃�)

𝐤
−

𝟏

𝟑
 
𝛆(𝐭𝐧+𝟏, �̃�) − 𝛆(𝐭𝐧, �̃�)

𝐤
 

 

                      = −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛆(𝐭𝐧 + 𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝛆(𝐭𝐧 + 𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
                       

𝐐

𝐪=𝟏

 

 

                           −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛆(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝛆(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
       

𝐐

𝐪=𝟏

 

 

                           −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛆(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝛆(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
      

𝐐

𝐪=𝟏
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                           −
𝟒

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̅�)

𝛆(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − 𝛆(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟒𝐡𝐪
  

 
 

𝐐

𝐪=𝟏

 

 

                          +
𝟏

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛆(𝐭𝐧+𝟏, �̃�(+𝐪)) − 𝛆(𝐭𝐧+𝟏, �̃�(−𝐪))

𝟒𝐡𝐪
         

𝐐

𝐪=𝟏

  

 

                          +
𝟏

𝟑
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̅�)

𝛆(𝐭𝐧, �̃�(+𝐪)) − 𝛆(𝐭𝐧, �̃�(−𝐪))

𝟒𝐡𝐪
   

 
 

𝐐

𝐪=𝟏

 

 

                          + 𝐤𝟐  [
𝟐

𝟑
(�̅�(𝟐) + �̃�(𝟐)) −

𝟏

𝟑
𝐊(𝟐)] + 𝐎(𝐤𝟒) .   

 

 

The interesting term is the expression in the square brackets in the last line of (6.94): 

 

 

(𝟔. 𝟗𝟓)       �̂� =
𝟐

𝟑
(�̅�(𝟐) + �̃�(𝟐)) −

𝟏

𝟑
𝐊(𝟐) 

 

                    =
𝟐

𝟑
{[ �̅�𝐭

(𝟐)
+ ∑

𝐡𝐪
𝟐

𝐤𝟐

𝐐

𝐪=𝟏

 �̅�𝐪
(𝟐)

] + [ �̃�𝐭
(𝟐)

+ ∑
𝐡𝐪

𝟐

𝐤𝟐

𝐐

𝐪=𝟏

 �̃�𝐪
(𝟐)

]} −
𝟏

𝟑
 [ 𝐊𝐭

(𝟐)
+ ∑

𝐡𝐪
𝟐

𝐤𝟐

𝐐

𝐪=𝟏

 𝐊𝐪
(𝟐)

]    

 

                    =
𝟏

𝟑
 [𝟐�̅�𝐭

(𝟐)
+ 𝟐�̃�𝐭

(𝟐)
− 𝐊𝐭

(𝟐)
] +

𝟏

𝟑
 ∑

𝐡𝐪
𝟐

𝐤𝟐

𝐐

𝐪=𝟏

[𝟐�̅�𝐪
(𝟐)

+ 𝟐�̃�𝐪
(𝟐)

− 𝐊𝐪
(𝟐)

] .   

 

 

In the derivation of (6.95) it is assumed that the quantities   �̅�(𝟐𝐬)   and   �̃�(𝟐𝐬)   have the same structure 

as the expression for   𝐊(𝟐𝐬)   in (6.74). It is immediately clear that this assumption is true (some 

additional information will be given in the remaining part of this section). Furthermore   𝐬 = 𝟏   is used 

to obtain all three quantities involved in the last line of (6.95). 

 

It is quite clear that if   �̂� = 𝐎(𝐤𝟐)    then the Richardson Extrapolation will be a numerical method of 

order four. Consider now the last row of (6.95).  It obvious that it will be quite sufficient to prove that 

both the terms of the expression in the first square brackets and the terms in the second square brackets 

of  (61)   are of order   𝐎(𝐤𝟐),   in the latter case for all values of   𝐪 .   

 

The following equality can easily be obtained from (6.66) by setting   𝐬 = 𝟏   and replacing   𝐭   with   

𝐭𝐧   and   �̅�   with   �̃�:   
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(𝟔. 𝟗𝟔)       𝐊𝐭
(𝟐)

=
𝟏

𝟒
 
𝟏

𝟐!
 [

𝟏

𝟑
 
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤 , �̃�)

𝛛𝐭𝟑
 + ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) 

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪
  

𝐐

𝐪=𝟏

] .  

 

 

Similar expressions for the other quantities occurring in the last line of (6.95); i.e. for the quantities   

�̅�𝐭
(𝟐)

,   �̃�𝐭
(𝟐)

,   �̅�𝐪
(𝟐)

,   �̃�𝐪
(𝟐)

  and   𝐊𝐪
(𝟐)

,   are derived below by following very closely the procedure 

applied in §6.6.2. In fact,  𝐊𝐪
(𝟐)

   can be obtained directly from (37) by setting   𝐬 = 𝟐   and replacing   

𝐭  with 𝐭𝐧,    𝐭 + 𝐤   with   𝐭𝐧+𝟏    and     �̅�    with    �̃�.    

 

Consider the two points   (𝐭𝐧 + 𝟎. 𝟓𝐤, 𝐱)̃   and   (𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, 𝐱) ̃.    The following two relationships 

can be written in connection with these points: 

 

 

(𝟔, 𝟗𝟕)       𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) = 𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) +
𝐤

𝟒
 
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭
    

 

                                                + ∑  
𝐤𝐬

𝟒𝐬 𝐬!
 
𝛛𝐬𝐜(𝐭 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝐬
+ 𝐎(𝐤𝟐𝐩)   ,

𝟐𝐩−𝟏

𝐬=𝟐

 

 

 

(𝟔. 𝟗𝟖)       𝐜(𝐭𝐧 , �̃�) = 𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) −
𝐤

𝟒
 
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭
     

 

                                + ∑ (−𝟏)𝐬  
𝐤𝐬

𝟒𝐬 𝐬!
 
𝛛𝐬𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝐬
+ 𝐎(𝐤𝟐𝐩) .  

𝟐𝐩−𝟏

𝐬=𝟐

 

 

 

Eliminate the quantity   𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤 , �̃�)   from (6.97) and (6.98), which can be achieved by 

subtracting (6.98) from (6.97). The result is: 

 

 

(𝟔. 𝟗𝟗)       𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝐜(𝐭𝐧, �̃�) =
𝐤

𝟐
 
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭
       

 

                                                                    + 𝟐 ∑  
𝐤𝟐𝐬+𝟏

𝟒𝟐𝐬+𝟏(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬+𝟏
+ 𝐎(𝐤𝟐𝐩)   .

𝐩−𝟏

𝐬=𝟏

 

 

 

The last equality can be rewritten as 

 

 

(𝟔. 𝟏𝟎𝟎)       
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭
=

𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝟎. 𝟓𝐤
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                                                        − ∑  
𝐤𝟐𝐬

𝟒𝟐𝐬(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬+𝟏
+ 𝐎(𝐤𝟐𝐩−𝟏)   .

𝐩−𝟏

𝐬=𝟏

 

 

 

It can easily be seen that (6.100) can be obtained from (6.50) by replacing 𝐭 + 𝟎. 𝟓𝐤  with 𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, 

𝐭 + 𝐤 with 𝐭𝐧 + 𝟎. 𝟓𝐤 , 𝐭 with 𝐭𝐧 ,  �̅� with �̃� and 𝟐𝟐𝐬  with 𝟒𝟐𝐬,  which is quite understandable. 

 

Consider the following two relationships: 

 

 

(𝟔. 𝟏𝟎𝟏)       
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
=  

𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐱𝐪
+ ∑  

𝐤𝐬

𝟒𝐬𝐬!
 
𝛛𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝐬𝛛𝐱𝐪
+ 𝐎(𝐤𝟐𝐩) ,

𝟐𝐩−𝟏

𝐬=𝟏

 

 

 

(𝟔. 𝟏𝟎𝟐)       
𝛛𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
=  

𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐱𝐪
+  ∑ (−𝟏)𝐬  

𝐤𝐬

𝟒𝐬𝐬!
 
𝛛𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝐬𝛛𝐱𝐪
+ 𝐎(𝐤𝟐𝐩)   .

𝟐𝐩−𝟏

𝐬=𝟏

 

 

 

Add (6.101) to (6.102). The result is: 

 

 

(𝟔. 𝟏𝟎𝟑)       
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
+  

𝛛𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
= 𝟐 

𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐱𝐪
      

                                                   + 𝟐 ∑  
𝐤𝟐𝐬

𝟒𝟐𝐬(𝟐𝐬)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪
+ 𝐎(𝐤𝟐𝐩) .

𝐩−𝟏

𝐬=𝟏

 

 

 

The last equality can be rewritten as: 

 

 

(𝟔. 𝟏𝟎𝟒)       
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐱𝐪
=

𝟏

𝟐
 [

𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
+  

𝛛𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
]       

 

                                                  − ∑  
𝐤𝟐𝐬

𝟒𝟐𝐬(𝟐𝐬)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪
+ 𝐎(𝐤𝟐𝐩) .

𝐩−𝟏

𝐬=𝟏

 

 

 

Note that (6.104) can be obtained from (6.57) in a similar way as (6.100) can be obtained from (6.53), 

i.e., by replacing   𝐭 + 𝐤    with   𝐭𝐧 + 𝟎. 𝟓𝐤 ,    𝐭 + 𝟎. 𝟓𝐤   with   𝐭𝐧 + 𝟎. 𝟐𝟓𝐤 ,   �̅� with   �̃�   and   𝟐𝟐𝐬   
with   𝟒𝟐𝐬,   which is again quite understandable. 
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Now the following four relationships can be written: 

 

 

(𝟔. 𝟏𝟎𝟓)       𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) = 𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤 , �̃�) +
𝐡𝐪

𝟐
 
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
       

 

                                                           + ∑  
𝐡𝐪

𝐬

𝟐𝐬 𝐬!
 
𝛛𝐬𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝐬

+ 𝐎(𝐡𝐪
𝟐𝐩

) ,   

𝟐𝐩−𝟏

𝐬=𝟐

 

 

 

(𝟔. 𝟏𝟎𝟔)       𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪)) = 𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) −
𝐡𝐪

𝟐
 
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
       

 

                                                           + ∑ (−𝟏)𝐬
𝐡𝐪

𝐬

𝟐𝐬 𝐬!
 
𝛛𝐬𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝐬

+ 𝐎(𝐡𝐪
𝟐𝐩

) ,   

𝟐𝐩−𝟏

𝐬=𝟐

 

 

 

(𝟔. 𝟏𝟎𝟕)       𝐜(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) = 𝐜(𝐭𝐧, �̃�) +
𝐡𝐪

𝟐
 
𝛛𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
+  ∑  

𝐡𝐪
𝐬

𝟐𝐬 𝐬!
 
𝛛𝐬𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝐬

+ 𝐎(𝐡𝐪
𝟐𝐩

) ,   

𝟐𝐩−𝟏

𝐬=𝟐

       

 

 

(𝟔. 𝟏𝟎𝟖)       𝐜(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

= 𝐜(𝐭𝐧, �̃�) −
𝐡𝐪

𝟐
 
𝛛𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
 + ∑  (−𝟏)𝐬

𝐡𝐪
𝐬

𝟐𝐬 𝐬!
 
𝛛𝐬𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝐬

+ 𝐎(𝐡𝐪
𝟐𝐩

) .   

𝟐𝐩−𝟏

𝐬=𝟐

      

 

 

Subtract (6.106) from (6.105) to obtain: 

 

 

(𝟔. 𝟏𝟎𝟗)      
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
=

𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(−𝟎.𝟓𝐪))

𝟐(𝟎. 𝟓𝐡𝐪)
       

 

                                                 − ∑  
𝐡𝐪

𝟐𝐬

𝟐𝟐𝐬(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

+ 𝐎(𝐡𝐪
𝟐𝐩−𝟏

) .  

𝐩−𝟏

𝐬=𝟏

 

 

 

Similarly, the following relationship can be obtained by subtracting (6.108) from (6.107): 

 

 

(𝟔. 𝟏𝟏𝟎)      
𝛛𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
=

𝐜(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟐(𝟎. 𝟓𝐡𝐪)
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                                   − ∑  
𝐡𝐪

𝟐𝐬

𝟐𝟐𝐬(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

+ 𝐎(𝐡𝐪
𝟐𝐩−𝟏

) .  

𝐩−𝟏

𝐬=𝟏

 

 

 

It can easily be seen how (6.109) and (6.110) can be obtained from (6.62) and (6.63) respectively: it is 

necessary to replace    𝐭 + 𝐤    with    𝐭𝐧 + 𝟎. 𝟓𝐤 ,    𝐭   with    𝐭𝐧,    �̅�   with   �̃� ,     (+𝐪)    with   

(+𝟎. 𝟓𝐪) ,   (−𝐪)    with   (−𝟎. 𝟓𝐪),   𝐡𝐪   with   𝟎. 𝟓𝐡𝐪   and, finally,   𝟏  with   𝟐𝟐𝐬   in the denominators 

of the sums). 

