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Abstract. P. Turán was the first to derive lower estimations on the uniform norm
of the derivatives of polynomials p of uniform norm 1 on the interval I := [−1, 1]
and the disk D := {z ∈ C : |z| ≤ 1}, under the normalization condition that
the zeroes of the polynomial p in question all lie in I or D, resp. Namely, in 1939
he proved that with n := deg p tending to infinity, the precise growth order of the
minimal possible derivative norm is

√
n for I and n for D.

Already the same year J. Erőd considered the problem on other domains. In
his most general formulation, he extended Turán’s order n result on D to a certain
general class of piecewise smooth convex domains. Finally, a decade ago the growth
order of the minimal possible norm of the derivative was proved to be n for all
compact convex domains.

Turán himself gave comments about the above oscillation question in Lq norm
on D. Nevertheless, till recently results were known only for I, D and so-called R-
circular domains. Continuing our recent work, also here we investigate the Turán-
Erőd problem on general classes of domains.
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1. Introduction

Denote by K ⊂ C a compact subset of the complex plane, with the most notable
particular cases being the unit disk D := {z ∈ C : |z| ≤ 1} and the unit interval
I := [−1, 1].

As a kind of converse to the classical inequalities of Bernstein [5, 6, 29] and Markov
[20] on the upper estimation of the norm of the derivative of polynomials, in 1939
Paul Turán [30] started to study converse inequalities of the form

‖p′‖K ≥ cKn
A‖p‖K .

Clearly such a converse can only hold if further restrictions are imposed on the oc-
curring polynomials p. Turán assumed that all zeroes of the polynomials belong to
K. So denote the set of complex (algebraic) polynomials of degree (exactly) n as Pn,
and the subset with all the n (complex) roots in some set K ⊂ C by Pn(K).

Denote by Γ the boundary of K. The (normalized) quantity under our study in
the present paper is the “inverse Markov factor” or “oscillation factor”

(1) Mn,q(K) := inf
p∈Pn(K)

‖p′‖Lq(Γ)

‖p‖Lq(Γ)

,

where, as usual,

‖p‖q : = ‖p‖Lq(Γ) :=

(
∫

Γ

|p(z)|q|dz|
)1/q

, (0 < q <∞)

‖p‖K := ‖p‖∞ : = ‖p‖L∞(Γ) := sup
z∈Γ

|p(z)| = sup
z∈K

|p(z)|.

We are discussing Turán-type inequalities on (1) for general convex sets, so some
geometric parameters of the convex domain K are involved naturally. We write
dK := diamK for the diameter of K, and wK := width K for the minimal width of
K. That is,

dK := sup
z′,z′′∈K

|z′ − z′′|, wK := inf
γ∈[−π,π]

(

sup
z∈K

ℜ(zeiγ)− inf
z∈K

ℜ(zeiγ)
)

.

Note that a (closed) convex domain is a (closed), bounded, convex set K ⊂ C with
nonempty interior, hence 0 < wK ≤ dK < ∞. We also use the notation ∆K for the
transfinite diameter of K (see, e.g., [22, 5.5]).

A detailed account of the results concerning Turán-type inequalities for general
convex sets is given in [16], so here let us confine ourselves only to a less exhaustive
history of the topic. In 1939, Turán [30] proved the following.

Theorem A (Turán). If p ∈ Pn(D), then we have

(2) ‖p′‖
D
≥ n

2
‖p‖

D
.

If p ∈ Pn(I), then we have

(3) ‖p′‖
I
≥

√
n

6
‖p‖

I
.

Inequality (2) of Theorem A is best possible. Regarding (3), Turán pointed out by
example of (1−x2)n that the

√
n order cannot be improved upon, even if the constant
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is not sharp. The precise value of the constants and the extremal polynomials were
computed for all fixed n by Erőd in [14].

The key to get (2) is the following straightforward observation.

Lemma B (Turán). Assume that z ∈ ∂K and that there exists a disc DR = {ζ ∈
C : |ζ − z0| ≤ R} of radius R so that z ∈ ∂DR and K ⊂ DR. Then for all n ∈ N

and p ∈ Pn(K) we have

(4) |p′(z)| ≥ n

2R
|p(z)|.

For the easy and direct proof see any of the references [30, 19, 26, 28, 16]. Levenberg
and Poletsky [19] found it worthwhile to formally define the crucial property of convex
sets, used here.

Definition 1 (Levenberg-Poletsky). A set K ⊂ C is called R-circular, if for any
z ∈ ∂K there exists a disk DR of radius R, such that z ∈ ∂DR and K ⊂ DR .

Thus in particular for any R-circular K and p ∈ Pn(K) at the boundary point

z ∈ ∂K with ‖p‖K = |p(z)| we can draw the disk DR and get ‖p′‖K ≥ 1

2R
n‖p‖K ,

equivalently to (2).
Erőd continued the work of Turán already the same year, investigating the in-

verse Markov factors of domains with some favorable geometric properties. The most
general domains with Mn,∞(K) ≫ n, found by Erőd, were described on p. 77 of [14].

