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Abstract

In this article, we introduce a new object, a virtual quadratic space,

and its group of isometries. They are presented as natural generaliza-

tions of quadratic spaces and orthogonal groups. It is then shown that

by replacing quadratic spaces with virtual quadratic spaces, we can unify

certain enumerative properties of finite fields, without distinguishing be-

tween even and odd characteristics, such as the number of non-isomorphic

non-degenerate quadratic forms, and the order of groups of isometries.

1 Introduction

Quadratic forms over finite fields have different properties depending on whether
the characteristic of the field is 2 or not. However, several general statements
can be made without referencing the characteristic of the field. In particular,
in even dimension, the number of non-degenerate quadratic forms is 2 up to
isomorphism, and the number of elements in its group of isometries is a poly-
nomial in the number of elements of the field. However, when the dimension of
a quadratic space is odd, every bilinear form is degenerate in characteristic 2,
and the number of isometries for a non-degenerate quadratic form is different if
the characteristic is even.

Given a quadratic space (V,Q) and a subspace F ⊆ V , the group of isome-
tries that fix F are in a bijection with the isometries of (F⊥, Q|F⊥), provided
that the associated bilinear forms on V and F are non-degenerate. In charac-
teristic 2, this is only possible if dimF⊥ is even. However, we may still consider
pairs (V, F⊥) where we only assume that dimV is odd, and from 3.9, this gives
a natural generalization of quadratic spaces. Furthermore, the order of orthogo-
nal groups is given by a polynomial that does not depend on the characteristic,
as seen in 4.7.
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2 Quadratic spaces

Let us fix some field and denote it by K.

Definition 2.1. A quadratic space is a pair (V,Q) consisting of a vector

space and a quadratic form on it. It has an associated bilinear from defined

as B(x, y) = Q(x+ y)−Q(x)−Q(y). The radical of a quadratic form Q is the

set of vectors v such that Q(v + u) = Q(u), and it is denoted by RadQ. The

direct sum of two quadratic spaces (V,Q) and (V ′, Q′) is (V ⊕V ′, Q⊕Q′) such
that (Q⊕Q′)(v⊕ v′) = Q(v) +Q(v′). An isometry is a linear map ϕ : V → V
such that Q(ϕ(v)) = Q(v) for all v ∈ V . The group of isometries is denoted

by Iso(V ).

Definition 2.2. Let us denote the function u → B(v, u) by v∗. A bilinear form

is non-degenerate or regular if for every non-zero vector v ∈ V , the linear

function v∗ is non-zero. A quadratic form is non-degenerate if its associated

bilinear form is non-degenerate.

We need a few properties of hyperbolic spaces:

Definition 2.3. A hyperbolic space of dimension 2 is a pair (Σ, B) is such

that the bilinear form B takes the form B(u, v) = u1v2 + u2v1 in some basis.

A hyperbolic space of dimension 2k is the orthogonal direct sum of k hyperbolic

spaces of dimension 2 each.

Lemma 2.4. Assume V is a vector space with a non-degenerate bilinear form

B, and N < V is a subspace with B|N ≡ 0. Then there is a hyperbolic subspace

Σ = N ⊕ Ñ of dimension 2 dimN , such that N⊥ ∩ Σ = N .

Proof. We will construct the spaces Ñ and Σ recursively. Choose a vector u in
N . Since B is non-degenerate, there is a vector v such that B(u, v) = 1. Since
B|N ≡ 0, clearly v 6∈ N . Furthermore, Σ0 = 〈u, v〉 is such that B|Σ⊥

0

is non-

degenerate, hence we may apply the construction to V ′ := Σ⊥
0 andN ′ := N∩V ′,

unless N ′ = {0}, in which case we are done. The construction will give us Ñ ′

and Σ′ of dimension 2 dimN ′ = 2(dimN − 1), since N < u⊥ and u ∈ v⊥, and

we may choose Σ := Σ0 ⊕ Σ′, Ñ := 〈v〉 ⊕ Ñ ′.

The following lemma shows that in characteristic 2, one can not construct a
non-degenerate quadratic form in odd dimensions:

Lemma 2.5. Given a non-degenerate quadratic space (V,Q) in characteristic

2, its associated bilinear form gives (V,B) a hyperbolic space structure.

Proof. It can be checked that any quadratic space decomposes as the direct sum
of quadratic spaces of two kinds: those of the form Ax2 and A(x2 + xy+By2).
Since B(u, u) = 0 for any u in characteristic 2, the first kind may not appear in
the decomposition, while the second kind gives a hyperbolic space. For details,
see [2].