 

Consider formula (6.43). Replace   𝐭 with   𝐭𝐧 + 𝟎. 𝟐𝟓𝐤   and   �̅�   with   �̃� .   The result is:  

 

 

(𝟔. 𝟏𝟏𝟏)      
𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) 

𝛛𝐭
= − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) 

𝛛𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐱𝐪
  

𝐐

𝐪=𝟏

.    

 

 

Use (6.100) and (6.104) in (6.11) to obtain: 

 

 

(𝟔. 𝟏𝟏𝟐)      
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝟎. 𝟓𝐤
  

 

                                  = − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) {
𝟏

𝟐
 [

𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤 , �̃�)

𝛛𝐱𝐪
+

𝛛𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
]}  

𝐐

𝐪=𝟏

 

 

                                     + ∑  
𝐤𝟐𝐬

𝟒𝟐𝐬(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬+𝟏
  

𝐩−𝟏

𝐬=𝟏

  

 

                                     + ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝐐

𝐪=𝟏

∑  
𝐤𝟐𝐬

𝟒𝟐𝐬(𝟐𝐬)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪
+ 𝐎(𝐤𝟐𝐩−𝟏) .

𝐩−𝟏

𝐬=𝟏

  

 

 

The last equality can be rewritten as 

 

 

(𝟔. 𝟏𝟏𝟑)      
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝟎. 𝟓𝐤
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                                   = − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) {
𝟏

𝟐
 [

𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
+

𝛛𝐜(𝐭𝐧 , �̃�)

𝛛𝐱𝐪
]}  

𝐐

𝐪=𝟏

 

 

                                       + ∑  
𝐤𝟐𝐬

𝟒𝟐𝐬(𝟐𝐬)!
{

𝟏

𝟐𝐬 + 𝟏
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬+𝟏
  

𝐩−𝟏

𝐬=𝟏

+ ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪
 

𝐐

𝐪=𝟏

} +  𝐎(𝐤𝟐𝐩−𝟏) . 

 

 

Denote: 

 

 

(𝟔. 𝟏𝟏𝟒)      �̅�𝐭
(𝟐𝐬)

=  
𝟏

𝟒𝟐𝐬(𝟐𝐬)!
{

𝟏

𝟐𝐬 + 𝟏
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬+𝟏

+ ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪
 

𝐐

𝐪=𝟏

} . 

 

 

Note that (6.114) can be obtained from (6.66) by performing similar replacements as those made in 

connection with formulae (6.100) and (6.104).  

 

Then (6.113) can be rewritten as: 

 

 

(𝟔. 𝟏𝟏𝟓)      
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝟎. 𝟓𝐤
  

 

                                    = − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) {
𝟏

𝟐
 [

𝛛𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤 , �̃�)

𝛛𝐱𝐪
+

𝛛𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
]}  

𝐐

𝐪=𝟏

 

 

                                       + ∑  𝐤𝟐𝐬�̅�𝐭
(𝟐𝐬)

+  𝐎(𝐤𝟐𝐩−𝟏) .   

𝐩−𝟏

𝐬=𝟏

 

 

 

Use (6.109) and (6.110) in the expression in the square bracket from (6.115) to obtain 
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(𝟔. 𝟏𝟏𝟔)      
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝟎. 𝟓𝐤
= − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝐜(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
  

𝐐

𝐪=𝟏

 

 

                                         − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤 , �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
  

𝐐

𝐪=𝟏

 

 

                                        +
𝟏

𝟐
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) ∑

𝐡𝐪
𝟐𝐬

𝟐𝟐𝐬(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

𝐩−𝟏

𝐬=𝟏

   

𝐐

𝐪=𝟏

 

 

                                        +
𝟏

𝟐
∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) ∑

𝐡𝐪
𝟐𝐬

𝟐𝟐𝐬(𝟐𝐬 + 𝟏)!
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

𝐩−𝟏

𝐬=𝟏

   

𝐐

𝐪=𝟏

 

 

                                       + ∑  𝐤𝟐𝐬�̅�𝐭
(𝟐𝐬)

+  𝐎(𝐤𝟐𝐩−𝟏) .   

𝐩−𝟏

𝐬=𝟏

 

 

 

The last equality can be rewritten in the following form: 

 

 

(𝟔. 𝟏𝟏𝟕)      
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝟎. 𝟓𝐤
= − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝐜(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
  

𝐐

𝐪=𝟏

 

 

                   − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤 , �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
  

𝐐

𝐪=𝟏

 

 

                   + ∑  {∑  
𝐡𝐪

𝟐𝐬

𝟐𝟐𝐬+𝟏(𝟐𝐬 + 𝟏)!
𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) [

𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

+
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

]

𝐐

𝐪=𝟏

} 

𝐩−𝟏

𝐬=𝟏

 

 

                  + ∑  𝐤𝟐𝐬�̅�𝐭
(𝟐𝐬)

+  𝐎(𝐤𝟐𝐩−𝟏) .   

𝐩−𝟏

𝐬=𝟏

 

 

 

Denote: 
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(𝟔. 𝟏𝟏𝟖)      �̅�𝐪
(𝟐𝐬)

=   ∑
𝟏

𝟐𝟐𝐬+𝟏(𝟐𝐬 + 𝟏)!
𝐮𝐪(𝐭 + 𝟎. 𝟐𝟓𝐤, �̃�) [

𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

+
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

]

𝐐

𝐪=𝟏

 . 

 

 

Substitute this value of    �̅�𝐪
(𝟐𝐬)

   in (6.117). The result is: 

 

 

(𝟔. 𝟏𝟏𝟗)      
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝐜(𝐭𝐧, �̃�)

𝟎. 𝟓𝐤
= − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝐜(𝐭𝐧, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧, �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
  

𝐐

𝐪=𝟏

 

 

                                         − ∑ 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)
𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�(+𝟎.𝟓𝐪)) − 𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤 , �̃�(−𝟎.𝟓𝐪))

𝟒(𝟎. 𝟓𝐡𝐪)
  

𝐐

𝐪=𝟏

 

 

                                        + ∑ (𝐤𝟐𝐬�̅�𝐭
(𝟐𝐬)

+ ∑ 𝐡𝐪
𝟐𝐬 �̅�𝐪

(𝟐𝐬)

𝐐

𝐪=𝟏

) +  𝐎(𝐤𝟐𝐩−𝟏) .   

𝐩−𝟏

𝐬=𝟏

 

 

 

Performing similar transformations around the point   𝐭𝐧 + 𝟎. 𝟕𝟓𝐤   the following two equalities can 

be obtained: 

 

 

(𝟔. 𝟏𝟐𝟎)      �̃�𝐭
(𝟐𝐬)

=  
𝟏

𝟒𝟐𝐬(𝟐𝐬)!
{

𝟏

𝐬 + 𝟏
 
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬+𝟏

+ ∑ 𝐮𝐪(𝐭 + 𝟎. 𝟕𝟓𝐤, �̃�)
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐭𝟐𝐬𝛛𝐱𝐪
 

𝐐

𝐪=𝟏

} 

 

 

(𝟔. 𝟏𝟐𝟏)      �̃�𝐪
(𝟐𝐬)

=   
𝟏

𝟐𝟐𝐬+𝟏(𝟐𝐬 + 𝟏)!
𝐮𝐪(𝐭 + 𝟎. 𝟕𝟓𝐤, �̃�) [

𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

+
𝛛𝟐𝐬+𝟏𝐜(𝐭𝐧+𝟏, �̃�)

𝛛𝐱𝐪
𝟐𝐬+𝟏

] .  

 

 

Consider now the expression   𝟐�̅�𝐭
(𝟐)

+ 𝟐�̃�𝐭
(𝟐)

− 𝐊𝐭
(𝟐)

   in (6.95). 

 

 

(𝟔. 𝟏𝟐𝟐)     𝟐�̅�𝐭
(𝟐)

+ 𝟐�̃�𝐭
(𝟐)

− 𝐊𝐭
(𝟐)

 

 

                     =  
𝟏

𝟐𝟒
[𝟎. 𝟓

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟑
+ 𝟎. 𝟓

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐭𝟑
−

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟑
] 
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                       +
𝟏

𝟏𝟔
∑  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪

𝐐

𝐪=𝟏

   

                        +
𝟏

𝟏𝟔
∑  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪

𝐐

𝐪=𝟏

   

 

                       −
𝟏

𝟖
∑  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪

𝐐

𝐪=𝟏

 .   

 

 

Since 

 

 

(𝟔. 𝟏𝟐𝟑)     
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟑
+

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐭𝟑
=  𝟐

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟑
+  𝐎(𝐤𝟐) ,   

 

 

it is clear that the expression in the square brackets in (6.122) is of order   𝐎(𝐤𝟐) . 

 

Consider now the following relations: 

 

 

(𝟔. 𝟏𝟐𝟒)     𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�) =  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) + 𝟎. 𝟐𝟓𝐤 
𝛛𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭
+  𝐎(𝐤𝟐),    

 

 

(𝟔. 𝟏𝟐𝟓)     𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) =  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) − 𝟎. 𝟐𝟓𝐤 
𝛛𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭
+  𝐎(𝐤𝟐),    

 

 

(𝟔. 𝟏𝟐𝟔)     
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪
=  

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪
+ 𝟎. 𝟐𝟓𝐤

𝛛𝟒𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟑𝛛𝐱𝐪
+ 𝐎(𝐤𝟐),    

 

 

(𝟔. 𝟏𝟐𝟕)     
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪
=  

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪
− 𝟎. 𝟐𝟓𝐤

𝛛𝟒𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟑𝛛𝐱𝐪
+ 𝐎(𝐤𝟐) .    

 

 

Denote 

 

 

(𝟔. 𝟏𝟐𝟖)    𝐀 =  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�), 𝐁 = 𝟎. 𝟐𝟓 
𝛛𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭
,   
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(𝟔. 𝟏𝟐𝟗)     𝐂 =  
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟐𝛛𝐱𝐪
 ,    𝐃 = 𝟎. 𝟐𝟓 

𝛛𝟒𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝟑𝛛𝐱𝐪
 .    

 

 

Then for an arbitrary value of   𝐪   it is possible to obtain from the last three terms of (1.22) the 

following relationship by omitting always the terms containing the multiplier   𝐤𝟐: 

 

 

(𝟔. 𝟏𝟑𝟎)    
𝟏

𝟏𝟔
(𝐀 − 𝐤𝐁)(𝐂 − 𝐤𝐃) +

𝟏

𝟏𝟔
(𝐀 + 𝐤𝐁)(𝐂 + 𝐤𝐃) −

𝟏

𝟖
𝐀𝐂  

 

                     =
𝟏

𝟏𝟔
(𝐀𝐂 − 𝐤𝐀𝐃 − 𝐤𝐁𝐂) +

𝟏

𝟏𝟔
(𝐀𝐂 + 𝐤𝐀𝐃 + 𝐤𝐁𝐂) −

𝟏

𝟖
𝐀𝐂 = 𝟎 .   

 

 

This shows that the sum of the last three terms of (6.122) is also of order   𝐤𝟐. 

 

Consider now the expression   𝟐�̅�𝐪
(𝟐)

+ 𝟐�̃�𝐪
(𝟐)

− 𝐊𝐪
(𝟐)

   in the last line of (6.95). The following three 

equalities can be obtained by using (6.71), (6.118) and (6.123) with   𝐬 = 𝟏: 

 

 

(𝟔. 𝟏𝟑𝟏)      𝐊𝐪
(𝟐)

=  
𝟏

𝟏𝟐
 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) [

𝛛𝟑𝐜(𝐭𝐧 + 𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+
𝛛𝟑𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝟑

]   

 

                        =  
𝟏

𝟔
 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�) [

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+ 𝐎(𝐤𝟐)] , 

 

 

(𝟔. 𝟏𝟑𝟐)      �̅�𝐪
(𝟐)

=  
𝟏

𝟒𝟖
 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) [

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+
𝛛𝟑𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝟑

]   

 

                        =  
𝟏

𝟐𝟒
𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�) [

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+ 𝐎(𝐤𝟐)] 

 

 

(𝟔. 𝟏𝟑𝟑)      �̃�𝐪
(𝟐)

=  
𝟏

𝟒𝟖
 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�) [

𝛛𝟑𝐜(𝐭𝐧 + 𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

]   

 

                        =  
𝟏

𝟐𝟒
 𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�) [

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+ 𝐎(𝐤𝟐)]  . 

