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Abstract

We analyze whether different sense vec-
tors of the same word form in multi-sense
word embeddings correspond to different
concepts. On the more technical side of
embedding-based dictionary induction, we
also test whether the orthogonality con-
straint and related vector preprocessing
techniques help in reverse nearest neigh-
bor search. Both questions receive a nega-
tive answer.

Word sense induction (WSI) is the task of
discovering senses of words without supervi-
sion (Schütze, 1998). Recent approaches include
multi-sense word embeddings (MSEs), i.e. vector
space models of word distribution with more vec-
tors for ambiguous words. In MSEs, each vector is
supposed to correspond to a different word sense,
but in practice models frequently have different
sense vectors for the same word form without an
interpretable difference in meaning.

In Borbély et al. (2016), we proposed a cross-
lingual method for the evaluation of sense resolu-
tion in MSEs. The method is based on the princi-
ple that words may be ambiguous to the extent to
which their postulated senses translate to different
words in some other language. For the translation
of words, we applied the method by Mikolov et al.
(2013b) who train a translation mapping from the
source language embedding to the target as a least-
squares regression supervised by a seed dictionary
of the few thousand most frequent words. The
translation of a source word vector is the near-
est neighbor of its image by the mapping in the
target space. In the multi-sense setting, we have
translated from MSEs. (The target embedding re-
mained single-sense.)

∗Veronika Lipp’s contribution is section 1.1

finom
durva

finom
ízletes

fine
coarse

delicious
tasty

Figure 1: Linear translation of word senses.
The Hungarian word finom is ambiguous between
‘fine’ and ‘delicious’.

Section 1 discusses our linguistic motivation;
and section 2 introduces MSEs. In section 3,
we elaborate on the cross-lingual evaluation. Part
of the evaluation task is to decide on empirical
grounds whether different good translations of a
word are synonyms or translations in different
senses. Reverse nearest neighbor search, the or-
thogonality constraint on the translation mapping,
and related techniques are also discussed. Sec-
tion 4 offers experimental results with quantitative
and qualitative analysis. It should be noted that our
evaluation is not very strict, but rather a process of
looking for something conceptually meaningful in
present-day unsupervised MSE models.1

1 Towards a less delicious inventory

We emphasize that our evaluation proposal probes
an aspect of MSEs, semantic resolution, which is
not well measured by the well-known word sense
disambiguation (WSD) task that aims at classify-
ing occurrences of a word form to different ele-
ments of a sense inventory pre-defined by some
experts. Our goal in WSI is to probe the gran-
ularity of the inventory itself. The differentia-
tion of word senses, as already noted in Borbély
et al. (2016), is fraught with difficulties, especially

1The code for these experiments can be found at https:
//github.com/makrai/wsi-fest.
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when we wish to distinguish homophony, i.e. us-
ing the same written or spoken form to express dif-
ferent concepts, such as Russian mir ‘world’ and
mir ‘peace’ from polysemy, where speakers feel
that the two senses are very strongly connected,
such as in Hungarian nap ‘day’ and nap ‘sun’.

The goal of WSI can be set at two levels.
We may more modestly aim to distinguish ho-
mophony from polysemy. Ideally, we could even
differentiate between metonymy and metaphor,
two subtypes of polysemy, discussed in more de-
tail by Veronika Lipp in the next section.

1.1 Lexicographic Background
(Veronika Lipp)

Lexical ambiguity is linguistically subdivided into
two main categories: homonymy and polysemy
(Cruse, 2004). Homonymous words have seman-
tically unrelated and mutually incompatible mean-
ings, such as punch1 , which means ‘a blow with
a fist’, and punch2, which means ‘a drink’. Some
have described such homonymous word meanings
as essentially distinct words that accidentally have
the same phonology (Murphy, 2002). Polysemous
words, on the other hand, have semantically re-
lated or overlapping senses (Cruse, 2004; Jack-
endoff, 2002; Pustejovsky, 1995), such as mouth
meaning both ‘organ of body’ and ‘entrance of
cave’.

Two criteria have been proposed for the distinc-
tion between homonymy and polysemy. The first
criterion has to do with the etymological derivation
of words. Words that are historically derived from
distinct lexical items are taken to be homonymous.
However, the etymological criterion is not always
decisive. One reason is that there are many words
whose historical derivation is uncertain. Another
reason is that it is not always very clear how far
back we should go in tracing the history of words
(Lyons, 1977).