Theorem C (Erőd). Let K be any convex domain bounded by finitely many Jordan
arcs, joining at vertices with angles < π, with all the arcs being C2-smooth and being
either straight lines of length < ∆K or having positive curvature bounded away from
0 by a fixed positive constant κ > 0.

Then there is a constant c(K), such that Mn,∞(K) ≥ c(K)n for all n ∈ N.

As is discussed in [16], this result covers the case of regular k-gons Gk for k ≥ 7,
but not the square Q = G4. As for that matter, Erdélyi proved that G4 too has order
n oscillation, however, this advance appeared only much later in [13].

A lower estimate of the inverse Markov factor for all compact convex sets (and of
the same

√
n order as was known for the interval) was obtained in full generality only

in 2002 by Levenberg and Poletsky [19, Theorem 3.2].
Since

√
n was already known to be the right order of growth for the inverse Markov

factor of the interval I, it remained to clarify the right order of oscillation for compact
convex domains with nonempty interior. This was solved a decade ago in [25]; for
the fact that it is indeed the precise order see [26, 16, 28].

Theorem D (Halász-Révész). Let K ⊂ C be any compact convex domain. Then
for all p ∈ Pn(K) we have

‖p′‖K ≥ 0.0003
wK

d2K
n‖p‖K .

There are many papers dealing with the Lq-versions of Turán’s inequality. The
estimation of the Lq norm, or of any weighted Lq norms, goes the same way if we have
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a pointwise estimation for all, (or for linearly almost all), boundary points. Already
Turán himself mentioned in [30] that by (4) for any q > 0 we have Mn,q(D) ≥ n/2.
Levenberg and Poletsky extended this observation to R-circular domains in [19].

Theorem E (Levenberg-Poletsky). Assume that the convex, compact domain K
is R-circular with a certain radius 0 < R <∞. Then at any boundary point z ∈ ∂K

we have |p′(z)| ≥ n

2R
|p(z)|. Consequently, for any weighted Lq norm ‖ · ‖, we have

‖p′‖ ≥ n

2R
‖p‖ (∀p ∈ Pn(K)). In particular, Mn,q(K) ≥ n

2R
.

These estimates are not necessarily optimal, though. For more details about special
results on D and I see the detailed account of [16] and the references therein.

In case we discuss maximum norms, one can assume that |p(z)| is maximal, and
it suffices to obtain a lower estimation of |p′(z)| only at such a special point – for
general norms, however, this is not sufficient. The above results work only for we
have a pointwise inequality of the same strength everywhere, or almost everywhere.

The situation becomes considerably more difficult, when such a statement cannot
be proved. E.g. if the domain in question is not strictly convex (there is a line segment
on the boundary), then the zeroes of the polynomial can be arranged so that even
some zeroes of the derivative lie on the boundary, and at such points p′(z) – even
p′(z)/p(z) – can vanish. As a result, at such points no fixed lower estimation can be
guaranteed, and lacking a uniformly valid pointwise comparision of p′ and p, a direct
conclusion cannot be drawn either.

This explains why the cases of the interval I and non strictly convex domains
are much more complicated for the integral mean norms. Nevertheless, in a series
of papers [32, 33, 34, 35, 36], Zhou proved that for the interval I Mn,q(I) ≥ cq

√
n.

The best possible constants in some cases were found by Babenko and Pichugov [4],
Bojanov [8] and Varma [31].

The classical inequalities of Bernstein and Markov are generalized to various dif-
ferential operators, too, see [12, 21, 2, 24, 3, 11, 17, 18]. In this context, also Turán
type converses have been already investigated, see e.g. [1, 11, 17, 18].

Recently, we obtained some order n oscillation results for certain convex domains
without any R-circularity condition or strict convexity. To formulate this, let us first
introduce another geometrical notion, namely, the depth of a convex domain K as

hK := sup{h ≥ 0 : ∀ζ ∈ ∂K ∃ a normal line ℓ at ζ to K with |ℓ ∩K| ≥ h}.
We say that the convex domain K has fixed depth or positive depth, if hK > 0.

Although this is quite a general class, which e.g. contains all smooth compact convex
domains, observe that the regular triangle has hK = 0, as well as any polygon having
some acute angle. For more about this class see [16], where the following was proved.

Theorem F . Assume that K ⊂ C is a convex domain with positive depth hK > 0.
Then for any 1 ≤ q <∞, any n ∈ N and any p ∈ Pn(K) it holds

‖p′‖q,K ≥ cKn‖p‖q,K
(

cK :=
h4K

3000d5K

)

.
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From the other direction, we also proved that one cannot expect more than order
n growth of Mn,q(K). In fact, in this direction our result was more general, but here
we recall only a combination of Theorem 5 and Remark 6 of [16].

Theorem G . Let K ⊂ C be any compact, convex domain. Then for any q ≥ 1 and

any n ∈ N there exists a polynomial p ∈ Pn(K) satisfying ‖p′‖Lq(∂K) <
15

dK
n‖p‖Lq(∂K).

Based on these findings, we concluded in [16] with the following conjecture.