 

 

The following two relationships are used in the derivation of (6.131): 
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(𝟔. 𝟏𝟑𝟒)       
𝛛𝟑𝐜(𝐭𝐧 + 𝐤, �̃�)

𝛛𝐱𝐪
𝟑

=
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+ 𝟎. 𝟓𝐤
𝛛𝟒𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝛛𝐱𝐪
𝟑

+ 𝐎(𝐤𝟐) ,  

 

 

(𝟔. 𝟏𝟑𝟓)       
𝛛𝟑𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝟑

=
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

− 𝟎. 𝟓𝐤
𝛛𝟒𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝛛𝐱𝐪
𝟑

+ 𝐎(𝐤𝟐) .  

 

 

Now (6.134) and (6.135) should be added to obtain: 

 

 

(𝟔. 𝟏𝟑𝟔)       
𝛛𝟑𝐜(𝐭𝐧 + 𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+
𝛛𝟑𝐜(𝐭𝐧, �̃�)

𝛛𝐱𝐪
𝟑

= 𝟐
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+ 𝐎(𝐤𝟐) . 

 

 

Equality (6.136) shows how (1.31) can be obtained. Similar operations are to be used to obtain (6.132) 

and (6.133). 

 

By using (6.131), (6.132) and (6.133) and by omitting terms containing    𝐎(𝐤𝟐)    it is possible to 

transform the expression   𝟐�̅�𝐪
(𝟐)

+ 𝟐�̃�𝐪
(𝟐)

− 𝐊𝐪
(𝟐)

   in the following way: 

 

 

(𝟔. 𝟏𝟑𝟕)       𝟐�̅�𝐪
(𝟐)

+ 𝟐�̃�𝐪
(𝟐)

− 𝐊𝐪
(𝟐)

=
𝟏

𝟏𝟐
∑  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

𝐐

𝐪=𝟏

 

 

                                                                 + 
𝟏

𝟏𝟐
∑  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

  

𝐐

𝐪=𝟏

  

 

                                                                   − 
𝟏

𝟔
∑  𝐮𝐪(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

   

𝐐

𝐪=𝟏

. 

 

 

It is now necessary to apply (6.124) and (6.125) together with the following two equalities: 

 

 

(𝟔. 𝟏𝟑𝟖)       
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟕𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

=
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

+ 𝟎. 𝟐𝟓𝐤
𝛛𝟒𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝛛𝐱𝐪
𝟑

+ 𝐎(𝐤𝟐) .  

 

 

(𝟔. 𝟏𝟑𝟗)       
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟐𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

=
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

− 𝟎. 𝟐𝟓𝐤
𝛛𝟒𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝛛𝐱𝐪
𝟑

+ 𝐎(𝐤𝟐) .  
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Denote: 

 

 

(𝟔. 𝟏𝟒𝟎)       𝐄 =
𝛛𝟑𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐱𝐪
𝟑

,       𝐅 = 𝟎. 𝟐𝟓 
𝛛𝟒𝐜(𝐭𝐧 + 𝟎. 𝟓𝐤, �̃�)

𝛛𝐭𝛛𝐱𝐪
𝟑

 .  

 

 

Then for an arbitrary value of   𝐪    it is possible to obtain the following relationship from (6.137) by 

omitting always the terms containing multiplier    𝐤𝟐: 

 

 

(𝟔. 𝟏𝟒𝟏)    
𝟏

𝟏𝟐
(𝐀 − 𝐤𝐁)(𝐄 − 𝐤𝐅) +

𝟏

𝟏𝟐
(𝐀 + 𝐤𝐁)(𝐄 + 𝐤𝐅) −

𝟏

𝟔
𝐀𝐄  

 

                     =
𝟏

𝟏𝟐
(𝐀𝐄 − 𝐤𝐀𝐅 − 𝐤𝐁𝐄) +

𝟏

𝟏𝟐
(𝐀𝐄 + 𝐤𝐀𝐅 + 𝐤𝐁𝐄) −

𝟏

𝟔
𝐀𝐄 = 𝟎 .   

 

 

Therefore, the expression in (6.137) is of order   𝐤𝟐
.   This means that the expression   �̂�   in (6.95) is 

of order   𝐎(𝐤𝟐)   and it can be concluded that if the multi-dimensional advection is treated by the 

second-order numerical method defined by (6.86) and combined with the Richardson Extrapolation, 

then it results in a numerical method of order four (not of order three as should be expected). In this 

way the following theorem has been proved: 

 

 

Theorem 6.4: Consider the multi-dimensional advection equation (6.43). Assume that the coefficients   

𝐮𝐪   before the spatial derivatives in (6.43) are continuously differentiable up to order two with respect 

to all independent variables and continuous derivatives of the unknown function   𝐜(x,t)   up to order 

four exist, again with respect to all variables. Then the combination of the numerical method (6.86) 

and the Richardson Extrapolation is of order four. 

 

                                                                                                                                                              ∎ 
 

 

 

Remark 6.3: It is clear that Theorem 6.2 is a special case of Theorem 6.4, which can be obtained by 

setting   𝐪 = 𝟏   in (6.43). 

 

                                                                                                                                                              ∎ 
 

 

 

6.7. General conclusions related to the sixth chapter 
 

The simple one-dimensional advection problem was considered in the first five sections of this chapter. 

This case was described in detail in an attempt to make the main ideas very clear. The hope is that if 
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this is done, then it will be easy to generalize the results. As an illustration, the generalization of the 

results, obtained for the one-dimensional advection problem, for the multi-dimensional advection 

problem is presented in Section 6.6. It is worthwhile to generalize further the results for other classes 

of partial differential equations.  

 

It is proved that for the advection problem treated by the second-order Crank-Nicolson scheme the 

application of the Richardson Extrapolation leads to a rather accurate new numerical method, the order 

of accuracy is increased from two to four. It should be emphasized, however, that normally the order 

of accuracy is increased by one, i.e. if the underlying method is of order   𝐩 ,  then its combination with 

the Richardson Extrapolation is of order   𝐩 + 𝟏 .  

 

As mentioned in the beginning of this chapter, the most straight-forward way of implementing the 

Richardson Extrapolation for partial differential equations or for systems of partial differential 

equations is based on a preliminary application of some kind of discretization of the spatial derivatives. 

In this way the partial differential equations (or the system of partial differential equations) is 

transformed to a system (normally very large) of ordinary differential equations. Then the Richardson 

Extrapolation can be applied to the system of ODEs as in the first four chapters of this book. However, 

one must be aware of the fact that the errors arising during the discretization of the spatial derivatives 

must somehow be taken into account, especially in the case where the Richardson Extrapolation will 

be used to check the error made during the computations. 

 

Stability problems were not discussed in Chapter 6. However, it must be emphasized here that the 

stability of the computational process is a very important issue also in the case where the Richardson 

Extrapolation is used together with partial differential equations (or systems of partial differential 

equations). 

 

 

 

6.8. Topics for further research 
 

The following topics might lead to some very interesting and useful results: 

 

(A) It was mentioned in the previous section that the stability of the 

computational process should also be studied. It is worthwhile to try to 

establish some stability result in connection with the use of the Richardson 

Extrapolation for the advection problems discussed in the first six sections 

of this chapter. One can start perhaps with the simple one-dimensional 

advection. 

 

(B) The accuracy of the Richardson Extrapolation applied together with the 

simple problem (6.43) was studied in Section 4.6. The same results can 

probably be proved for the slightly more complex and more realistic 

problem:  

 

𝛛𝐜

𝛛𝐭
 =  − ∑   

𝛛(𝐮𝐪𝐜)

𝛛𝐱𝐪

𝐐

𝐪=𝟏

. 
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      Even results for the case of the one-dimensional advection problem, 

obtained for   𝐪 = 𝟏 ,    might be useful. 

 

(C) The application of the Richardson Extrapolation in conjunction with other 

problems (e.g. parabolic partial differential equations or some systems of 

parabolic partial differential equations) may lead to some useful results. 

 

(D) Some comprehensive studies of the application of the Richardson 

Extrapolation in conjunction with some important particular problems that 

occur often in practice (as, for example the famous rotation test, see, for 

example, Chock, 1985, 1991, Chock and Dunker, 1983, Crowley, 1968, 

LeVeque, 1992, Molenkampf, 1968, Zlatev, Berkowicz and Prahm, 

1983) are also desirable.  

 

Chapter 7 

 

Richardson Extrapolation for some other problems  

 
Systems of ordinary differential equations as well as some special partial differential equations were 

handled in the previous chapters by applying the Richardson Extrapolation in order both to improve 

the accuracy of the numerical solution and to increase the efficiency of the computational process (or 

at least to achieve one of these two important aims). However, the Richardson Extrapolation can also 

be used in the solution of many other problems as, for example, in the solution of systems of algebraic 

and transcendental equations as well as in numerical integration.  

 

In this chapter we shall first assume that a system of algebraic and transcendental equations is written 

in the form: 

 

 

(𝟕. 𝟏)        𝐟(𝐮) = 𝟎,        𝐮 ∈ 𝐃 ⊂ ℝ𝐬,       𝐬 ≥ 𝟏 .  
 

 

We shall furthermore assume that (7.1) has at least one solution  𝐮∗  and that some iterative method is 

used to calculate a sufficiently accurate approximation of this solution. The application of the selected 

iterative method leads, when it is convergent, to the calculation of a sequence of approximations to the 

solution  𝐮∗ given by 

 

 

(𝟕. 𝟐)        𝐮𝟏,   𝐮𝟐 ,   …  , 𝐮𝐧,   . . .             where          𝐧 → ∞          and          𝐥𝐢𝐦
𝐧 →∞

{𝐮𝐧} = 𝐮∗ .  

 

 

If the iterative process is convergent, then the following relationship will clearly hold: 

 

 

(𝟕. 𝟑)        𝐥𝐢𝐦
𝐧 →∞

{‖𝐮𝐧 − 𝐮∗‖} = 𝟎 ,  
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where   ‖∗‖   is some appropriately chosen vector norm in   ℝ𝐬  . 

 

In all practical situations, one is primarily interested in stopping the iterative process when certain 

prescribed in advance accuracy, say  𝛆 ,  where  𝛆   is some small positive number, is achieved. This 

means that we should like to stop the iterative process after  𝐧  iterations if, for example, the following 

criterion is satisfied: 

 

 

(𝟕. 𝟒)        ‖𝐮𝐧 − 𝐮∗‖  ≤  𝛆 .  
 

 

The great problem is that (7.4) cannot be directly applied, because the exact solution  𝐮∗  is unknown. 

Therefore different stopping criteria must be carefully designed and consistently used. These criteria 

will, of course, depend on the particular method selected for the solution of (7.1). Some stopping 

criteria will be introduced for several particular methods in the remaining part of this chapter. We are 

primarily interested in the answer to the following two general questions:  

 

 

If an arbitrary numerical method is selected for the computer 

treatment of (7.1), then will it be possible to design some general device, 

similar to the Richardson Extrapolation, the application of which will 

lead to an acceleration of the speed of convergence? 

-----------------------------------------------------------------------------------------  

Moreover, will it be possible to apply precisely the Richardson 

Extrapolation? 

 

 

The above problems were studied in many papers and books; see, for example, Brezinski (1985, 2000), 

Brezinski and Matos (1996), Burden and Faires (2001), Dutka (1984), Joyce (1971), Osada (1993) 

or Waltz (1996). The solutions of some of the problems were discovered and re-discovered several 

times (see the above references again).  

 

Consider the sequence (7.2) with   𝐬 = 𝟏   and assume that    𝐥𝐢𝐦
𝐧 →∞

{𝐮𝐧} = 𝐮∗ .   Suppose that another 

sequence   {�̃�𝐧}𝐧=𝟏
∞   is  created by using some expressions containing elements of the first sequence   

{𝐮𝐧}𝐧=𝟏
∞ .   It is said that the second sequence is accelerating the convergence of the first one if and 

only if the following relationship holds:   𝐥𝐢𝐦
𝐧 →∞

{(�̃�𝐧 − 𝐮∗)/(𝐮𝐧 − 𝐮∗)} = 𝟎 ;   see Brezinski (2000). 

Several transformations leading to an acceleration of the rate of convergence of sequences will be 

considered in this chapter. It will be assumed, as we have already done above, that   𝐬 = 𝟏 ,   i.e. we 

shall consider sequences of real numbers, but most of the ideas discussed in this chapter are also 

applicable for more general cases.        

 

It must be noted here that equations of the type (7.1) appear when systems of ordinary differential 

equations are handled by using implicit numerical methods (see Chapter 4) as well as when the spatial 
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derivatives of a system of partial differential equations are discretized and the resulting system of 

ordinary differential equations is handled by implicit methods. That means that efficient methods for 

the numerical treatment of equations of type (7.1) might be useful also in connection with the material 

presented in the previous chapters. 

 

The applications of iterative methods in the solution of (7.1) leads to sequences of real vectors (7.2), 

but we shall often assume that the treated problems are scalar and will consider the task of accelerating 

the rate of convergence of the resulting sequences of real numbers. 