The second criterion for the distinction between
homonymy and polysemy has to do with the re-
latedness/unrelatedness of meaning. The distinc-
tion between homonymy and polysemy seems to
correlate with the native speaker’s feeling that cer-
tain meanings are connected and that others are
not. Generally, unrelatedness in meaning points
to homonymy, whereas relatedness in meaning
points to polysemy. However, in a large number
of cases, there does not seem to be an agreement
among native speakers as to whether the mean-

ings of the words are related. So, it seems that
there is not a clear dichotomy between homonymy
and polysemy, but rather a continuum from “pure”
homonymy to “pure” polysemy (Lyons, 1977).

Most discussions about lexical ambiguity,
within theoretical and computational linguistics,
concentrate on polysemy, which can be further
divided into two types (Apresjan, 1974; Puste-
jovsky, 1995). The first type of polysemy is
motivated by metaphor (irregular polysemy). In
metaphorical polysemy, a relation of analogy is
assumed to hold between the senses of the word.
The basic sense of metaphorical polysemy is lit-
eral, whereas its secondary sense is figurative. For
example, the ambiguous word eye has the literal
basic sense ‘organ of the body’ and the figurative
secondary sense ‘hole in a needle.’ The other type
of polysemy is motivated by metonymy (regular
polysemy). In metonymy, the relation that is as-
sumed to hold between the senses of the word is
that of contiguity or connectedness. In metonymic
polysemy, both the basic and the secondary senses
are literal. For example, the ambiguous word
chicken has the literal basic sense referring to the
animal and the literal secondary sense of the meat
of that animal.

2 Multi-sense word embeddings

Vector-space language models with more vec-
tors for each meaning of a word originate from
Reisinger and Mooney (2010). Huang et al. (2012)
trained the first neural-network-based MSE. Both
works use a uniform number of clusters for all
words that they select before training as poten-
tially ambiguous. The first system with adap-
tive sense numbers and an effective open-source
implementation is a modification of skip-gram
Mikolov et al. (2013c), multi-sense skip-gram by
Neelakantan et al. (2014), where new senses are
introduced during training by thresholding the
similarity of the present context to earlier contexts.

Bartunov et al. (2016) and Li and Jurafsky
(2015) improve upon the heuristic thresholding by
formulating text generation as a Dirichlet process.
In AdaGram (Bartunov et al., 2016), senses may
be merged as well as allocated during training.
mutli-sense skip-gram2 (Li and Jurafsky, 2015)
applies the Chinese restaurant process formaliza-

2Note the l ↔ t metathesis in the name of the repo which
is the only way of distinguishing it from the other two multi-
sense skip-gram models.



tion of the Dirichlet process. Both AdaGram and
mutli have a parameter for semantics resolution
(more or less senses): α and γ, respectively.

MSEs are still in the research phase: Li and
Jurafsky (2015) demonstrate that, when meta-
parameters are carefully controlled for, MSEs in-
troduce a slight performance boost in semantics-
related tasks (semantic similarity for words and
sentences, semantic relation identification, part-
of-speech tagging), but similar improvements can
also be achieved by simply increasing the dimen-
sion of a single-sense embedding.

3 Linear translation from MSEs

Mikolov et al. (2013b) discovered that embed-
dings of different languages are so similar that
a linear transformation can map vectors of the
source language words to the vectors of their trans-
lations.

The method uses a seed dictionary of a few
thousand words to learn translation as a linear
mapping W : Rd1 → Rd2 from the source (mono-
lingual) embedding to the target: the translation
zi ∈ Rd2 of a source word xi ∈ Rd1 is approxi-
mately its image Wxi by the mapping. The trans-
lation model is trained with linear regression on
the seed dictionary

min
W

∑
i

||Wxi − zi||2

and can be used to collect translations for the
whole vocabulary by choosing zi to be the nearest
neighbor (NN) of Wxi. We follow Mikolov et al.
(2013b) in (i) using different metrics, Euclidean
distance in training and cosine similarity in collec-
tion of translations, and in (ii) training the source
model with approximately three times greater di-
mension than that of the target embedding.

In a multi-sense embedding scenario, Borbély
et al. (2016) take an MSE as the source model, and
a single-sense embedding as target. The quality of
the translation has been measured by training on
the most frequent 5k word pairs and evaluating on
another 1k seed pairs.