Since the dimension of a hyperbolic space is even, a non-degenerate quadratic
space must have even dimension.
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3 Virtual quadratic spaces

Definition 3.1. A virtual quadratic space is a tuple (V,Q,U) or (V, U) for
short, with U a subspace of a vector space V and Q a non-degenerate quadratic

form on V . Its dimension is dimU . An isometry of the virtual quadratic

space is an isometry of (V,Q) that fixes U⊥. The group of isometries is denoted

by Iso(V, U).

In general, we are only interested in the quadratic subspace (U,Q), and we
only use V as an aid in theorems. As such, we must establish whether such a
(V,Q) exists for a quadratic space (U,Q), and whether it is unique. First let us
look at the question of existence.

Proposition 3.2. Any quadratic space U can be embedded into some virtual

quadratic space (V, U).

Proof. Let us denote N := U ∩ U⊥. Since B|N ≡ 0, we shall embed N into a

hyperbolic space. Define V := Ñ ⊕ U where Ñ is isomorphic as a vector space
to N . We shall give Ñ ⊕N a hyperbolic space structure in the following way.
Let us choose a basis fi for N

∗ and the equivalent f̃i for Ñ
∗, and extend the fi

to U in an arbitrary manner. Now for ũ⊕ v ∈ V , with u ∈ N and v ∈ U , define
Q̃(ũ⊕ v) = Q(v)+

∑
f̃i(ũ)fi(v). It can be verified that this quadratic form has

non-degenerate associated bilinear form.

Uniqueness of V can of course not be guaranteed, but we may look for a
minimal virtual quadratic space, and show some type of uniqueness for that.
The following theorem shows what such a space looks like, and how we may
characterize this minimality.

Proposition 3.3. For any virtual quadratic space (V,Q,U) with associated

bilinear form B, there is a subspace U ≤ Vm ≤ V with B|Vm
non-degenerate,

such that U⊥ ∩ Vm ⊆ U . For such a subspace, Iso(V, U) = Iso(Vm, U). A

virtual quadratic space (V, U) is called minimal if U⊥ ⊆ U , and dimV =
dimU+dim(U ∩U⊥) only depends on Q|U for minimal virtual quadratic spaces.

Proof. We don’t actually need Q in the proof of the first statement, and may
only look at B. We will proceed by constructing the same space as in 3.2. Let
us fix N := U ∩ U⊥. Since B|N ≡ 0, by 2.4 we may embed N into a subspace

Σ = N ⊕ Ñ of dimension 2 dimN , and B|Σ is clearly non-degenerate, giving
Σ ∩ Σ⊥ = {0}.

We can see that U ∩Σ = N , since U ∩Σ ⊃ N by the definition of N and Σ,
and if u ∈ U ∩ Σ, then u ⊥ N , but u ∈ N⊥ ∩ Σ = N by the construction of Σ.
For similar reasons, U⊥ ∩Σ = N .

Therefore U decomposes as orthogonal subspaces N ⊕M with M = U ∩Σ⊥.
Furthermore, M ∩ M⊥ = {0}, since for all u ∈ M ⊆ U \ N , there is a v ∈ U
such that u 6⊥ v. Then v decomposes as vM ⊕ vN with vM ∈ M and vN ∈ N ,
and since u ⊥ vN , we have u 6⊥ vM ∈ M . Therefore B|M is non-degenerate.

Also, V decomposes as orthogonal subspaces M ⊕ M̂ ⊕Σ with M̂ = M⊥ ∩Σ⊥.
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Let us define Vm := U +Σ, which is M ⊕Σ as an orthogonal decomposition.
Clearly (Vm, U) is a virtual quadratic space, since (Vm, Q) is non-degenerate as
Vm ∩ V ⊥

m = {0}. Since U⊥ ∩ Σ = N ⊆ U , we have U⊥ ∩ (M ⊕ Σ) ⊆ U , and so
(Vm, U) is minimal.

Clearly dimVm = dimM + dimΣ = dimU + dimN . Given a virtual
quadratic space (V, U), the above construction gives a minimal subspace (Vm, U).

Since V decomposes as orthogonal subspaces M ⊕ M̂ ⊕ Σ, we get U⊥ = M⊥ ∩
N⊥ = (M̂ ⊕ Σ) ∩ (M ⊕ N ⊕ M̂) = M̂ ⊕ N . Then U ⊆ U⊥ if and only if

dim M̂ = 0 and V = Vm. Therefore the dimension formula holds for all minimal
spaces.