 

The contents of the seventh chapter can be sketched as follows: 

 

Some very simple examples, describing how the speed of convergence can be accelerated, will be given 

in the first section, Section 7.1.  

 

Some information about the use of Romberg methods in the numerical integration will be presented, 

together with some numerical results, in Section 7.2.  

 

Several major conclusions will be drawn in Section 7.3, while several topics for further research will 

be presented in Section 7.4.  

 

 

 

7.1. Acceleration of the speed of convergence for sequences of real numbers 
 

In this section we shall mainly consider sequences of real  numbers, i.e. we shall again use (7.1) under 

the assumption that  𝐬 = 𝟏   has been selected. 

 

We shall start, in Sub-section 7.1.1,  with a simple example related to the calculation of approximations 

of the famous number  𝛑 . The algorithm sketched in this sub-section was used (several hundred years 

ago) by the Japanese mathematician Takakazu Seki (1642-1708), see Hirayama, Shimodaira and 

Hirose (1974). 

 

Some definitions that are related to the rate of convergence of the selected iterative method in the case 

where  𝐬 = 𝟏  will be introduced and discussed, together with some simple examples, in Sub-section 

7.1.2.  

 

Then we shall proceed, in Sub-section 7.1.3, with the introduction of the algorithm proposed by A. 

Aitken and an improvement of this algorithm suggested by J. F Steffensen; see Aitken (1926) and 

Steffensen (1950). 

 

Some short remarks about the use of Richardson Extrapolation in connection with sequences of real 

numbers will be given in Sub-section 7.1.4. 

 

 

7.1.1. Improving the accuracy in calculations related to the number  𝛑  
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Takakazu Seki, see again Hirayama, Shimodaira and Hirose (1974), defined   𝐮𝐧   as the perimeter 

of the regular polygon with   𝟐𝐧   sides that is inscribed in a circle with a diameter   𝐝 = 𝟏   and 

calculated three consecutive approximations of the number   𝛑 :  

 

 

(𝟕. 𝟓)       𝐮𝟏𝟓 = 𝟑. 𝟏𝟒𝟏𝟓𝟗𝟐𝟔𝟒𝟖𝟕𝟕𝟔𝟗𝟖𝟓𝟔𝟕𝟎𝟖,      𝐮𝟏𝟔 = 𝟑. 𝟏𝟒𝟏𝟓𝟗𝟐𝟔𝟓𝟐𝟑𝟖𝟔𝟓𝟗𝟏𝟑𝟓𝟕𝟏 ,
                                                                   𝐮𝟏𝟕 = 𝟑. 𝟏𝟒𝟏𝟓𝟗𝟐𝟔𝟓𝟑𝟐𝟖𝟖𝟗𝟗𝟐𝟕𝟕𝟓𝟎 .   

 

 

Then he applied the formula: 

 

 

(𝟕. 𝟔)       �̃�𝟏𝟓 = 𝐮𝟏𝟔 +
(𝐮𝟏𝟔 − 𝐮𝟏𝟓)(𝐮𝟏𝟕 − 𝐮𝟏𝟔)

(𝐮𝟏𝟔 − 𝐮𝟏𝟓) − (𝐮𝟏𝟕 − 𝐮𝟏𝟔)
 , 

 

 

to calculate an improved approximation: 

 

 

(𝟕. 𝟕)       �̃�𝟏𝟓 = 𝟑. 𝟏𝟒𝟏𝟓𝟗𝟐𝟔𝟓𝟑𝟓𝟖𝟗𝟕𝟗𝟑𝟐𝟒𝟕𝟔. 
 

 

Twelve digits in the approximation   �̃�𝟏𝟓   are correct, while the number of the correct digits in 

𝐮𝟏𝟓 ,    𝐮𝟏𝟔   and    𝐮𝟏𝟕   are seven, eight and nine respectively; the correct digits in (7.5) and (7.7) are 

marked in green. This illustrates very clearly the fact that the computational devise introduced by 

formula (7.6) leads to a very considerable increase of the accuracy.   

 

 

 

7.1.2. Definitions related to the convergence rate of some iterative processes  

 

Consider (7.4) with   𝐬 = 𝟏   and introduce the abbreviation   𝐞𝐧 = |𝐮𝐧 − 𝐮∗|.   It is clear that  

𝐥𝐢𝐦
𝐧 →∞

{𝐞𝐧} = 𝟎   when the iterative process is convergent. Then, the following definitions related to the 

concept of convergence for sequences of real numbers can be introduced: 

 

 

Definition 7.1: We say that the convergence of (7.4) with  𝐬 = 𝟏  is linear if there exists some real 

number   𝐊 ∈ (𝟎, 𝟏)   for which the equality   𝐥𝐢𝐦
𝐧 →∞

{𝐞𝐧+𝟏/𝐞𝐧} = 𝐊   holds.   If   𝐥𝐢𝐦
𝐧 →∞

{𝐞𝐧+𝟏/𝐞𝐧} = 𝟏    

or   𝐥𝐢𝐦
𝐧 →∞

{𝐞𝐧+𝟏/𝐞𝐧} = 𝟎    is satisfied, then the convergence is sub-linear or super-linear, respectively. 

If both   𝐥𝐢𝐦
𝐧 →∞

{𝐞𝐧+𝟏/𝐞𝐧} = 𝟏     and   𝐥𝐢𝐦
𝐧 →∞

{|𝐮𝐧+𝟐 − 𝐮𝐧+𝟏|/|𝐮𝐧+𝟏 − 𝐮𝐧|} = 𝟏   hold, then it is said that 

the sequence (7.4) with   𝐬 = 𝟏   is converging logarithmically to   𝐮∗ .   The rate of convergence will 

be of order  𝐩 ,   where   𝐩 ≥ 𝟏   is an integer, when the relationship   𝐥𝐢𝐦
𝐧 →∞

{𝐞𝐧+𝟏/(𝐞𝐧)𝐩} = 𝐊    is 

satisfied.  

 

                                                                                                                                                              ∎ 
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In the case of linear convergence the error   𝐞𝐧+𝟏   will become approximately  𝐊    times smaller than 

the error   𝐞𝐧   when   𝐧   is sufficiently large. The sequence (7.2) with   𝐬 = 𝟏   is similar to a geometric 

sequence with a common ratio   𝐊   when it converges linearly. It is clear that the convergence becomes 

slow when   𝐊   is approaching   𝟏 .   The  sub-linear convergence may be very slow.   

 

Several examples are given below. 

 

 

Example 7.1: Consider a smooth function   𝐟:  [𝐚, 𝐛]  → [𝐚, 𝐛]   with   𝐌 ≝ 𝐦𝐚𝐱
𝐮∈[𝐚,𝐛]

{|𝐟′|} < 𝟏 .   Then 

according to Banach’s fixed point theorem, see Banach (1922), this function has a unique fixed point   

𝐮∗ ,   which can be found by applying a simple iterative process   𝐮𝐧+𝟏 = 𝐟(𝐮𝐧)   for   𝐧 = 𝟏, 𝟐, … ,   

starting with an arbitrary real number   𝐮𝟎 ∈ [𝐚, 𝐛] .   It can be shown that the convergence rate of this 

iterative process is linear. 

 

The following relationship, based on the application of a truncated Taylor expansion, obviously holds 

for some given   𝛇 = 𝛇(𝐮) ∈ [𝐚, 𝐮]: 
 

 

(𝟕. 𝟖)       𝐟(𝐮) =  𝐟(𝐮∗) + 𝐟′(𝐮∗)(𝐮 − 𝐮∗)  +  
𝐟′′(𝛇)

𝟐!
(𝐮 − 𝐮∗)𝟐    .   

 

 

By substituting   𝐮    with   𝐮𝐧   we can obtain: 

 

 

(𝟕. 𝟗)       𝐟(𝐮𝐧) =  𝐟(𝐮∗) + 𝐟′(𝐮∗)(𝐮𝐧 − 𝐮∗)  + 
𝐟′′(𝛇)

𝟐!
(𝐮𝐧 − 𝐮∗)𝟐    .   

 

 

Apply here the relations    𝐮𝐧+𝟏 = 𝐟(𝐮𝐧)   and    𝐮∗ = 𝐟(𝐮∗)   to obtain: 

 

 

(𝟕. 𝟏𝟎)       
𝐮𝐧+𝟏 − 𝐮∗

𝐮𝐧 − 𝐮∗
=  𝐟′(𝐮∗)  +  

𝐟′′(𝛇)

𝟐!
(𝐮𝐧 − 𝐮∗)    .   

 

 

It is clear that 

 

 

(𝟕. 𝟏𝟏)      𝐥𝐢𝐦
𝐧→∞

{
𝐮𝐧+𝟏 − 𝐮∗

𝐮𝐧 − 𝐮∗
}  = 𝐥𝐢𝐦

𝐧→∞
{𝐟′(𝐮∗)  +  

𝐟′′(𝛇)

𝟐!
(𝐮𝐧 − 𝐮∗)}     .   

 

 

The second term on the right-hand-side of (7.11) tends to zero, while the first one is constant. Therefore, 

we have 

 



Zlatev, Dimov, Faragó and Havasi: Practical Aspects of the Richardson Extrapolation 

 

 

 

308 

 

 

(𝟕. 𝟏𝟐)      𝐥𝐢𝐦
𝐧→∞

{
𝐮𝐧+𝟏 − 𝐮∗

𝐮𝐧 − 𝐮∗
}  = 𝐟′(𝐮∗)    .   

 

 

It is clear now that the following relationship can be obtained from (7.12): 

 

 

(𝟕. 𝟏𝟑)      𝐥𝐢𝐦
𝐧→∞

{|
𝐮𝐧+𝟏 − 𝐮∗

𝐮𝐧 − 𝐮∗
|}  = |𝐟′(𝐮∗)|    .   

 

 

Therefore the convergence is linear because   |𝐟′(𝐮∗)| ≤ 𝐌 < 𝟏 .         

 

                                                                                                                                                              ∎ 
 

 

 

Example 7.2: Consider the sequence defined by   𝐮𝐧 = 𝟏/𝐧   for   𝐧 = 𝟏 , 𝟐, …  , .   It is clear that  

𝐥𝐢𝐦
𝐧→∞

{𝐮𝐧}  = 𝟎   and   𝐥𝐢𝐦
𝐧→∞

{𝐮𝐧+𝟏/𝐮𝐧}  = 𝟏 .   This means that the convergence is only sub-linear. 

Furthermore, it is easy to show that   𝐥𝐢𝐦
𝐧→∞

{|𝐮𝐧+𝟐 − 𝐮𝐧+𝟏|/|𝐮𝐧+𝟏 − 𝐮𝐧|}  = 𝟏 , which shows that the 

sequence   𝐮𝐧 = 𝟏/𝐧    converges logarithmically. 

 

                                                                                                                                                              ∎ 
 

 

Example 7.3: Consider Example 7.1 with the additional assumption that  𝐟′(𝐮∗) = 𝟎 .  Use the 

equality: 

 

 

(𝟕. 𝟏𝟒)       𝐟(𝐮) =  𝐟(𝐮∗) + 𝐟′(𝐮∗)(𝐮 − 𝐮∗)  + 
𝐟′′(𝐮∗)

𝟐!
(𝐮 − 𝐮∗)𝟐   +  

𝐟′′′(𝛇)

𝟑!
(𝐮 − 𝐮∗)𝟑    .   

 

 

Substitute   𝐮    with   𝐮𝐧 ,   𝐟(𝐮𝐧)   with   𝐮𝐧+𝟏    and    𝐟(𝐮∗)   with   𝐮∗   to obtain:      

 

 

(𝟕. 𝟏𝟓)       𝐮𝐧+𝟏 =   𝐮∗ +
𝐟′′(𝐮∗)

𝟐!
(𝐮𝐧 − 𝐮∗)𝟐  +  

𝐟′′′(𝛇)

𝟑!
(𝐮𝐧 − 𝐮∗)𝟑    .   

 

 

Simple transformations lead to the relations: 

 

 

(𝟕. 𝟏𝟔)      𝐥𝐢𝐦
𝐧→∞

{|
𝐮𝐧+𝟏 − 𝐮∗

(𝐮𝐧 − 𝐮∗)𝟐
|}  =

|𝐟′′(𝐮∗)|

𝟐
≤

𝐌

𝟐
    ,   
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which show that we have a second-order (quadratic) convergence in this example. 