3.1 Reverse nearest neighbor search

A common problem when looking for near-
est neighbors in high-dimensional spaces
(Radovanović et al., 2010; Suzuki et al., 2013;
Tomašev and Mladenic, 2013), and especially
in embedding-based dictionary induction (Dinu

et al., 2015; Lazaridou et al., 2015) is when there
are hubs, data points (target words) returned
as the NN (translation) of many points (Wxs),
resulting in incorrect hits (translations) in most of
the cases. Dinu et al. (2015) attack the problem
with a method they call global correction. Here,
instead of the original NN, which we will call
forward NN search to contrast with the more
sophisticated method, they first rank source words
by their similarity to target words. In reverse
nearest neighbor (rNN) search, source words are
translated to the target words to which they have
the lowest (forward) NN rank.3

In reverse NN search, we restricted the vocab-
ulary to the some tens of thousands of the most
frequent words. We introduced this restriction for
memory saving, because the |Vsr|×|Vtg| similarity
matrix has to be sorted column-wise for forward
and row-wise for reverse ranking, so at some point
of the computation we keep the whole integer ma-
trix of forward NN ranks in memory. It turned out
that the restriction makes the results better: a vo-
cabulary cutoff of 215 = 32768 both on the source
and the target size yields slightly better results
(74.3%) than the more ambitious 216 = 65536
(73.9%). This is not the case for forward NN
search, where accuracy increases with vocabulary
limit (but remains far below that of reverse NN).

3.2 Orthogonal restriction and other tricks
Xing et al. (2015) note that the original lin-
ear translation method is theoretically inconsis-
tent due to its being based on three different sim-
ilarity measures: word2vec itself uses the dot-
product of unnormalized vectors, the translation is
trained based on Euclidean distance, and neigh-
bors are queried based on cosine similarity. They
make the framework more coherent by length-
normalizing the embeddings, and restricting W to
preserve vector length: their matrix W is orthog-
onal, i.e. the mapping is a rotation. Faruqui and
Dyer (2014) achieve even better results by map-
ping the two embeddings to a lower-dimensional
bilingual space with canonical correlation analy-
sis. Artetxe et al. (2016) analyze elements of these
two works both theoretically and empirically, and
find a combination that improves upon dictionary
generation and also preserves analogies (Mikolov
et al., 2013d) like

3If more target words have the same forward rank, Dinu
et al. (2015) make the decision based on cosine similarity.
This tie breaking has not proven useful in our experiments.



woman + king −man ≈ queen

among the mapped points Wxi. They find that the
orthogonality constraint is key to preserve perfor-
mance in analogies, and it also improves bilingual
performance. In their experiments, length nor-
malization, when followed by centering the em-
beddings to 0 mean, obtains further improvements
in bilingual performance without hurting monolin-
gual performance.

4 Experiments

4.1 Data
We trained neela, AdaGram and mutli mod-
els on (original and stemmed forms of) two semi-
gigaword (.7–.8 B words) Hungarian corpora,
the Hungarian Webcorpus (Webkorpusz, Halácsy
et al. (2004)) and (the non-social-media part of)
the Hungarian National Corpus (HNC, Oravecz
et al. (2014)). We used Wiktionary as our seed dic-
tionary, extracted with wikt2dict4 (Ács et al.,
2013). We tried several English embeddings as
target, including the 300 dimensional skip-gram
with negative sampling model GoogleNews re-
leased with word2vec (Mikolov et al., 2013a)5,
and those released with GloVe (Pennington et al.,
2014)6.

4.2 Orthogonal constraint
We implemented the orthogonal restriction by
computing the singular value decomposition

UΣV = S>t Tt

where St and Tt are the matrices consisting of the
embedding vectors of the training word pairs in
the source and the target space respectively, and
taking

W = U1V

where 1 is the rectangular identity matrix of ap-
propriate shape.

Table 1 shows the effect of these factors. Preci-
sion in forward NN search follows a similar trend
to that in Xing et al. (2015) and Artetxe (2016):

4https://github.com/juditacs/wikt2dict
5https://code.google.com/archive/p/

word2vec/
6https://nlp.stanford.edu/projects/

glove/

the best combination is an orthogonal mapping be-
tween length-normalized vectors; however, center-
ing did not help in our experiments. Reverse NNs
yield much better results than the simpler method,
but none of the orthogonality-related techniques
give further improvement here. The cause of re-
verse NN’s apparent insensitivity to length may be
the topic of further research.