Conjecture 1. For all compact convex domains K ⊂ C there exists cK > 0 such
that for any p ∈ Pn(K) we have ‖p′‖Lq(∂K) ≥ cKn‖p‖Lq(∂K). That is, for any compact
convex domain K the growth order of Mn,q(K) is precisely n.

The aim of the present work is to prove the validity of the above Conjecture for
another class of compact convex domains, containing the class of Erőd in Theorem
C. One point is that in this class there are domains having even some acute angles at
certain boundary points (and thus having zero depth). So the result essentially adds
to the families of known classes having the property that Mn,q(K) ≍ n.

2. Formulation of the result for generalized Erőd type domains

Before formulating our result, we need to introduce some geometrical notations.
We start with a convex, compact domain K ⊂ C. Then its interior intK 6= ∅ and

K = intK, while its boundary Γ := ∂K is a convex Jordan curve. More precisely,
Γ = R(γ) is the range of a continuous, convex, closed Jordan curve γ on the complex
plane C. As the curve γ is convex, it has finite arc length L and we will restrict
ourselves to parametrization with respect to arc length.

If the parameter interval of the Jordan curve γ is [0, L], then this means, that
γ : [0, L] → C is continuous, convex, and one-to-one on [0, L), while γ(L) = γ(0).
While this compact interval parametrization is the most used setup for curves, we
need an essentially equivalent interpretation with this, too: the periodically extended
interpretation γ : R → ∂K with γ(t) := γ(t− [t/L]L) defined periodically all over R.

The parametrization γ : R → ∂K defines a unique ordering of points, which we
assume to be positive in the counterclockwise direction, as usual. When considered
locally, i.e. with parameters not extending over a set longer than the period, this
can be interpreted as ordering of the image (boundary) points themselves: we always
implicitly assume, that a proper cut of the torus R/LZ is applied at a point to where
the consideration is not extended, and then for the part of boundary we consider, the
parametrization is one-to-one carrying over the ordering of the cut torus to ∂K.

Arc length parametrization has an immediate consequence also regarding the de-
rivative, which must then have |γ̇| = 1, whenever it exists, i.e. (linearly) a.e. on R.
Since γ̇ : R → ∂D, we can as well describe the value by its angle or argument: the
derivative angle function will be denoted by α := arg γ̇ : R → R. Since, however, the
argument cannot be defined on the unit circle without a jump, we decide to fix one
value and then define the extension continuously: this way α will not be periodic,
but we will have rotational angles depending on the number of (positive or negative)
revolutions, if started from the given point. With this interpretation, α is an a.e.
defined nondecreasing real function with α(t) − 2π

L
t periodic (by L) and bounded.
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Angular values attained by α(t) are then ordered the same way as boundary points
and parameters. In particular, for a subset not extending to a full revolution, the
angular values are uniquely attached to the boundary points and parameter values
and they can be similarly ordered considering a proper cut.

Let α− and α+ be the left- resp. right-continuous extensions of α. The geometrical
meaning is that if for a parameter value τ the corresponding boundary point is γ(τ) =
ζ , then [α−(τ), α+(τ)] is precisely the interval of values β ∈ T such that the straight
lines {ζ + eiβs : s ∈ R} are supporting lines to K at ζ ∈ ∂K. We will interpret α as
a multi-valued function, assuming all the values in [α−(τ), α+(τ)] at the point τ .

The curve γ is differentiable at ζ = γ(θ) if and only if α−(θ) = α+(θ); in this case
the unique tangent of γ at ζ is ζ + eiαR with α = α−(θ) = α+(θ). Also note that by
convexity the curvature γ̈ ≥ 0 exists and is nonnegative linearly a.e.

For obvious geometric reasons we call the jump function Ω := α+ − α− the sup-
plementary angle function. This is zero except for a countable set, and has positive
values such that the total sum of the (possibly infinite number of) jumps on [0, L]
does not exceed the total variation of α on [0, L], i.e. 2π.

Definition 2. We say that a compact convex domain K ⊂ C is an E-domain —
more precisely, it is an E(k, d,∆, κ, ξ, δ)-domain with the positive parameters k ∈ N,
d,∆, κ, ξ, δ > 0 satisfying 0 < ∆ ≤ d/2, 0 < δ ≤ ∆/2, 0 < ξ ≤ π/2 — if the following
properties hold.

(1) d = dK and ∆ = ∆K are the diameter and transfinite diameter of K, resp.
(2) The boundary curve γ : [0, L] → Γ = ∂K can be decomposed to a finite number

k of adjoining pieces Γ = ∪k
j=1Γj, each Γj being (the range of) a simple, convex

Jordan arc γj : Ij := [vj , vj+1] → Γj ⊂ ∂K (with j = 1, . . . , k and vk+1 := v1);
(3) Each Jordan arc γj (j = 1, . . . , k) belongs to one of the categories below.

(i) It either satisfies |γ̈j| ≥ κ a.e. on Ij (when we call it a curved piece of
the boundary);

(ii) or it is a straight line segment of length Lj := |Γj| = vj+1 − vj ≤ ∆ − δ
(in which case it is called a straight piece of the boundary).