 

                                                                                                                                                              ∎ 
 

 

 

 

 

7.1.3. The Aitken scheme and the improvement made by Steffensen  

 

Assume again that (7.1) is a scalar equation, i.e.   𝐬 = 𝟏 ,   and consider the sequence (7.2). Assume 

furthermore that the convergence is linear, which means, according to Definition 7.1, that the 

relationship   𝐥𝐢𝐦
𝐧 →∞

{(𝐮𝐧+𝟏 − 𝐮∗)/(𝐮𝐧 − 𝐮∗)} = 𝐊   holds for some value of  𝐊   with  |𝐊| ∈ (𝟎, 𝟏) .  

This means that we can expect that the two relationships   

 

 

(𝟕. 𝟏𝟕)      
𝐮𝐧+𝟏 − 𝐮∗

𝐮𝐧 − 𝐮∗
 ≈ 𝐊          and         

𝐮𝐧+𝟐 − 𝐮∗

𝐮𝐧+𝟏 − 𝐮∗
 ≈ 𝐊  

 

 

hold for sufficiently large values of   𝐧 ,  which implies that 

 

 

(𝟕. 𝟏𝟖)      
𝐮𝐧+𝟏 − 𝐮∗

𝐮𝐧 − 𝐮∗
 ≈  

𝐮𝐧+𝟐 − 𝐮∗

𝐮𝐧+𝟏 − 𝐮∗
            ⇒          𝐮∗ ≈   

𝐮𝐧𝐮𝐧+𝟐 − (𝐮𝐧+𝟏)𝟐

𝐮𝐧+𝟐 − 𝟐𝐮𝐧+𝟏 + 𝐮𝐧
  .   

 

 

Then a new approximation   �̃�𝐧  can be defined by setting: 

 

 

(𝟕. 𝟏𝟗)     �̃�𝐧 ≝   
𝐮𝐧+𝟐𝐮𝐧 − (𝐮𝐧+𝟏)𝟐

𝐮𝐧+𝟐 − 𝟐𝐮𝐧+𝟏 + 𝐮𝐧
   .  

 

 

Let us introduce the operators: 

 

 

(𝟕. 𝟐𝟎)     ∆𝐮𝐧 =  𝐮𝐧+𝟏 −  𝐮𝐧           and         ∆𝟐𝐮𝐧 =  ∆(∆𝐮𝐧) =  𝐮𝐧+𝟐 − 𝟐𝐮𝐧+𝟏 + 𝐮𝐧  .     
 

 

Then simple transformations lead to the following expression for   �̃�𝐧 : 

 

 

(𝟕. 𝟐𝟏)     �̃�𝐧 =  𝐮𝐧+𝟏 −
(∆𝐮𝐧+𝟏)(∆𝐮𝐧)

∆𝟐𝐮𝐧
  .     
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The two equalities (7.19) and (7.21) will produce the same results when the calculations are carried out 

in exact arithmetic, but on computers (7.21) will often produce more accurate and more reliable results, 

because it is less sensitive to rounding errors. 

 

Two alternative versions of (7.21) can also be introduced and used: 

 

 

(𝟕. 𝟐𝟐)     �̃�𝐧 =  𝐮𝐧 −
(∆𝐮𝐧)𝟐

∆𝟐𝐮𝐧
                  and               �̃�𝐧 =  𝐮𝐧−𝟏 −

(∆𝐮𝐧)(∆𝐮𝐧−𝟏)

∆𝟐𝐮𝐧
  .     

 

 

The algorithm for calculating improved approximations that is based on any of the formulae in (7.21) 

and (7.22) was proposed by A. Aitken in 1926, see Aitken (1926). The fact that this algorithm is 

converging faster is clear from the following theorem proved in Aitken (1926): 

 

 

Theorem 7.1: Assume that the convergence of the sequence (7.2) is linear, i.e. assume that   

𝐥𝐢𝐦
𝐧 →∞

{|𝐮∗ − 𝐮𝐧+𝟏|/|𝐮∗ − 𝐮𝐧|} = 𝐊  with some 𝐊 ∈ (𝟎, 𝟏). Then the sequence   {�̃�𝐧}𝐧=𝟎
∞    defined in 

(7.22) converges to the same limit  𝐮∗  and the rate of convergence is super-linear, which means that 

𝐥𝐢𝐦
𝐧 →∞

{|𝐮∗ − �̃�𝐧+𝟏|/|𝐮∗ − �̃�𝐧|} = 𝟎 . 

 

                                                                                                                                                            ∎ 
 

 

Remark 7.1: The scheme, proposed by Takakazu Seki in the seventeenth century and discussed 

shortly in the beginning of this chapter, is obviously an Aitken process; compare (7.6) with (7.19). 

 

                                                                                                                                                            ∎ 
 

 

The Aitken scheme can be applied in conjunction with the fixed point methods discussed in Example 

7.2. Consider again the equation   𝐮 = 𝐟(𝐮)   with   𝐮 ∈ [𝐚, 𝐛]   and with    𝐌 ≝ 𝐦𝐚𝐱
𝐮∈[𝐚,𝐛]

{𝐟′} < 𝟏 .  

Assume that the solution of this equation is  𝐮∗ .  Consider also the sequence obtained by using the 

recurrent relationship   𝐮𝐧+𝟏 = 𝐟(𝐮𝐧)   for   𝐧 = 𝟏, 𝟐, … ,   starting with an arbitrary   𝐮𝟎 ∈ [𝐚, 𝐛] .  
Since the sequence   {𝐮𝐧}𝐧=𝟎

∞    is linearly convergent to the solution  𝐮∗ ,  the Aitken process defined 

by any of the relationships in (7.19), (7.21) and (7.22) will in general accelerate the convergence. 

However, this will not always be the case. Example 7.3 shows that the convergence of the sequence   

{𝐮𝐧}𝐧=𝟎
∞   to  𝐮∗   will be quadratic in the case  𝐟(𝐮∗) = 𝟎 .  Therefore, the Aitken process will not 

accelerate the convergence in this case.  

 

Steffensen’s method (Steffensen, 1950) is a combination of the fixed-point iteration and the Aitken 

method. The algorithm can be introduced in the following way. Start with an arbitrary real number   𝐮𝟎    

and calculate   𝐮𝟏 = 𝐟(𝐮𝟎)    and    𝐮𝟐 = 𝐟(𝐮𝟏)   by using the Aitken scheme.  Then a new  and better 

approximation   �̃�𝟎   can be calculated by using  the three approximations   𝐮𝟎 ,   𝐮𝟏   and  𝐮𝟐   and the 

formula    �̃�𝟎 =  𝐮𝟎 − (𝐮𝟏 −  𝐮𝟎)𝟐/(𝐮𝟐 − 𝟐𝐮𝟏 +  𝐮𝟎) .  This new value can then be applied to restart 
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the Aitken scheme by using the three approximations. More precisely perform the following three 

actions: (a) denote    𝐯𝟎 = �̃�𝟎    and calculate    𝐯𝟏 = 𝐟(𝐯𝟎)   and   𝐯𝟐 = 𝐟(𝐯𝟏) ,  (b)   compute a new 

Aitken approximation by using:   �̃�𝟎 =  𝐯𝟎 − (𝐯𝟏 −  𝐯𝟎)𝟐/(𝐯𝟐 − 𝟐𝐯𝟏 +  𝐯𝟎)  and (c) set  �̃�𝟏 =  �̃�𝟎 .  The 

same process can be continued in a quite similar manner: for   𝐢 = 𝟏 , 𝟐 , …  perform the three actions: 

(A) denote    𝐯𝟎 = �̃�𝐢    and calculate    𝐯𝟏 = 𝐟(𝐯𝟎)   and   𝐯𝟐 = 𝐟(𝐯𝟏) ,  (B)   compute a new Aitken 

approximation by using:   �̃�𝟎 =  𝐯𝟎 − (𝐯𝟏 −  𝐯𝟎)𝟐/(𝐯𝟐 − 𝟐𝐯𝟏 +  𝐯𝟎)  and (C) set  �̃�𝐢+𝟏 =  �̃�𝟎 .   

 

The convergence of the numerical algorithm, obtained as sketched above, is in general quadratic, but 

for some special problems, see the example given below, could be even higher.  

 

It is worthwhile to compare qualitatively the Steffensen method that has been described above with the 

well-known Newton method (see Chapter 4). Both algorithms lead to a quadratic convergence. 

Function  𝐟  must be three times continuously differentiable in order to achieve the quadratic 

convergence when the Steffensen method is used, while the existence of a continuous second derivative 

of this function is sufficient when the Newton method is used. One function evaluation and one 

derivative calculation per iteration are needed when the Newton method is used, while two functions 

evaluations and some more complex algebraic computations are used at every iteration when the 

Steffensen method is used. The fact that no derivative evaluation is needed when the Steffensen method 

is used can be considered as an advantage of this method.  

 

A simple numerical example is given below. 

 

 

Example 7.5: Consider the problem of finding the unique fixed point of the trigonometric function  

𝐟(𝐮) = 𝐜𝐨𝐬(𝐮)  in the interval  [𝟎, 𝟏] .  The problem has been solved by  

 

(a) using directly the fixed-point iteration,  

 

(b) applying the Aitken scheme  

 

and  

 

(c) using the Steffensen method.   

 

The starting approximation was    𝐮𝟎 = 𝟎. 𝟓 .  A reference solution   𝐮𝐫𝐞𝐟    was calculated by using 

fixed-point iterations until the difference between two successive approximations became  

|𝐮𝐢+𝟏 − 𝐮𝐢| ≤ 𝟏𝟎−𝟑𝟎 .  This requirement was satisfied for   𝐢 = 𝟏𝟕𝟒 .   It must be mentioned here that 

extended (quadruple) precision was used in the calculation on the computer used.   

 

The reference solution found in this way was   𝐮𝐫𝐞𝐟 = 𝟎. 𝟕𝟑𝟗𝟎𝟖𝟓𝟏𝟑𝟑𝟐𝟏𝟓𝟏𝟔𝟎𝟔𝟒𝟏𝟔𝟓𝟓𝟑𝟏𝟐𝟎𝟖𝟕𝟕 .   

 

After that the three methods were run until the difference between the current approximation and the 

reference solution became less (in absolute value) than   𝟏𝟎−𝟐𝟎  or, in other words, until the inequality   

|𝐮𝐫𝐞𝐟 − 𝐮𝐢| < 𝟏𝟎−𝟐𝟎   was satisfied, which happened after   𝟏𝟏𝟓 ,   𝟓𝟐    and  𝟒  iterations for the fixed-

point algorithm, the Aitken scheme and the Steffensen method respectively.    

 

Numerical results are given in Table 7.1.   
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No. 

Fixed-point iteration Aitken algorithm Steffensen method 

Calc. values Accuracy Rate Calc. values Accuracy Rate Calc. values Accuracy Rate 

  0 0.500000000000000 2.4E-01 - 0.731385186382581 7.7E-03 - 0.7313851863825817 7.7E-03 - 

  1 0.877582561890372 3.7E-01 0.633 0.736086691713016 3.0E-03 2.568 0.7390763403695222 8.8E-06 8.8E+02 

  2 0.639012494165259 2.3E-01 1.583 0.737652871396399 1.4E-03 2.094 0.7390851332036611 1.1E-11 7.6E+05 

  3 0.802685100682334 1.6E-01 1.458 0.738469220876263 6.2E-04 2.325 0.7390851332151606 2.2E-23 5.8E+11 

  4 0.694778026788006 1.0E-01 1.517 0.738798065173590 2.9E-04 2.145    

  5 0.768195831282016 7.3E-02 1.470 0.738957710941417 1.3E-04 2.253    

  6 0.719165445942419 4.9E-02 1.497 0.739026560427970 5.9E-05 2.175    

  7 0.752355759421527 3.3E-03 1.477 0.773905880831365 2.6E-05 2.225    

  8 0.730081063137823 2.2E-02 1.490 0.739073115644591 1.2E-05 2.191    

  9 0.735006309014843 1.5E-02 1.481 0.739079703326153 5.4E-06 2.213    

10 0.735006309014843 1.0E-02 1.483 0.739082662515195 2.5E-06 2.198    

11 0.741826522643245 6.8E-03 1.483 0.739084014267376 1.1E-06 2.208    

12 0.737235725442231 4.5E-03 1.486 0.739084624843225 5.1E-07 2.201    

13 0.740329651878263 3.0E-03 1.484 0.739084902738891 2.3E-07 2.206    

14 0.738246238332233 2.0E-03 1.485 0.773908502857531 1.0E-07 2.203    

15 0.739649962769661 1.4E-03 1.484 0.73908508575306 4.7E-08 2.205    

16 0.738704539356983 9.4E-04 1.485 0.73908511167342 2.2E-08 2.203    

17 0.739341452281210 6.3E-04 1.484 0.73908512344226 9.8E-09 2.204    

18 0.738912449332103 4.2E-04 1.485 0.73908512878014 4.4E-09 2.204    

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 
   

52 0.739085132962136 6.3E-10 1.485 0.739085133215160 9.5E-21 2.203    

⁞ ⁞ ⁞ ⁞       
115 0.739085133215160 9.7E-21 1.485       

Table 7.1 

Calculations performed with three numerical algorithms. Extended (quadruple) precision is used (this means that the actual 

computations are carried out by using 𝟑𝟐 significant digits, but the calculated approximations are given in the table with 

𝟏𝟓 significant digits). The absolute values of the difference between the calculated approximations and the reference 

solution are given in the columns under “Accuracy”. The ratios between two successive approximations are given in the 

columns under “Rate”. The calculations were carried out until the absolute value of the calculated approximation and the 

reference solution becomes less than 𝟏𝟎−𝟐𝟎. It was not possible to list all results for the first two methods in the above 

table, but the last approximations are given .     