4.3 Results

We evaluate MSE models in two ways, referred to
as any and disamb. The method any has been
used for tuning the (meta)parameters of the source
embedding and to choose the target: a traditional,
single-sense translation has been trained between
the first sense vector of each word form and its
translations. (If the training word is ambiguous
in the seed dictionary, all translations have been
included in the training data.) Exploiting the mul-
tiple sense vectors, one word can have more than
one translation. During the test, a source word was
accepted if any of its sense vectors had at least
one good translation among its k reverse nearest
neighbors (rNN@k). Table 2 shows results by the
best models7.

In disamb, we used the same translation ma-
trix as in any, and inspected the translations of
the different sense vectors to see whether the vec-
tors really model different senses rather than syn-
onyms. The lowest requirement for the non-
synonymy of sense vectors s1, s2 is that the sets of
corresponding good rNN@k translations are dif-
ferent. The ratio of words satisfying this require-
ment among all words with more than one sense
vector is shown as disamb in table 2. The values
are low.

Table 3 shows the successfully disambiguated
words sorted by the cosine similarity s of good
rNN@1 translations of different sense vectors.
(We found that most of the few cases when there
are more than two sense vectors with a good
rNN@1 translation are due to the fact that the
seed dictionary contains some non-basic transla-
tion, e.g. kapcsolat ‘relationship, conjunction’ has
‘affair’ among its seed translations. In these cases,
we chose two sense vectors arbitrarily.) Relying
on s is similar to the monolingual setting of clus-
tering the sense vectors for each word, but here we

7 Note that the neela and the mutli models in ta-
ble 2 were trained with lower dimension than the best-
performing model, so results here are not comparable among
these different architectures.

https://github.com/juditacs/wikt2dict
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/


8192 16384 32768
general linear orthogonal general linear orthogonal general linear orthogonal

any disamb any disamb any disamb any disamb any disamb any disamb
fw

d

vanilla 28.7% 2.40% 32.1% 2.40% 36.2% 3.40% 42.0% 4.70% 36.7% 4.20% 44.5% 6.00%
normalize 28.2% 2.20% 33.7% 3.40% 35.1% 2.80% 44.4% 5.80% 36.6% 3.80% 48.2% 6.00%
+ center 26.6% 2.10% 32.8% 2.90% 32.9% 2.70% 42.0% 4.50% 34.6% 3.50% 43.9% 5.50%

re
v

vanilla 53.8% 11.85% 51.7% 11.37% 58.3% 11.99% 56.6% 12.59% 74.3% 23.60% 73.6% 22.30%
normalize 53.3% 11.61% 50.0% 10.90% 58.0% 12.35% 56.5% 12.59% 73.7% 24.20% 72.8% 22.10%
+ center 51.7% 11.37% 53.3% 11.14% 57.1% 11.99% 57.7% 12.35% 69.7% 22.20% 73.5% 23.00%

Table 1: Precision@10 of forward and reverse NN translations with and without the orthogonality con-
straint and related techniques at vocabulary cutoffs 8192 to 32768. any and disamb are explained in
section 4.3. The source has been an AdaGram model in 800 dimensions, α = .1, trained on Webkorpusz
with the vocabulary cut off at 8192 sense vectors.

dim α/γ p m any disamb

HNC 800 .02 100 48.5% 7.6%
neela Wk 300 – 2 big 54.0% 12.4%
HNC stem 800 .05 big 55.1% 10.4%
HNC 160 .05 3 200 62.2% 15.0%
mutli Wk 300 .25 71 62.9% 17.4%
Webkorpusz 800 .05 100 65.9% 17.4%
HNC 600 .05 5 100 68.6% 16.6%
HNC 600 .1 3 50 69.1% 18.8%
Webkorpusz 800 .1 100 73.9% 23.9%

Table 2: Precision @10 of any reverse NN and
the number of word forms with non-synonymic
vectors (disamb). The source embedding has
been trained with AdaGram, except for when in-
dicated otherwise (neela, mutli). The meta-
parameters are dimension, the resolution parame-
ter (α in AdaGram and γ in mutli), the max-
imum number of prototypes (sense vectors), and
the vocabulary cutoff (min-freq, the two models
with big have practically no cut-off).

restrict our analysis to sense vectors that prove to
be sensible in linear translation.

We see that most words with s < .25 are really
ambiguous from a standard lexicographic point of
view, but the translations with s > .35 tend to be
synonyms instead.