(4) At each Vj = γ(vj) (j = 1, . . . , k), the boundary curve has an outer angle
Ω(Vj) := α+(vj) − α−(vj) ≥ λ(j)ξ, where λ(j) is the number of straight
boundary pieces among Γj−1 and Γj, joining at Vj.

That is, we assume that there is a decomposition of the boundary, with each piece
classified as either a “straight” or a “curved” arc, and the parameters1

κ := min
j : Γj

is curved

ess inf |γ̈j|, ξ′ := min
j : Γj−1 or Γj

is straight

Ω(Vj)/λ(j), δ′ := min
j : Γj

is straight

(∆− Lj)

are positive. Clearly, this class contains that in Theorem C, some additional generality
lying in the facts that we drop any smoothness condition on the curved arcs Γj and
require the separation of the curvature from zero only almost everywhere. As for that
matter, this also allows joining into one piece any consecutive curved arcs (which
was not possible under the original C2 condition of Erőd). Also, strictly speaking
D (or other C2 domains with curvature otherwise exceeding a constant κ > 0) do
not belong to the original class of Erőd, for the parametrization a somewhat artificial

1By assumption, we took ξ := min(ξ′, π/2) and δ := min(δ′,∆/2).
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vertex point V1 have to be taken, where, however, no jump of the angle exhibits itself.
This explains why it is advantageous to involve here also the quantity λ(j): at joining
points of only curved pieces no jump need to be assumed.

Note that assuming |γ̈j| ≥ κ only a.e. is the relatively recent generality, achieved
in the topic of Blaschke Rolling Ball Theorems. The classical result of Blaschke [7]
gives only that a convex domain K with a C2-smooth boundary curve γ, having
curvature |γ̈| ≥ κ0 > 0 everywhere along the boundary, is 1/κ0-circular. This has
been generalized recently even to a.e. conditions, as we will discuss somewhat below.
Although these theorems cannot be directly used here, due to the presence of some
straight line pieces on the boundary of our Erőd type domains, in the proofs we will
still invoke them and therefore achieve this greater generality, too.

So we will dedicate the rest of the paper to the proof of the following.

Theorem 1. Let K ⊂ C be an E(k, d,∆, κ, ξ, δ)-domain as defined above. Then there
exists a constant c = cK (depending explicitly on the parameters k, d,∆, κ, ξ, δ) such
that for any q ≥ 1, any n ∈ N and any p ∈ Pn(K) we have

‖p′‖q ≥ cKn‖p‖q.

3. Technical preparations for the investigation of Lq(∂K) norms

Lemma 1. For any polynomial p of degree at most n and any q > 0 we have that

(5) ‖p‖Lq(∂K) ≥
(

d

2(q + 1)

)1/q

‖p‖L∞(∂K) n
−2/q.

For a proof of this Nikolskii-type estimate, see [16, Lemma 1].
Next, let us define the subset H := Hq

K(p) ⊂ ∂K the following way.

(6) H := Hq
K(p) := {ζ ∈ ∂K : |p(ζ)| > cn−2/q‖p‖∞}

(

c :=

(

1

8π(q + 1)

)−1/q
)

.

Then in [16, Section 3.1] it was deduced from the above Lemma 1 that we have

Lemma 2. Let H ⊂ ∂K be defined according to (6) and let q > 0 be arbitrary. Then
for all n ∈ N and for all p ∈ Pn we have

∫

H

|p|q ≥ 1

2
‖p‖qLq(∂K).

Furthermore, for any point ζ ∈ H, and for any n ∈ N and any p ∈ Pn(K) we also
have

log
‖p‖∞
|p(ζ)| ≤ log(16π) + 2 logn (≤ 4 logn if n ≥ 8) .

Note that the proof of Theorem C by Erőd in [14] was slightly incomplete2 and went
along somewhat different lines, basically trying to follow the geometrical features by a
direct calculation, which otherwise could have been treated–as we will do here–by the
Blaschke Rolling Ball Theorem (seemingly unknown to Erőd). While we are utilizing
the essential ideas of the method of Erőd, here we make explicit use of these Rolling
Ball Theorems, and, in fact, capitalize on the far-reaching generalizations known by

2For a detailed analysis and the necessary slight addition to the argument, see [14] and [26].



8 POLINA YU. GLAZYRINA, SZILÁRD GY. RÉVÉSZ

now in geometry. More precisely, the key to treat the curved arcs of the boundary of
K will be the next lemma.

Lemma H (Strantzen). Let the compact convex domain K have boundary curve
Γ = ∂K and let κ > 0 be a fixed constant. Assume that the convex boundary curve Γ
(which is, by convexity, twice differentiable linearly almost everywhere) satisfies the

curvature condition |Γ̈| ≥ κ almost everywhere. Then to each boundary point ζ ∈ ∂K
there exists a disk DR of radius R = 1/κ, such that ζ ∈ ∂DR, and K ⊂ DR. That is,
K is R = 1/κ-circular.