 

 

 

7.1.4. Richardson Extrapolation for sequences of real numbers – an example  
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The results shown in Table 7.1 are telling us that both the Aitken scheme and the Steffensen method 

are accelerating the rate of convergence of the fixed-point iteration. However, it is not easy to predict 

by how much the rate of convergence will be increased. The application of the Richardson 

Extrapolation for accelerating the convergence of sequences of real numbers is giving us a means for 

the evaluation of the rate of convergence of the resulting new numerical procedures. 

 

Consider, as in Example 7.1, a sufficiently smooth function   𝐟(𝐮)    (i.e. we are assuming that all its 

derivatives up to some order     𝐩 ≥ 𝟏     exist and are continuous), where     𝐟: [𝐚, 𝐛]  →  ℝ    and    

𝐌 ≝ 𝐦𝐚𝐱
𝐮∈[𝐚,𝐛]

{𝐟′} < 𝟏 . Assume furthermore that   𝐮𝟎 ∈  (𝐚, 𝐛)   and that   𝐧𝟎   is some sufficiently large 

integer, such that   𝐮𝟎 ± 𝟏/𝐧 ∈  (𝐚, 𝐛)   when   𝐧 ≥ 𝐧𝟎 .   Form  two sequences the   𝐧’th   terms of 

which are defined by the following expressions:     

 

 

(𝟕. 𝟐𝟑)     
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇(𝒖𝟎)

𝟏
𝒏

  ,          𝒏 = 𝒏𝟎,  𝒏𝟎 + 𝟏 , …  ,                       

 

 

(𝟕. 𝟐𝟒)     
𝒇(𝒖𝟎) − 𝒇 (𝒖𝟎 −

𝟏
𝒏)

𝟏
𝒏

  ,          𝒏 = 𝒏𝟎, 𝒏 𝟎 + 𝟏 , …  .                   

 

 

It is clear that 

 

 

(𝟕. 𝟐𝟓)     𝒇 (𝒖𝟎 +
𝟏

𝒏
) = 𝒇(𝒖𝟎) +

𝟏

𝒏
𝒇′(𝒖𝟎) +

𝟏

𝟐𝒏𝟐
𝒇′′(𝒖𝟎) +

𝟏

𝟔𝒏𝟑
𝒇′′′(𝜻)                               

 

 

and hence we have 

 

 

(𝟕. 𝟐𝟔)     
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇(𝒖𝟎)

𝟏
𝒏

− 𝒇′(𝒖𝟎) =
𝟏

𝟐𝒏
𝒇′′(𝒖𝟎) + 𝑶 (

𝟏

𝒏𝟐
)  ,               

 

 

which means that the following two relationships hold: 

 

 

(𝟕. 𝟐𝟕)    𝒍𝒊𝒎
𝒏→∞

{
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇(𝒖𝟎)

𝟏
𝒏

− 𝒇′(𝒖𝟎)} = 𝟎 ,     𝒍𝒊𝒎
𝒏→∞

{
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇(𝒖𝟎)

𝟏
𝒏

}  = 𝒇′(𝒖𝟎) .    
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The following definition is useful for the presentation of the results in the remaining part of this section: 

 

 

Definition 7.2: The convergence of the sequence of real numbers   {𝐟(𝐮𝐧)}𝐧=𝟎
∞    to the limit   𝐟(𝐮∗)   is 

of order   𝐩 ≥ 𝟏   if the inequality   |𝐟(𝐮𝐧) − 𝐟(𝐮∗)| ≤ 𝐌𝟐 /𝐧𝐩 ,   where   𝐌𝟐   is a constant, holds for   

∀ 𝐧 . 

 

                                                                                                                                                              ∎ 
 

 

We can obtain from (7.26) the following inequality (with some constant   𝐌𝟐   that does not depend on   

𝐧 ),  which shows that the convergence of the sequence defined by (7.23)  to   𝐟′(𝐮𝟎)   is linear: 

 

 

(𝟕. 𝟐𝟖)     |
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇(𝒖𝟎)

𝟏
𝒏

− 𝒇′(𝒖𝟎)| ≤
𝑴𝟐

𝒏
  .                

 

 

Similar arguments can be used to show that the sequence defined by (7.24) converges linearly to   

𝐟′(𝐮𝟎) .   More precisely the following inequality holds too with some constant   𝐌𝟐 ,   which does not 

depend on   𝐧   and is not necessarily equal to that in (7.28): 

 

 

(𝟕. 𝟐𝟗)     |
𝒇(𝒖𝟎) − 𝒇 (𝒖𝟎 −

𝟏
𝒏)

𝟏
𝒏

− 𝒇′(𝒖𝟎)| ≤
𝑴𝟐

𝒏
 .            

 

 

The above analysis shows that we have two sequences of real numbers, (7.23) and (7.24), both of them 

converging linearly to   𝐟′(𝐮𝟎) .   Let us create now a third sequence, each term of which is the sum of 

the corresponding terms of the sequences (7.23) and (7.24): 

 

 

(𝟕. 𝟑𝟎)     
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇 (𝒖𝟎 −

𝟏
𝒏)

𝟐
𝒏

 ,        𝒖𝟎 ±
𝟏

𝒏
 ∈  [𝒂, 𝒃] ,        𝒏 = 𝒏𝟎,  𝒏𝟎 + 𝟏 , …  .                     

 

 

Transformations, as those performed above, applied in connection with the sequence (7.23), will give: 

 

 

(𝟕. 𝟑𝟏)     𝒇 (𝒖𝟎 +
𝟏

𝒏
) = 𝒇 (𝒖𝟎 −

𝟏

𝒏
) +

𝟐

𝒏
𝒇′ (𝒖𝟎 +

𝟏

𝒏
) +

𝟏

𝟑𝒏𝟑
𝒇′′′(𝒖𝟎) +

𝟏

𝟏𝟐𝟎𝒏𝟓
[𝒇𝒗(𝜻𝟏) + 𝒇𝒗(𝜻𝟐)] , 
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and 

 

 

(𝟕. 𝟑𝟐)     
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇 (𝒖𝟎 +

𝟏
𝒏)

𝟐
𝒏

− 𝒇′(𝒖𝟎) =
𝟏

𝟔𝒏𝟐
𝒇′′′(𝒖𝟎) + 𝑶 (

𝟏

𝒏𝟒
)  .                    

 

 

If we assume that function   𝐟   is sufficiently smooth (i.e. in this particular case if it is continuously 

differentiable up to order five), then there exists a constant   𝐌𝟑   such that the following inequality 

holds for sufficiently large values of   𝐧 : 

 

 

(𝟕. 𝟑𝟑)    | 
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇 (𝒖𝟎 +

𝟏
𝒏)

𝟐
𝒏

− 𝒇′(𝒖𝟎)| ≤
𝑴𝟑

𝒏𝟐
  ,                 

 

 

which means that it is possible to obtain a sequence, the rate of convergence of which is two, by 

combining in an appropriate manner two sequences, which are only linearly convergent. 

 

Higher rates of convergence can also be achieved. For example, it can be shown (by using the same 

approach as that used above) that the rate of convergence of the sequence given below is four: 

 

 

(𝟕. 𝟑𝟒)     𝒇(�̿�𝒏) =  
−𝒇 (𝒖𝟎 +

𝟐
𝒏) + 𝟖𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝟖𝒇 (𝒖𝟎 −

𝟏
𝒏) + 𝒇 (𝒖𝟎 +

𝟐
𝒏)

𝟏𝟐
𝒏

  ,                       

 

                                      𝒖𝟎 ±
𝟏

𝒏
 ∈  [𝒂, 𝒃]     ⋀     𝒖𝟎 ±

𝟐

𝒏
 ∈  [𝒂, 𝒃] ,        𝒏 = 𝒏𝟎,  𝒏𝟎 + 𝟏 , …  .                     

 

 

Richardson Extrapolation can be applied in the efforts to predict better the behaviour of the 

improvement of the convergence rate. It is convenient here to introduce the same kind of notation as 

that used in the previous chapters of this book.  

 

We shall first introduce the following two definitions: 

 

 

(𝟕. 𝟑𝟓)     𝒘𝒏 ≝
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇(𝒖𝟎)

𝟏
𝒏

   ,         𝒛𝒏 ≝
𝒇 (𝒖𝟎 +

𝟐
𝒏) − 𝒇(𝒖𝟎)

𝟐
𝒏

 .                          
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It should be noted that the first sequence in (7.35) is in fact the sequence defined in (7.23), the rate of 

convergence of which is one. It can easily be shown (by using after the second term Taylor expansions 

of function   𝐟 )   that the rate of convergence of the second sequence in (7.35) is also one.  

 

Form now, as in the previous chapters, the Richardson Extrapolation for the case where the order of 

convergence   𝐩   is equal to one: 

 

 

(𝟕. 𝟑𝟔)     𝒚𝒏 ≝ 𝟐𝒘𝒏 − 𝒛𝒏 = 𝟐
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇(𝒖𝟎)

𝟏
𝒏

−
𝒇 (𝒖𝟎 +

𝟐
𝒏) − 𝒇(𝒖𝟎)

𝟐
𝒏

  ,                   

 

 

(𝟕. 𝟑𝟕)     𝒚𝒏 =
−𝒇 (𝒖𝟎 +

𝟐
𝒏) + 𝟒𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝟑𝒇(𝒖𝟎)

𝟐
𝒏

 .                                     

 

 

It can be shown, by applying truncated (after the fifth term) expansions in Taylor series, that the 

Richardson Extrapolation is giving a sequence the order of convergence of which is two. Thus, the 

convergence is accelerated (by order at least equal to one) when the Richardson Extrapolation is used. 

 

Consider now two other sequences of real numbers: 

 

 

(𝟕. 𝟑𝟖)     𝒘𝒏 =  
𝒇 (𝒖𝟎 +

𝟏
𝒏) − 𝒇 (𝒖𝟎 −

𝟏
𝒏)

𝟐
𝒏

         ∧         𝒛𝒏 =  
𝒇 (𝒖𝟎 +

𝟐
𝒏) − 𝒇 (𝒖𝟎 −

𝟐
𝒏)

𝟒
𝒏

   .                 

 

 

Since the order of convergence for these two sequence is   𝐩 = 𝟐 ,   it is clear that the order of 

convergence of the sequence obtained by using the Richardson extrapolation: 

 

 

(𝟕. 𝟑𝟗)     𝒚𝒏 =  
𝟒𝒘𝒏 −    𝒛𝒏

𝟑
              

 

 

will be   𝐩 > 𝟐 .   It can easily be verified that   𝐲𝐧   is actually equal to   𝐟(�̿�𝐧)   and, thus, the order of 

convergence in this special case is not   𝐩 = 𝟑    as usual,   but   𝐩 = 𝟒   due to the cancellation of the 

terms containing the third derivatives of   𝐟   in the Taylor expansion given in (7.31). 
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7.2. Application of the Richardson Extrapolation to numerical integration 
 

In this section, we shall discuss the use of the Romberg method, Romberg (1955), for calculating 

approximations of the integral: 

 

 

(𝟕. 𝟒𝟎)     𝑰(𝒇) =  ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂

 ,      𝒂 ∈ ℝ ,      𝒃 ∈ ℝ ,     𝒂 < 𝒃 ,     𝒙 ∈ [𝒂, 𝒃] ,     𝒇: [𝒂, 𝒃]  →  ℝ .        

 

 

The Romberg method is essentially an application of the Richardson Extrapolation to the Composite 

Trapezoidal Rule (see, for example, Burden and Faires, 2001).  