4.4 Part of speech
The clearest case of homonymy is when unre-
lated senses belong to different parts of speech
(POSs), and the translations reflect these POSs,
e.g. nő ‘woman; increase’ or vár ‘wait; castle’.9

In purely semantic approaches, like 4lang (Kor-
nai, in press; Kornai et al., 2015), POS-difference
alone is not enough for analyzing a word as am-

9We note that some POSs in Hungarian have blurred bor-
ders, e.g. it is debatable whether the nominal önkéntes ‘vol-
untary; volunteer’ is ambiguous for its POS.

biguous, e.g. we see the only difference between
the noun and participle senses of alkalmazott, ‘em-
ployee; applied’ as employment being the ap-
plication of people for work; in the case of belső
‘internal; interior’, the noun refers to the part of a
building described by the adjective.

More interesting are word forms with related
senses in the same POS, e.g. cikk, ‘item; article’
(an article is an item in a newspaper); eredmény,
‘score; result’ (a score is a result measured by a
number); magas, ‘tall; high’ (tall is used for peo-
ple rather than high); or idegen, ‘strange, alien;
foreign’, where the English translations are special
cases of ‘unfamiliar’ (person versus language).

5 Acknowledgments

1957 was an influential year in linguistics: Har-
ris (1957) developed the frequency-aware variant
of the distributional method, Osgood et al. (1957)
pioneered vector space models, and the author
of a more recent conceptual meaning representa-
tion framework (Kornai, 2010, in press) was born.
Fifty years later (more precisely in fall 2006) I met
András during a class he taught on the book he was
writing (Kornai, 2007). I heard about deep cases
and kārakas sooner than I did about thematic roles.
He has since taught me computational linguistics
and mathematical linguistics in a master and dis-
ciple fashion.

Laozi says that a good leader does not leave a
footprint, and András encouraged us to be inde-
pendent and effective. One of his remarkable ci-
tations is that “It’s easier to ask forgiveness than
it is to get permission”. The proverb is sometimes
attributed to the Jesuits, who are similar to An-
drás in having had a great impact on what I’ve be-
come in the past ten years. The real source of the



s covg

E -0.04849 függő addict, aerial 0.4
S 0.01821 alkotó constituent, creator 0.5
S 0.05096 előzetes preliminary, trailer 1.0
S 0.0974 kapcsolat affair, conjunction, linkage 0.33
I 0.1361 kocsi coach, carriage 1.0
S 0.136 futó runner, bishop 1.0
S 0.1518 keresés quest, scan 0.67
S 0.1574 látvány outlook, scenery, prospect 0.6
S 0.1626 fogad bet, greet 1.0
S 0.1873 induló march, candidate 1.0
I 0.187 nemes noble, peer 0.67
E 0.1934 eltérés variance, departure 0.4
E 0.1943 alkalmazás employ, adaptation 0.33
S 0.2016 szünet interval, cease, recess 0.43
E 0.2032 kezdeményezés initiation, initiative 1.0
S 0.2052 zavar disturbance, annoy, disturb, turmoil 0.57
S 0.2054 megelőző preceding, preventive 0.29
IE 0.2169 csomó knotI , lumpI , matE 1.0
E8 0.21 remény outlook, promise, expectancy 0.6
S 0.2206 bemutató exhibition, presenter 0.67
E 0.2208 egyeztetés reconciliation, correlation 0.5
S 0.237 előadó auditorium, lecturer 0.67
E 0.2447 nyilatkozat profession, declaration 0.4
I 0.2494 gazda farmer, boss 0.67
I 0.2506 kapu gate, portal 1.0
I 0.2515 előbbi anterior, preceding 0.67
I 0.2558 kötelezettség engagement, obligation 0.67
E 0.265 hangulat morale, humour 0.5
E 0.2733 követ succeed, haunt 0.67
SE 0.276 minta normS , formulaE , specimenS 0.75
S 0.2807 sorozat suite, serial, succession 1.0
S 0.2935 durva coarse, gross 0.18
I 0.3038 köt bind, tie 0.67
E 0.3045 egyezmény treaty, protocol 0.67
I 0.3097 megkülönböztetés discrimination, differentiation 0.5
I 0.309 ered stem, originate 0.5
I 0.319 hirdet advertise, proclaim 1.0
E 0.3212 tartós substantial, durable 1.0
I 0.3218 ajánlattevő bidder, supplier, contractor 0.6
I 0.3299 aláírás signing, signature 0.67
I 0.333 bír bear, possess 1.0
I 0.3432 áldozat sacrifice, victim, casualty 1.0
IE 0.3486 kerület wardI , boroughI , perimeterE 0.3
I 0.3486 utas fare, passenger 1.0
I 0.3564 szigorú stern, strict 0.5
I 0.3589 bűnös sinful, guilty 0.5
I 0.3708 rendes orderly, ordinary 0.5
I 0.3824 eladó salesman, vendor 0.5
I 0.3861 enyhe tender, mild, slight 0.6
I 0.3897 maradék residue, remainder 0.33
I 0.3986 darab chunk, fragment 0.4
E 0.4012 hiány poverty, shortage 0.5
I 0.4093 kutatás exploration, quest 0.5
...