Proof. This result is essentially the far-reaching, relatively recent generalization of
Blaschke’s Rolling Ball Theorem by Strantzen. A reference for it is Lemma 9.11 on p.
83 of [10]. For more details on this, as well as for some new approaches to the proof
of this generalization of the classical Blaschke Rolling Ball Theorem, see [27]. �

From here it is easy to see the following result, which is the k = 1 boundary
curve case of Theorem 1, when that one boundary piece is necessarily curved (since
otherwise we encounter the degenerate case of an interval only).

Proposition 1. Assume that the boundary curve γ : [0, L] → Γ := ∂K of the convex
domain K satisfies at (linearly) almost all points the condition that it has a curvature,
not smaller than a given positive constant κ, i.e. |γ̈| ≥ κ (> 0) a.e. Then we have for

any n ∈ N and any p ∈ Pn(K) that |p′(z)| ≥ κ

2
n|p(z)| (z ∈ ∂K) and for any weighted

Lq norm ‖ · ‖ on Γ = ∂K, we have ‖p′‖ ≥ κ

2
n‖p‖. In particular, Mn,q(K) ≥ κ

2
n.

Proof. This was implicitly contained already in [26, 28] and was explicitly formulated
as Theorem M in [16]. The proof is clear: the geometric condition entails the R-
circularity of the domain with R := 1/κ in view of Lemma H, whence Theorem E
furnishes the result. �

The other key and innovative feature of the original work of Erőd was invoking
Chebyshev’s Lemma, which we will use in the slightly more general form of an esti-
mation using the transfinite diameter.

Lemma I (Transfinite Diameter Lemma). Let K ⊂ C be any compact set, n ∈ N

arbitrary, and p ∈ Pn be a monic polynomial, i.e. assume that p(z) =
∏n

j=1(z − zj).

Then we have ‖p‖L∞(∂K) ≥ (∆K)
n.

Proof. In various forms essentially this was first proved by Fekete, Faber and Szegő.
For details and references see [16, Lemma P] and its discussion there. �

We will also use a classical result of Gabriel [15, Theorem 5.1], see also [16]. In
fact, we will need the following consequence of Gabriel’s Lemma.

Lemma 3. If n ∈ N and if p ∈ Pn(K), then for any q ≥ 1 it holds

‖p′‖q ≥ 0.022
1

d
‖p‖q.

Proof. See Lemma 3 of [16], where this is derived from the classical result of Gabriel.
�
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4. An R-circularity argument on the curved pieces of the boundary

We will use Turán’s pointwise estimate on the curved arcs. For uniformity of that
argument, we need the next geometrical lemma.

Lemma 4. If K is an E(k, d,∆, ξ, κ, δ)-domain, then there exists some R := RK :=
R(∆, κ, ξ) < ∞ such that K is partially R-circular in the sense that to all curved
Jordan arcs Γj in the decomposition (2) of Γ = ∂K, and to all points z ∈ Γj, there
exists a disk DR of radius R such that z ∈ ∂DR and K ⊂ DR. Moreover, one can
take RK := max {1/κ, ∆/(2 sin ξ)}.
Proof. The key to our proof is an application of the Strantzen result Lemma H,
however, not directly to K, but to another domain K⋆.

For this we will replace every straight line segment parts Γℓ of Γ by a circular arc
Λℓ and thus obtain a new curve C having a curvature exceeding some fixed positive
number linearly almost everywhere along C. Moreover, we will do this in such a way
that the domain K⋆, encircled by C, will still remain convex, and it will contain K,
so that in particular the disks, constructed using Lemma H for any boundary point
z ∈ Γj ⊂ C for any curved arc Γj of the boundary Γ = ∂K, will also cover K together
with K⋆.

So let us number the straight line segments as Γjν , ν = 1, . . . , m (where m ≤ k
is the number of straight line pieces of the decomposition (2) of the boundary) with
jν < jν+1, ν = 1, . . . , m − 1. All these will be replaced by a circular arc Λjν , and so
the new curve will be C := ∪k

j=1Cj, where Cj := Γj for the original curved arcs, and
Cℓ := Λℓ if ℓ = jν for some ν = 1, . . . , m, i.e. if Γℓ was a straight line segment piece
of the boundary.

For a completely definite construction, it remains to define the circular arcs Λℓ. So
let now ℓ = jν for some 1 ≤ ν ≤ m. The circular arc Λℓ will join the vertices Vℓ and
Vℓ+1 (the same way as Γℓ did), and will run in that halfplane of the two ones defined
by the straight line passing through Vℓ and Vℓ+1, which is free from the interior points
of K. This ensures that the curve C will encircle K⋆ = K ∪ (∪m

ν=1Sjν), where Sjν

are the disk caps, lying fully on the other side of Γjν than K, between Γjν and Λjν .
Finally, the radius of the circular arc Λℓ will be chosen as

(7) Rℓ :=
|Vℓ+1 − Vℓ|
2 sin ξ

≤ ∆

2 sin ξ
.

As 0 < sin ξ ≤ 1, the division results in a well-defined finite quantity Rℓ exceeding
or equal to the half of the length Lℓ = |Γℓ| = |Vℓ+1 − Vℓ|, and so the circular arc Λℓ

is unambiguously defined. Moreover, by the sine rule the angle between the segment
Γℓ and the circular arc Λℓ will be exactly ξ.