 

Assume that   𝐡 = (𝐛 − 𝐚)/𝐧 ,   𝐱𝐣 =  𝐚 + 𝐣𝐡 ,   𝐣 = 𝟏 , 𝟐, … , 𝐧 − 𝟏 ,   and   𝐟   is at least twice 

continuously differentiable in the interval   [𝐚, 𝐛] ,   i.e. that   𝐟 ∈ 𝐂𝟐 [𝐚, 𝐛] .   Then the Composite 

Trapezoidal Rule can be represented for some    𝛏 ∈ (𝐚, 𝐛)    by the following formula: 

 

 

(𝟕. 𝟒𝟏)     𝑰𝒏(𝒇) = ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂

=  
𝒉

𝟐
[𝒇(𝒂) + 𝟐 ∑ 𝒇(𝒙𝒋)

𝒏−𝟏

𝒋=𝟏

+  𝒇(𝒃)] +
(𝒃 − 𝒂)𝒇′′(𝝃)

𝟏𝟐
 𝒉𝟐   .             

 

 

The last term on the right-hand-side of (7.41) is the error of the integration method, but this term cannot 

be used directly for the evaluation of the error, because in the general case   𝛏   is not known. The 

formula (7.41) is nevertheless important, because it shows that the Composite Trapezoidal Rule has 

second order of accuracy. 

 

If we assume additionally that   𝐟 ∈ 𝐂∞ [𝐚, 𝐛] ,   then the Composite Trapezoidal Rule can be re-written 

as 

 

 

(𝟕. 𝟒𝟐)     𝑰𝒏(𝒇) = ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂

=  
𝒉

𝟐
[𝒇(𝒂) + 𝟐 ∑ 𝒇(𝒙𝒋)

𝒏−𝟏

𝒋=𝟏

+  𝒇(𝒃)] + ∑ 𝑲𝒊𝒉
𝟐𝒊

∞

𝒊=𝟏

  .                

 

 

The last formulation will be used in the derivation of the Romberg method as a successive 

implementation (in several consecutive steps) of the (repeated) Richardson Extrapolation in order to 

eliminate one term in the last sum in the right-hand-side at each step. Let us emphasize here that the 

coefficients    𝐊𝐢   in the sum of (7.42) depend on the derivatives of function   𝐟 , but not on the increment   

𝐡  . 

 

Formula (7.42) is giving us the exact value of the integral, but unfortunately it cannot be directly used 

in practice either (due to the presence of the infinite sum in the last term on the right-hand-side). 

Therefore, it is necessary to truncate somehow this sum when actual computations are to be carried 

out. It is reasonable to start with removing the whole infinite sum and then gradually to improve the 
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accuracy of the approximations by adding successively terms containing    𝐊𝟏 ,   𝐊𝟐 ,   𝐊𝟑 ,  … ,  𝐊𝐫   

and eliminating (one at a time) these constants. Moreover, the resulting truncated formulae can be used 

with different value of the parameter   𝐧  .    

 

Let us start by removing the whole infinite sum from (7.42) and by applying the resulting formula for   

𝐧 = 𝟐𝐤−𝟏,   𝐤 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, … , 𝐪 ,   It is convenient (and it is also very often used in the literature) to 

introduce the following notation for the resulting approximations:    𝐓𝟎𝟏 ,   𝐓𝟎𝟐 ,   𝐓𝟎𝟑 ,  … ,  𝐓𝟎𝐪 .       

 

Consider two successive approximations   𝐓𝟎𝐤   and   𝐓𝟎𝐤+𝟏 .   Then  the true value of the integral can 

be expressed either by    𝐓𝟎𝐤 + 𝐊𝟏(𝐡/𝟐𝐤)
𝟐

+ 𝐎(𝐡𝟒)    or by   𝐓𝟎𝐤+𝟏 + 𝐊𝟏(𝐡/𝟐𝐤+𝟏)
𝟐

+ 𝐎(𝐡𝟒) .   From 

these expressions for the value of the integral, it is clear that the order of accuracy of the following two 

approximations   𝐓𝟎𝐤 + 𝐊𝟏(𝐡/𝟐𝐤)
𝟐
    or   𝐓𝟎𝐤+𝟏 + 𝐊𝟏(𝐡/𝟐𝐤+𝟏)

𝟐
    is four. The problem is that the 

value of   𝐊𝟏   is unknown. Therefore, Richardson Extrapolation should be used to eliminate this 

constant. We shall neglect the rest term   𝐎(𝐡𝟒)   in the above two expressions and then form: 

 

 

(𝟕. 𝟒𝟑)     𝑻𝟏𝒌+𝟏 =
𝟒 [𝑻𝟎𝒌+𝟏 + 𝑲𝟏(𝒉/𝟐𝒌+𝟏)

𝟐
] − [𝑻𝟎𝒌 + 𝑲𝟏(𝒉/𝟐𝒌)

𝟐
]

𝟑
=

𝟒𝑻𝟎𝒌+𝟏 − 𝑻𝟎𝒌

𝟑
 .                  

 

 

It is seen that the constant    𝐊𝟏    is indeed eliminated and the new approximations   𝐓𝟏𝐤 ,   where   

𝐤 = 𝟏, 𝟐, … , 𝐪 ,  are of order four. 

       

Similar procedure can be used to obtain the next approximations. Consider now the following two 

successive approximations   𝐓𝟏𝐤   and   𝐓𝟏𝐤+𝟏 .   Then  the true value of the integral can be expressed 

either by    𝐓𝟏𝐤 + 𝐊𝟐(𝐡/𝟐𝐤)
𝟒

+ 𝐎(𝐡𝟔)    or by   𝐓𝟏𝐤+𝟏 + 𝐊𝟐(𝐡/𝟐𝐤+𝟏)
𝟒

+ 𝐎(𝐡𝟔) .   From these 

expressions for the value of the integral, it is clear that the order of accuracy of the following two 

approximations   𝐓𝟎𝐤 + 𝐊𝟐(𝐡/𝟐𝐤)
𝟒
    or   𝐓𝟎𝐤+𝟏 + 𝐊𝟐(𝐡/𝟐𝐤+𝟏)

𝟒
    is four. The problem is, again, that 

the value of the constant    𝐊𝟐   is unknown. Therefore, Richardson Extrapolation should be used again 

to eliminate this constant. We shall neglect the rest term   𝐎(𝐡𝟔)   in the above two expressions and 

then form: 

 

 

(𝟕. 𝟒𝟒)     𝑻𝟐𝒌+𝟏 =
𝟏𝟔 [𝑻𝟏𝒌+𝟏 + 𝑲𝟐(𝒉/𝟐𝒌+𝟏)

𝟒
] − [𝑻𝟏𝒌 + 𝑲𝟐(𝒉/𝟐𝒌)

𝟒
]

𝟏𝟓
=

𝟏𝟔𝑻𝟏𝒌+𝟏 − 𝑻𝟏𝒌

𝟏𝟓
 .                  

 

 

It is seen that the constant    𝐊𝟐    is indeed eliminated and the new approximations    𝐓𝟐𝐤 ,    where   

𝐤 = 𝟐, 𝟑, … , 𝐪 ,   are of order six. 

 

In the same way, approximations   𝐓𝟑𝐤   of order eight can be obtained.  

 

It is clear that the process can easily be continued if more accurate results are needed. Assume that the 

approximations  𝐓𝐣−𝟏𝐤   have been calculated for   𝐤 = 𝐣 − 𝟏 , 𝐣 , …  , 𝐪 .   Then the next column of 
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approximations, the approximations   𝐓𝐣𝐤   for   𝐤 = 𝐣, 𝐣 + 𝟏, … , 𝐪   can be obtained by applying the 

following formulae: 

 

 

(𝟕. 𝟒𝟓)     𝑻𝒋𝒌+𝟏 =
𝟒𝒋−𝟏𝑻𝒋−𝟏𝒌+𝟏 − 𝑻𝒋−𝟏𝒌

𝟒𝒋−𝟏 − 𝟏
 .                        

 

 

The Romberg table (see below) can be used to represent conveniently the approximations:  

 

 

 

 

 

𝐓𝟎𝟎      

𝐓𝟎𝟏 𝐓𝟏𝟏     

𝐓𝟎𝟐 𝐓𝟏𝟐 𝐓𝟐𝟐    

𝐓𝟎𝟑 𝐓𝟏𝟑 𝐓𝟐𝟑 𝐓𝟑𝟑   

𝐓𝟎𝟒 𝐓𝟏𝟒 𝐓𝟐𝟒 𝐓𝟑𝟒 𝐓𝟒𝟒  

𝐓𝟎𝟓 𝐓𝟏𝟓 𝐓𝟐𝟓 𝐓𝟑𝟓 𝐓𝟒𝟓 𝐓𝟓𝟓 

𝐓𝟎𝟔 𝐓𝟏𝟔 𝐓𝟐𝟔 𝐓𝟑𝟔 𝐓𝟒𝟔 𝐓𝟓𝟔 

𝐓𝟎𝟕 𝐓𝟏𝟕 𝐓𝟐𝟕 𝐓𝟑𝟕 𝐓𝟒𝟕 𝐓𝟓𝟕 

𝐓𝟎𝟖 𝐓𝟏𝟖 𝐓𝟐𝟖 𝐓𝟑𝟖 𝐓𝟒𝟖 𝐓𝟓𝟖 

Figure 7.1 

The Romberg table achieved when the Richardson 

Extrapolation is repeatedly applied in the calculation of 

approximations of the value of the integral given in 

formula (7.42). 

 

 

Example 7.6: Consider the problem of finding the value of the integral: 

 

 

(𝟕. 𝟒𝟔)     𝑰(𝒇) = ∫ 𝒆−𝒙𝟐
𝒅𝒙

𝟏

𝟎

                   

 

 

by using the Romberg method. 

 

                                                                                                                                                              ∎ 
 

 

 

This problem was solved in three steps.  
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Step 1: Calculations with the Composite Trapezoidal Rule were  performed during the first step for   

𝟒𝟏   different values of    𝐧 = 𝟐𝐤    with   𝐤 = 𝟎 , 𝟏 , …  , 𝟒𝟎   in order to calculate 

approximations   𝐓𝟎𝐤 .   The accuracy of the last of these   𝟒𝟏   approximations was 

approximately equal to   𝟏𝟎−𝟐𝟓 .  We proceeded by calculating, applying the Richardson 

Extrapolation, the quantities   𝐓𝟏𝐤   and continuing the calculations until the difference between 

two successive approximations became less (in absolute value) than   𝟏𝟎−𝟑𝟎 .   This 

requirement was satisfied for   𝐤 = 𝟐𝟏 .   The last of these   𝟐𝟏   approximations,   𝐓𝟏,𝟐𝟏   was 

declared as a reference solution.  

 

Step 2: The reference solution was used during the second step to evaluate the accuracy of the already 

calculated approximations and the rates of convergence.  

 

Step 3: During the third step, Richardson Extrapolation was used to calculate approximations   𝐓𝐢𝐤   for   

𝐢 = 𝟐 ,   𝟑 , 𝟒 , 𝟓 .  The calculations were continued, for each value of    𝐢 ,   until the difference   

|𝐓𝐢𝐤 − 𝐓𝐢𝐤−𝟏|   remained greater than   𝟏𝟎−𝟑𝟎 .  

 

 

The value of the reference solution is:   𝟎. 𝟕𝟒𝟔𝟖𝟐𝟒𝟏𝟑𝟐𝟖𝟏𝟐𝟒𝟐𝟕𝟎𝟐𝟓𝟑𝟗𝟗𝟒𝟔𝟕𝟒𝟑𝟔𝟏𝟑𝟏𝟕 .  

 

Results are shown in Table 7.2 –Table 7.5.      