Finally, since U⊥ = M̂⊕N , Iso(V, U) fixes U⊥ ⊇ M̂ , and the action restricts

to M̂⊥, giving Iso(V, U) = Iso(M̂⊥, U ∩ M̂⊥) = Iso(Vm, U).

This proof tells us not only that a minimal virtual quadratic space exists, it
also shows us the structure it has, and we shall use the notations introduced in
this proof in other propositions as well.

However, since the theorem extends only the bilinear form to V , and in
characteristic 2 that does not define the quadratic form, the minimal virtual
quadratic space (V, U) containing U is still not unique. Fortunately, this is not
an issue, at least for the isometry groups, as seen from the following theorem.

Proposition 3.4. For any non-degenerate virtual quadratic space (V, U), the
group Iso(V, U) depends only on Q|U . In particular, if given two non-degenerate

virtual quadratic spaces (V,Q,U) and (V ′, Q′, U ′), with (U,Q|U ) and (U ′, Q′|U ′)
isomorphic as quadratic spaces, then there is a bijection between Iso(V, U) and

Iso(V ′, U ′).

Proof. Consider two virtual quadratic spaces (V, U) and (V ′, U ′) such that
Q|U ∼= Q′|U ′ . First we may assume that they are both minimal, as all such
spaces have a minimal subspace with an isometry group isomorphic to the
isometry group of the containing space, in which case dim V = dim V ′. We
may assume that V = V ′ and U = U ′. Then by introducing the difference
δQ = Q′ −Q, we get δQ|U ≡ 0.

If the characteristic is not 2, then two quadratic spaces are isomorphic if an
isomorphism of the vector spaces identifies their bilinear forms. By using the
notations of the previous proof, U decomposes as a direct sum of orthogonal
subspaces N ⊕ M , where N = U ∩ U⊥ and Σ is a hyperbolic subspace of
dimension 2 dimN containing N . Since the pair (V, U) is minimal, V = M ⊕Σ.
By introducing the analoguous symbols for the pair (V ′, U ′), all the components
are isomorphic, hence we can choose the isomorphism that sends V = M ⊕ Σ
to V ′ = M ′ ⊕Σ′ component-wise. Under this isomorphism, Q|V = Q′|V , so the
theorem becomes a trivial condition.

Let us look at the characteristic 2 case, where the associated bilinear form
is always hyperbolic by 2.5. Since B|U = B′|U ′ , we may fix an identification
between V and V ′ that extends the isometric map U → U ′ in a way such that
B = B′. Then the map δQ(x) := Q′(x)−Q(x) is an additive map.
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Let us choose an automorphism ϕ ∈ IsoQ(V, U). In order to prove that ϕ
is also in IsoQ′(V, U), it is sufficient to show that ϕ preserves the function δQ,
since then Q′(ϕ(x)) = Q(ϕ(x)) + δQ(ϕ(x)) = Q(x) + δQ(x) = Q′(x).

Since U⊥ is fixed under the automorphism ϕ, the scalar product functions
B(u, .) are preserved for all u ∈ U⊥, and in particular, the subspace U is pre-
served. Equivalently, the automorphism acts trivially on the quotient vector
space V/U , since for any x, assuming that δx := ϕ(x) − x 6∈ U , there is at
least one associated u ∈ U⊥ such that B(u, δx) 6= 0, which would contradict the
preservation of the function B(u, .).

Since the function δQ is additive and vanishes on U , it is well defined on
the quotient additive group V/U , which is naturally isomorphic to the quotient
vector space V/U . On V/U , ϕ acts trivially, and so δQ is preserved.

These two propositions motivate the following definition:

Definition 3.5. Two virtual quadratic spaces (V,Q,U) and (V ′, Q′, U ′) are

isomorphic if (U,Q|U ) and (U ′, Q|U ′) are isomorphic quadratic spaces.

Now we will show a relationship between the isometry groups Iso(U) and
Iso(V, U). It is known (see [2]) that in a non-degenerate quadratic space, the
group of isometries acts transitively on non-zero vectors of equal norm:

Theorem 3.6. Given a quadratic space U and two subspaces V and W such

that V ∩ U⊥ = W ∩ U⊥ = {0} with an isometry σ : V → W , it extends to an

isometry of U .