It remains to prove that the resulting new curve C is still a convex one. Note that
it certainly consists of convex arcs Cj , so convexity of C is equivalent to the statement
that at every point Vj of joining of the pieces, we still have a convex angle, i.e. the
incoming tangent angular direction is exceeded by the outgoing angular direction.

First, if Vj is the joining point of two curved arcs, then neither the incoming Γj−1,
nor the outgoing Γj is changed, whence original convexity of Γ = ∂K ensures that
there exists a (locally) supporting line – say Vj + eiα−(vj)R – to C at Vj. So let us
consider the cases when at Vj there is some straight piece coming in or going out,
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and when, therefore, there is a jump of the tangent direction, i.e. an outer angle
Ω(Vj) ≥ λ(j)ξ according to Condition (4) in Definition 2 of an E-domain.

Now the incoming tangent direction is either α−(Vj) (if the piece Γj−1 was a curved
one and is thus not changed, so that Cj−1 = Γj−1) or α−(Vj)+ξ (if Γj−1 was a straight
line segment and is thus replaced by the respective circular arc Λj−1). Similarly, the
outgoing angle is either α+(Vj) (if Γj is curved and Cj = Γj) or α+(Vj)− ξ (if Γj was
a straight line piece and Cj = Λj the constructed circular arc). That is, for C the
difference of the outgoing angle and the incoming angle is exactly α+(Vj)−α−(Vj)−
λ(j)ξ = Ω(Vj) − λ(j)ξ ≥ 0 by assumption. Therefore, the curve C has a (locally)
supporting line — e.g. Vj + eiα−(Vj)+ξ — even at the join points Vj where there is
some straight line piece coming in or going out.

In all, there is a (locally) supporting line to C at all vertices Vj for all j = 1, . . . , k.
Therefore, in view of the convexity of all the arcs Cj (j = 1, . . . , k), C is convex, too.

Moreover, for the j with Cj = Γj, we already have the linearly a.e. condition that
the curvature is at least κ, and for the newly constructed circular arc pieces Cℓ = Λℓ

we also have that the curvature is 1/Rℓ ≥ 2 sin ξ/∆ by (7). That is, we find that the
curvature of C is at least κ⋆ := min(κ, 2 sin ξ/∆) > 0 linearly a.e., and Strantzen’s
Lemma H applies. Whence the assertion. �

5. Calculation on the straight line segment boundaries

Let now K be an E(k, d,∆, κ, ξ, δ)-domain. This also means that all the straight
line segment boundary parts have length Lj ≤ ∆−δ < ∆ each. Let one boundary arc
Γ = Γj , which is a straight line segment, be fixed. Assume, as we may, that Γ = [−a, a]
with Lj = 2a ≤ ∆− δ. Also we may assume that K ⊂ H := {z ∈ C : ℑz ≥ 0}. Now
by condition at the endpoints of Γ there is a jump of the tangent, and α−(−a) ≤ −ξ,
α+(a) ≥ ξ.

Since K ⊂ H and the supporting lines ±a + eiα±(±a)R at ±a have angles with R

at least ξ, we have K ⊂ K ′, where K ′ ⊂ H is the domain in the upper halfplane
bounded by the halfline s := −a + ei(π−ξ)R+, the segment Γ = [−a, a], and the other
halfline t := a+ eiξR+.

Let now 0 < θ < ξ/2 be a small angle, and consider the ray (halfline) ℓ, emanating
from −a in the direction of eiθ. Write b := |u+ iv−a| and c := [u+ iv+a|. Obviously,
then the point of intersection u+ iv := ℓ∩ t satisfies u = a + b cos ξ = c cos θ − a and
v = b sin ξ = c sin θ. Without any further trigonometrical calculus, it is clear that
with θ ց 0 we will have b → 0, u→ a, c→ 2a, v → 0 and (u+ iv) → a.

Drawing the halfline m := a+R+e
i(π−θ), by symmetry we will find m∩s = −u+ iv.

So if we define the quadrangle3

B := B(θ) := con{(−u+ iv),−a, a, (u+ iv)},
then we will have diamB < ∆− δ/2 if θ ≤ θ0(∆, ξ, δ) is small enough.

For an explicit constant here let us choose θ0(∆, ξ, δ) :=
δξ

4∆
, say.

The conditions 0 < θ < ξ ≤ π/2 entail 0 < sin(ξ− θ) < sin ξ and applying the sine
theorem both in the triangles with vertices −a, a, u+ iv and −a, u+ iv,−u+ iv, we

3Actually, B is a trapezoid. In view of 0 < ξ ≤ π/2, it is also clear that diamB = max(2u, c).
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find

c

2a
=

sin(π − ξ)

sin(ξ − θ)
=

sin ξ

sin(ξ − θ)
and

2u

c
=

sin(π − ξ − θ)

sin ξ
=

sin(ξ + θ)

sin ξ
,

respectively, whence

diamB = max(c, 2u) = 2a
sin ξ

sin(ξ − θ)
max

(

1,
sin(ξ + θ)

sin ξ

)

= 2amax

(

sin ξ

sin(ξ − θ)
,
sin(ξ + θ)

sin(ξ − θ)

)

< (∆− δ)
sin ξ + θ

sin ξ − θ
.