...
I 0.4138 tanítás tuition, lesson 0.67
I 0.4196 őszinte frank, sincere 0.67
I 0.4229 környék neighborhood, surroundings, vicinity 0.38
I 0.4446 ítélet judgement, sentence 0.67
I 0.4501 gyerek childish, kid 0.67
I 0.4521 csatorna ditch, sewer 0.4
I 0.4547 felügyelet surveillance, inspection, supervision 0.43
E 0.4551 ritka rare, odd 0.5
S 0.4563 szerető fond, lover, affectionate, mistress 0.67
I 0.4608 szeretet affection, liking 0.67
I 0.4723 vizsgálat inquiry, examination 0.67
I 0.4853 tömeg mob, crowd 0.5
I 0.4903 puszta pure, plain 0.22
I 0.4904 srác kid, lad 1.0
I 0.4911 büntetés penalty, sentence 0.29
I 0.4971 képviselő delegate, representative 0.67
I 0.4975 határ boundary, border 0.67
I 0.5001 drága precious, dear, expensive 1.0
S 0.5093 uralkodó prince, ruler, sovereign 0.5
I 0.5097 válás separation, divorce 0.67
I 0.5103 ügyvéd lawyer, advocate 0.67
I 0.5167 előnyös advantageous, profitable, favourable 1.0
I 0.5169 merev rigid, strict 1.0
I 0.5204 nyíltan openly, outright 1.0
I 0.5217 noha notwithstanding, albeit 1.0
I 0.5311 hulladék litter, garbage, rubbish 0.43
I 0.5311 szemét litter, garbage, rubbish 0.43
I 0.5612 kielégítő satisfying, satisfactory 1.0
E 0.5617 vicc joke, humour 1.0
I 0.5737 szállító supplier, vendor 1.0
I 0.5747 óvoda nursery, daycare, kindergarten 1.0
I 0.5754 hétköznapi mundane, everyday, ordinary 0.75
I 0.5797 anya mum, mummy 1.0
I 0.5824 szomszédos neighbouring, neighbour 0.4
E 0.5931 szabadság liberty, independence 1.0
I 0.6086 lelkész pastor, priest 0.4
I 0.6304 fogalom notion, conception 1.0
I 0.6474 fizetés salary, wage 0.67
I 0.6551 táj landscape, scenery 1.0
I 0.6583 okos clever, smart 0.67
I 0.6707 autópálya highway, motorway 0.5
I 0.6722 tilos prohibited, forbidden 1.0
I 0.6811 bevezető introduction, introductory 1.0
I 0.7025 szövetség coalition, alliance, union 0.75
I 0.7065 fáradt exhausted, tired, weary 1.0
I 0.7066 kiállítás exhibit, exhibition 0.67
I 0.7135 hirdetés advert, advertisement 1.0
I 0.7147 ésszerű rational, logical 1.0
I 0.7664 logikai logic, logical 1.0
I 0.7757 szervez organise, organize, arrange 1.0
I 0.8122 furcsa strange, odd 0.4
I 0.8277 azután afterwards, afterward 0.67
I 0.8689 megbízható dependable, reliable 0.67

Table 3: Hungarian words with the rNN@1 translations of their sense vectors. The first column is a
post-hoc annotation by András Kornai (E error in translation, I identical, S separate meanings), s is the
cosine similarity of the translations, and covg denotes the coverage of the @1 translations over all gold
(good) translations.
7 The basic translations hope is missing



proverb is Grace Hopper, a US navy admiral who
invented the first compiler. This paper is a step in
my learning to be so effective as the sources men-
tioned above.

András Kornai, besides the work already ac-
knowledged, rated each item in table 3. I would
like to thank the anonymous reviewer for detailed
critique, both substantial and linguistic, Mátyás
Lagos for reviewing language errors, and Gábor
Recski and Bálint Sass for their useful comments.
The orthogonal approximation was implemented
following a code10 by Gábor Borbély.
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