Proposition 3.7. Given a quadratic space (U,Q), and assuming that for any

non-zero u ∈ U ∩U⊥ we have Q(u) 6= 0, then every isometry of U fixes U ∩U⊥.

Furthermore, if given an embedding of U into a minimal virtual quadratic space

(V, U), there is a natural map Iso(V, U) → Iso(U) that is surjective.

Proof. We will first show that Q as a map is an injection from N := U ∩U⊥ to
the base field. In fact, given u, v ∈ N , Q(u − v) = Q(u) − Q(v) since u ⊥ v.
Therefore if Q(u) = Q(v), we get Q(u− v) = 0, which is only possible if u = v.
Since Q is injective, and any isometry maps N to itself, it must fix each vector,
thus fixing N .

Given a virtual quadratic space (V, U), any isometry of V fixes N ⊆ U⊥. If
(V, U) is minimal, N⊥ = U , hence the subspace U is preserved, and there is a
restriction map Iso(V, U) → Iso(U). Since (Q, V ) is a non-degenerate quadratic
space, by 3.6, any isometry of U extends to an isometry of V . Hence the
restriction map is surjective.

Proposition 3.8. The condition that for any non-zero u ∈ U ∩U⊥, Q(u) 6= 0,
is equivalent to RadQ = {0}. If the characteristic is not 2, this is equivalent to

U ∩ U⊥ = {0}.

Proof. In fact we shall prove that RadQ = {u ∈ U ∩ U⊥ | Q(u) = 0}. In
one direction, if u ∈ RadQ, then B(u, v) = Q(u + v) − Q(u) − Q(v) = 0 and
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Q(u) = Q(u + 0) = Q(0) = 0. Now assume Q(u) = 0 and B(u, v) = 0 for all
v ∈ U . Then Q(u+ v) = Q(u) +Q(v) +B(u, v) = Q(v), hence u ∈ RadQ.

If the characteristic is not 2, the bilinear form B defines Q, and so Q|U∩U⊥ ≡
0 since B|U∩U⊥ ≡ 0.

Propositions 3.2, 3.3, 3.4, 3.7 and 3.8 may be combined into the following
theorem:

Theorem 3.9. Consider a quadratic space (QU , U). Then it can be embedded

into a virtual quadratic space (V,QV , U), and for such an embedding, Iso(V, U)
depends only on QU . In fact, such a V can always be chosen so that dim V =
dimU +dim(U ∩U⊥), even as a subspace of some other virtual quadratic space

(V ′, QV ′ , U), which is equivalent to the condition that U⊥ ⊆ U in V . Further-

more, if RadQU = {0}, the restriction map Iso(V, U) → Iso(U) is a surjective

map.

Proposition 3.7 motivates also the following definition.

Definition 3.10. A virtual quadratic space (V, U) is non-degenerate if RadQ =
{0}.

4 Finite fields

One interesting application of virtual quadratic spaces is that they provide a
common language for finite fields of even and odd characteristic. First, consider
the following lemma.

Lemma 4.1. In a prefect field K of characteristic 2, any non-degenerate virtual

quadratic space (V, U) is such that dim(U ∩ U⊥) ≤ 1.

Proof. Assume that there are two linearly independent vectors u, v ∈ U ∩ U⊥

with Q(u) 6= 0 6= Q(v). Since K is perfect, there is an element λ ∈ K such that

λ2 = Q(u)
Q(v) . Then the vector w := u + λv has Q(w) = 0. Since (V, U) is non-

degenerate, this contradicts the fact that u and v are linearly independent.

Now let us recall a few simple theorems. See [2] for details.

Theorem 4.2. Let us fix a finite field F of odd characteristic, and choose a

non-square element e ∈ F. Then every non-degenerate quadratic form is of one

of the following forms, up to isomorphism:

•
∑k

i=1 x2i−1x2i for n = 2k;

•
∑k

i=1 x2i−1x2i + x2
2k+1 for n = 2k + 1;

•
∑k

i=1 x2i−1x2i + x2
2k+1 − ex2

2k+2 for n = 2k + 2.

Theorem 4.3. Let us fix a finite field F of characteristic 2, and choose an

element e ∈ F for which the polynomial x2 + x + e has no roots. Then every

quadratic form with trivial radical is of one of the following forms, up to iso-

morphism:
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•
∑k

i=1 x2i−1x2i for n = 2k;

•
∑k

i=1 x2i−1x2i + x2
2k+1 for n = 2k + 1;

•
∑k

i=1 x2i−1x2i + x2
2k+1 + x2k+1x2k+2 + ex2

2k+2 for n = 2k + 2.
The first and last have non-degenerate associated bilinear forms, but the second

has not.