This last estimate will be below ∆− δ/2 if (and only if)
∆− δ

∆− δ/2
<

sin ξ − θ

sin ξ + θ
, i.e.

when
δ

2∆− δ
>

2θ

sin ξ + θ
or, equivalently, if sin ξ >

4∆− 3δ

δ
θ.

However, in view of sin ξ ≥ 2ξ/π (0 < ξ ≤ π/2) and δ ≤ ∆/2, our choice of θ0
ensures

θ ≤ θ0 =
δ

4∆
ξ ≤ δ

4∆
(
π

2
sin ξ) <

δ sin ξ

2.5∆
≤ δ sin ξ

4∆− 3δ
,

which suffices.
This is useful for the following. Put S[φ, ψ] := {z ∈ C : φ ≤ arg z ≤ ψ} for the

sector of angles between φ and ψ. If z ∈ Γ, then z + S[0, θ] ⊂ (−a + S[0, θ]), and so
K ∩ (z + S[0, θ]) ⊂ K ∩ (−a + S[0, θ]), and symmetrically K ∩ (z + S[π − θ, π]) ⊂
K ∩ (a+ S[π − θ, π]), whence both sets are contained in B = B(θ) and we obtain

K(z, θ) := K ∩ {(z + S[0, θ]) ∪ (z + S[π − θ, π])} ⊂ B.

It follows that for any θ < θ0(∆, ξ, δ)(< ξ/2) we haveK(z, θ) ⊂ B(θ) and diamK(z, θ) ≤
diamB < ∆− δ/2.

Lemma 5. Let Γj ⊂ ∂K be a straight line boundary piece of the E-domain K, and

0 < θ :=
δξ

2π∆

(

< θ0(∆, ξ, δ) :=
δξ

4∆

)

. Then with 0 < η := η0(∆, δ) :=
δ

8∆
and for

any n ∈ N and any p ∈ Pn(K) we have the following alternative.

(i) Either for all z ∈ Γj we have |p′(z)| > η
sin θ

d
n|p(z)|;

(ii) or for all z ∈ Γj we have |p(z)| ≤ exp (−2ηn) ‖p‖K.

Proof. As above, put Γ := Γj and Γ = [−a, a], K ⊂ H. Assume that (i) fails, so that
there exists some z ∈ Γ with

(8) |p′(z)| ≤ η
sin θ

d
n|p(z)|.

Let us write the zeros of p in the form zj = z+ rje
iϕj (j = 1, . . . , n). Since p ∈ Pn(K)

and K ⊂ H, we obviously have 0 ≤ ϕj ≤ π (j = 1, . . . , n). The full zero set Z splits
into the subsets

Z∗ := Z ∩K(z, θ) = Z ∩ {z + (S[0, θ] ∪ S[π − θ, π])} and W := Z \ Z∗.
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For this latter subset of zeroes we will adopt Turán’s direct argument, to obtain at z
∣

∣

∣

∣

p′

p
(z)

∣

∣

∣

∣

≥ ℑp
′

p
(z) = ℑ

n
∑

j=1

1

z − zj
= ℑ

n
∑

j=1

−1

rj
e−iϕj =

n
∑

j=1

sinϕj

rj

≥
∑

zj∈W

sinϕj

rj
≥
∑

zj∈W

sin θ

d
=

sin θ

d
#W.

Comparing this to (8) yields #W ≤ ηn in this case, whence we also have #Z∗ ≥
(1− η)n. Since K(z, θ) ⊂ B, we also have Z∗ ⊂ B. As ‖p‖K ≥ ∆n in view of Lemma
I, this and the basic estimate that ∆K ≥ diamK/4 = d/4 (see [23]) implies for any
ζ ∈ B

|p(ζ)|
‖p‖K

=

∏n
j=1 |ζ − zj |
‖p‖K

≤
∏

zj∈Z∗ |ζ − zj |
∏

zj∈W
|ζ − zj |

∆n

≤
(

diamB

∆

)#Z∗ (

d

∆

)#W

≤
(

∆− δ/2

∆

)n−#W

4#W

≤ exp

(

n(1− η) log

(

∆− δ/2

∆

)

+ η n log 4

)

≤ exp

(

n

{

(1− η)

(

− δ

2∆

)

+ η log 4

})

,

using in the last step log(1 − x) ≤ −x (0 < x < 1). Observe that here within the
curly brackets {} the constant depends continuously on η and becomes negative for
η = 0, whence even for small η it is already negative. To be more explicit, using
log 4 ≈ 1.386294361.. < 1.5 and δ < ∆ (whence δ/(2∆) < 0.5), we obtain

|p(ζ)|
‖p‖K

≤ exp

(

n

{

2η − δ

2∆

})

≤ exp

(

− δ

4∆
n

)

≤ e−2ηn

(

η := η0 :=
δ

8∆

)

.