 

 

 

𝐤 𝐓𝟎𝐤 𝐓𝟏𝐤 𝐓𝟐𝐤 𝐓𝟑𝐤 𝐓𝟒𝐤 𝐓𝟓𝐤 

  0 0.683939720585721    - - - - - 

  1 0.731370251828563 0.747180428909510 - - - - 

  2 0.742984097800381 0.746855379790987 0.746833709849752 - - - 

  3 0.745865614845695 0.746826120527466 0.746824169909898 0.746824018482281 - - 

  4 0.746584596788221  0.746824257435730 0.746824133229614 0.746824132647387 0.746824133095094 - 

  5 0.746764254652296  0.746824140606985 0.746824132818402 0.746824132811874 0.746824132812519 0.746824132812243 

  6 0.746809163637827 0.746824133299672 0.746824132812518 0.746824132812424 0.746824132812427 0.746824132812427 

  7 0.746820390541617  0.746824132842881 0.746824132812428 0.746824132812427 0.746824132812427 0.746824132812427 

  8 0.746823197246152  0.746824132814330 0.746824132812427 0.746824132812427 0.746824132812427  

  9 0.746823898920947 0.746824132812545 0.746824132812427 0.746824132812427   

10 0.746824074339562  0.746824132812434 0.746824132812427    

11 0.746824118194211  0.746824132812427     

12 0.746824129157873  0.746824132812427     

13 0.746824131898788       0.746824132812427     

14 0.746824132584017 0.746824132812427     

15 0.746824132755324 0.746824132812427     

16 0.746824132798151      

17 0.746824132808858      

18 0.746824132811534      

19 0.746824132812203      

20 0.746824132812371      

21 0.746824132812413      

22 0.746824132812423      

23 0.746824132812426      

24 0.746824132812426      

25 0.746824132812426      

26 0.746824132812427      

27 0.746824132812427      

28 0.746824132812427      

29 0.746824132812427      

30 0.746824132812427      

31 0.746824132812427      

32 0.746824132812427      
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Table 7.2 

Values of the integral (7.46) that are calculated by using the Romberg method. Extended (quadruple) precision is used (this 

means that the actual computations are carried out by using   𝟑𝟐   significant digits, but the calculated approximations are 

given in the table with   𝟏𝟓   significant digits). The calculations (excepting these used to calculate the results in the first 

column of the table) were carried out until the absolute value of the difference of the calculated approximation and the 

reference solution becomes less than   𝟏𝟎−𝟑𝟎 ,   but not all results are given in this table, because the rounded, to   𝟏𝟓   

significant digits, values are becoming quickly the same.  
 

 

 

 

 

 

 

 

 

𝐤 𝐓𝟎𝐤 𝐓𝟏𝐤 𝐓𝟐𝐤 𝐓𝟑𝐤 𝐓𝟒𝐤 𝐓𝟓𝐤 

  0 6.2884E-02 - - - - - 

  1 1.5454E-02 3.5630E-04 - - - - 

  2 3.8400E-03 3.1247E-05 9.5770E-06 - - - 

  3 9.5852E-04 1.9877E-06 3.7097E-08 1.1433E-07 - - 

  4 2.3954E-04 1.2462E-07 4.1719E-10 1.6504E-10 2.8267E-10 - 

  5 5.9878E-05 7.7946E-09 5.9751E-12 5.5212E-13 9.2926E-14 1.8329E-13 

  6 1.4969E-05 4.8725E-10 9.1314E-14 2.0786E-15 7.8405E-17 1.2355E-17 

  7 3.7423E-06 3.0454E-11 1.4189E-15 8.0460E-18 7.3962E-20 2.6086E-21 

  8 9.3557E-07 1.9034E-12 2.2139E-17 3.1358E-20 7.1614E-23 6.1516E-25 

  9 2.3389E-07 1.1896E-13 3.4580E-19 1.0944E-22 6.9787E-26 1.4884E-28 

10 5.8473E-08 7.4352E-15 5.4026E-21 4.7815E-25 6.8226E-29 7.4726E-32 

11 1.4618E-08 4.6470E-16 8.4415E-23 1.8682E-27 4.4970E-31  

12 3.6546E-09 2.9044E-17 1.3190E-24 7.3875E-30   

13 9.1364E-10 1.8152E-18 2.0610E-26 8.5906E-31   

14 2.2841E-10 1.1345E-19 3.2166E-28    

15 5.7102E-11 7.0908E-21 5.2778E-30    

16 1.4276E-11 4.4317E-22 1.0015E-31    

17 3.5689E-12 2.7698E-23     

18 8.9223E-13 1.7311E-24     

19 2.2306E-13 1.0820E-25     

20 5.5764E-14 6.7620E-27     

21 1.3941E-14 4.2266E-28     

22 3.4853E-15 2.6967E-29     

23 8.7131E-16 2.2999E-30     

24 2.1783E-16 6.3325E-31     

25 5.4457E-17      

26 1.3614E-17      

27 3.4036E-18      

28 8.5088E-19      

29 2.1271E-19      

30 5.3168E-20      

31 1.3282E-20      

32 3.3108E-21      

Table 7.3 

Accuracy achieved in computations of the integral (7.46) carried out by using the Romberg method.  Extended (quadruple) 

precision is used (this means that the actual computations are carried out by using   𝟑𝟐   significant digits, but the calculated 

approximations are given in the table with   𝟓   significant digits which is quite sufficient for this case). The calculations 

for   𝐓𝐢𝐤 ,   where   𝐢 = 𝟏 , 𝟐 , 𝟑 ,   𝟒 ,   𝟓  ,    were carried out until the absolute value of the calculated approximation 

and the reference solution becomes less than   𝟏𝟎−𝟑𝟎 ,   which means that no calculations were carried out for the white 

cells in the table.  
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Table 7.4 

Rates of convergence achieved in the calculations of values of the integral from (7.46) by using the Romberg method. 

Extended (quadruple) precision is used (this means that the actual computations are carried out by using   𝟑𝟐   significant 

digits, but the calculated approximations are given in the table with   𝟓   significant digits which is quite sufficient for this 

case). The calculations were carried out until the absolute value of the calculated approximation and the reference solution 

becomes less than    𝟏𝟎−𝟑𝟎 ,   which means that no calculations were carried out for the white cells in the table. The perfect 

values of the rates are:   𝟒 ,   𝟏𝟔 ,    𝟔𝟒 ,   𝟐𝟓𝟔  ,   𝟏𝟎𝟐𝟒    and   𝟒𝟎𝟗𝟔   respectively. 

 

𝐤 𝐓𝟎𝐤 𝐓𝟏𝐤 𝐓𝟐𝐤 𝐓𝟑𝐤 𝐓𝟒𝐤 𝐓𝟓𝐤 

  1 4.0692 - - - - - 

  2 4.0244 11.4026 - - - - 

  3 4.0062 15.7200 258.1588 - - - 

  4 4.0016 15.9498  88.9228 692.7455 - - 

  5 4.0004 15.9885  69.8215 298.9184 3041.8470 - 

  6 4.0001 15.9972  65.4341 265.6186 1185.1999 14835.9408 

  7 4.0000 15.9993  64.3573 258.3441 1060.0809   4736.1650 
  8 4.0000 15.9998  64.0892 256.5824 1032.7875  4240.5409 

  9 4.0000 16.0000  64.0223 256.1454 1026.1818 4133.1341 

10 4.0000 16.0000  64.0056 256.0364 1022.8802 1991.7539 

11 4.0000 16.0000  64.0011 255.9386   151.7120  

12 4.0000 16.0000  64.0004 252.8891   

13 4.0000 16.0000  63.9974   8.5995   

14 4.0000 16.0000  64.0740    

15 4.0000 16.0000  60.9448    

16 4.0000 16.0000   52.7000    

17 4.0000 16.0000     

18 4.0000 16.0000     

19 4.0000 15.9999     

20 4.0000 16.0009     

21 4.0000 15.9996     

22 4.0000 15.6724     

23 4.0000 11.7249     

24 4.0000   3.6320     

25 4.0000      

26 4.0000      

27 4.0000      

28 4.0000      

29 4.0000      

30 4.0000      

31 4.0000      

32 4.0000      
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𝐓𝐢𝐤 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 𝐑𝐞𝐬𝐮𝐥𝐭 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 𝐑𝐚𝐭𝐞 

𝐓𝟎𝟏 0.746584596788221549176776588169 2.3954E-04 - 

𝐓𝟏𝟐 0.746824140606985101991090205781 7.7946E-09 3.0731E+04 

𝐓𝟐𝟑 0.746824132812518339588049781742 9.1314E-14 8.5360E+04 

𝐓𝟑𝟒 0.746824132812427017353515777622 8.0460E-18 1.1349E+04 

𝐓𝟒𝟓 0.746824132812427025399539049872 7.1614E-23 1.1235E+05 

𝐓𝟓𝟔 0.746824132812427025399467435983 1.4884E-28 4.8116E+05 

Table 7.5 

Values of the integral calculated in the second diagonal of the Romberg method. Extended (quadruple) precision is used 

(this means that the actual computations are carried out by using   𝟑𝟐   significant digits) and all significant digits are given 

in the column under “Calculated Results”; the use of less significant digits was quite enough when accuracy results and 

rates of convergence were listed. It is demonstrated in this table that the convergence along the diagonals of the Romberg 

table is extremely fast. 
 

 

 

 

 

 

 

7.3. General conclusions related to the seventh chapter 
 

It has been shown in this chapter that the Richardson Extrapolation and some alternative approaches 

(the Aitken scheme and the Steffensen method) can successfully be applied to accelerate the 

convergence of sequences of real numbers. Such sequences can appear when iterative methods are used 

in the solution of algebraic and transcendental equations. To facilitate the explanations, the results were 

derived for the scalar case, but most of the results can be generalized for the case where systems of 

algebraic and/or transcendental equations are to be treated. 

 

It was also demonstrated that repeated Richardson Extrapolation is a very powerful approach in the 

attempts to increase the accuracy of the approximations to the values of integrals in the case where the 

Composite Trapezoidal Rule is the underlying method.  

 

 

 

 

7.4. Some research topics 
 

The following topics might lead to some very interesting and useful results: 

 

(A) Try to generalize some of the results presented in Section 7.1 for the case 

where   𝐬 > 𝟏 . 

 

(B) The results presented in Section 7.2 might be used with other methods for 

numerical integrations (different from the Composite Trapezoidal Rule). 
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Chapter 8 

 

General conclusions 

 
It was shown in the first four chapters of this book that the Richardson Extrapolation is a very general 

and powerful tool for improving the performance of time-dependent problems arising in many different 

areas of science and engineering. It can successfully be used both as a tool for improving the accuracy 

of the numerical results and for error control during the computational process. In this book we 

emphasized the fact that one should be very careful because the Richardson Extrapolation may lead to 

unstable computations. Precisely this happens when  the well-know and often used by scientists and 

engineers Trapezoidal Rule is combined with the Richardson Extrapolation. Therefore it is necessary 

to study carefully the stability properties of the combined method (the method for solving systems of 

ordinary differential equations when it is used together with the Richardson Extrapolation). This is 

normally very difficult. Different cases in which the stability properties are preserved are studied in the 

first four chapters. It is shown, in Chapter 2, that sometimes the application of the Richardson 

Extrapolation may result in new numerical methods with improved stability properties.   

 

The important for scientists and engineers problem of using splitting procedures is shortly discussed in 

Chapter 5. Some stability results for the sequential splitting procedure are treated there. 

 

There are two approaches of introducing the Richardson Extrapolation for partial differential equations 

(or systems of partial differential equations), which are studied in Chapter 6:  

 

(A) The first approach is based on the use of semi-discretization (discretization of the 

spatial derivatives) by applying either finite elements or finite differences. This leads 

to a transformation of the partial differential equation or the systems of partial 

differential equations into a system of ordinary differential equations. The methods 

from the first four chapters can after that be used in the application of the Richardson 

Extrapolation. This approach is very straight-forward, but it can successfully be used 

only when the truncation errors made when the spatial derivatives are discretized are 

much smaller than the errors due to the use of the selected numerical method for 

solving ordinary differential equations.  

 

(B) The second approach is based on a direct implementation of the Richardson 

Extrapolation to the partial differential equation or the system of partial differential 

equations. The solution of the problem of applying the Richardson Extrapolation in 

this case is much more difficult than the solution of the problem in the first approach. 

However, the second approach is much more robust when it is correctly implemented. 

 

The above analysis indicates that each of the approaches has advantages and drawbacks. The correct 

choice will in general depend very much on the particular problem that must be solved.  

 

Some results related to the applications of the Richardson Extrapolation and some other methods for 

accelerating the rate of convergence of sequences are treated in the first section of the seventh chapter. 
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The Romberg method for calculations of vales of integrals also is treated in the seventh chapter (in the 

second sections).  

 

At the end of each chapter, some research problems are listed. The hope is that the reader will be able 

to solve some of these problems if that is necessary for the solution of the particular problem which 

she or he has to handle. 
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DIRK Methods Diagonally Implicit Runge-Kutta Methods 

ERKMp Explicit Runge-Kutta Method of order p 

ERKMp+R Explicit Runge-Kutta Method of order p combined with the Richardson 
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FIRK Methods Fully Implicit Runge-Kutta Methods 

LM VSVFM Linear Multistep Variable Stepsize Variable formula Method 

ODEs Ordinary Differential Equations  

PDEs Partial Differential Equations 

PEC Methods Prediction-Evaluation-Correction Methods (used in relation to the linear 

multistep methods; indices denoting the order of the number of steps are also 

used in some cases) 

PECE Methods Prediction-Evaluation-Correction-Evaluation Methods (used in relation to the 

linear multistep methods; indices denoting the order or the number of steps are 
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RE Richardson Extrapolation 

UNI-DEM Unified Danish Eulerian Model (a large-scale air pollution model) 

VSVFM Variable Stepsize Variable Formula Method (used in relation to the linear 
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