The first and last cases are denoted for all fields as +-type and −-type,
respectively. These two theorems can be combined into the following corollary:

Corollary 4.4. Let us fix a finite field F. Then the number of non-degenerate

virtual quadratic spaces of dimension n up to isomorphisms is 2 if n is even and

1 if n is odd.

Proof. We may assume that the virtual quadratic space is minimal. A non-
degenerate virtual quadratic space is a triple (V,Q,U) such that Q(u) = 0 for
u ∈ U ∩ U⊥ only if u = 0. If the characteristic of the field is odd, this is
only possible if V = U , hence this is the same case as theorem 4.2. If the
characteristic is 2, V must be of even dimension by theorem 4.3. Since all finite
fields are perfect, by 4.1 we have dimV − dimU ≤ 1 since V is minimal. Hence
if dimU is even, then V = U .

Assume that dimU is odd and dimV = dimU + 1. Then RadQ|U = {0},
since the virtual quadratic space is non-degenerate. Hence Q|U is of the form
prescribed in 4.3, which determines the virtual quadratic space up to isomor-
phism.

The order of orthogonal groups over finite fields is known (see [1]).

Theorem 4.5. Consider a quadratic space (U,Q) with RadQ = {0} over the

finite field Fq, and let us denote by Oε(2k, q) the group Iso(U) when dimU = 2k
and Q is of type ε, and by O(2k + 1, q) the group Iso(U). Then

Oε(2k, q) = 2qk
2
−k(qk − ε)

k−1∏

i=1

(q2i − 1)

If 2 ∤ q,

O(2k + 1, q) = 2qk
2

k∏

i=1

(q2i − 1)

If 2 | q,

O(2k + 1, q) = qk
2

k∏

i=1

(q2i − 1)

The formula for even dimension does not discriminate between even and
odd characteristics, but the formula for odd dimension does. Virtual quadratic
spaces give us a hint that the problem is that the space has degenerate associated
bilinear form, and as it turns out, it is:
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Theorem 4.6. Let (V, U) be a non-degenerate virtual quadratic space of dimen-

sion 2k + 1 over a field Fq of characteristic 2. Then

| Iso(V, U)| = 2qk
2

k∏

i=1

(q2i − 1)

Proof. It is known from 3.9 that the restriction map Iso(V, U) → Iso(U) is a
surjection, and that Iso(U) ∼= O(2k+1, q), hence we only need to show that the
kernel of the restriction map is of order 2.

Assume that (V, U) is minimal, and let us take an isometry ϕ ∈ Iso(V, U)
that is in the kernel, hence it fixes U . We may decompose V as the orthogonal
sum M ⊕Σ where Σ is a hyperbolic space, and U as M ⊕N where N = U ∩U⊥.
Then ϕ fixes M ⊂ U , and thus preserves the subspace Σ.

By 4.1, dimN = 1, and Σ has a basis {e1, e2} with 〈e1〉 = N , where the bilin-
ear form takes the form B(u, v) = u1v2 + u2v1. Since (V, U) is non-degenerate,
RadQ|U = {0}, and Q(e1) 6= 0, in fact we may assume Q(e1) = 1 by rescaling,
as the field is perfect. Since ϕ fixes U⊥, which contains e1, we only need to
check the image of e2. Let ϕ(e2) = αe1 + βe2 for some parameters α, β ∈ Fq.

First of all, 1 = B(e1, e2) = B(e1, ϕ(e2)) = β. Then Q(e2) = Q(ϕ(e2)) =
α2 + αβ + β2Q(e2), which gives us α(α+ 1) = 0, hence α ∈ {0, 1}. Since either
choice gives us an isometry, we have the kernel containing 2 elements.

Corollary 4.7. Consider a non-degenerate virtual quadratic space (V,Q,U)
the finite field Fq, and let us denote by Ortε(2k, q) the group Iso(V, U) when

dimU = 2k and Q is of type ε, and by Ort(2k+1, q) the group Iso(V, U). Then

Ortε(2k, q) = 2qk
2
−k(qk − ε)

k−1∏

i=1

(q2i − 1)

Ort(2k + 1, q) = 2qk
2

k∏

i=1

(q2i − 1)
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