�

6. Completion of the proof of Theorem 1

We fix the parameter values θ :=
δξ

2π∆

(

< θ0(∆, ξ, δ) :=
δξ

4∆

)

and η := η0 :=
δ

8∆
as above. Then we consider three subsets of ∂K taking4

C := ∪
Γj is curved

Γj, L := ∪
Γj is straight & (i) holds

Γj , S := ∪
Γj is straight & (i) fails

Γj.

By partial R-circularity, provided by Lemma 4 (with R = RK of the Lemma), on
C we can apply Turán’s Lemma B at each point to get

∫

C

|p′|q ≥
(

1

2R

)q

nq

∫

C

|p|q.

On the straight part L, where (i) holds, the situation is even simpler as (i) directly
entails

∫

L

|p′|q ≥
(

δ sin θ

8∆d

)q

nq

∫

L

|p|q.

4Here, and throughout this section, (i) and (ii) refer to the respective properties in Lemma 5.
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Adding these and estimating trivially on the rest, we are led to

(9) ‖p′‖qq ≥
∫

C∪L

|p′|q ≥
(

min

(

1

2R
,
δ sin θ

8∆d

))q

nq

∫

C∪L

|p|q.

Finally, on the straight part S, where (i) fails, Lemma 5 guarantees (ii), whence here
we have

∫

S

|p|q ≤ |S| exp
(

−nq δ

4∆

)

‖p‖qK ≤ 2πd exp

(

−nq δ

4∆

)

‖p‖qK ,

for |S| ≤ L ≤ 2πd by convexity5. This we are to combine with Lemma 1, more
precisely with ‖p‖qK ≤ (2(q + 1)/d)n2‖p‖qq, directly following from (5). This leads to

∫

S

|p|q ≤ 2πd exp

(

−nq δ

4∆

)

2(q + 1)

d
n2‖p‖qq

= exp

(

log(4π(q + 1)) + 2 logn− n
qδ

4∆

)

‖p‖qq.

Acting a little wasteful, withsay n0 := 100
(

∆
δ

)2 ≥ 100 we surely have for all n ≥ n0

the estimate

log(4π(q + 1)) + 2 logn− n
qδ

4∆
< − log 2 + log(8π) + q +

√
n− 2.5q

√
n

< − log 2 + 4 + q − 1.5q
√
n < − log 2 + 4 + q − 15q < − log 2,

since for n ≥ n0 we have 2 logn <
√
n and 10

∆

δ
=

√
n0 ≤

√
n. So for n ≥ n0 we find

∫

S

|p|q ≤ exp (− log 2) ‖p‖qq =
1

2
‖p‖qq.

From here (9) leads to

‖p′‖qq ≥
(

min

(

1

2R
,
δ sin θ

8∆d

))q

nq

(

‖p‖qq −
∫

S

|p|q
)

≥ 1

2

(

min

(

1

2R
,
δ sin θ

8∆d

))q

nq ‖p‖qq

(

n ≥ n0 := 100

(

∆

δ

)2
)

hence

(10) ‖p′‖q ≥
1

2
min

(

1

2R
,
δ sin θ

8∆d

)

n ‖p‖q
(

n ≥ n0 := 100

(

∆

δ

)2
)

.

5A reference is [9, p. 52, Property 5] about surface area, presented as a consequence of the Cauchy
Formula for surface area.
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Substituting the expressions for R = RK from Lemma 4 and θ from Lemma 5 and
recalling that δ ≤ ∆/2, ξ ∈ (0, π) and δ < ∆ ≤ d, we see that

min

(

1

2R
,
δ sin θ

8∆d

)

= min

(

κ

2
,
sin ξ

∆
,
δ sin

(

δξ
2π∆

)

8∆d

)

= min

(

κ

2
,
δ sin

(

δξ
2π∆

)

8∆d

)

≥ min

(

κ

2
, 0.019

(

δ

∆

)2
ξ

d

)

,

because
sin t

t
decreases in [0, 1/4] and therefore for

δξ

2π∆
< 1/4 we can write

sin

(

δξ

2π∆

)

>
sin(1/4)

1/4
· δξ

2π∆
> 0.989 · δξ

2π∆

and thus

δ sin
(

δξ
2π∆

)

8∆d
≥ δ 0.989 · δξ

2π∆

8∆d
> 0.019

(

δ

∆

)2
ξ

d
.

Applying this in (10) leads to ‖p′‖q ≥ min

(

κ

4
, 0.009

(

δ

∆

)2
ξ

d

)

n ‖p‖q for n ≥ n0.

Finally, for any convex domain K and any n ≤ n0, the above Lemma 3 yields

‖p′‖q ≥ 0.022
1

d
‖p‖q ≥ 0.022

1

dn0

n‖p‖q. This furnishes for n ≤ n0 the estimate ‖p′‖q ≥

0.022
1

100
(

∆
δ

)2
d
n‖p‖q > 0.00022

(

δ

∆

)2
1

d
n‖p‖q.

In all, we get ‖p′‖q > cK‖p‖q with cK := min

(

κ

4
, 0.00022

(

δ

∆

)2
1

d
, 0.009

(

δ

∆

)2
ξ

d

)

.

Whence the assertion.
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